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Abstract In this paper we develop a mathematical framework for describing mul-
tidrug resistance in cancer. To reflect the complexity of the underlying interplay be-
tween cancer cells and the therapeutic agent, we assume that the resistance level is a
continuous parameter. Our model is written as a system of integro-differential equa-
tions that are parameterized by the resistance level. This model incorporates the cell
density and mutation dependence. Analysis and simulations of the model demon-
strate how the dynamics evolves to a selection of one or more traits corresponding to
different levels of resistance. The emerging limit distribution with nonzero variance
is the desirable modeling outcome as it represents tumor heterogeneity.

Keywords Multidrug resistance - Chemotherapy - Mutation - Heterogeneity -
Integro-differential equations

1 Introduction

Resistance to chemotherapy is a major cause of the failure of cancer treatment. Our
current understanding of drug resistance in cancer is that tumor heterogeneity and
complex genetic and epigenetic changes contribute to the development of multidrug
resistance (MDR). When this occurs, the cell becomes resistant to a variety of struc-
turally and mechanistically unrelated drugs in addition to the drug initially adminis-
tered (see Fodal et al. 2011; Gillet and Gottesman 2010).
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Mathematical models have been used to study drug resistance in a variety of cir-
cumstances. Furthermore, many important questions have been addressed using dif-
ferent computational approaches, such as: How is early detection and therapy con-
nected with the development of drug resistance? What is the probability that at the
time of diagnosis, resistant cancer cells are already present? When several drugs are
available, how many drugs should be applied? Should these drugs be used in combi-
nation, or sequentially? (see the recent review of Lavi et al. (2012)).

Cancer models include features that influence growth, evolution, MDR and/or
intra-tumoral heterogeneity and hence include information about cellular rates. In
some cases, these rates can be functions of time, space, density, and/or environmen-
tal signals. For instance, consider the natural division rate of cancer cells. The sim-
plest models of cancer growth assume exponential growth (see, e.g., Ledzewicz and
Schattler 2006; Panetta 1998), with the growth rate proportional to the current den-
sity of cells. This is useful for describing cells in a certain growth phase, but most
likely does not hold over their entire lifetime, as it yields unbounded growth. Logistic
growth accounts for saturation effects by adding a quadratic competitive interaction
term to the growth rate (e.g., see Forys and Marciniak-Czochra 2003; Schuster and
Schuster 1995; Stein et al. 2007). The Gompertz growth function, introduced in 1964
by Laird to account for the sigmoidal growth dynamics often observed in tumors,
is another prominent choice (see Fister and Panetta 2003; Laird 1964). And other
variations exist (for example, see Khain and Sander 2006).

From the above, we see discrepancies in the description of the division rate. Essen-
tially, these models take different forms for their growth rate as a function of cellular
density. In fact, other rate parameters often also depend on density, and it is an impor-
tant aspect of modeling drug resistance. Cell density relates to various factors that de-
termine tumor growth, such as cell—cell interactions, cell-matrix interactions, nutrient
distribution, survival signals, the penetration of anti-cancer drugs, and the internal tu-
mor pressure. Many experiments using both normal and cancer cells have directly or
indirectly measured the relationship between the rates of cell division and death as
functions of cell density, both with and without the administration of a chemother-
apeutic agent (Brimacombe et al. 2009; Grantab et al. 2006; Hakanson et al. 2012;
Khain and Sander 2006; Long et al. 2003; Nagane et al. 1996; Qiao and Farrell 1999;
Saeki et al. 1997; Weaver et al. 2002). In some studies, the cell division rate
was found to be a decreasing function of cell density (Hakanson et al. 2012;
Khain and Sander 2006), while in others, the reverse was observed (Long et al. 2003;
Qiao and Farrell 1999; Saeki et al. 1997). On the other hand, several independent
studies have clearly shown that the exact cell death rate depends on the experi-
mental design (Hakanson et al. 2012; Weaver et al. 2002; Zahir and Weaver 2004).
Therefore, a theoretical study should examine the properties of these dependen-
cies.

Furthermore, one must also understand how drug resistance is being characterized
and choose an appropriate mathematical paradigm to frame the model. Indeed, in the
mathematical literature, the problem has been studied for over thirty years. One of the
early models of resistance considers the mechanism of point mutations, where cells
are in one of two compartments: sensitive or resistant (e.g., see Coldman and Goldie
1985, 1986, 1979, 1983a, 1983b, 1998; Goldie et al. 1982). More advanced stochastic
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models of point mutations are found in the reports of Komarova et al. (2006, 2005),
while Kimmel et al. (1991, 1990) study gene amplification through branching pro-
cesses. Continuum-based models are also widely utilized. For instance, ordinary dif-
ferential equations (ODEs) are employed by Birkhead et al. (1987) to study kinetic
resistance and by Tomasetti and Levy (2010) to study point mutations. Michelson
and Slate use ODEs to model resistance via increased drug efflux through the ABC
transport proteins pathway (Michelson and Slate 1992). Partial differential equation
models (PDEs) are also used to describe heterogeneous tumors and vascularization
(Jackson and Byrne 2000), and integro-differential equations (IDEs) are sometimes
used to describe mutations between sensitive and resistant cancer cells (Lorz et al.
2013).

Lorz et al. (2013) proposed a mathematical model that includes the effects of a
continuous variable describing the level of resistance a cell has obtained on cell divi-
sions, apoptosis, and mutation rates of both healthy and cancerous populations. They
provide a basis for structured population models including a selection process based
on an approach previously developed using partial differential equations (Calsina and
Cuadrado 2000, 2004; Champagnat et al. 2006; Desvillettes et al. 2008; Diekmann
et al. 2005; Lorz et al. 2011; Magal and Webb 2000; Perthame 2007; Perthame and
Barles 2008). Both intratumoral heterogeneity and cellular density were incorporated
in the Lorz et al. model. Heterogeneity is described via the resistance variable, and
density effects were included only on the growth rate of healthy cells, with cancerous
cells having no density dependencies.

In this paper, we aim to develop a mathematical framework for describing MDR
by incorporating cell density and mutation dependence. We consider all growth pa-
rameters (division, death, and mutation rates, etc.) to be functions of the resistance
level (“trait”), which we assume to be a continuous variable. Based on a system of
IDEs parameterized by the resistance level, we provide a basis for structured pop-
ulation models designed to estimate the intratumoral heterogeneity over time. In-
deed, intratumoral heterogeneity is a widely observed phenomena (Kreso et al. 2013;
Marusyk and Cancer 2013; Saunders et al. 2012), but many basic models do not ac-
count for it (see Sect. 3). Since cellular density has been proven to have a profound
impact on cancer cell dynamics, our study extends the approach of Lorz et al. by in-
cluding these effects on both natural and drug-induced death rates, in addition to the
cell division rate of the cancer cells. Moreover, in our model, the spontaneous death
rate is considered to vary in different ways than in Lorz et al. (2013). This results in
significantly different net growth and heterogeneity (Figs. 9 and 10). Furthermore, in
our model, we account for the occurrence of changes that proceed at higher rates than
those of genetic mutations, such as epigenetic changes.

The work is organized as follows. We first provide an overview of the mathemati-
cal model in Sect. 2. In Sect. 3 we explore in detail how the mathematical model cor-
responds to biological observations. We proceed by exhibiting the different behaviors
that can be produced by various formulations of the model, together with biological
implications. In particular, we move from a model with no density dependence or
genetic variation to one that includes both and demonstrate how these features affect
tumor heterogeneity. Concluding remarks are presented in Sect. 4.
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2 A Mathematical Model for Cancer Dynamics

In deriving the mathematical model, we extend the approach of Lorz et al. (2013). In
Lorz et al. (2013), both healthy and cancerous cells are modeled using structured pop-
ulation dynamics that incorporate cell divisions with and without mutations. Healthy
cells also include a homeostatic density dependence on the cell division rate only,
while cancerous cells are assumed to be able to grow without this inhibitive factor.
In this work, we consider cancer cells only, coupled with a drug, which is assumed
to be a chemotherapeutic agent, and assume, as is done in Lorz et al. (2013), that
the resistance level is described by a scalar, x, which can be normalized such that
x €[0,1].

