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a b s t r a c t

We consider a system of particles that simultaneously move on a two-dimensional periodic lattice at
discrete times steps. Particles remember their last direction of movement and may either choose to
continue moving in this direction, remain stationary, or move toward one of their neighbors. The form
of motion is chosen based on predetermined stationary probabilities. Simulations of this model reveal a
connection between these probabilities and the emerging patterns and size of aggregates. In addition,
we develop a reaction–diffusion master equation from which we derive a system of ODEs describing
the dynamics of the particles on the lattice. Simulations demonstrate that solutions of the ODEs may
replicate the aggregation patterns produced by the stochastic particle model. We investigate conditions
on the parameters that influence the locations at which particles prefer to aggregate. This work is a two-
dimensional generalization of Galante and Levy (2012), in which the corresponding one-dimensional
problem was studied.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In a series of recent works [1–6] we developed mathemati-
cal models for describing various aspects of the motion of the
cyanobacteria Synechocystis sp., which are coccoidal bacteria that
move towards light, a motion known as phototaxis. As a result
of this motion, finger-like appendages form on a large scale [7,8].
In contrast, in regions of low and medium density, cells follow a
quasi-random pattern of motion in which small aggregates form,
yet bacteria may still move in various directions without any ob-
servable bias in the direction of the light source.

This quasi-random motion in regions of low-density was the
focus of our works in [2,3] in which we developed mathematical
models to describe the emerging patterns of motion. Our approach
was to construct stochastic particlemodels inwhichwe considered
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individual particles thatmove according to a prescribed set of rules
at discrete time steps. The rules of motion allowed the particles to
persist in their previous direction of motion, become stationary or
startmoving if already stationary, and change the direction of their
motion.When a particle changes its direction ofmotion, it can only
choose to move towards one of its neighbors. Particles can detect
their neighbors within a given detection range. These models gen-
erated patterns of motion that qualitatively agree with the exper-
imental data.

In order to gain a better understanding of the mathematical
model, we developed a one-dimensional version of our stochas-
tic model from [2,3], in which particles were constrained to move
on a one-dimensional lattice [1]. In this context, it became possi-
ble to develop a systemof ODEs that quantify the expected number
of particles at each position, following the method outlined in [9].
The results of the stochastic model agreed in many cases with the
results of the deterministic model, depending on the choice of pa-
rameters. In addition, randomly chosen initial conditions in the
deterministic model led to the formation of aggregates in most
cases.
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0167-2789/© 2014 Elsevier B.V. All rights reserved.
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In this paper, we generalize the one-dimensional model from
[1] to a motion on a two-dimensional lattice and use numerical
simulations to study the emerging patterns. Similarly to [1], our
study starts with a stochastic particle system and proceeds with a
system of ODEs that capture the averaged behavior of the discrete
system.

It is important to note that this study is an example of a flock-
ing model. Mathematical models of flocking phenomena have be-
camevery popular in recent years,most ofwhich intend to describe
a process in which self-propelled individual organisms act col-
lectively. Examples for such models include flocking models for
fish [10–13], birds [14,15], and insects [16,17], among many oth-
ers. Various mechanisms have been proposed in the literature for
changing the direction of motion. In [15], Reynolds models a flock
of birds using the rules of collision avoidance, velocity matching,
and attraction within a certain radius. Vicsek et al. propose a sim-
ple model where the only rule is for each individual to assume the
average direction of its neighbors, with some random perturba-
tion [18]. In the model of Couzin et al., particles have a zone of
repulsion, a zone of orientation in which they match their neigh-
bors’ directions, and a zone of attraction [19]. The Cucker–Smale
model proposes that a bird changes its velocity at each time step
by adding a weighted average of the differences between its veloc-
ity and those of other birds [14]. In contrast, our approach requires
a particle to move towards one of its neighbors.

The structure of this paper is as follows. After reviewing the
one-dimensional models in Section 2, we introduce the two-
dimensional stochastic particle model in Section 3.1. Multiple
simulations of the stochastic particle model are conducted in
Section 3.2. We observe the formation of horizontal and vertical
aggregates whose lengths depend upon the choice of parameters.

In Section 4.1, we derive a system of ODEs that captures the av-
eraged behavior of the stochastic particle model. The correspon-
dence between the stochastic particle model and the ODEs model
is demonstrated in Section 4.2. The ODEs system also results in the
formation of aggregates, at least when the model parameters are
confined to a certain range. Concluding remarks are provided in
Section 5.

2. Review of the one-dimensional models

We start by reviewing the one-dimensional model from [1].
Consider a set of N particles that occupy the k vertices of a one-
dimensional lattice. There are no restrictions on the number of
particles that can occupy each bin. We fix a detection radius D � 1
which determines how far away a particle can detect neighboring
particles. At every discrete time-step, each particle can either

(i) persist in its last direction with probability a,
(ii) become stationary with probability b,
(iii) choose to move towards another particle within its detection

radius with neighbor-weighted probabilities.

