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a b s t r a c t

Recently we developed a stochastic particle system describing local interactions between cyanobacteria.
We focused on the common freshwater cyanobacteria Synechocystis sp., which are coccoidal bacteria
that utilize group dynamics to move toward a light source, a motion referred to as phototaxis. We
were particularly interested in the local interactions between cells that were located in low to medium
density areas away from the front. The simulations of our stochastic particle system in 2D replicated
many experimentally observed phenomena, such as the formation of aggregations and the quasi-random
motion of cells. In this paper, we seek to develop a better understanding of group dynamics produced by
this model. To facilitate this study, we replace the stochastic model with a system of ordinary differential
equations describing the evolution of particles in 1D. Unlike many other models, our emphasis is on
particles that selectively choose one of their neighbors as the preferred direction of motion. Furthermore,
we incorporatememory by allowing persistence in themotion.We conduct numerical simulations which
allow us to efficiently explore the space of parameters, in order to study the stability, size, and merging
of aggregations.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

In a recent work we proposed a mathematical model of local
interactions between cyanobacteria [1,2]. The goal of that work
was to model the motion of the phototactic microorganism Syne-
chocystis sp., which typically form aggregations before engaging in
phototaxis, i.e., a motion towards light. Over time, phototaxis re-
sults in the formation of finger-like structures in the direction of
the light source [3,4]. We focused our study on the dynamics of
cells after they become sufficiently excited to engage inmovement
but are not sufficiently ‘‘motivated’’ to migrate toward the light.
Simulations of our 2D stochastically interacting particle model
produced results which were consistent with the experimental
observations. Our model assumptions included the possibility of
persistence with memory as well as a motion toward a randomly
selected neighboring bacteria.

Interactions between animal and cellular agents have been
modeled extensively. One celebrated example is theCouzin–Vicsek
model of flocking (and its many extensions) which allows
individual agents, such as fish or birds, to be repelled by
near neighbors, align with the average directional heading of
not-so-near neighbors, and be attracted to far neighbors [5,6].

∗ Corresponding author at: Department of Mathematics, University of Maryland,
College Park, MD 20742, United States.

E-mail addresses: agalante@cscamm.umd.edu (A. Galante),
dlevy@math.umd.edu (D. Levy).

0167-2789/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2012.10.010
Some features of the model have been subjected to thorough
mathematical analysis; for example see [7]. The dynamical system
presented by Cucker and Smale models the development of a
consensus in populations lacking central direction [8,9]. Thismodel
has also been thoroughly analyzed, for example see [10]. Numerous
similar flocking and schooling models have been developed for
various self-propelling agents such as birds and fish, e.g. [11–15].
Many of thesemodels consider the sumof forces on each individual
agent, due to neighboring agents, the directional heading of each
agent, and any other external forces. In comparison to theseworks,
the model we discuss here is a non-physical model. Particles
randomly select a direction toward only one of the neighboring
agents, instead of moving in response to an averaged force field.

A related phenomenon, chemotaxis, i.e., motion of cells
toward a chemoattractant, has been extensively studied by
mathematicians in recent decades, starting with the celebrated
works of Patlak, Keller and Segel [16,17]. For completeness, we
refer the interested reader to the following papers and to the
references therein [18–22]. Many of the works on chemotaxis
study the aggregations of cells and the possible blowup in the limit
of high concentrations. In our case, experimentally, aggregations
correspond to groups of 3–10 cells which can come together, may
occasionally move as a unit, and can dissociate. This is a very
different dynamics than what is typically observed in chemotaxis.

Comparedwith chemotaxis and flockingmodels, phototaxis has
not been as extensively studied by the mathematical modeling
community. Relatively few models of phototaxis have been
developed, for example see [23,24]. These models do not focus
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on the intercellular group dynamics. Other recent works include
an agent-based model considering cell interactions due to the
transmission of light by individual cells [25] andODE and statistical
models examining rotational properties of an algal colony of
biflagellar V. Carteri cells [26]. Additional works on phototaxis
include [27,4,28–30], forwhich the primary focuswas onmodeling
the initiation of the movement toward light and the resulting
migration of the bacterial colony toward light (including the
modeling of the finger formation). Absent from these works was a
description of the observed dynamics in regions of low to medium
cell density in which cells tend to move in a quasi-random pattern
of motion towards neighboring cells, without any observable bias
in the direction of motion due to the light source. This question
was addressed in two recent papers [1,2] in which we presented
and studied a 2D model of stochastically interacting particles.
Simulations of the model produced results that were consistent
with experimental data in low to medium cell densities.

In this paper we seek to develop a better understanding of
the dynamics produced by the models in [1,2]. To address this
goal, we consider a one-dimensional version of our stochastic 2D
model. Starting from a set of basic rules of motion, we develop a
reaction–diffusionmaster equation (RDME), fromwhichwe derive
a system of ODEs describing the cell populations along an indexed
number line. This approach follows Baker et al. who focused on a
variety of signaling patterns and boundary conditions to study cell
migration on growing domains [31].

The structure of this paper is as follows. In Section 2 we derive
a system of ODEs from a 1D version of our 2D model from [1,2].
In Section 3 we compare simulations of our stochastic 1D particle
system and the new system of ODEs to illustrate the strengths and
weaknesses of each model. The simulations illustrate that the ODE
system does in fact capture many of the key features that were
observed with the stochastic particle system in [1,2], including the
experimentally observed formation of aggregations and merging
aggregations. Furthermore, the ODEs replicate the approximate
number, location, and width of aggregations produced by the
stochastic system. We also utilize the system of ODEs to explore
the parameter space, which we can now do more thoroughly
because solving the system of ODEs requires less computational
resources than solving the corresponding stochastic particle
system. Section 4 contains an extended discussion of the results.
Concluding remarks are given in Section 5.