Let n(x, t) denote the population density of cancer cells with trait x at time ¢, and
let p(¢) denote the total number of cells,

1
o= [ nexina M
The dynamics of the cancer cell population is then described via the selec-

tion/mutation integro-differential equation

on(x,1)
or

(f(e®)[r)(1—6@)) —h(D(@),x)] — g(p®))d(x))n(x, 1)

1

+ f(p(t))/o Or(y)M(y, x)n(y,1)dy. @

The rationale for Eq. (2) is as follows:

1. r(x) and d(x) denote the natural division rate and death rate of cancer cells with
trait x, respectively. We assume that no external forces are influencing the inherent
growth and death rates, and hence these rates are constant in time.

2. D(t) represents the dosage of the chemotherapeutic drug at time ¢, with 2(D(¢), x)
representing the net cytotoxic effect on cancer cells with trait x under dosage
D(t). It is common to assume that 4 increases linearly with drug dosage D, but
in certain situations, other forms may be valid. For instance, it may be desirable
to include saturation effects in 4 for large drug concentrations D (for instance,
limp_, o (D, x) = hi(x) < oo for some function of trait values /7).

3. The terms f(p(¢)) and g(p(¢)) are included to incorporate density dependence
into the division and apoptosis rates. It is well known that both the division and
apoptosis rates depend on the cell density (see Bozic et al. 2012; Grantab et al.
2006; Hakanson et al. 2012; Lavi et al. 2012). The specific functional form of
these terms plays a key role in the overall dynamics as demonstrated in Sect. 3.

4. The birth (r(x)) and drug-induced apoptosis (2 (D(t), x)) rates have the same den-
sity dependence factor f since we are assuming the drug is cell-cycle specific,and
hence affects primarily only cells that are dividing. Hence, the induced death term
should be proportional to the division rate. This assumption is widely known as
the Norton—Simon Hypothesis (Norton and Simon 1977a, 1977b, 1986).
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5. All parameters and functions are nonnegative: r,d,h, g > 0, and f > 0 (see
Egs. (6) and (7) below). We also assume that r, d € C([0, 1]). As of now, we make
no further assumptions on these terms.

6. We assume that when cells undergo division, they may mutate. That is, if the
mother cell has the specific trait x, the daughter cell can have the same trait
value x, which we call a faithful division, or it may have a different resistance
level y, which we refer to as a mutation. Mutation can either be a permanent ge-
netic change or permanent epigenetic change. The key assumption is that traits are
passed down from mother to daughter cell and do not revert back to the original
value x after some fixed time.

7. 6(x) denotes the fraction of cells with trait x undergoing mutation, where 0 <
f(x) <1, and hence 1 — 6(x) denotes the fraction of cell undergoing faithful
division.

8. The last term on the RHS of (2) takes into account all mutations during division
from different traits y. M (y, x) denotes the probability that given a mutation, a
mother cell with trait y will differentiate into a daughter cell with trait x. As a
probability density function, M (y, x) satisfies

M(y,x)>0 Vx,yel0,1], 3)

1
/ M(y,x)dx=1 Vyel0,1]. (@)
0

Equation (4) means that since a mutation occurs, it must mutate to some x € [0, 1].

The notations used in (2) are summarized in Table 1. Equation (2) is a selection and
mutation model, which will move through the (x, n(x, t)) phase space by both Dar-
winian evolution and mutations. As time progresses, different gene expressions will
become advantageous/disadvantageous, and the overall dynamics will be determined
both by the rate and mutation parameters, in addition to the initial distribution of cells.
It is important to note that Eq. (2) can be obtained as an expected value of a stochastic
model of cells that obey the division/mutation dynamics described above, where the
expected value is taken over the number of cells of type x. For the remainder of the
paper, we make the following assumptions:

Assumption 1 D(t) = 1. This is equivalent to assuming that the drug is applied
uniformly in time. A time-dependent D(t) allows one to study treatment protocols,
but this is beyond the scope of this work. Hence, we can write the drug-induced
rate term h(D(t),x) as a function of the trait value x only, which we define as
c(x) (c(x) := h(1,x)). As with the other rate parameters r(x) and d(x), we as-
sume the trait dependence on the cytotoxic rate term is continuous, i.e., c(x) €
([0, 1].

Assumption 2 6(x) = 6, a constant. In this work we do not study the effect of the
variation of the fraction of mutated divisions on trait value.
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Table 1 List of variables

Variable Range Biological interpretation

X [0, 1] Resistance level

t R4 Time

n(x,t) R4+ Concentration of cells with trait x at time ¢

p(t) Ry Density of cells at time ¢

pf R4 Density of cells at steady state

r(x) R4 Natural division rate of cell with trait x

d(x) Ry Natural apoptosis rate of cell with trait x

c(x) Ry Drug-induced apoptosis rate of cell with trait x

D(t) R4 Concentration of drug applied at time #

f(p) R4 Density dependence on division rate

g(p) Ry Density dependence on natural apoptosis rate

60(x) [0,1] Proportion of divisions of cells with trait x undergoing mutations
M(y, x) [0,1] Probability a division results in a mutation from state y to state x

given a mutation occurs

Ax 0, 1) Step-size used in numerical simulations

Substituting Assumptions 1 and 2 into (2) yields the simplified equation

on(x,
% = (f(p®)[r(x)(1 =) —c(0)] —g(p®)d(x))n(x, 1)

1

Lof(p() /O ()M (y, x)n(y, 1) dy. )

If we define the new timescale T = féf(p(s)) ds, then %—’l’ = %f(p(t)), and we
can rescale (5) to become

on(x,
% = (r)1 —0) —c(x) — G(p(1))dx))n(x, 7)
1
+9/0 r(y)M(y, x)n(y, 7)dy, ©6)
where
Gp) = 80) (7)
f(p)

Note that ‘(11—; = f(p(t)) > 0, so that we have not changed the direction of time.
Henceforth, we study (6), with the notational convention that we replace 7 by ¢, even
though the change of units is understood as above.

Here, we deal with two cases of initial conditions for (6):

(i) Uniform distributions in trait x at time ¢ =0, i.e., n(x, 0) = ng, a constant.

(il) An initial distribution that is concentrated around some trait x = x,, i.e.,
n(x,0) = B(x)exp(—|x — x4|/€), where 0 < €. The smaller the € value, the
more concentrated the initial distribution is about x,.
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Assuming that ng, B(x) > 0, the form of (6) implies that all solutions satisfy
n(x,t) >0 forall t >0 and x € [0, 1] (see the Appendix for an elementary proof.)
Hence, for the remainder of the work, we make these assumptions to ensure positive
densities for all time.

3 Analysis and Simulations

In this section we present analytical results and simulation results for Eq. (6). In order
to study the relative role of different terms in the model, we study different variants
of the model. We start with a trait-based growth model.

