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NON-OSCILLATORY CENTRAL SCHEMES FOR THE
INCOMPRESSIBLE 2-D EULER EQUATIONS

DORON LEVY AND EITAN TADMOR

ABSTRACT. We adopt a non-oscillatory central scheme, first presented in
the context of Hyperbolic conservation laws in [28] followed by [15], to the
framework of the incompressible Euler equations in their vorticity formu-
lation. The embedded duality in these equations, enables us to toggle be-
tween their two equivalent representations — the conservative Hyperbolic-
like form vs. the convective form. We are therefore able to apply local
methods, to problems with a global nature. This results in a new stable
and convergent method which enjoys high-resolution without the forma-
tion of spurious oscillations. These desirable properties are clearly visible
in the numerical simulations we present.

1. INTRODUCTION

We are concerned with the approximate solution of fluid flows governed by
the following system of Euler equations,

(1.1) iy + (it - V)i = —Vp,

which is augmented with the incompressibility constraint, V-4 = 0, and is sub-
ject to initial conditions, #(Z,0) = uy(Z). Here, @ and p denote, respectively,
the velocity field and the pressure.

In two space dimensions, system (1.1) admits an equivalent scalar formu-
lation in terms of the vorticity, w := V x @, which satisfies the conservative
scalar equation,

(1.2) wt + (uw)y + (vw),y = 0.
Here, @ = (u,v), is the two-component divergence-free velocity field, satisfying

(1.3) Uy + vy = 0.
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Equation (1.2) can be viewed as a nonlinear conservation law,
(1.4) w + f(w)e + g(w)y =0,

with a global flux, (f,g) := (uw,vw). At the same time, the incompressibil-
ity (1.3) enables us to rewrite (1.2) in the equivalent convective form

(1.5) Wi + Uwy + vwy = 0.

Equation (1.5) guarantees that the vorticity, w, propagates with finite speed,
at least for uniformly bounded velocity field, # € L*°. This duality — between
the conservative and convective forms of the equations, plays an essential role
in our discussion below.

In recent years, there was an enormous amount of successful activity in the
construction, analysis and implementation of modern numerical algorithms for
the approximate solution of nonlinear hyperbolic conservation laws (1.4). A
large variety of accurate, high-resolution methods were developed and inves-
tigated, e.g. [21], [10], and the references therein. We are therefore motivated
to borrow the methods and ideas developed in this context. Godunov-type
schemes are primary examples for these modern high-resolution schemes. Such
schemes are based on piecewise-polynomial reconstruction of pointvalues from
cell averages, followed by the evolution of approximate fluxes. We distinguish
between upwind and central Godunov-type schemes. The difference between
these two types, lies in the way they realize the evolution of these piecewise-
polynomials: Upwind schemes sample the reconstructed values at the midcells.
They necessitate characteristic information (approximate Riemann solvers...)
and dimensional splitting, consult [13],[19] and [31], for example. Central
schemes are based on staggered sampling at the interfacing breakpoints. Their
main advantage is simplicity, consult [9],[28] and [15]. To be more specific,
we concentrate on multidimensional extensions of the non-oscillatory, second-
order central Nessyahu-Tadmor (NT) scheme [28]. The central framework
starts, at each time-level, with a non-oscillatory piecewise linear approxima-
tion which is reconstructed from the piecewise constant numerical data. This
piecewise-linear approximation is evolved to the next time level and then real-
ized by its piecewise constant projection. The projection is based on staggered
averaging which covers both left going and right going waves centered at each
midcell. Consequently, the evolution step utilizes smooth numerical fluxes,
which are bounded away from the center of the discontinuous Riemann fans.
And here, approximate quadrature rules can replace the costly (approximate)
Riemann solvers embedded in upwind schemes. It is therefore natural to use
this central framework in more than one space dimension — where we avoid
Riemann solvers and dimensional splitting. In this context we refer to the two-
dimensional central scheme recently introduced by Jiang and Tadmor [15].

The paper is organized as follows. In §2 we briefly overview the central
framework, including the two-dimensional central-scheme [15]; we also out-
line a new two-dimensional third-order extension along the lines of Liu and
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Tadmor in the one dimensional case [26]. In §3 we utilize this central frame-
work, introducing our central approximation of the incompressible Euler equa-
tions (1.2)-(1.3). We note in passing that a similar treatment applies to the
incompressible Navier-Stokes equations, where the central discretization of its
convective terms is complemented with an implicit Crack-Nicholson discretiza-
tion of the additional parabolic terms.