2. Local interaction model in one dimension

In [1,2], we developed a model of local interactions of
Synechocystis sp. which assumes that particles move in two
dimensions according to the following rules, depicted in Fig. 1:

(i) Particles can persist in their motion, that is, move straight
without changing their direction for a certain duration of time.

(ii) Particles can start and stop, at time intervals of varying length.
(iii) Particles can change direction. When particles change direc-

tion,we assume that they choose tomove towards one of their
neighbors, within some fixed radius.

We assign a probability to each event. Persistence occurs with
probability a, stopping occurs with probability b, and movement
toward a selected neighbor occurs with probability (1 − a −

b)/Nn where Nn is the number of neighbors located within the
fixed radius. Simulations of this model were qualitatively very
similar to experimentally observed behaviors of Synechocystis sp.;
however, this 2D agent-based model is difficult to analyze and
to characterize the motion for different parameter sets, as agent-
based simulations are relatively inefficient.

To derive a one-dimensional version of the agent-based model
from [1,2], we consider a set ofN particles, eachwith a given initial
Fig. 1. Local interaction model. Model particles can exhibit (i) persistence, (ii)
stationary behavior, and (iii) movement toward neighboring cells within a fixed
radius.

position and initial preferred direction. Let the position of each
particle i at time t be denoted by xi(t), where xi(t) ∈ {1, 2, . . . , k}
for i = 1, . . . ,N . In this way we have N particles in k bins along a
line.

Assume that all particles move at a fixed speed v, so that at ev-
ery time step 1t , if a particle moves, the displacement is 1x =

v1t . At every time-step, there are three possibilities: (i) a particle
canpersist in its previous direction ofmotionwith probability a, (ii)
a particle can remain stationary with probability b, or (iii) a parti-
cle can choose a new direction, in which case the new direction is
either right or left, one of whichmust be its previous direction. Just
as in [1,2], we allow particles to sense neighborswithin a given dis-
tance and the probability associated with motion (iii) depends on
the location of neighboring particles. Note that in the 1D case, the
model becomes a systemof right-moving and left-moving particles
on a line, as moving particles can only move to the right or to the
left of their current positions. When a particle moves to the right,
its position xi(t) is increased by 1x. When a particle steps to the
left, its position xi(t) is decreased by 1x. Scaling 1t = 1, we have
xi(t + 1)

=



xi(t) + pi(t), with probability a,
xi(t), with probability b,

xi(t) + 1x, with probability (1 − a − b)
ν+

i

ν+

i + ν−

i
,

xi(t) − 1x, with probability (1 − a − b)
ν−

i

ν+

i + ν−

i
.

(1)

Here pi(t) is the last direction in which the particle moved (i.e., ei-
ther 1x or −1x). The number of particles to the right of bin xi that
can be sensed by particle i is

ν+

i =

D
m=1

N
j=1

δxj,xi+m1x, (2)

and the number of particles to the left of bin xi that can be sensed
by particle i is

ν−

i =

D
m=1

N
j=1

δxj,xi−m1x. (3)

Here, δxi,xj is the Kronecker delta function; that is, δxi,xj is 1 if xi = xj,
and 0 otherwise. In this way, the probabilities associated with
choosing the direction of motion reduce to the weights of neigh-
boring particles. Note that the discrete stochastic system (1) is not
Markovian; the position at time t + 1 depends on the position at
time t − 1, not just the position at time t . We depict this system in
Fig. 2.

For this setup, a variety of boundary conditions can be
considered. In this paper, we consider a fixed number of particles
on a fixed interval with periodic boundary conditions.
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Fig. 2. A number line illustrating the bin position xi of particle i with detectable
neighbors being the total number of particles which fall in the regions indicated by
ν+

i and ν−

i . In this particular image, the neighbor detection distance is D = 6.

2.1. Derivation of the reaction–diffusion master equation (RDME)

We begin our derivation of a reaction–diffusion master
equation by considering the number of particles in each bin, as
opposed to the position of each particle; the former is more
practical for systems with large numbers of particles. The number
of particles ni(t) in bin i at time t is given by

ni(t) =

N
j=1

δxj(t),i1x. (4)

Suppose that the particles are distributed between k bins. The
number of particles in bins i = 1, . . . , k is given by the vector:

n⃗ = [n1, n2, . . . , ni, . . . , nk]. (5)

Note that the vector n⃗ and each of its components ni are functions
of time t , which has been suppressed here for the sake of brevity.

We can now use Eqs. (2)–(4) to rewrite our expressions for the
number of detectable neighboring particles in eachdirection: ν−

i =D
m=1 ni−m and ν+

i =
D

m=1 ni+m. To simplify the notations, we
define neighbor-weighted probabilities cri = (1− a− b)ν+

i /(ν−

i +

ν+

i ) and c li = (1−a−b)ν−

i /(ν−

i +ν+

i ), which are the probabilities
of a particle choosing to move to the right or the left, respectively.

We distinguish between four types of particles: right-moving,
left-moving, right-stationary, and left-stationary. A particle is
considered to be right- (or left-) stationary if it moved to the
right (or to the left) to enter the current bin but remained
stationary during the previous time-step. Note that a stationary
particle remembers its previous direction. This memory allows for
continued persistence in the preferred direction when the particle
resumes moving.

Let ri(t) be the number of particles that moved into bin i from
bin i−1 during the previous time-step. Let r si (t) denote the number
of particles at time t which have become stationary, but previously
moved to the right frombin i−1 to i. Similarly,we define li(t) as the
left-moving particles in bin i at time t , which moved left from bin
i+1 into bin i during the previous time-step. Finally, we define lsi (t)
to be the number of particles in bin i at time t which moved left in
theirmost recent transition between bins, but remained stationary
during the previous time-step. We assume that particles become
(or remain) stationarywith probability b. The governing set of rules
are shown in Fig. 3.