3.1 Trait-Based Growth

We first consider the simplified version of (6) where we have no density dependence
and no mutations, so the growth solely depends on the cell division and death rates
and their response to treatment. Hence, f = g = 1, or equivalently, G(p) = 1, and
0 = 0. Thus, Eq. (6) can be written as

on(x,t)
ot

We note that Eq. (8) is the model-type used in Lorz et al. (2013) to describe the
dynamics of cancer cells. In writing such a model, it is assumed that the cells do not
interact in any way, and the growth is dictated solely by the trait x. The solution to
(8) is given by

= [r(x) —c(x) — d(x)]n(x, 1). 8)

n(x,t) =n(x,0) exp((r(x) —c(x) — d(x))t) Vx e[0,1],¢t > 0. ©)]

In this case, it is trivial to see that the dynamics of the cancer cells in (9) depends
on the relation between r(x) — c¢(x) and d(x). Indeed, if r(x) — c(x) > d(x) and
n(x,0) > 0, then n(x,t) > oo as t — o0. If r(x) — c(x) <d(x), then n(x,t) > 0
ast — oo. If r(x) — c(x) =d(x), then n(x, t) = n(x, 0) for all r € RR,.. Finally, if
n(x,0) =0, then n(x, ) =0 for all # > 0. This last case can be ignored by assuming
that n(x,0) > O for all x € [0, 1]. This is a technical assumption that simplifies the
presentation of the following results. Hence, we are left with only two qualitatively
distinct scenarios, which are described by the below theorem:

Theorem 1 Consider the system described by (8) with initial condition n(x,0). If
r(x) —c(x) <d(x) forall x € [0, 1], then

p(t) —— 0, n(x,t) —— 0 Vxe[0,1]. (10)
—00 11— 00
An analogous statement holds if r(x) — c(x) < d(x) with r(x) —c(x) =d(x) at a

countable number of points x,., where we will have n(xy, t) = n(xy, 0). On the other
hand, if there exists x € [0, 1] such that r(x) — c(x) > d(x), then the solutions satisfy

n(x,t)
p (1)

p(t) —— o0,
t—>00

m
— ) aid(x —xi), (11)
i=1
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634 J. Greene et al.

where 8(x) denotes the Dirac distribution, the a; > 0 are constants such that
YL ai =1, and the x; satisfy

x; =argmax(r(x) — c(x) —d(x)). (12)

0<x<l1

For a proof, see the Appendix. The above theorem and proof are analogous to
Lorz et al. (2013, Lemma 2.2). Note that m denotes the number of points where the
maximum is achieved. The constants g; in the limiting distribution of n(x,t)/p(¢)
must add to one, since this is a probability distribution. Generally, since the initial
conditions may be nonhomogeneous, the constants a; are not equal to each other. In
this case, the relative growth in each population will depend on the fraction of initial
cells with the corresponding trait. That is, a; = n(x;, 0)/Y_"" n(x;, 0).

Theorem 1 implies that (8) can only describe two different growth phenomena:
extinction or unbounded growth. In the case of modeling the evolution of cells with
a resistant gene, both cases have serious limitations. Extinction, while desirable, is
unlikely, and unbounded growth is not biologically feasible. It is well known that
even cancer cells, which of course experience less inhibition to growth signals due
to cellular pressure and a lack of resources, experience homeostatic forces which
slow there division rate (e.g., see Hakanson et al. 2012). Accordingly, Eq. (8) is ill-
equipped for studying the growth properties of tumor cells. It is however worth noting
that there still is some merit in using such a model when comparing the dynamics of
cancerous cells to normal tissue, as the cancer cells may follow a pattern of unlimited
growth, at least when compared with healthy cells.

Even with the described limitations however, (8) can describe a rudimentary model
of selection. Theorem 1 implies that such a model selects the traits with the maximum
net growth rate. That is, all of the x that maximize r(x) — c(x) — d(x) are selected.
Hence, even though (8) provides an overall unrealistic modeling environment, it does
capture some important phenomena.

To understand how the dynamics evolve, we provide numerical simulations. For
this and all future simulations, we will use a standard collocation method of Sinc basis
functions on the interval [0, 1] with an equally spaced partition of k = 4000 points
(see Bellomo 1997 for a basic introduction to the method). That is, we approximate
n(x,t) by ni(x, t), which are defined by

k
nk(x, 1) =y S (X (1), (13)

i=1

where n;(t) ;== n(t,x; = i Ax), x; is a fixed point in the partition, and S;(x) is the
function

sin((7w/Ax)(x—iAx)) .
S (x) = /AN G—TAY) for x #£iAx, (14)
1 for x =iAx.
Here Ax is the step-size of the partition (Ax = 1/3999 in our simulations). Note that
Si(x;) =1and S;(x;) =0 for i # j. Substituting this approximation (13) into (8) (or
later on, the more general (6)), yields a system of ODE:s for the »; (¢), which we solve
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Table 2 Parameter values used in simulations

Figure Equation Parameter values

1 ®) r(x) = # e(x) = ﬁ d(x)=0.05

3 (16) r) = Tk 00 = 727, d@) =0.05, G(p) = p(1 - p)?

4 (16) Same as in Fig. 3

5 N/A r(x)—c(x):—5x2+6x—g,d(x)EZ

6 (16) r(x) —e(x) ==5x% +6x — $,d(x) =2, G(p) = p(1 — p)?

7 (16) Same as in Fig. 6

8 N/A F(x) = c(0) = =532 + 6x — 8, d(x) = { 032 ?“‘5%

=g ifx>3

9 ®) r(x) — c(x) and d(x) as in Fig. 8

10 (16) r(x) — c(x) and d(x) as previous, G(p) = p(1 — ,o)2

11 (16) Same as in Fig. 10

12 31 r(0) = T €0 = 727, d@) =005, G(p) = p(1 = p)%,
€ =0.01,6 =0.1, M as in Eq. (30)

13 A1) Same as in Fig. 12

14 31 € =0.01,6=0.1,0.4,0.7, 1. All other parameters are identical to
Fig. 12

15 A1) €=0.1,6 =0.1,0.4,0.7, 1. All other parameters are identical to
Fig. 12

by standard Runge—Kutta methods. For example, in the case of Eq. (8), the system of
ODE:s is given simply by the original equation

d’Z:t) =[r@) — e(x) = d@)]ni (). ()

In the full IDE case (6), the analogous expression is more complicated, but is still
an ODE with coefficients involving fol S; (x) dx, which, once computed initially, are
constants.

We would also like to briefly discuss the form of the rate parameters. A common
characteristic for r(x) and c(x) to both possess is to decrease as the resistance x in-
creases (see Brimacombe et al., Kreso et al. 2009, 2013). As x increases, the cell
becomes more resistant, so by definition the drug-induced kill-term c¢(x) should de-
crease for resistant cells. It is less obvious how d(x) should vary with x. In some
biological situations, such as the accumulation of mutations, d(x) may increase. On
the other hand, in the case of epigenetic changes that reduce the division rate, the
death rate could be reduced. In fact, it may not be a monotone function at all. Hence,
when studying such a problem, it is important to identify which mechanism or mech-
anisms are under investigation, so as to accurately represent the respective rates.

Currently, we assume a simple constant form for d(x) and consider uniform initial
conditions. The results are independent of this choice of initial conditions. As long
as n(x,0) > 0 for all x € [0, 1], the same asymptotic behavior is achieved (In this
case, since mutations are not allowed, if n(x, 0) = 0 for some x € [0, 1], then growth
will never occur at such x, and thus the asymptotic behavior could be different. Such
is the case if n(x,, 0) = 0 for a maximizer x, of r(x) — c(x) — d(x)). The explicit
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2 . . : 109,
T r(x)
1.8¢ Tl --- gix; H
AN X 80
16} 10
141 \\‘\\ 1 1060
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=
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Fig. 1 Numerical results of (8): (a) shows the rate profiles used; (b) a semi-log plot of the evolution of the
density p; (¢) n(x,t)/p(t) as a function of x at three representative times . Note that in the simulations we
have made the time scale change t — te~1, where e = 1072, since we are primarily interested in studying
the long-time behavior of the solution (Color figure online)

functional forms and parameter values used in all simulations are given in Table 2.
The simulations results are shown in Fig. 1. Here, the second part of Theorem 1 ap-
plies, where there exists x such that r(x) — c(x) — d(x) > 0. Theorem 1 then implies
that we should have unbounded growth of the total population size p(¢) and that the
growth should concentrate around the x values that maximize r(x) — c(x) — d(x)
(Fig. 1(a) shows that this value x, is in fact unique in this simulation). Figures 1(b)
and 1(c) verify the conclusions of the theorem in this case. That is, p(¢) in Fig. 1(b)
demonstrates exponential growth, and n(x, t) in Fig. 1(c) appears to approach a Dirac
mass about the value x, as ¢ grows.