In §4, we carry out stability analysis, which proves that our two-dimensional
second-order central scheme satisfies the scalar maximum principle (for the
vorticity). This, in turn, implies by compensated compactness arguments,
that there is no concentration effect [8], and hence the convergence of our
central scheme follows, at least for wg € LP,p > 2, [22]. In §5 we briefly
remark on the boundary treatment for our central scheme. For the intricate
issue of the recovery of the vorticity boundary values from the velocity field
we refer to [25]. Given the vorticity boundary values, we may then utilize the
boundary treatment presented in the general Hyperbolic context [23]. Most
importantly, we present here a general velocity reconstruction that retains the
discrete incompressibility relation required by the maximum principle in §4;
unlike the velocity reconstruction in §3, it is not limited to the periodic case.

We end up in §6, with a couple of prototype numerical examples. We present
the problem of an incompressible jet in a doubly periodic geometry subject
to two different sets of initial parameters. First, following Bell, Colella and
Glaz [3], we consider the case of the so-called “thick” shear-layer: the nu-
merical simulations obtained for this problem demonstrate the stability and
convergence properties of our central schemes. Second, following Brown and
Minion [4], we then proceed with a framework which involves smaller scales,
the so-called “thin” shear-layer. Here, our central scheme resolves the incom-
pressible solution with mo spurious vortices, which are inherent with other
numerical methods reported in the literature, e.g., [4],[32]. Our numerical
experiments show a remarkable speedup while retaining stability and high-
resolution.

2. THE TwoO-DIMENSIONAL CENTRAL SCHEME - A BRIEF OVERVIEW

We start this section with a brief review of the central framework presented
n [15]. This will enable us to introduce the methodology and notations to be
used later. We consider the two-dimensional hyperbolic system of conservation
laws

(2.1) up + f(u)e + g(u)y =0,

subject to the initial data, u(x,y,t = 0) = ug(z,y). To approximate (2.1) by
a central scheme, we introduce a piecewise-polynomial approximate solution,
w(-, -, t), at the discrete time levels, t" = nAt,

’LU(:E, Y, tn) = ij,k(:nv y)Xj,k(:Ev y)7 Xj,k(:nv y) = 1Ij’k7
Jik
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where p; 1 (z,y) are polynomials supported at the cells,

A A
k Z{(ﬁ,C)Ilé—:Ejl §§,|C—yk| STy}

An ezact evolution of w, based on integration of the conservation law (2.1)
over the staggered control volume I bkl X [t7, 71, yields

—n+1
(2.2) ijr%Jer2 A:EAy// (z,y,t")dydx
+1 k+1
L /t”“{/ym[f( ( ) — f (w( )] d }d
- W\T541,Y,T)) — w\xj,Y, T Y T
AxAy ) —in — J J

B A:nlAy /T:tn { / ; 9 (w(z, yet1, 7)) — g (w(z, Y, 7))] d:n} dr.

Here, w]}, is the cell average at ¢ = t" associated with the cell I;;. Thus,
the first integral on the RHS represents the staggered cell average at time ",

_;L Lkl It consists of contributions from the four neighboring cells,
2 9
—n . n —
Wil kel = A:EAy// (z,y,t")dydx =
+Lktd

1 i+41 yk+l Ye+1
/] 2/ ij,k(sv,y,t)dydwr/ / pjk1(z,y, t)dyd
AzAy | /g, un yrtL

2

Tjt1 yk+1 T4l [ Yk+1
/ / Pi+1.k(T, Y, )dyd:v+/ / Pjt1k+1 (2, y, t)dydz
Yi x Y, 1

+d Yk d

These integrals can be evaluated ezactly. It remains to recover the point-
values {w(-,-,7)| " < 7 < t"*1}, a task which is accomplished in two steps.
First, we use the given cell averages to reconstruct the pointvalues of w(-, -, t"),
reconstructed as piecewise polynomial approximation. Second, we follow the
evolution of these pointvalues along the interfaces (z;, y, 7),t" < 7 < It
is here that we take advantage of the finite speed of propagation, guaranteed
by the convective form (1.5): Thanks to staggering, these interfaces remain
free of discontinuities, at least for a sufficiently small time step, At, dictated
by the CFL constraint. Hence, the numerical fluxes — which remain bounded
away from the propagating singularity at (z Lkt ), can be computed within
any degree of desired accuracy by appropriate quadrature rules.