In order to write a reaction–diffusion master equation (RDME)
describing how these populations evolve probabilistically in time,
we consider the probability density function P(r⃗, l⃗, r⃗ s, l⃗s, t) de-
scribing the likelihood of a system to be in a given state
{r⃗, l⃗, r⃗ s, l⃗s, t}. We note that for transitions between these four pop-
ulations, there is the additional possibility of particles becoming
stationary ormoving after having been stationary. Accordingly, the
equation is written as

∂P
∂t

(r⃗, l⃗, t) =

k−1
i=1


Probability that a particle moves out of bin i
to the right to enter the state {r⃗, l⃗, r⃗ s, l⃗s, t}


  

−


Probability that a particle moves out of bin i
to the right to leave the state {r⃗, l⃗, r⃗ s, l⃗s, t}


  


Fig. 3. Theoptions for themotion of particles out of a right-moving ri or left-moving
li populations in bin i, with associated probabilities for a system of particles which
are either right-moving or left-moving and have the ability to become stationary
with memory of a preferred direction. Not shown are the sources of right-moving
and left-moving particles. The source of particles in ri is all particle types in bin
i− 1, and the source of particles in li is all particle types in bin i+ 1. The associated
probabilities of these sources can be extracted from the diagram. The probability a
denotes persistence, the probability b denotes becoming (or staying) stationary and
the probabilities cri and c li denote choosing a direction based on neighbor weights.

+

k
i=2


Probability that a particle moves out of bin i
to the left to enter the state {r⃗, l⃗, r⃗ s, l⃗s, t}


  

−


Probability that a particle moves out of bin i
to the left to leave the state {r⃗, l⃗, r⃗ s, l⃗s, t}


  



+

k
i=1


Probability that a particle in bin i becomes stationary

to enter or leave the state {r⃗, l⃗, r⃗ s, l⃗s, t}


  

+ Boundary terms   . (6)

To address each of the terms in (6), we need to define particle-
transposing operators.We define these operators so that they each
act on the state of the system, {r⃗, l⃗, r⃗ s, l⃗s}. In Table 1, we define
all operators, but only show the populations which are directly
affected by the operator. All other populations remain whatever
they are in the state {r⃗, l⃗, r⃗ s, l⃗s}, as this table accounts for all
possible translations which are one particle movement away from
the state of interest.

Using the operators in Table 1 and probabilistic rates of
transitioning to the right or left, we are able to determine each
component of the RDME (6). For ①, we want to account for the
probability of a particle in bin i moving to the right to enter state
{r⃗, l⃗, r⃗ s, l⃗s, t}. The rate at which a right-moving particle moves
right is a + cri . Note that cri depends on the position of other
particles and so we need to be a little more careful in handling
this term. For a particle to move out of bin i to the right so that
the new state is {r⃗, l⃗, r⃗ s, l⃗s, t}, the particles must be arranged as in
Fig. 4. To calculate the neighbor-dependent weight which would
allow a particle in bin i to move to the right, we sum over the
neighbors to the right within neighbor detection distance D and
normalize by dividing by the total number of neighbors within
neighbor detection distance D. If we use the previous formula
ν+

i =
D

j=1 ni+j with values from the current state, the number
of neighbors to the right of bin i is exactly ν+

i − 1. The number of
neighbors to the left, ν−

i , has not changed. Hence, for this setup,
the weight for moving to the right is (ν+

i − 1)/(ν+

i + ν−

i − 1).
We can now calculate the probability of a right-moving particle
moving to the right out of bin i. The probability that the particles
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Table 1
Definitions of particle-transposition operators acting on {r⃗, l⃗, r⃗ s, l⃗s}. The first
subscript indicates the bin on which the operator is acting. The second subscript
indicates the population type. The superscript indicates the direction in which that
particle is moving, right (+), left (−), or (s) if the particle is becoming stationary.

Operator Result

J+i,r

. . . , ri + 1, ri+1 − 1, . . .


J+i,rs


. . . , ri+1 − 1, . . . , r si + 1, . . .


J+i,l


. . . , ri+1 − 1, . . . , li + 1, . . .


J+i,ls


. . . , ri+1 − 1, . . . , lsi + 1, . . .


J−i,r


. . . , ri + 1, . . . , li−1 − 1, . . .


J−i,rs


. . . , li−1 − 1, . . . , r si + 1, . . .


J−i,l


. . . , li−1 − 1, li + 1, . . .


J−i,ls


. . . , li−1 − 1, . . . , lsi + 1, . . .


J si,r


. . . , ri + 1, . . . , r si − 1, . . .


J si,l


. . . , li + 1, . . . , lsi − 1, . . .



Fig. 4. Setup of particles for J+i,r [r⃗, l⃗, r⃗ s, l⃗s].

are in the configuration shown in Fig. 4 is P(J+i,r [r⃗, l⃗, r⃗ s, l⃗s], t). The
number of particles which couldmove to the right is ri+1. The rate
at which these particles could move to the right is the sum of the
persistence probability and the neighbor-weight probability, i.e.,
a + (1 − a)(ν+

i − 1)/(ν+

i + ν−

i − 1). The product of these three
expressions is the first term in item ①.

Another way for a particle to be located in bin i andmove to the
right is for a left-moving particle to choose to move to the right.
This setup is shown in Fig. 5. Note that the total number of particles
in each bin is the same and hence this setup produces the same
neighborweight as for a right-moving particle choosing tomove to
the right. Similarly, one can construct figures for right-stationary
and left-stationary particles moving to the right. The neighbor
weights are the same for all four cases. With these four setups, we
have accounted for all possible ways that an extra particle to be
present in bin i and move to the right to bin i + 1 with the system
entering the state {r⃗, l⃗, r⃗ s, l⃗s, t}. Accordingly, the term ① in Eq. (6)
is given by

① :


a + (1 − a)

ν+

i − 1
ν+

i + ν−

i − 1


(ri + 1)P(J+i,r [r⃗, l⃗, r⃗ s, l⃗s], t)

+


(1 − a)

ν+

i − 1
ν+

i + ν−

i − 1


(li + 1)P(J+i,l [r⃗, l⃗, r⃗ s, l⃗s], t)

+


a + (1 − a)

ν+

i − 1
ν+

i + ν−

i − 1


(r si + 1)P(J+i,rs [r⃗, l⃗, r⃗ s, l⃗s], t)

+


(1 − a)

ν+

i − 1
ν+

i + ν−

i − 1


(lsi + 1)P(J+i,ls [r⃗, l⃗, r⃗ s, l⃗s], t).