For comparison, we also provide simulations for the case of no treatment, i.e.,
we study (8) with the same parameter values, except here c¢(x) = 0. As in Fig. 1
(specifically Fig. 1(b)), the density p(¢) diverges, and in fact diverges much more
quickly than the Fig. 1 case. This is of course because the net growth rate is
r(x) — d(x), which is larger than the case where the drug was applied, where this
rate is ¥ (x) — c¢(x) — d(x). In more plain terms, the drug inhibits the overall growth
of the tumor, which is what we would expect. To keep the numerics within MATLAB
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Fig. 2 Numerical results of (8)
with ¢(x) =0, and the same
parameters appearing in Fig. 1.
Shown is n(x,t)/p(t) as a
function of x at three
representative times ¢ (Color
figure online)

n(x,b/p(t)

0 01 02 03 04 05 06 07 08 09 1
X

tolerances, we simulate n(x,t)/p(t). The results are shown in Fig. 2. We see that
the model is selecting the x = O trait asymptotically, which is what we would expect
both from Theorem 1 since the maximum of r(x) — d(x) occurs at x = 0. Biologi-
cally this makes sense, since there is no evolutionary advantage to having a higher x
value when the drug is applied. We last note that the time scale in these simulations
is much longer than in Fig. 1 because r(x) — d(x) is relatively flat near x = 0, and
thus it takes longer to visually see the selection occur.

Clearly these figures do not represent a general case, as multiple maximizers of
r(x) — c(x) — d(x) could exist. Even if we assume that r(x) and d(x) are both
decreasing, there could still be multiple or no points of intersection between them.
Given that in general there are no standard assumptions on d(x), the limiting distri-
bution could be any number of Dirac masses, or cell extinction.

3.2 Density-Dependent Model

We next consider a generalization of (8) to which we include competition and/or
cooperation among the cells via density effects, but still do not allow for mutations
to occur during division. We recall that Lorz et al. (2013) used a specific form of this
model (both with and without mutations) to describe healthy cells, while here we use
this more general form to describe cancerous cells. In reference to our original model
(6), we set & =0 and let G(p) £ 1 generally. Thus, Eq. (6) takes the form

D~ )~ ) ~ Gt 0. (10

Similarly to (8), (16) is an ODE for any x. However, due to the density dependence
through the term G (p), the ODEs in (16) are nonlinear and coupled. Due to these two
characteristics, Eq. (16) has more complex dynamics than the trait-based growth only
model (8).

We recall that G(p) = g(p)/ f(p), where f is the birth-rate density dependence,
and g is the natural death-rate density dependence. We assume that in the limit of
high density, the growth rate of the cells rapidly decays. More precisely,

y fp)
m —— =

0" or, equivalently, lim G(p) = oco. (17
p=00 g(p) p—>o0
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The form of Eq. (17) guarantees that if the natural death-rate g decays to zero in the
limit of large cell density, then the birth-rate f will decay even more rapidly. This
condition hence prohibits unbounded growth as stated in the following Theorem 2,
which is proven in the Appendix:

Theorem 2 Consider the system described by (16). If G (p) satisfies (17), then there
exists py > 0 such that

0<pt)<py Vi=0. (18)

The conclusion of Theorem 2 is in fact one of the main motivating factors in intro-
ducing density effects into our models. It allows for bounded, nonzero populations to
exist, which is biologically (and mathematically) desirable when modeling solid tu-
mor growth. This should be compared with Theorem 1, where the only two outcomes
were extinction and unbounded growth.

To demonstrate the difference between Egs. (8) and (16), we simulate (16) with
the same trait dependencies as in Fig. 1(a). We use the following generic choice for

G(p):
G(p) = p(p—2)*. (19)

Note that (19) satisfies (17), so that Theorem 2 applies. The simulation results of (16)
are shown in Figs. 3 and 4. For a direct comparison with Fig. 1, uniform initial con-
ditions are used, although the long-time dynamics would still remained unchanged
with any initial conditions satisfying n(x, 0) > 0 for all x € [0, 1].

Figures 3(a) and 1(c) exhibit the same selection, that is, growth that limits to a
monoclonal population with trait x,.. However, comparing Figs. 1(b) and 3(c), we see
an important difference. Namely, instead of having unbounded growth in the total
population as given by Eq. (8), we now have, via Theorem 2, bounded populations.
In fact, in Fig. 3(c), we see that p(¢) converges to an asymptotic profile. In contrast to
Lorz et al. (2013), cancer cells are described with bounded growth, while previously,
they could only diverge or become extinct. For the brevity and clarity of the presen-
tation, we only show simulations results for # = 2. Analogous results are obtained for
longer times.

To understand the dynamics portrayed by Fig. 4(a) (and Fig. 3(b) for snapshots in
time), we consider a population with density p(0) = 1. In this case, the growth rate
is r(x) — c(x) — G(1)d(x). Due to the initial conditions and the growth parameters
r(x), c(x), and d(x), initially we observe a decrease in p(t). G(p) given by (19) in-
creases, pushing G (p)d(x) upwards. However, the effect of the populations growing
exponentially where r(x) — c(x) — G(p)d(x) > 0 outweighs the increase of popu-
lations with a negative division rate, and we quickly see an increase in p(¢). The
product G(p)d(x) decreases until p = 2, where the growth is most rapid, followed
by a slowing down of p(¢) as G(p)d(x) increases as it reaches the peak of (r —c)(x).
Note that the limiting behavior adapts to the growth rate, density, and population val-
ues satisfying the following relations:
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Fig. 3 Simulations of (16) using trait parameters and time scale as in Fig. 1. G is given by (19). (a) The
profiles of n(x, t) at four times #; (b) the variation of the net-growth rates as the density changes in time,
at the same four times used in (a); (¢) evolution of the density p(¢) (Color figure online)

JAm p(1) = px (20)
G'(ps) >0, (2D
r(x) —c(x) — G(px)d(x) <0 Vx #xy, (22)
r(x) —c(x) — G(p)d (x5) =0, (23)
and
n(x, 1) ——— Px8(x — xy). 24

Properties (22) and (23) are most readily seen in Fig. 3(b) where the line G(p)d(x)
is essentially tangent to the r(x) — c(x) curve at its maximum value x, at t = 2.
Properties (20)—(24) provide a way to understand the general dynamics of (16). An
analogous statement holds if there exists multiple x, satisfying (23).

The evolution of the population in this example is then similar to the population
described by (8), except that the net growth rate adapts to bound the total population,
leading to the convergence of p(¢). Indeed, this is an important biological character-
istic that makes (16) a more suitable model.

Adding a density dependence can result in even richer dynamics. For example,
consider the dynamics of both (8) and (16) with rate parameters shown in Fig. 5,

@ Springer



640 J. Greene et al.

Contour Plot of n(x,t)

r(x)—c(x)
. G(p(t))d(x)

1 . 0.4 0.6
X

(a) (b)

Fig. 4 Simulations of (16) using trait parameters and time scale as in Fig. 1 and G is given by (19).
(a) The net-growth rates as a surface plot over ¢ and x; (b) is a contour plot of n(x, ¢) (Color figure online)

Fig.5 r(x) —c(x) and d(x) 3 . . . :

used for Figs. 6 and 7. Only the o5l 7
difference between r(x) and '
c(x) is plotted since that is the A e
term that controls the dynamics
in all models. Note that

r(x) —c(x) <d(x) Vx €0, 1] 10
(Color figure online)

0 0.2 0.4 0.6 0.8 1

where G(p) is given by (19). The dynamics of (8) are clear: since r(x) — c(x) —
d(x) < 0 for all x € [0, 1], all the populations go extinct exponentially. That is:
o(t) — 0and n(x,t) — O forall x € [0, 1] as t — oo.

However, the dynamics of (16) are qualitatively different, as shown in Figs. 6
and 7. Here we see, as in the case of Eq. (8), an initial decay of n(x,t) for all x
and hence a decrease in p(#). However, the function G(p)d(x) initially increases,
causing an even faster decay of p(¢). As p(t) approaches 0, G(p) given by (19) also
decreases. Eventually, by the continuity of G and the fact that G(0) = 0 and that
there exists x such that 7 (x) — c(x) > 0, p diminishes enough so that we have x such
that r(x) —c(x) — G(p)d(x) > 0. Consequently, such cell populations begin to grow,
leading to an increase in p (). The entire population is thus prevented from dying out,
and the limiting dynamics are again described by (20)-(24), where the new p, and
X, are determined by the trait and density parameters and by the initial conditions.