If we denote the position of the nth particle at time t 2 N by x

n

(t)
and the direction of last movement by p

n

(t) 2 {±1}, the rules of
motion are

x

n
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n

(t) =

8
>>>>><

>>>>>:
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n

(t), w.p. a,
0, w.p. b,
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(t)
,

�1, w.p. (1 � a � b)
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(t)

⌫
n

(t)
,

(1)

where ⌫r
n

(t) and ⌫ l
n

(t) denote the number of particles at time t

that are positionedwithin a neighborhood of sizeD centered at the
particle n to the right and to the left, respectively. The sum of these

two quantities is denoted by ⌫
n

= ⌫r
n

+⌫ l
n

. Particles that are located
at the same position as particle n are excluded from this sum.

Note that these rules should be augmented with rules for
motion on the boundary. A simple choice is of a periodic lattice.
By doing so, we have a discrete-time Markov process in which the
state at each time consists of the positions of the particles as well
as the directions of their last movement. Other types of boundary
conditions can be used.

The process is difficult to analyze except by simulation, hence
we develop in [1] a reaction–diffusion master equation (RDME)
that describes how the probabilities of all of the possible states of
the systems change in time. The state of the system at any time can
be defined by the vectors {Er,El, E

r

s, E
l

s}, which record the number of
right-moving, left-moving, right-moving but currently stationary,
and left-moving stationary particles at each position. Define the
probability density function P(Er,El, E

r

s, E
l

s, t) which describes the
chance of the system being in a certain state at time t . In this case,
the RDME can be described by
@P

@t
(Er,El, E

r

s, E
l

s, t)

=
kX

i=1

[(Probability that the state is entered by a particle

in bin i moving right)

� (Probability the state is exited by a particle in bin i

moving right)]

+
kX

i=1

[(Probability the state is entered by a particle

in bin i moving left)

� (Probability the state is exited by a particle in bin i

moving left)]

+
kX

i=1

[(Probability the state is entered by a particle

in bin i becoming stationary)

� (Probability the state is exited by a particle

in bin i becoming stationary)] . (2)

Using the explicit forms of the expressions in (2), we derive ODEs
for the expected number of each type of particle in each bin. For
example, multiplying (2) by r

i

, summing over all possible states,
and switching the order of differentiation and summation results
in an ODE for the expected number of right-moving particles in bin
i. For more details, we refer to [1]. The derivation is described in
moredetail for the two-dimensional case in Section 4. The resulting
system is
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(3)

Here, n
i

corresponds to the total number of particles in bin i, and
h
x

i is the expected value of x. The first equation in (3) corresponds
to right moving particles in bin i, R

i

(t). This population consists of
right-moving and stationary particles from bin i � 1 that persist
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0

(a) Left-moving particles. (b) Right-moving particles.

(c) Upward-moving particles. (d) Downward-moving particles.

Fig. 1. Initial configurations for the discrete model. 4000 particles are uniformly placed on a 21 ⇥ 21 grid and are assigned memory (their last direction of motion). The
number of particles in every grid-point is shown based on their assigned memory.

into bin i, and particles in bin i � 1 moving to the right with
a neighbor-weighted probability c

r

i�1. All right-moving particles
leave the system at every time step, either by persisting in their
motion to the right, becoming stationary, or choosing to move
toward a neighboring bin. The second equation in (3) corresponds
to right-stationary particles Rs

i

. These consist of particles in R

i

that
become stationary with stopping probability b, and accounting for
particles that leave the stationary state with probability 1 � b.
Similar expressions are given by equations three and four in (3)
for the left-moving and the left-stationary particles. In practice,
in order to simulate the system (3), the expected values of the
products are replaced by the products of the expected values.

3. A two-dimensional stochastic particle model

3.1. Model formulation

Assume that N particles are located on the vertices of a k ⇥ k

periodic lattice. As in the one-dimensional model, we assume that
particles remember their previous direction of movement and can
either continue in that direction, choose a new direction, or remain
stationary. The detection radius D can be generalized to 2-D by
counting the particles within a Euclidean distance of D. To simplify
the calculations, we fix the detection radius to be 1 so that particles
can only detect only adjacent particles.

We denote the number of particles detected by the nth particle
to the left, right, up, and down at time t by ⌫ l

n

(t), ⌫r
n

(t), ⌫u
n

(t), and
⌫d
n

(t), respectively, with ⌫
n

= ⌫ l
n

+ ⌫r
n

+ ⌫u
n

+ ⌫d
n

. Let x

n

(t) be
the position of the nth particle on the lattice with respect to some
arbitrary origin at time t . Let a be the probability of persistence and
b the probability of becoming or remaining stationary. Finally, let

p

n

(t) be the vector representing the last direction of movement for
particle n. The resulting rules of motion are

x
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(4)

If a particle has no neighbors, ⌫
n

= 0, then we choose to increase
the probability of particle n becoming stationary to 1 � a.