To derive ② in Eq. (6), we need to account for particles that are
present in bin i, move right to the bin i + 1, and leave the state
{r⃗, l⃗, r⃗ s, l⃗s, t}. In this setup, the neighbor-weight probability cri is
Fig. 5. Setup of particles for J+i,l [r⃗, l⃗, r⃗ s, l⃗s].

exactly what we expect: (1 − a)(ν+

i )/(ν+

i + ν−

i ). Again we attain
the expressions in item ② by taking the product of the probability
of the system being set up in the appropriate state, P(r⃗, l⃗, r⃗ s, l⃗s, t),
the number of particles available to move, either ri, li, r si , or l

s
i , and

the probabilistic rate of particles moving to the right. This rate is
the neighbor weight probability, with the persistence probability
a added for right-moving and right-stationary particles. Hence,

② :


a + (1 − a)

ν+

i

ν+

i + ν−

i


riP(r⃗, l⃗, r⃗ s, l⃗s, t)

+


(1 − a)

ν+

i

ν+

i + ν−

i


liP(r⃗, l⃗, r⃗ s, l⃗s, t)

+


a + (1 − a)

ν+

i

ν+

i + ν−

i


r si P(r⃗, l⃗, r⃗ s, l⃗s, t)

+


(1 − a)

ν+

i

ν+

i + ν−

i


lsiP(r⃗, l⃗, r⃗ s, l⃗s, t).

For item ③ in (6), we consider all terms where particles move
left, with the system entering the state {r⃗, l⃗, r⃗ s, l⃗s, t}:

③ :


(1 − a)

ν−

i − 1
ν+

i + ν−

i − 1


(ri + 1)P(J−i,r [r⃗, l⃗, r⃗ s, l⃗s], t)

+


a + (1 − a)

ν−

i − 1
ν+

i + ν−

i − 1


(li + 1)P(J−i,l [r⃗, l⃗, r⃗ s, l⃗s], t)

+


(1 − a)

ν−

i − 1
ν+

i + ν−

i − 1


(r si + 1)P(J−i,rs [r⃗, l⃗, r⃗ s, l⃗s], t)

+


a + (1 − a)

ν−

i − 1
ν+

i + ν−

i − 1


(lsi + 1)P(J−i,ls [r⃗, l⃗, r⃗ s, l⃗s], t).

For item ④ in (6), we consider all terms where particles move
left, with the system leaving the state {r⃗, l⃗, r⃗ s, l⃗s, t}:

④ :


(1 − a)

ν−

i

ν+

i + ν−

i


riP(r⃗, l⃗, r⃗ s, l⃗s, t)

+


a + (1 − a)

ν−

i

ν+

i + ν−

i


liP(r⃗, l⃗, r⃗ s, l⃗s, t)

+


(1 − a)

ν−

i

ν+

i + ν−

i


r si P(r⃗, l⃗, r⃗ s, l⃗s, t)

+


a + (1 − a)

ν−

i

ν+

i + ν−

i


lsiP(r⃗, l⃗, r⃗ s, l⃗s, t).

For item ⑤ in (6), we account for the probability of moving
particles becoming stationary, both to enter and exit the state
{r⃗, l⃗, r⃗ s, l⃗s, t}. Particles become stationary with probabilistic rate b.
Hence
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⑤ : b(ri + 1)P(J si,r [r⃗, l⃗, r⃗ s, l⃗s], t) + b(li + 1)P(J si,l[r⃗, l⃗, r⃗ s, l⃗s], t)

− b

r si + lsi


P(r⃗, l⃗, r⃗ s, l⃗s, t).

Finally, the boundary terms ⑥ in Eq. (6) take an obvious form
in the case of periodic boundary conditions. Proper adjustments
should be made for other types of boundary conditions.

2.2. Deriving a system of ODEs

We define the expected value of each population, e.g.

Ri = ⟨ri⟩ =


r⃗


l⃗


r⃗s


l⃗s

riP(r⃗, l⃗, r⃗ s, l⃗s, t). (7)

Using this definition, taking the derivative with respect to time,
substituting the RDME as appropriate and reindexing many of the
summations, we obtain a new system of ODEs that models the
average behavior of the system. For further detail on this approach
we refer to [32]. We denote the transition rates with T .

The average behavior of the right-moving particles in bin i, Ri,
consists of particles entering frombin i−1 and leaving either to the
right, to the left, or to the stationary compartment. Consequently:

dRi

dt
= ⟨ri−1T+

ri−1
⟩ + ⟨li−1T+

li−1
⟩ + ⟨r si−1T

+

ri−1
⟩ + ⟨lsi−1T

+

li−1
⟩

− ⟨riT+

ri ⟩ − ⟨riT−

ri ⟩ − ⟨riT s
ri⟩. (8)

Similarly, the average behavior of the left-moving particles in
slot i, Li consists of particles entering from bin i + 1 and leaving
either to the right, to the left, or to the stationary compartment:

dLi
dt

= ⟨ri+1T−

ri+1
⟩ + ⟨li+1T−

li+1
⟩ + ⟨r si+1T

−

ri+1
⟩

+ ⟨lsi+1T
−

li+1
⟩ − ⟨liT+

li
⟩ − ⟨liT−

li
⟩ − ⟨liT s

li⟩. (9)