It is important to note that the reason the population does not die out in Figs. 6 and
7 is because G(0) = 0. If the population approaches p = 0, the fact that there exists
x where r(x) — c(x) > 0 allows us to conclude that there will be some cells that will
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Fig. 6 Simulations of (16) using the trait parameters shown in Fig. 5. G is given by (19). The time scale
as in Fig. 1. (a) The profiles of n(x, t) at four representative times; (b) the evolution of the density; (c) the
variation of the net-growth rates as the density changes in time, at the same four times used in (a) (Color
figure online)

Contour Plot of n(x,t)

o
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Fig.7 Simulations of (16) with the trait parameters shown in Fig. 5. G is given by (19). The time scale are
identical to those in Fig. 1. (a) A surface plot of the net-growth rates; (b) a contour plot of n(x, t) (Color
figure online)
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Fig. 9 Simulations of (8) using rates shown in Fig. 8. (a) A semi-log plot of the evolution of the density
p; (b) the profiles of n(x, ¢) at three representative times. Note that in the simulations we have made the
time scale change t — te~ 1, where € = 1072, since we primarily are interested in the long-time behavior
(Color figure online)

begin to grow. If, for biological reasons, G (0) > 0, then it is entirely possible to have
o) — 0.

Incorporating a density dependence into the mode may also result in a selection of
different trait values x. Consider the same density dependence G (p) as in (19), with
r(x), c(x), and d(x) that are shown in Fig. 8 (and Table 2). For Eq. (8), Theorem 1
implies that we have selection toward value(s) x, that maximize r(x) — c(x) — d(x),
which by our choice is unique and given as x, = 0.5, i.e., p(#) = oo and

n(x,t)
o0 m S(x — xy4). (25)

This is demonstrated in Fig. 9. Note that pointwise we still have growth in other pop-
ulations with x # x., but not nearly as fast. For instance, the populations with x ~ 0.9
grow exponentially, but not as rapidly as those with x = x,. Even with concentrated
initial distributions that were assumed here, as opposed to uniform, the same long-
time dynamics emerge in both cases.

The solution of (16), shown in Figs. 10 and 11, has a different selection strategy.
We see that, as in (8), initially the trait with the highest growth rate is x, = 0.5, and
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Fig. 10 Simulations of (16) using the trait parameters shown in Fig. 8. G is given by (19). (a) The profiles
of n(x, t) at four representative times; (b) the evolution of the density; (c) the variation of the net-growth
rates as the density changes in time, at the same four times used in (a). Note that in the simulations we have
made the time scale change t — e~ !, where € = 1072, since we primarily are interested in the long-time
behavior (Color figure online)

the population appears to grow monoclonally. However, as can be seen in Fig. 11(a),
there is still a region near x =~ 0.9 where r(x) — c¢(x) > G(p)d(x), and thus there,
exponential growth is still occurring. Recalling (20)—(24), the curve G (p)d (x) must
continue to increase in order for (22) to hold for all but a finite number of x. Hence, p
continues to increase, eventually growing so large that r(0.5) — ¢(0.5) < G(p)d(0.5),
causing the death of the x = 0.5 cells. In the limit, (22) holds for all x except x, =
0.8925, and we have

lim n(x,1) = pe8(x — xy),
— 00

as can be seen in Fig. 10(a) or Fig. 11(a). We see from Fig. 10(b) that p, ~ 2.6, which
means that the inclusion of the density dependence results with the selection of a
different trait. Hence, the choice of the model paradigm for cancer cells is important,
with qualitatively different dynamics in the distinct frameworks.

3.3 Selection/Mutation Model

As discussed in Sect. 3.2, by adding a density dependent cooperation/competition
term, we were able to model systems of cells with nonzero yet finite limiting total
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Fig. 11 Simulations of (16) with trait parameters in Fig. 8. G is given by (19). (a) The net-growth rates
as a surface plot over 7 and x; (b) a contour plot of n(x, t). Note that in the simulations we have made the
time scale change t — te~1, where € = 1072, since we primarily are interested in the long-time behavior
(Color figure online)

populations, something that is not possible in the simple model (8). Adding a density
dependence was shown to result in richer underlying dynamics. Yet, the asymptotic
behavior of (16) always satisfies the following: given that 3 p, > 0 such that p(¢) —
px,3meN, m < oo, {x;}i, €0, 1], and {a;}"; € Ry such that

m
tli)rgon(x, t) = Zaﬂs(x —Xi),

i=1

where Y7 a; = ps. Equivalently,

. n(x,1)
Jlim o0 _Z S(x — (26)

where 0 < a <land ), a = 1. In other words, there exists only a finite number
of traits that ex1st asymptotlcally, with all other populations dying out. Such a result,
while an improvement over the dynamics of (8), is in contradiction to intratumoral
heterogeneity observations. We expect to see a stable distribution centered around a
finite number of traits, with wider variance around such traits. It is worth noting also
that the a; (or ag) have a more complex relationship to the initial population values
n(x,0), as opposed to when they were seen in (8). This added complexity is due to
the density dependence.

With this in mind, we introduce our full model given by Eq. (6), which we repeat
here for convenience:

8n(x 1)

o = (r)(1 —6) —cx) = G(p())d(x))n(x, 1)

1
+6 /O ()M (y, 1)n(y, 1) dy. @7
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Fig. 12 Simulations of (31), using the rate parameters shown in Fig. 1(a). G is given by (19). ¢ = 0.01,
and 6 = 0.1. (a) The profiles of n(x, t) at four representative times; (b) the evolution of the density; (¢) the
variation of the net-growth rates as the density changes in time, at the same four times used in (a) (Color
figure online)

We recall that (27) is obtained from Eq. (16), by allowing for unfaithful divisions.
Hence, a fraction 6 of the daughter cells mutate from trait y, to a new trait x. The rate
of transfer is captured in the probability density M (y, x).

It turns out that if condition (17) is satisfied by G(p), then Theorem 2 holds,
namely, p(f) remains bounded for all time 7. See the Appendix for a proof.

Typically, when a model includes mutations, a natural assumption would be to
allow only small mutations to occur during one division. Thus, in this case, the evo-
lution to resistance can be interpreted as the result of a series of many small mutations
over a long period of time, which changes the trait space profile of a population of
cells. The term small here assesses a close distance in trait space between the original
trait x and the new trait y, at least with very high probability. The degree of closeness
will be specified by a small parameter €. Accordingly, the mutation kernel can be
written in the following form:

1~
M(y,x)=—M(y.ly —xl/e), 0<e<l. (28)

The notation in (28) evokes the following: if x and y are within €, then M(y, x)
is large, with M (y, y) being the maximum value. Otherwise, M (y, x) =~ 0. Hence,
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Fig. 13 Simulations of (31), with rate parameters shown in Fig. 1(a). G is given by (19). ¢ = 0.01, and
6 =0.1. (a) A surface plot of the net-growth rates; (b) a contour plot of n(x, t) (Color figure online)

mutations are essentially limited to the interval [y — €, y + €]. In fact, depending on
the dependence of M on | y — x|/€, this interval may even be smaller (for example, if
the dependence were quadratic).

Note that there is still a y dependence outside of the distance term |y — x|/€ in
(28), due to the fact that (4) holds for all y € [0, 1]. In terms of M, this yields the
rather technical condition that must hold for all y:

1=y y
/ ‘ Il;l(y,z)dz+/E M(y,z)dz:l. 29)
0 0

In writing (29) we are allowing both forward and backward mutations to occur, as we
are considering this model as a basic framework. The above can be easily adapted to
consider only forward mutations: simply require M (y, |y — x|/€) = 0 for y > x and
ignore the second term on the left-hand side in (29).