Below, we present two possible constructions of such central schemes — the
second-order by Jiang and Tadmor, [15], which utilizes the MUSCL piecewise
linear interpolant [19]; In addition we introduce a third-order two-dimensional
extension of the one-dimensional central scheme by Liu and Tadmor, [26],
which utilizes the non-oscillatory piecewise-parabolic interpolant from [24].
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2.1. The Second-Order Central NT Scheme. Following the two-dimensional
scheme in [15], which extends the one-dimensional NT scheme in [28], we start
with a reconstructed piecewise-linear MUSCL approximation,

’LU(:E, Y, tn) = ij,k(:nv y)Xj,k(:Ev y)7
Jik

where,

B T —xj Y — Yk
(2.3) pik(T,y) = @ + Wiy ( Az > + Wik ( Ay > '

Here, w}k and w}k, are respectively, the discrete slopes in the x-direction
and in the y-direction, which are reconstructed from the given cell averages.
Second order accuracy is guaranteed wherever these slopes approximate the
corresponding derivatives, w}k ~ Az - wy(x), Y, t") + O(Az)?, w}k ~ Ay -

wy (x5, Yy, t") + O(Ay)?. With this choice of linear approximation, the first
term on the RHS of (2.2) — the staggered average, w;:_l fi Lo yields by a

27 2
straightforward computation,

— T _ — T — T — T — T

wj+%7k+% = Z(wj’k + wj,k—l—l + wj-l—Lk + wj—l—l,k—l—l)—i_
/ / / /

+E(wj,k — Wiy T Wy — Wik gi1)

1 \ \ \ \ )
+1—6(wj,k Wik T Wik~ Wiy gyt)

Next, we turn to the numerical fluxes on the RHS of equation (2.2). They
are approximated by the second-order midpoint quadrature rule for the time
integral, and by the second-order rectangular quadrature rule for the spatial
integration. For example, approximation of the first flux on the right yields

"t ey AtA 1 1
Yy, nts n+s
(24) f(w($j+17 Y, T))dydT ~ 2 (fj+1?k + fj+1?k+1)'
T=E JY=yy
Analogous expressions hold for the remaining fluxes. The missing midvalues,
1
wzzz, are predicted using a first-order Taylor expansion (where A := % and
W= ﬁ—;, are the usual fixed mesh-ratios),

n+i A H
(2.5) Wik " = Wik = 5 Fik = 595

Equipped with these midvalues, we are now able to use the approximate
fluxes outlined in (2.4), which yield a second-order corrector step of the form

N

1 1 ntz n-+
_ 1 _ _
w;ir%,m% = < Z(w?,. +wji )+ g(w;. — Wi, ) =AMl — 507 eyt T
1, _ _ 1 ntit nti
(2.6)  + <@+ W) + g(wlk —whir) = Ikt~ 9k ) > -
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Here, we employ the following abbreviation for staggered-averaging

1 1
< wj, >k+%:: E(wmk + wj7k+1), <w. g >j+%:: E(wmk + wj+17k).

Note that the predictor-corrector central scheme, (2.5)-(2.6), is an extension
to the canonical first-order Lax-Friedrichs scheme based on piecewise-constant
reconstruction, (with p;, = w;; and w} P = w; x = 0). It is remarkable that
such a relatively simple extension yields a considerable improvement in the
resolution of the first-order Lax-Friedrichs scheme, while retaining its robust
stability properties.

2.2. A Third-Order Extension. We extend the work of Liu and Tad-
mor [26] who dealt with a third-order one-dimensional central scheme. To
extend it for the two-dimensional framework, we start with a piecewise par-
abolic reconstruction, w(zx,y,t") = Zj,k Pjk(x, y)x;jk(x,y), which consists of
quadratic pieces of the form (ignoring mixed terms)

2
T — T 1 T —Tj
(2.7) pik(®,y) = wip+wjy, ( Ax > * §w;{’k ( Az >

2
\ Y — Yk T\ Y— Yk
" wj"“( Ay >+§wj’k< Ay > '