The right-stationary population in bin i, Rs
i , increases as right-

moving particles becoming stationary and decreases as the
stationary particles leave to the left or the right:

dRs
i

dt
= ⟨riT s

ri⟩ − ⟨r si T
+

ri ⟩ − ⟨r si T
−

ri ⟩. (10)

The left-stationary population in bin i, Lsi , increases as left-
moving particles becoming stationary and decreases as the
stationary particles leave to the left or the right:

dLsi
dt

= ⟨liT s
li⟩ − ⟨lsiT

+

li
⟩ − ⟨lsiT

−

li
⟩. (11)

The transition rate T+
ri is the ‘rate of right-moving, or right-

stationary, particles moving to the right’ and the transition rate T−

li
is the ‘rate of left-moving, or left-stationary, particlesmoving to the
left’. Similarly, the transition rate T−

ri is the ‘rate of right-moving, or
right-stationary, particlesmoving to the left’ and the transition rate
T+

li
is the ‘rate of left-moving, or left-stationary, particles moving

to the right’. In this way, the transition rates T+
ri , T

+

li
, T−

li
take the

following values:

T+

ri = cri + a, (12)

T+

li
= cri , (13)

T−

li
= c li + a, (14)

T−

ri = c li , (15)

where cri = (1−a−b)ν+

i /(ν−

i +ν+

i ) and c li = (1−a−b)ν−

i /(ν−

i +

ν+

i ). Note that the rate at which particles move to the left or to
the right depends on whether a particle is left-moving or right-
moving. We define the transition rate for particles going from a
moving compartment to a stationary compartment as:

T s
ri = T s

li = b. (16)

Using the expressions for transition rates, we can simplify some
of the expected value operators. The population of right-moving
particles Ri simplifies to a systemwith right-moving and stationary
particles in bin i − 1 persisting into bin i and all particles in bin
i−1moving to the rightwith a neighbor-weighted probability cri−1.
Additionally, all right-moving particles leave the system at every
time step, either by persisting, becoming stationary, or choosing to
move toward a neighboring bin:

dRi

dt
= a(Ri−1 + Rs

i−1) + ⟨ni−1cri−1⟩ − Ri. (17)

The population of right-stationary particles Rs
i consists of particles

in Ri becoming stationary with stopping rate b and leaving the
stationary population with rate 1 − b:

dRs
i

dt
= bRi − (1 − b)Rs

i . (18)

The population of left-moving particles Li simplifies to a system
with left-moving and stationary particles in bin i + 1 persisting
into bin iwith rate a and all particles in bin i+ 1 moving to the left
with a neighbor-weighted probability c li+1. Additionally, all left-
moving particles leave the system at every time step, either by
persisting, by becoming stationary, or by choosing tomove toward
a neighboring slot:

dLi
dt

= a(Li+1 + Lsi+1) + ⟨ni+1c li+1⟩ − Li. (19)

The population of left-stationary particles Lsi consists of particles
in Li becoming stationary with stopping rate b and leaving the
stationary population with rate 1 − b:

dLsi
dt

= bLi − (1 − b)Lsi . (20)

Note that the system (17)–(20) conserves the total number of
particles in the system.We can see this by summing the differential
equations (17)–(20) over all bins and population types. In our
simulations,when aparticle has noneighbors,we set the neighbor-
weight to zero to avoid division by zero. This does not affect the
conservative nature of the system. This is typically not relevant at
high particle densities but can be important as aggregations form,
leaving sections of empty bins.

3. Simulations

The solution of the system of ODEs (17)–(20) is simulated
with various initial conditions and periodic boundary conditions.
Observe that the ODEs (17)–(20) contain unresolved expected
value terms. To deal with these terms in our simulations, we
approximate each expected value by the sum, product and
quotient of the expected value of each term contained therein; that
is, we drop the expected value operator and replace each termwith
its expected value. For instance, ⟨riri−1⟩ is estimated by RiRi−1. We
do this in order to expedite computation time and eliminate the
need to calculate the probability density function P(r⃗, l⃗, r⃗ s, l⃗s, t) for
all possible particle number and time combinations.
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Fig. 6. A comparison of the stochastic particle system to the deterministic ODE for different scenarios: forming aggregations, the absence of aggregations, and merging
aggregations. The parameters a, the persistence probability, D, the neighbor detection distance, and the initial data are identical in each case. The parameters a and D are
varied as indicated above each plot to capture the different scenarios. For each of these images, the stopping probability b is 0.1 and the number of bins k is 100. On these
3D images, the i-axis is for bin number, from 1 to 100, the t-axis is for time, from 1 to 1000, and the vertical z-axis is for particle number.
3.1. Comparing the ODEs to the stochastic particle model

Our first numerical simulation compares the ODEs with the
stochastic particle model. Our results are shown in Figs. 6 and 7.
In both figures, we demonstrate three different observed patterns
in order to show how the ODE model (17)–(20) can replicate the
patterns obtainedwith the stochastic particle system (1). The three
patterns shown are the formation of aggregations of particles, the
lack of aggregations, and the formation of aggregations thatmerge.
In Fig. 6, we show three-dimensional surface plots illustrating the
number of particles in 100 bins from time 0 to 1000. In Fig. 7, we
offer the same simulations as in Fig. 6, except that the number of
particles in every bin is only portrayed at the final time 1000. In
most simulations, we do not display numbers along certain axes to
aid in visual discernment. In Fig. 6 and all other surface plots, the
i-axis varies from 0 (at the left) to 100 (at the right) and the t-axis
ranges from 0 (at the front) to 1000 (at the back). In Fig. 7 and all
other 2D plots, the time is fixed at 1000 and the i-axis ranges from
0 (at the left) to 100 (at the right). The vertical axis in each case is
for Mi(t), the expected total number of particles in bin i at time t .
This allows us to observe the evolution of each system as well as
the final state of each simulation after 1000 time steps.