In our numerical simulations we use a Gaussian mutation kernel of the form

M(y, |y —x|/€) = K (y)exp(—(ly — x|/€)?). (30)

As always, K(y) is a nonnegative function chosen to ensure that (4) holds for all
yel[0,1].

Since we are interested in studying the asymptotic behavior of (27), we can rescale
time ¢ by the small parameter € that appears in the mutation kernel. That is, we define
the transformation r — te~! and rewrite Eq. (27) in the new time scale along with
the form of the mutation kernel given by (28) as

on(x,t) _

€ = (r)(1=0) —c(x) = G(p(1))d(x))n(x, 1)

o (1 -
+2 [, by = xi/emtr.nay. G1)
0
From this point on, by time we will refer to the time that is rescaled by e.
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Results of numerical simulations of (31) together with (30) are shown in Figs. 12
and 13. In these simulations we use the same rate and density parameters as those that
were used in Figs. 3 and 4. We begin by setting the mutation length (the time-scale
parameter) as € = 0.01, and setting the fraction of cells that undergo mutations as
6 =0.1.

The dynamics that we observe from these simulations at first appear similar to
what was obtained from Eq. (16). From Figs. 12(a) and 12(b) we see that the greatest
density of cells lie with trait x, & 0.55425, and the total population density converges
to px = 2.929. However, we see that the cell population densities n(x, ) no longer
evolve to a point mass. Instead, they evolve into a stable distribution with a finite,
nonzero variance, whose mean value will be the same value as given by the locations
of the Dirac in the corresponding equation (16). One can see this either in Fig. 12(a),
as the curves here corresponding to t = 4.8727 and t = 10 are vertically identical, or
in Fig. 13(b), where the population values appear to be stable after ¢ ~ 2. Further-
more, the line G(p)d(x) does not become tangent to r(x) — c(x) at x4, So as not to
satisfy (22) and (23). In fact, as seen most readily in Fig. 13(a), G(p(t))d(x) stays
below r(x) — c(x), leaving an x interval such that r(x) — c(x) > G(p(¢))d(x). We
also note that this behavior holds for all future time.

Intuitively, it is clear why n(x, #) no longer approaches asymptotically a linear
combination of a finite number of Dirac masses, but instead it approaches a distri-
bution with nonzero variance. The integral term in (31) acts as a sort of diffusion
operator that balances the growth of the maximal trait with the added death of mu-
tated daughter cells in regions where r(x) — c(x) < G(p)d(x). Even though cells are
growing in the regions where r(x) — c(x) > G(p)d(x), a fraction 6 of the daugh-
ter cells are dividing unfaithfully into traits x that satisfy r(x) — c(x) < G(p)d(x)
and hence are dying. As p increases and the region where 7 (x) — c(x) > G(p)d(x)
becomes smaller, the gain in faithful divisions is countered by the loss of muta-
tions to regions where cell populations are dying. Our limiting profile in Fig. 12(a)
is the result of the balance of these two opposed forces. Note that this balance
is affected both by the fraction 8 of mutating cells and by the mutational dis-
tance €.

We would now like to investigate the dependence of the long-time behavior of
(31) on the parameters 6 and €. We perform numerical simulations using the trait
parameters as in Fig. 1(a) and the density from Eq. (19). First, we fix € = 0.01 and
vary 6. The results are shown in Fig. 14. Note that we only plot n at time ¢ = 10,
since we have checked that n(x, ) is no longer significantly changing for r > 10. We
observe two basic phenomena in Fig. 14. First, as we allow a higher average fraction
of cells to undergo unfaithful division, the distribution of cells about the maximum
trait x, widens. This is an intuitive result, since increasing the fraction of cells mu-
tating away allows for a greater variability of traits. Secondly, the total mass is nearly
constant at p s := p(t = 10) ~ 2.9, but does slightly decrease monotonically as 6 in-
creases. Hence, the main effect in this case seems to be increasing the variance in the
trait x of the cell population with mean value x,. In other words, as 6 increases, the
heterogeneity in the tumor also increases, with a very slight effect on the overall mass
of cells. To understand this, note that € is small in the simulation, so that mutations,
when they occur, are localized. Hence, even when a large fraction of cells is mutating
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Fig. 14 Simulations of (31), at w0 £=0.01 ‘ ‘

time ¢ = 10. Plotted are n(x, 10) —_0-01,9-29313
obtained using rate parameters — - -0=0.4,p=2.917
shown in Fig. 1(a). G is given 6=0.7,p,=2.9089
by (19). 6 =0.1,0.4,0.7, 1. For L i

all plots, € = 0.01 is fixed
(Color figure online)
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(6 larger), they cannot mutate to a point that is too far away. By the continuity of
all the growth/death parameters, the increase in apoptosis to those cells who mutate
away from the maximum is small, hence yielding only a small decrease in p.

We repeat our simulations with a larger value of € = 0.1. We note that in this case,
it seemed to take a longer amount of time for the simulations to reach the steady
state. After + = 100, the simulations no longer observably varied, and hence we define
py = p (t =100). The results of these simulations are shown in Fig. 15. Once again,
the variance of cells about the maximum trait x, increases as 0 increases. However, in
this case, the final densities p decrease much more as 6 increases. Since € is larger,
daughter cells are allowed to mutate much farther away in an unfaithful division when
compared with the smaller € simulations. Hence, these cells jump to regions in trait
space x that are much farther away from the maximum x... Here, the net growth rate
is very negative, causing these cells to die quickly and hence have a lower ps when
compared to the previous case of € = 0.01. The overall effect leads to a decrease in
the overall steady-state populations.

From Figs. 14 and 15 we conclude that both parameters € and 6 affect the amount
of heterogeneity seen in the cell population. For a fixed €, we see that as 6 increases,
the overall population will increase in variance and decrease in steady-state density.
The rate of decrease of this density, py, is strongly affected by the € parameter.
Smaller values of € will cause small variation in oy as 6 varies, but as € increases,
so does the volatility of oy with respect to 6. We note that increasing the fraction
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of mutating cells can act to decrease the total mass of the tumor. This effect is more
pronounced for more widely varying mutations, that is, in models with larger values
of €. We finally note that as € — 0T, the dynamics of (31) approaches the dynamics
of (16). We refer interested readers to Lorz et al. (2013), where a rigorous analysis of
such a limit is undertaken. However, here we do not consider such a limit to be appro-
priate from a modeling point of view, as our goal was to achieve local heterogeneity,
which cannot be achieved with Eq. (16). Accordingly, our study only considers the
case of a finite, nonzero €.

4 Discussion

The goal of this paper was to develop a modeling framework for MDR that can qual-
itatively capture the complexity of the underlying dynamics. To achieve this goal, we
introduce a hierarchy of models, which we have studied analytically and numerically.

Our study starts with a simple uncoupled system of ODEs parameterized by the
resistance level x, and given by Eq. (8). We demonstrate that this model can capture
the selection of a finite number of traits. On the down side, in such models, the total
cell density always either diverges or dies off, an outcome that contradicts the biology.

This motivated the introduction of a cooperative/competitive density dependence
into the model, which led to Eq. (16). In this case, the emerging dynamics was similar
to (8), in that the limiting distribution is a finite collection of Dirac masses. Now
though, under mild conditions on the density dependence (see (17)), the total density
remains bounded. Furthermore, we demonstrated that the final selected trait (or traits)
can be different between (8) and (16). While the model (16) has clear benefits in
comparison with (8), the homogeneity of the cell populations is in contrast to the
biological literature, as discussed in Sect. 1.

Finally, we introduced a mutation mechanism into the model via an integral term,
given by (31). The dynamics of this model were then demonstrated to be similar to
those in (16), in that the population densities were maximal at the same trait values
x, and the population density remains bounded. However, in this mutation/selection
model, the Dirac masses are replaced in the limit by distributions with nonzero vari-
ance. That is, there exists a continuum of traits that are stable for all time. This is
interpreted as tumor heterogeneity, which was the desired outcome.