The conservation requires that the cell average of p;x(x,y) coincide with the
underlying given average w0, x, i.e., we require p;; = wj; in addition, we place
the further constraints that the cell averages of p; over the four neighboring
cells coincide with their underlying given averages, w;j+1 ,+1. By that, the
free five coefficients in (2.7) are uniquely determined as follows. We start with
the reconstructed pointvalues, wzk; unlike the second-order schemes, these
pointvalues need not coincide with the cell averages, and are given by

1 1

2.8 W =W — —w! — —w ..
( ) jvk Js 24 s 24 jvk
Next, the first-order discrete slopes, w; . and w} i» are reconstructed as fol-
lows!,
/ R T, —n \ R Y, -n
(2.9) wj = 0k AGWTE, Wy = 05k AgWiy,

and finally, double-primes stands for the reconstructed discrete second deriva-
tives

" — \ —
(2.10) wiy =0k ATAT Wy, wiy =0 AL AY @y

The extra free parameters, 0, (0 < 6,1 < 1), are limiters designed to avoid
spurious extrema, so that they guarantee the overall non-oscillatory nature
of the central scheme. Generically, 0, = 1 — O((Az)3 + (Ay)?), retains the
third-order accuracy in most of the computational domain, with the possible

'Here and below, we used the usual notations for the one-sided and centered differences,
ie, Arw(z) = £(w(z £ Az) — w(z)) and Ag = 1(A; —A).
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exception at critical cells. For further details on the reconstruction of such
one-dimensional limiters consult, e.g., [24],[26].

The staggered averages on the RHS of (2.2) yield the same formula as in
the second-order scheme, consult (2.4). As with the second-order scheme, the
piecewise-parabolic reconstruction (2.7), is also evolved in time using the cen-
tral Godunov-type framework. To retain third-order accuracy, however, we use
the Simpson (rather than the midpoint) quadrature rule for time integration.

To this end, we first use the Taylor expansion to predict the midvalues,

L
2

w; . * and w"*’1 ,
At At)?
(2.11) ;LZZ = Wi+ ( 5 >w§fk+( 8) Wy
(AD)?
'UJ;L:]L—I = j k + Atwj k + B ’U,);tk

Here, w7 Tk and " [ denote, respectively, the first and second time derivatives,
which are replaced by spatial discrete derivatives as told by the conservation
law (2.1).

These predicted values are then used in conjunction with the Simpson rule,
yielding the corrector step

(w;',. - w;’—l—l,.) >k+%

oo =

_ 1 _
(2.12) w;j;k+% =< Z(wgf, + W, )+

1 _ 1
+ < Z(wilk + W y1) + g(w:k —w gyq) Zitt
n+2

1 1
[< fio, =I5 > HA< [y >pel <[ -1 >,€+%]

Chlt ®|>/

n+g n+i n+1 n+1
[<9 k1 90k >t T4 <9, PR it T <9k~ 9% il

3. THE CENTRAL INCOMPRESSIBLE SCHEME

We now turn our attention to the two-dimensional incompressible Euler
equations, (1.2), which we view as a two-dimensional nonlinear conservation
law with flux, (f,g) = (uw,vw). We are aware, of course, that this is not an
Hyperbolic equation, due to the global dependence of the flux on w, which can
be read from the Biot-Savart law,

(3.1) (1) = / RE— (@ e, R(F):= (2;'/;2).

Yet, according to the convective form (1.5), the vorticity, w, propagates
with a finite speed, as long as the velocities, u, v, remain uniformly bounded.
This convective formulation (due to the incompressibility), is the key prop-
erty which enables us to utilize the central schemes (2.5)-(2.6), (2.11)-(2.12)
— schemes which are of inherent “local” nature, in this context of “global”
incompressible equations.
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In every step of the incompressible computation, one has to reconstruct the
velocity field, 4, from the known values of the vorticity, w(-, -, t"), according to
the Biot-Savart law (3.1). This could be implemented in one of several ways,
consult e.g., [2],[3],[4],]6],[7],[14],[32]. We shall mention two options.

For a periodic setup, for example, this reconstruction can be done efficiently
using spectral methods. Thus, by applying the Fourier transform for the
elliptic system

(3.2) { Uy + vy =0 ’

Vg — Uy = W

we obtain
(3.3)
o ke .- L wky o L 1 o aRd 1
o) = g o, P = e, i) = o [u@e az
Alternatively, we can use a streamfunction, @, such that Ay = —w, which

is obtained, e.g., by solving the five-points Laplacian, A, = —w; . Then,
its gradient, V1 recovers the velocity field

(3.4) w oy = Lo —Vik o it Yik
P Ay I3 Az

Observe that in this way, we retain the discrete incompressibility, centered
around (j + %, k + %),

y _
(3.5) Aiuj,k—l—% +A+’Uj+%,k =0.