Note that the agent based model (1) does not exactly replicate
the predictions of the ODEs. In comparing the aggregation patterns
produced by the particle system to the ODE, we see a similar
number of aggregations forming at approximately the same time.
In the first example with persistence parameter a = 0.3 and
neighbor detection distance D = 10, four aggregations are
formed over the 100 bins in both the stochastic and deterministic
simulation. In Fig. 7, we see that the forming aggregations do
not end in identical locations and they are not the same height.
Still, the patterns are similar: their number is similar and they
appear to be of approximately the same width. Similarly, for the
parameter set with persistence probability a = 0.3 and neighbor
detection distance D = 20, we observe that the aggregation
patterns match in number, width, and approximate height and
location. The qualitative agreement appears to break down as a+b
approaches 1, i.e., when the neighbor attractive force approaches
zero.

In the case where no aggregations form, particles are seen to be
distributed relatively uniformly, as observed in the 3D surface evo-
lution plots in Fig. 6. Upon closer inspection of this distribution, as
can be observed in Fig. 7, the particles actually form a wave, the
shape of which depends on the parameters and the initial condi-
tions. We initially expected that simulations without aggregations
would produce a uniform distribution of particles; however, this
only appears to be the case when a + b = 1 and the initial data
is uniformly distributed. We discuss this in more detail in the next
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Fig. 7. Comparison of the stochastic particle system and the deterministic ODE for different scenarios: aggregations, the absence of aggregations, and merging aggregations
at t = 1000. This figure corresponds to the final time of the simulations shown in Fig. 6. The parameters a, the persistence probability, D, the neighbor detection distance,
and the initial data are the same in each case. The parameters a and D are varied as indicated above each plot to create the different scenarios. In all images, the stopping
probability b is 0.1 and the number of slots k is 100. On these 2D plots, the i-axis is for bin number, ranging from 1 to 100 and the vertical z-axis is for the number of particles,
specificallyMi(1000).
section. In comparing the deterministic model and the stochastic
model, we see that the stochastic model contains quite a lot of
variation. Yet, the overall wave trend of the stochastic simulation
seems tomatch the deterministic simulation. The variations in par-
ticle number for each bin illustrate the relatively large stochastic
effect of the particle system. These effects becomemore important
when looking at simulations with unstable dynamics.

In the last case of simulations with merging aggregations, the
merging times and patterns are very sensitive to the exact number
of particles in each location. In comparing the surface evolutions of
the stochastic simulations to the deterministic simulations, we see
that the aggregations do notmerge at the same time and the larger
(or smaller) aggregations are not in the same locations. However,
we do observe that the general emerging patterns of particles are
somewhat similar at the final time t = 1000, especially in the first
merging aggregation example with a = 0.5 and D = 7. In the
second merging aggregation example with a = 0.5 and D = 10, it
appears as though the stochastic simulation will eventually form
two large peaks, with the smaller peaks merging.

We further explore patterns of merging aggregations in Fig. 8,
where we show four different instances of a simulation of the
stochastic particle systemwith the same parameters (a = 0.5, b =
0.1,D = 7) and initial conditions. In the simulation of the
deterministic ODE model, there are initially four aggregations.
Eventually, after approximately 900 time steps, two of these
aggregations merge. Of the resulting three aggregations, there
are two relatively tall peaks and one shorter peak. In contrast,
in the four stochastic simulations, three simulations yield similar
results with three peaks, two tall and one short, at t = 1000.
The simulation with four peaks at t = 1000 appears as though
aggregations would be likely to merge shortly after this time. In
the stochastic model, the initial data seem to converge quickly
to five aggregations, two of which in each image merge almost
immediately. Immediate merging of two small aggregations may
explain how the taller peak in the deterministic model developed.

While a wide variation in the exact positions and heights of
aggregations is observed in many simulations, we also observe
qualitatively similar general patterns, such as aggregation number
and peak width, emerging under similar conditions. Due to the
wide variation in patterns and the length of time to run each
stochastic simulation (varying from 2 to 10 min depending on
our choice of parameters), we have chosen not to perform a
Monte Carlo simulation to confirm that the average behavior of
the stochastic simulation does in fact match the system of ODEs.
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Fig. 8. Four simulations of the stochasticmodel for the same parameter set, alongside the simulation produced by the deterministic ODEmodel. In all images, the persistence
probability a is 0.5, the neighbor detection distance D is 7, the stopping probability b is 0.1, and the number of bins k is 100. On the 3D plots, the i-axis is for bin number,
ranging from 1 to 100, the t-axis is for time step, from 1 to 1000, and the vertical z-axis is for total particle number, Mi(t). On the 2D plots, the i-axis is for bin number and
the vertical z-axis is for total particle number at the final time t = 1000.
Weare able to extract critical information from the systemwithout
performing this calculation.

3.2. Uniform initial conditions

Before considering more simulations of this model, let us make
a few observations about the model (17)–(20). Suppose each bin
contains the same number, x, of right-moving and left-moving
particles and the same number, y, of right-stationary and left-
stationary particles. Upon substitution, we observe that the total
number of particles,Mi(t) = Ri(t)+Rs

i (t)+Li(t)+Lsi (t), is constant
in time. Furthermore, the moving and stationary populations are
also at a steady state if x =

1−b
b y. Hencewe expect that for uniform

initial conditions, with the same number of particles in each bin
and equal left- and right-moving (and stationary) particles, the
total number of particles will remain constant with a uniform
distribution.

We check this steady state in the following numerical
simulation. In Fig. 9, we illustrate simulations where each particle-
type-bin combination contains 2 particles, for a total of 8
particles in each bin. The simulations are run for combinations
of parameters varying the persistence probability a and stopping
probability b through a set of values (0.1, 0.3, 0.5, 0.7, 0.9). Note
that a + b ≤ 1 is a hard constraint on the system; that is, the
particles can either persist, stop or choose a new direction, but
they cannot perform more than one of these actions at a time.
Observe that these simulations suggest that a uniform distribution
of particles is an unstable steady state of the system.We confirmed
the numerical instability of the uniform solution by using stricter
error tolerances of numerical integration in MATLAB. In doing so,
we observed that the solution takes more time to diverge from
the steady state. Additionally, there was a noticeable delay in
aggregation formation, and we observed a shift in the location of
the aggregations.