Mathematical models offer ways to predict the net-growth rate during and after the
administration of a treatment. These mathematical models and their outcomes each
have their own definitions and assumptions of growth. What function best describes
the growth dynamics of cancer, and what are the consequences of using different
growth descriptions in MDR? In this work, we have developed an alternative can-
cer growth model to the exponential, logistic, or Gompertzian growth, which also
integrates resistance level. This work has implications in the clinical setting for solid
tumor and metastasis studies, and for more details, one should see our recent pub-
lished works (Lavi et al. 2013, 2014). This issue is a critical step toward the ability
to predict the dynamics of drug resistance and intratumoral heterogeneity in cancer
during and after therapy. Accordingly, we view the model (31) as a basic framework
that can be extended to model more realistic MDR mechanisms. In particular, pro-
viding experimentally solid estimates for the birth and death rates (r(x), d(x), and
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c(x)) along with the density dependencies ( f (p) and g(p)) will be the focus of future
work.
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Appendix A

Proposition 1 Consider the integro-differential equation (6). If n(x,0) > 0 for all
x €[0, 1], then

n(x,t) >0 VieRy.

Proof The global existence of continuously differentiable solutions of (1) can be
obtained following standard arguments (see Perthame 2007). For the positivity of
n, since n > 0 at t = 0, due to its continuity, if there exists a #, for which n(x,t,) =0
for some x € [0, 1] (and n(x, t) > O for t < t,), then n(y, t,) > 0 for all y. Hence, by
(6),

an(x,ty) 1
a0 = Gfo r(y)M(y, x)n(y, tx)dy >0, (32)

which implies that n(x, 7,) is nondecreasing at ¢,. Consequently, n(x, t) cannot pass
through 0, as stated. O

Proof of Theorem I We follow the proof of Lorz et al. (2013), Lemma 2.2. Consider
system (8). If r(x) — c(x) — d(x) < O for all x € [0, 1], then due to the positivity of
n(x,t), w < 0 for all x € [0, 1]. Hence, n(x, t) [—> 0 in [0, 1]. By Lebesgue’s
— 00
Dominated Convergence Theorem, this implies that p(t) — 0 as t — oo.
If, on the other hand, there exists x, such that r(x,) — c(x4) — d(x4) = 0, then

these are fixed points of (8), and hence,
n(x, t) =n(x,,0) VeeR,.

Now suppose that there exists x € [0, 1] such that r(x) — c(x) — d(x) > 0. By the
continuity of the growth parameters and the compactness of [0, 1], r(x) —c(x) —d(x)
achieves its maximum, say at {x;}/" ;. We note that it is possible that m = oo, or even
that the set {x;}7”, is uncountable (in which case our notation should be altered).

To see that p(t) m oo, fix x; € {xi}f":l such that n(x;,0) > 0 (as the points
where n = 0 do not contribute to the growth). Then for all 0 < A <r(x;) —c(x;) —
d(xj), there exists y, such that

r(x)—c(x)—d(x)=A>0 Vxelx;—yr,xj+nl
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Let 1 (1) := [2/" /" n(x, 1) dx. Then
d Xj+ya Xj+ya
—hx(z)z/ [r(x)—c(x)—d(x)]n(x,t)dxzk/ n(x, t)dx = Ahy (1),
dt Xj=va Xj=7
so that, for a positive constant /(0),
hy (1) = h(0)e™. (33)

As p(t) = foln(x t)dx > h, (1), (33) implies that p(t) o 0oas desired. To find
— 00

the limiting distribution, note that for x ¢ {x;}/_ |, choose A such that
r(x) —cx)—dx) <A <r(x;)—clx;)—dx;).
Then,

n(x, t) _ n(x, O)e[r(x)_c(x)_d(x)]t < n(x, O) e[r(x)fc(x)fd(x)*}»]t 0. (34)
) ) = h0) P

As [ 1.0 qy — 1, for all time 7, we have the desired result, namely
0 p@)

n(x,t)
t—>oo p(t) _Zala(x

with sz=1 a; = 1. If the number of maximizers is uncountable, a similar result will
hold for a continuous measure. Il

Proof of Theorem 2 Let n(x,t) satisfy (16). By Proposition 1, since n(x,t) > 0,
p(t) >0 as well. Let ry, ¢y, and d,,, be constants such that r(x) < rp, c(x) > ¢, >
0, and d(x) > d,;, > 0, and recall that G > 0. Hence, p’(r) can be bounded above by

dp(1)

1
0 = [T = e = GloO) (. s = [ras = e = G (p0)d }o0.

Since G(p) —— o0, there exists pyps such that p(0) < py and ry — ¢y —
p—>00

G(pum)dn < 0. This implies that at o = pyy, p'(f) < 0, and hence p (1) < py. O

References

Bellomo, N. (1997). Nonlinear models and problems in applied sciences from differential quadrature to
generalized collocation methods. Math. Comput. Model., 26(4), 13-34.

Birkhead, B. G., Rakin, E. M., Gallivan, S., Dones, L., & Rubens, R. D. (1987). A mathematical model
of the development of drug resistance to cancer chemotherapy. Eur. J. Cancer Clin. Oncol., 23(9),
1421-1427.

Bozic, 1., Allen, B., & Nowak, M. A. (2012). Dynamics of targeted cancer therapy. Trends Mol. Med.,
18(6), 311-316.

@ Springer



652 J. Greene et al.

Brimacombe, K. R., Hall, M. D., Auld, D. S., Inglese, J., Austin, C. P., Gottesman, M. M., & Fung, K. L.
(2009). A dual-fluorescence high-throughput cell line system for probing multidrug resistance. Assay
Drug Dev. Technol., 7(3), 233-249.

Calsina, A., & Cuadrado, S. (2000). A model for the adaptive dynamics of the maturation age. Ecol.
Model., 133, 33-43.

Calsina, A., & Cuadrado, S. (2004). Small mutation rate and evolutionary stable strategies in infinite
dimensional adaptive dynamics. J. Math. Biol., 48, 135-159.

Champagnat, N., Ferriere, R., & Méléard, S. (2006). Unifying evolutionary dynamics: from individual
stochastic processes to macroscopic models. Theor. Popul. Biol., 69(3), 297-321.

Coldman, A.J., & Goldie, J. H. (1985). Role of mathematical modeling in protocol formulation in cancer
chemotherapy. Cancer Treat. Rep., 69(10), 1041-1048.

Coldman, A. J., & Goldie, J. H. (1986). A stochastic model for the origin and treatment of tumors contain-
ing drug-resistant cells. Bull. Math. Biol., 48(3—4), 279-292.

Desvillettes, L., Jabin, P. E., Mischler, S., & Raoul, G. (2008). On selection dynamics for continuous
structured populations. Commun. Math. Sci., 6(3), 729-747.

Diekmann, O., Jabin, P. E., Mischler, S., & Perthame, B. (2005). The dynamics of adaptation: an illumi-
nating example and a Hamilton—Jacobi approach. Theor. Popul. Biol., 67(4), 257-271.

Fister, K. R., & Panetta, J. C. (2003). Optimal control applied to competing chemotherapeutic cell-kill
strategies. SIAM J. Appl. Math., 63(6), 1954-1971.

Fodal, V., Pierobon, M., Liotta, L., & Petricoin, E. (2011). Mechanisms of cell adaptation: when and how
do cancer cells develop chemoresistance? Cancer J., 17(2), 89-95.

Forys, U., & Marciniak-Czochra, A. (2003). Logistic equations in tumor growth modeling. Int. J. Appl.
Math. Comput. Sci., 13(3), 317-325.

Gillet, J. P., & Gottesman, M. M. (2010). Mechanisms of multidrug reistance in cancer. Methods Mol.
Biol., 596, 47-76.

Goldie, J. H., & Coldman, A. J. (1979). A mathematical model for relating the drug sensitivity of tumors
to their spontaneous mutation rate. Cancer Treat. Rep., 63(11-12), 1727-1733.

Goldie, J. H., & Coldman, A. J. (1983a). A model for resistance of tumor cells to cancer chemotherapeutic
agents. Math. Biosci., 65, 291-307.