To define the velocity field at the integer gridpoints, (x;, yx), required in the
predictor steps (2.5) and (2.11), we may now solve

1 1
(3.6) S (Wit i) = w1, S (O + O 1E) = 0L

Observe that with this integer indexed velocity field, the discrete incompress-
ibility relation (3.5) amounts to

< Ujql, — Uj,. >k+% N < V. kg+1 — Vg >j+%
Ax Ay

The discrete incompressibility relation (3.7) will enable us to reformulate
our central scheme (2.6), in an equivalent convective form, which, in turn, is
responsible for a maximum principle proved in §4. We should emphasize that
different schemes require different discrete incompressibility relations in order
to guarantee consistency with both the conservative and the convective form
of the vorticity equation, (1.2) and (1.5). A different discrete incompressibility
relation in the context of upwind schemes was originally introduced in [25].

We are ready to introduce our central approximation of the two-dimensional
equations (1.2)-(1.3). Assume the cell-averages of the vorticity at time t = ¢",
@;fk, are known. Then the following algorithm calculates the staggered cell-

a3 —n—+1
averages of the vorticity, wj+% il

(3.7) ~0.

at the next time step, t = t"*+1.
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Algorithm:

1. Reconstruction

(1a) Reconstruct the discrete vorticity slopes.

For example, for the second-order method, calculate w; . and w; > With the
following family of so-called Min-Mod limiters, see e.g., [13],[33].

e = MM~ ), 3@ — o ), 0@ — Ty )}
1
)
Here, M M, denotes the Min-Mod (MM) function,

(3.8) wi = MM{O(@}) ) — @), 5(@F gy —@Fg_1), 0@F), — &%) _1)}

mini{:ni} if xT; > 0, Vi
MMA{xy,x9,...} =< max;{z;} ifx; <0,Vi
0 otherwise.

and 6, 0 < 0 < 2, is a free parameter, which retains the non-oscillatory
properties of the approximate solution. For the third-order method, the first
and the second-order discrete slopes are outlined in (2.9)-(2.10).

(1b) Calculate the pointvalues of the vorticity, wiy, at time t =17

Note that in the first-order and second-order approximations, these
pointvalues coincide with the given cell averages, wi, = w7, Starting with
the third order method, however, pointvalues may differ from the cell
averages. For example, by (2.8),1the third-order accurate pointvalues are

: n _ —~.. 1. nm 1 W
given by Wik = Wik — 55W5 gk — 3% k-

2. Prediction

(2a) Prepare the pointvalues of the divergence-free velocity field, (-, -, t"),
from the reconstructed vorticity pointvalues, w; - To this end, use a direct
summation of the Biot-Savart relation (3.1), or any of its equivalent
procedures mentioned earlier — spectral (3.3), streamfunction

solver (3.4)-(3.6),...

1

(2b) Predict the midvalues of the vorticity, w;fzz.
For example, in the second-order case we use

1 A "
(3.9) Wip =wip— Eu"w;k - Evglkw;k
Observe that here we use the predictor step (2.5) in its convective
formulation (1.5), that is, (f/, ¢") = (uw’, vw"). For the third order scheme,
we also have to predict the pointvalues of the vorticity at time "' as well,

utilizing (2.11).

3. Correction
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(3a) As in step (2a), use the previously calculated values of the vorticity to

compute the divergence-free pointvalues of the velocity, at time tn+%,

als -, tn+%), (— and at time t"*! for the third-order method).

Finally, the previously calculated pointvalues of the velocities and vorticity

are plugged into the second-order corrector step (2.6) (— or (2.12) in the

third-order method), to compute the staggered cell-averages of the vorticity
—n—+1

: n+1
at time "7, wj+%7k+%.

We close this section by noting that this algorithm which deals only with
the convective terms, can be extended to handle parabolic terms. As a direct
consequence, the central schemes presented above, can be applied to the two-
dimensional incompressible Navier-Stokes equations, w; + (uw), + (vw), =
ﬁ(wm + wyy), with uy + v, = 0. In terms of stability considerations, the
usage of the implicit Crack-Nicholson scheme for handling the parabolic terms,
is preferable.