3.3. Parameter analysis by simulation

We continue our study by considering the case of initial
conditions that follow a Poisson distribution. We generated a set
of initial data with a Poisson distribution with mean 2 for each
population type and bin. We use the same set of initial data for
each simulation. The total number of particles for each bin, as well
as a break down of particle number by population, are shown in
Fig. 10. The total number of particles in this example is 820.

In comparing simulations for this initial data set, our objective
is to better understand the effect of each parameter and their
interdependencies. We begin by considering the effect of varying
both the persistence probability a and the stopping probability
b. Each probability can vary between 0 and 1. In varying both
parameters, we are constrained by a + b ≤ 1: the probability of
persisting, stopping, and changing directions based on neighbor-
weights must add up to one. In Fig. 11, we show the distribution of
particles at the final time 1000. In both figures, the parameters a
and b are chosen from the set {0.1, 0.3, 0.5, 0.7, 0.9}. We observe
that as the persistence probability a is increased, the number of
aggregations decreases. A similar trend occurs with the stopping
probability. As b increases, the number of aggregations decreases;
however, this relationship appears to also depend on the value of
a. The dependence of the number of aggregations on persistence
probability a is stronger than the dependence on the stopping
probability b. Note that for a = 0.1, for this set of parameters, the
only effect of increasing b appears to be in the increased width of
the peaks, as shown in Fig. 11. The width of peaks also increases
with increased persistence probability a. We also observe, for
imageswith a+b = 1 in Fig. 11, that themagnitude of thesewaves
decreases for an increase in the persistence probability a. Further,
note that a few of the simulations do not appear to have reached a
steady state, e.g., parameter sets (a, b) = (0.3, 0.5) and (0.7, 0.1),
where nonzero dips between peaks appear as a viable source of
merging aggregations.

We next study the relation between the parameters a,
the persistence probability, and D, the neighbor detection dis-
tance. To do this, we again allow a to take values in the set
{0.1, 0.3, 0.5, 0.7, 0.9}. We consider two ranges of values for D :

{2, 5, 10, 20, 40} and {1, 3, 5, 7, 9}. The first range allows us to
consider the large scale effects of doubling the parameter D. The
second range allows us to consider the effect of varying parameter
D by relatively small increments. The second range is more likely
the biologically reasonable range to consider, but understanding
the larger scale effects of D is also important. We set the stop-
ping probability b = 0.1. Results are shown in Figs. 12–13. The
snapshot of the distribution of particles is taken at the final time
t = 1000. The number of bins equals 100. Once again, increasing
the persistence probability a clearly decreases the number of ag-
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Fig. 9. Exploration of parameter space for parameters a, the persistence probability, and b, the stopping probability, for uniform initial conditions (Mi(0) = 8 for all i). Note
that there is a hard constraint that a+ b ≤ 1. For cases where a+ b = 1, particles do not have the ability to choose to move in a new direction; they can only stop or persist
in their initially preferred direction. In all cases, the interaction distance D is 10 and the number of bins k is 100. The i-axis is the bin number, ranging from 1 to100, the t-axis
is for time, from 1 to1000, and the vertical z-axis is for total particle number,Mi(t).
Fig. 10. Initial conditions for Figs. 11–15. The first four plots, for right-moving Ri(0), right-stationary Rs
i (0), left-moving Li(0) and left-stationary Lsi (0) are used to initiate the

ODEs (and the stochastic systems in Figs. 6–8). The last plot is the sum of these four plots,Mi(0) and is what is visible in subsequent images. Particle numbers are distributed
with a Poisson distribution with mean 2 for each population type in each bin i. The i-axis varies from 0 to 100. The total number of particles is 820.
gregations and increases the width of aggregation peaks. Increas-
ing the neighbor detection distanceD also decreases the number of
aggregations. Interestingly, the neighbor detection distanceD does
not appear to affect the width of aggregations. In Fig. 12, we notice
that doubling the interaction distance yields approximately half as
many aggregations. In Figs. 12–13, when the persistence proba-
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Fig. 11. The final distribution at time t = 1000 of the simulations in exploration of the parameter space for parameters a, the persistence probability, and b, the stopping
probability. Note that a + b ≤ 1. For cases where a + b = 1, particles cannot change their direction; they can only stop or persist in their initially preferred direction. In all
cases, the interaction distance D is 10 and the number of bins is 100. The i-axis is for the bin number and the vertical z-axis is for particle number. The initial conditions are
given in Fig. 10.
bility is a = 0.7, the system develops harmonic frequencies for
a neighbor detection distance D that is between 1 and 5.When this
occurs, themagnitude of the wave (in the absence of aggregations)
becomes very small. Fig. 13 also illustrates that the number of ag-
gregations is very sensitive to D for very low values of D, but not
very sensitive for values of D larger than 5.

Finally, we explore the dependencies between the stopping
probability b and the neighbor detection distance D. For these
simulations, we set the persistence probability a to 0.3 which
results in a more interesting dynamics compared with the case
when a = 0.1. The stopping probability b takes values in
{0.1, 0.3, 0.5, 0.7}. Two sets of values are considered for D :

{2, 5, 10, 20, 40} and {1, 3, 5, 7, 9}. The results are shown in
Figs. 14–15. Clearly, for the larger range of D values, shown in
Fig. 14, the stopping probability b only affects the simulations
when b ≥ 0.5. This is most likely due to our choice of the
persistence probability parameter a. Once again it is observed that
if the detection distance D is doubled, the number of aggregations
is approximately halved. For b = 0.7, where a+b = 1, we observe
the same wave pattern to what was seen in Figs. 11–13. Similar
results are obtained for low values of D, as can be seen in Fig. 15.