Goldie, J. H., & Coldman, A. J. (1983b). Quantative model for multiple levels of drug resistance in clinical
tumors. Cancer Treat. Rep., 67(10), 923-931.

Goldie, J. H., & Coldman, A. J. (1998). Drug resistance in cancer: mechanisms and models. Cambridge:
Cambridge University Press.

Goldie, J. H., Coldman, A. J., & Gudauskas, G. A. (1982). Rationale for the use of alternating non-cross
resistant chemotherapy. Cancer Treat. Rep., 66(3), 439-449.

Grantab, R., Sivananthan, S., & Tannock, I. F. (2006). The penetration of anticancer drugs through tumor
tissue as a function of cellular adhesion and packing density of tumor cells. Cancer Res., 66(2),
1033-1039.

Hakanson, M., Kobel, S., Lutolf, M. P., Textor, M., Cukierman, E., & Charnley, M. (2012). Controlled
breast cancer microarrays for the deconvolution of cellular multilayering and density effects upon
drug responses. PLoS ONE, 7(6), e40141.

Harnevo, L. E., & Agur, Z. (1991). The dynamics of gene amplification described as a multitype compart-
mental model and as a branching process. Math. Biosci., 103(1), 115-138.

Jackson, T. L., & Byrne, H. (2000). A mathematical model to study the effects of drug resistance and
vasculature on the response of solid tumors to chemotherapy. Math. Biosci., 164(1), 17-38.

Khain, E., & Sander, L. M. (2006). Dynamics and pattern formation in invasive tumor growth. Phys. Rev.
Lett., 96(18), 188103.

Kimmel, M., & Axelrod, D. E. (1990). Mathematical models of gene amplification with applications to
cellular drug resistance tumorigenicity. Genetics, 125(3), 633-644.

Komarova, N. (2006). Stochastic modeling of drug resistance in cancer. J. Theor. Biol., 239(3), 351-366.

Komarova, N., & Wodarz, D. (2005). Drug resistance in cancer: principles of emergence and prevention.
Proc. Natl. Acad. Sci. USA, 102(27), 9714-9719.

Kreso, A., O’Brien, C. A., van Galen, P, Gal, O. I, Notta, F,, et al. (2013). Variable clonal repopulation
dynamics influence chemotherapy response in colorectal cancer. Science, 339(6119), 543-548.

Laird, A. K. (1964). Dynamics of tumor growth. Br. J. Cancer, 18(3), 490-502.

Lavi, O., Gottesman, M. M., & Levy, D. (2012). The dynamics of drug resistance: a mathematical per-
spective. Drug Resist. Updat., 15(1-2), 90-97.

Lavi, O., Greene, J. M., Levy, D., & Gottesman, M. M. (2013). The role of cell density and intratumoral
heterogeneity in multidrug resistance. Cancer Res., 73(24), 7168-7175.

@ Springer



The Impact of Cell Density and Mutations in a Model of Multidrug 653

Lavi, O., Greene, J. M., Levy, D., & Gottesman, M. M. Simplifying the complexity of resistance hetero-
geneity in metastasis, Trends in Molecular Medicine (2014, accepted).

Ledzewicz, U., & Schattler, H. (2006). Drug resistance in cancer chemotherapy as an optimal control
problem. Discrete Contin. Dyn. Syst., 6(1), 129-150.

Long, H., Han, H., Yang, B., & Wang, Z. (2003). Opposite cell density-dependence between spontaneous
and oxidative stress-induced apoptosis in mouse fibroblast L-cells. Cell. Physiol. Biochem., 13(6),
401-414.

Lorz, A., Mirrahimi, S., & Perthame, B. (2011). Dirac mass dynamics in multidimensional nonlocal
parabolic equations. Commun. Partial. Differ. Equ., 36(6), 1071-1098.

Lorz, A., Lorenzi, T., Hochberg, M., Clairambault, J., & Perthame, B. (2013). Populational adaptive evo-
lution, chemotherapeutic resistance and multiple anti-cancer therapies. Math. Model. Num. Anal.,
47(2), 377-399.

Magal, P., & Webb, G. F. (2000). Mutation, selection and recombination in a model of phenotype evolution.
Discrete Contin. Dyn. Syst., 6(1), 221-236.

Marusyk, A., & Cancer, K. P. (2013). Cancer cell phenotypes, in fifty shades of grey. Science, 339(6119),
528-529.

Michelson, S., & Slate, D. (1992). A mathematical model of the P-glycoprotein pump as a mediator of
multidrug resistance. Bull. Math. Biol., 54(6), 1023—-1038.

Nagane, M., Coufal, F,, Lin, H., Bogler, O., Cavenee, W. K., & Huang, H. J. (1996). A common mutant
epidermal growth factor receptor confers enhanced tumorigenicity on human glioblastoma cells by
increasing proliferation and reducing apoptosis. Cancer Res., 56(21), 5079-5086.

Norton, L., & Simon, R. (1977a). Tumor size, sensitivity to therapy, and design of treatment schedules.
Cancer Treat. Rep., 61(7), 1307-1317.

Norton, L., & Simon, R. (1977b). The growth curve of an experimental tumor following radiotherapy. J.
Natl. Cancer Inst., 58(6), 1735-1741.

Norton, L., & Simon, R. (1986). The Norton—Simon hypothesis revisited. Cancer Treat. Rep., 70(1), 163—
169.

Panetta, J. C. (1998). A mathematical model of drug resistance: heterogeneous tumors. Math. Biosci.,
147(1), 41-61.

Perthame, B. (2007). Transport equations in biology, frontiers in mathematics. Basel: Birkhduser.

Perthame, B., & Barles, G. (2008). Dirac concentrations in Lotka—Volterra parabolic PDEs. Indiana Univ.
Math. J., 57(7), 3275-3301.

Qiao, L., & Farrell, G. C. (1999). The effects of cell density, attachment substratum and dexamethasone on
spontaneous apoptosis of rate hepatocytes in primary culture. In Vitro Cell. Dev. Biol., Anim., 35(7),
417-424.

Saeki, K., Yuo, A., Kato, M., Miyazono, K., Yazaki, Y., & Takaku, F. (1997). Cell density-dependent apop-
tosis in HL-60 cells, which is mediated by an unknown soluble factor, is inhibited by transforming
growth factor betal and overexpression of Bcl-2. J. Biol. Chem., 272(32), 20003-20010.

Saunders, N. A., Simpson, F., Thompson, E. W., Hill, M. M., Endo-Munoz, L., et al. (2012). Role of
intratumoral heterogeneity in cancer drug resistance: molecular and clinical perspectives. EMBO J.,
4(8), 675-684.

Schuster, R., & Schuster, H. (1995). Reconstruction models for the Ehrlich ascites tumor of the mouse.
Math. Pop. Dyn., 2, 335-348.

Stein, A. M., Demuth, T., Mobley, D., Berens, M., & Sander, L. M. (2007). A mathematical model of
glioblastoma tumor spheroid invasion in a three-dimensional in vitro experiment. Biophys. J., 921,
356-365.

Tomasetti, C., & Levy, D. (2010). An elementary approach to modeling drug resistance in cancer. Math.
Biosci. Eng., 7(4), 905-918.

Weaver, V. M., Leliévre, S., Lakins, J. N., Chrenek, M. A., Jones, J. C., Giancotti, F., Werb, Z., & Bissell,
M. J. (2002). Beta4 integrin-dependent formation of polarized three-dimensional architecture confers
resistance to apoptosis in normal and malignant mammary epithelium. Cancer Cell, 2(3), 205-216.

Zahir, N., & Weaver, V. M. (2004). Death in the third dimension: apoptosis regulation and tissue architec-
ture. Curr. Opin. Genet. Dev., 14(1), 71-80.

@ Springer



	The Impact of Cell Density and Mutations in a Model of Multidrug Resistance in Solid Tumors
	Abstract
	Introduction
	A Mathematical Model for Cancer Dynamics
	Analysis and Simulations
	Trait-Based Growth
	Density-Dependent Model
	Selection/Mutation Model

	Discussion
	Acknowledgements
	Appendix A
	References