4. THE MAXIMUM PRINCIPLE

In this section we prove that under appropriate CFL condition, our second-
order central scheme satisfies a maximum principle. The approximate solution
therefore imitates the maximum principle of the exact vorticity solution.

The theorem we state and prove, is similar to that of Jiang and Tadmor [15],
in the context of scalar conservation laws. However, this equivalence is far from
being trivial due to the global nature of our non-local “fluxes”. In order to
apply the methods of [15] in our context, it is essential to take advantage of
an appropriate discrete formulation of the incompressibility condition.

In the following, we let Uy, := max; 1{|u; |, |v;x|}, denote the global bound
on the values of the velocities.

Theorem 4.1. Consider the two-dimensional central scheme (2.5)-(2.6), com
plemented by the streamfunction computation of the velocity field (3.4)-(5.6).
Assume that the discrete slopes, w' and W', are reconstructed using the 0-
dependent Min-Mod limiter (3.8). Then for any 6 < 2 there exists a constant,
Cy = w, such that if the CFL condition is fulfilled,

(4.1) max (A, ) - Uso < Cp,

then the following local maximum principle holds

. _ _n+1 _

(4.2) min 1{w;ﬁq < w?j_’l pel S max 1{11);(1}.
lp—(G+3)I=3 272 p=(i+3)l=3
lg—(k+3) =5 lg—(k+5)|=5%

Remark: Of course, the CFL bound Cp, is far from the optimal Cy = %

Proof. The main idea is to rewrite @;Lj_'ll pol @ a conver combination of the
27 2
cell averages at t", @;fk, @;LHJC’ @;f,ﬁ_l, @;L+1,k+1' We start by writing @" !

J+5.k+3
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as a sum of five terms

1
—n+1
(4.3) O e = DA+ L+ T+ T+ Is},
27 2
with
u)/ _ u)/ u)/ _ u)/
_ ik i+1,k _ j k41 G+1,k+1
\ \ \ \
W;:p — W, W — W
- Kk k1 - +1,k +1,k+1
_ nih o gntby o ontd i
Is = —2A [(fj—l—l,k = Fin )+ Uil = Fiady)

n+ n+i n+i n+
—2p |:(gjk—i1 9ir )+ (9jihr — gﬁfk)]

By the reconstruction of the Min-Mod limiter, w k and W’ 1 s Cannot have
opposite signs (consult [33]), and hence Z; does not exceed

1 0
(4.4) I, < 3 (@ + @41 ) + 1 ’@;LJrl,k - “—’;Lk’ :

Similar bounds hold for Zy,Z3 and Z,.
Next, we invoke the discrete incompressibility (3.7), which enables us to
reformulate Z5 as the sum of differences of vorticities

Is = —2()\1‘?:1%1%) ( ;Ljfk Z:z)_

- 2(Mvgk ‘1')‘“ > = u g:fk) ( Z;:-l-l Z:z)_

- Q(MUJL_/CH +)‘UJ+111¢+1 /wj:ék) ( ;L:l k+1 Z:fl)

- Q(M%Ifk) ( 3112k+1 ;L—:lzk)
Hence,
(4.5) |Z5] < 2Uso | AlZ51| + (2A + )| Zs2| + pulZss| + (A + 2p) | Zsa |,
with

Is1 = n:fk ;L;:%v Is2 _W;L;:—I—l Z:Zv

Iss = ;L—:lzk—l—l ;L;:J:lv L5 = wyjl%,kﬂ ;L:lzk

Using the predictor step in its convective form (3.9), the difference between
every two neighboring midvalues of the vorticities in each of the I5;,j =
1,2, 3,4, can be written in terms of the values of the vorticities and the velocity
field at time t = t". For example,

(4.6)

__ —n —n n / n / /L n \ n \
15 = Witk — Wik — §[Uj+1,kwj+1,k — Uj ',k] - §[Uj+1,kwj+1,k - Uj,kw',k]-
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According to the Min-Mod limiter in (3.8), both |w},; ;| and |/ ;| do not

=N M| Q@3 \ \ =M
exceed |@? ; , — @7, [; similarly, [}, ;| and [w} ;| do not exceed |@? ;| 4 —
@;L+17,€| and 9|@;§k+1 —@;fk|, respectively. Hence, the term Z5; in (4.6) is upper-

bounded by
i
1Z51] < (1 + A0U)|wiyy o — wig| + §9Uoo [|W§L+1,k+1 — Wity gl + Wik — W;fkﬂ .