There are a few interesting artifacts of these simulations that
may be related to our choice of initial data set. The aggregations ap-
pear in approximately the same location in every simulation. This
is very notable for simulations with one or two peaks. Addition-
ally, in cases of two aggregations, the relative size of the peaks al-
most always decreases with increasing bin number. Similarly, for
cases with four aggregations, the relative height of the peaks in-
creaseswith an increasing bin number. Furthermore, for caseswith
no aggregations, the resulting wave is in approximately the same
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Fig. 12. The final distribution at time t = 1000 of the simulations in exploration of the parameter space for parameters a, the persistence probability, and D, the neighbor
detection distance. In all images, the stopping probability b is 0.1 and the number of bins is 100. The i-axis is for the bin number, from 1 to100, and the vertical z-axis is for
the particle number. The initial conditions are given in Fig. 10.
phase for each simulation, although themagnitude varies. Compar-
ing these situations to the set produced with uniform initial data,
the latter yields shifted sets of peaks for differing simulations.

4. Discussion

Comparing simulations from our stochastic model [1,2] to
the ODE model (17)–(20), illustrates that the general trends in
both models are the same. These trends include the number
of aggregations, the width and height of these peaks, and the
dynamics of merging aggregations.

For a constant uniform initial distribution of particles, we
showed that while the ODE system is supposed to be at steady
state, the numerical simulations suggest that this is an unstable
steady state. This reveals itself in numerical simulations where
integration error accumulates, eventually causing the presence of
aggregations, though we expect a constant uniform steady state.
Changing the numerical integration error tolerances has a small
effect on the temporal appearance and location of aggregations
produced by small disturbances due to integration error.

We analyzed the parameter space by considering a set of
random initial conditions with a Poisson distribution, with which
we were able to examine the complex interplay between the
persistence probability a, the stopping probability b, and the
neighbor detection distance D. In considering the parameters
individually, we note that increasing the persistence parameter
a decreases the number of aggregations and increases the width
of peaks. The effect of increasing the stopping probability b is
a decrease in the number of aggregations and an increase in
the width of aggregations. We observed that increasing a and b
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Fig. 13. The final distribution at time t = 1000 of the simulations in exploration of the parameter space for parameters a, the persistence probability, and D, the neighbor
detection distance. In all images, the stopping probability b is 0.1 and the number of bins is 100. The i-axis is for bin number, ranging from 1 to100, and the vertical z-axis is
for the particle number. The initial conditions are given in Fig. 10.
effectively decreases the probability of a particle being able to
change directions in order to move toward a neighbor. In this way,
particles are unable to form as tight of aggregations and instead
form less, yet larger peaks. Increasing the neighbor detection
distance D decreases the number of peaks but does not affect the
width of peaks; instead, it appears to affect the height of such
peaks. Note that changing D does not change the total probability
with which a particle can choose to move in a new direction, and a
and b remain fixed. In this way, the width of peaks is not affected.
Furthermore, doubling D appears to halve the number of these
aggregations. We expect that for neighbor detection distances
exceeding half the total number of available bins, there will either
be one or no aggregations. In such a system, all particles are able to
sense all other particles.

We also observed that when particles are only capable of
persisting in their current direction or stopping, maintained by
the constraint a + b = 1, the deterministic result appears to be
periodic, with the shape of the curve depending on the general
shape of the initial data. These results also occur for parameter sets
where a + b is close to one and the neighbor detection distance D
is relatively small.

5. Conclusions

In this paper, we consider a system of particles that interact in
one space dimension according to the rules of our stochasticmodel
in [1,2]. In the stochastic system, particles are allowed to (i) interact
bymoving in the direction of a randomly selected neighbor, within
some defined neighbor detection distance, (ii) persist in their
motion (memory), or (iii) become stationary (or start moving).
These simple group dynamics produce many complex structures
that have not been previously studied. We use these dynamics
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Fig. 14. The final distribution at time t = 1000 of the simulations in exploration of the parameter space for parameters b, the persistence probability, and D, the neighbor
detection distance. In all images, the stopping probability a is 0.3 and the number of bins is 100. The i-axis is for the bin number, from 1 to100, and the vertical z-axis is for
the particle number. The initial conditions are given in Fig. 10.
to develop a system of ODEs that follows the distribution of
particles along the line. The ODEs allow us to effectively explore
the parameter space. We perform numerous simulations with
varying parameter sets and initial conditions. The simulations
produce a variety of scenarios such as aggregations of cells and
instabilities that result in merging aggregations. The simulations
replicate key characteristics of the stochastic particle model.
The results correspond to characteristics of the experimentally
observed motion of bacteria.

The biological implications of this study motivate some future
research directions. We expect the neighbor detection distance,
which may be related to the biological setup (the length of pili on
the surface of cyanobacteria or the diffusion length scale of sig-
naling molecules) to vary from particle to particle. The stopping
and persistence probabilities may also vary from particle to parti-
cle, and the values most likely span over a wide range, depending
on temporal characteristics (e.g., how many polysaccharides the
particles have produced and how many of them are present in the
agarose). These characteristics can be incorporated in future work.

Mathematically, this model lends itself to further analysis, by
way of derivation of a partial differential equation. It is likely
that deriving such a model would produce an integro-differential
equation,with integrals being used to account for neighborswithin
fixed distances of the particle. Furthermore, the ODE model can be
extended to two dimensions, which is of interest, yet outside of the
scope of this paper.
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Fig. 15. The final distribution at time t = 1000 of the simulations in exploration of the parameter space for parameters b, the persistence probability, and D, the neighbor
detection distance. In all images, the stopping probability a is 0.3 and the number of bins k is 100. The i-axis is for bin number, from 1 to100, and the vertical z-axis is for the
particle number. The initial conditions are given in Fig. 10.
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