Similar estimates apply to the remaining terms, Zs0, Z53 and Zs4.

Adding all these estimates, we find that w;ﬂ f 1 which we decompose as
27 2

the sum, % X {Il +Zsr+2Io+ ... }, does not exceed
1 1 _
1 {5 @k + )

4

which in turn, does not exceed the maximum of {&7,, @2 1 ;, &) 1,7 b
provided that the following inequalities hold

0
- (— + 40p2U2 + 2(p + 20)Uso + 69/\,&U§O> @ g1 — @kl + - . }

0 1

2t 40p2U2 4 2(p+ 20\ Us + 60AuU% < >

0 1

2t 40N2U2 + 220 + N Uso + 60NuU2 < 5
These two inequalities augemented with an analogous treatment for the min-
imum yield the CFL condition (4.1). O

5. BOUNDARY CONDITIONS

The treatment of boundary conditions in the preset context is of major
importance, which is beyond the scope of our paper. Here we assume that
such boundary values of the vorticity are given. For the intricate issue of the
recovering these vorticity boundary values from the velocity field, we refer
to [25], and given these vorticity boundary values, we may then utilize the
boundary treatment presented in [23].

In [23], we develop a general staggered non-oscillatory treatment for cen-
tral schemes in the context of Hyperbolic compressible flows. The main idea
is to distinguish between inflow and outflow boundary cells. In inflow cells,
we utilize a lower-order reconstruction using the ezact point-values given at
the boundary; such reconstruction prevents the propagation of spurious os-
cillations into the interior domain. On outflow boundary cells, however, we
extrapolate the interior data onto the boundary, and plug these extrapolated
values into our central scheme.

An additional critical issue in the current context of incompressible flows,
is the treatment of the discrete divergence. In §3, the velocity reconstruction
(3.6) was limited to the periodic framework. Here, we present a more general
velocity reconstruction, which is tailored to the non-periodic setup while re-
taining the discrete incompressibility relation (3.7) required by the maximum
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principle in §4. To this end, we define the discrete vorticity at the mid-cells
as the average of the four corners of each cell, i.e.

1
(5.1) Witl gl = Z(wj—l—l,k—l—l + Wjk+1 + Wik + Wit1,k)-

We then use a streamfunction, v, such that Ay = —w, which is obtained
in these mid-cells, e.g., by solving the five-points Laplacian, A¢j "

1
7hts

Wil gyl Then, its discrete gradient, V) recovers the velocity field, yielding
5.9 1 B 1
(5.2) ujp = Vi Vogrd = Vgomt >iy Uik = 1o <ULl — VL >k

Observe that with this integer indexed velocity field, we retain the discrete
incompressibility relation (3.7), centered around (j + 3,k + 1), which is re-
quired for the consistency between the conservative and convective form — a
consistency which is the core of the maximum principle proof in §4.

6. NUMERICAL RESULTS

6.1. The “thick” shear-layer problem. Our central scheme was imple-
mented for a two-dimensional model problem taken from [3]. The problem
is of a jet in a doubly periodic box, (0,2m) x (0,27), governed by the Euler
equations (1.2)-(1.3). The initial flow consists of a horizontal shear-layer of
finite thickness, perturbed by a small amplitude vertical velocity of the form

() g
B tanh(%(37r/2—y)) y>m

v =27 -sin(x).

(6.1)

Here, the “thick” shear-layer width parameter, p, is taken as = and the per-

turbation parameter, §, equals 0.05. 15

The second-order calculations were done with discrete slopes calculated by
the “classical” Min-Mod limiter (3.8) with § = 1. The third-order calcula-
tions, however, were carried out without limiters (using 6 = 1 in (2.9),(2.10)).
This is an oscillatory reconstruction, yet remarkably, this does not affect the
overall stability and convergence properties of the approximated solution. It
is a matter of further investigation to fully understand the reasons for such a
behavior.

For this periodic setup, the velocities were reconstructed from the calculated
pointvalues of the vorticity using the straightforward spectral method, (3.3),
efficiently implemented via the FFT with the complexity of O(n?log(n)).
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Figure 6.1: “thick” shear-layer, second-order, t = 8 , 128 * 128

Figure 6.1 displays a typical contour plot of the vorticity. Figures 6.2-
6.7 describe the evolution of the vorticity computed using the second-order
central scheme (2.5)-(2.6), while figures 6.8-6.13 describe the corresponding
results obtained by the third-order central scheme (2.11)-(2.12).

Note that the oscillations in the third-order runs, can be barely noticed.
Both, the second and third-order results represent the solution to the desired
accuracy; their difference is due to the added high-resolution in the third-order
computation. At large times, the second and third-order solution approach
each other, due to the embedded dissipation of the schemes (compare figure 6.7
with figure 6.12). The lack of sufficient resolution, does not affect the stability
of the numerical solution.

Figure 6.14 shows the behavior of the discrete enstrophy in different runs
of both the second and the third-order schemes. The origins of all plots were
shifted in order to calibrate our comparison of the enstrophy decay. This
decay in the enstrophy is due to the embedded numerical viscosity in our
scheme (— the Min-Mod limiter decreases the extrema, among other things).
Two phenomena can be observed: First, for a fixed time step, At, a finer
spatial grid slows down the enstrophy decay rate, which is expected in view of
the smaller numerical viscosity. Second, for a fixed spatial grid, a larger time
step, At, slows down the enstrophy decay rate, since fewer time steps are taken
and hence less numerical dissipation is accumulated. Note that the decay rate
in the enstrophy for a 64 % 64 grid in the third-order scheme, is comparable
with the decay in the 128 % 128 grid for the second-order scheme. Finally, we
note that as time evolves, the solution becomes smoother, as smaller under-
resolved scales are dissipated. Consequently, the enstrophy decay slows down
as evident in figure 6.14. The behavior of the enstrophy indicates that our
central schemes, do supply sufficient resolution at early stages [18].
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60

Figure 6.2: t = 4 , 64*64 Figure 6.3: t = 4 , 128%128

Figure 6.4: t = 6 , 64%64 Figure 6.5: t = 6 , 128%128

Figure 6.6: t = 10 , 64*64 Figure 6.7: t = 10 , 128*128
The “thick” shear-layer problem, solved by the second-order central scheme (2.5)-
(2.6) with spectral reconstruction of the velocity field.
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Figure 6.10: t = 6 , 64%64 Figure 6.11: t = 6 , 128*128

Figure 6.12: t = 10 , 64*64 Figure 6.13: t = 10 , 128*128

The “thick” shear-layer problem, solved by the third-order central scheme (2.11)-
(2.12) with spectral reconstruction of the velocity field.
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Figure 6.14: Enstrophy plot for the “thick” shear-layer problem

6.2. The ”thin” shear-layer problem. In [4], Brown and Minion revisit
the problem of a doubly periodic shear-layer with a “thin” width parameter,
p. They present an upwind Godunov-projection method for the Navier-Stokes
equations, and study its behavior as the viscosity term tends to zero. Their
results show the appearance of spurious vortices on coarser grids. The begin-
ning of spurious roll-ups are also evident in some of the calculations of E and
Shu [32], who solved the Euler equations at the “thick” shear-layer setup, us-
ing an ENO method. Brown and Minion also refer to similar results by Rider
and Henshaw, [4], using a Lax-Wendroff method and a centered fourth-order
difference primitive variable based method.

Using our scheme, we run several numerical simulations equivalent to those
conducted by Brown and Minion. Asin the “thick” shear-layer setup, we stud-
ied the Euler equations, subject to the initial data (6.1). This time, however,
the shear-layer width parameter, p, was taken as Z;, and the same 6 = 0.05
was used.

Figures 6.15-6.20 describe the evolution of vorticity computed by the second-
order central scheme. It can be clearly seen, that there are no spurious vortices
in our results. The “thin” shear-layer results show the exact convergence and
stability nature of the central scheme, as in the case of a “thick” shear-layer.
This again demonstrates the huge potential of our central schemes.
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60

Figure 6.15: t = 4, 64*64 Figure 6.16: t = 4 , 128*128

Figure 6.17: t = 6 , 64%64 Figure 6.18: t = 6 , 128*128

Figure 6.19: t = 8 , 64*64 Figure 6.20: t = 8, 128*128
The “thin" shear-layer problem, solved by the second-order central scheme (2.5)-
(2.6) with spectral reconstruction of the velocity field.
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