3.2. Simulations of the Stochastic model

All discrete simulations are conducted using the NetLogo
multi-agent programable modeling environment (http://ccl.
northwestern.edu/netlogo). We start by uniformly distributing
4000 particles on a 21 ⇥ 21 grid. Each particle is assigned a mem-
ory in the form of a last direction of motion (left, right, up or down)
with equal probabilities. The initial distribution of particles with
their associated memories is shown in Fig. 1. We use there initial
conditions for all simulations on the 21 ⇥ 21 grid.

The initial configuration is then advanced in time until a final
time t = 1500 with different values of the parameters. Figs. 2–6
show snapshots of the simulation for a persistence probability
a 2 {0.1, 0.2, 0.3, 0.4, 0.5} in which the probability to remain

http://ccl.northwestern.edu/netlogo
http://ccl.northwestern.edu/netlogo
http://ccl.northwestern.edu/netlogo
http://ccl.northwestern.edu/netlogo
http://ccl.northwestern.edu/netlogo


16 D. Weinberg, D. Levy / Physica D 278–279 (2014) 13–30

(a) t = 250. (b) t = 500. (c) t = 750.

(d) t = 1000. (e) t = 1250. (f) t = 1500.

Fig. 2. Snapshots of the discrete model with a = 0.1, b = 0. Initially, 4000 particles are randomly placed on a 21 ⇥ 21 grid and given a last direction. The arrows indicate
the direction of movement. Each bin may have more than one particle.

(a) t = 250. (b) t = 500. (c) t = 750.

(d) t = 1000. (e) t = 1250. (f) t = 1500.

Fig. 3. Snapshots of the discrete model with a = 0.2, b = 0.

stationary is set as b = 0. In these figures, arrows indicate the
direction of movement of particles that are located in any given
bin. Bins with no arrows have no particles in them. Each bin may
havemore than one particle, and hence the total number of arrows
in all figures is less than the number of particles (which is 4000).

We define an aggregate as a group of particles occupying
horizontally or vertically adjacent bins traveling in the same
or opposite directions. In all figures, we see that the particles
form horizontal and/or vertical aggregates, which coalesce into
fewer aggregates as time elapses. As the value of the persistence
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(a) t = 250. (b) t = 500. (c) t = 750.

(d) t = 1000. (e) t = 1250. (f) t = 1500.

Fig. 4. Snapshots of the discrete model with a = 0.3, b = 0.

(a) t = 250. (b) t = 500. (c) t = 750.

(d) t = 1000. (e) t = 1250. (f) t = 1500.

Fig. 5. Snapshots of the discrete model with a = 0.4, b = 0.

probability a increases, the length of the aggregates seems to in-
crease. For example, when a = 0.1, the average length of the ag-
gregates (ignoring insignificant ones) is approximately 8, while for
a = 0.2, the average length of the aggregates is approximately 12.
When a = 0.3 (Fig. 4), the limit aggregates span the entire length

of the grid. In general, the average length of significant aggregates
does not appear to change significantly after an initial transient
period. The length of an aggregate can only increase if an end
particle moves away from its neighboring particles, which occurs
with probability awhen it is facing away from the aggregates. This
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(a) t = 250. (b) t = 500. (c) t = 750.

(d) t = 1000. (e) t = 1250. (f) t = 1500.

Fig. 6. Snapshots of the discrete model with a = 0.5, b = 0.

increase in length can only be maintained if a significant number
of other particles also move to the new endpoint; however, it is
much more likely that the new endpoint will move back to its pre-
vious position when a is small, so the aggregates length remains
unchanged.

When the persistence probability is a = 0.5 (Fig. 6), aggregates
are very slow to form. This is due to the high probability of particles
continuing their last movement, as opposed to moving towards
other particles. At large times,we are leftwith two long aggregates:
one horizontal and one vertical. They eventually coalesce into a
single long aggregate.

We note that since we assume a constant nonzero probability
of continuing in the same direction, the system is never in steady
state and, in particular, stable length-one aggregates do not form.
If we set both parameters to 0 for our current initial conditions, the
system quickly enters a steady state with only aggregates of length
two (Fig. 7). Aggregates of length one are possible if, for example,
all particles start in the same bin.

We now investigate the impact of the probability of remaining
stationary, b, on the emerging dynamics. We use the same initial
configuration given by Fig. 1, fix the persistence probability as
a = 0.3, and vary b 2 {0.1, 0.2, 0.3, 0.4, 0.5}. The results of these
simulations are shown in Figs. 8–12.

Most of these figures are similar: many long aggregates, both
horizontal and vertical, form quickly. As time elapses, they coa-
lesce into fewer aggregates, which are all either only horizontal
or vertical. Most aggregates span the entire grid, but we can also
get smaller aggregates as in Figs. 8 and 11. As b increases, it takes
longer for significant aggregates to form. This makes sense since
a particle is more likely to remain stationary. When we continue
the simulation past t = 1500, we are eventually left with purely
horizontal or vertical aggregates, though the exact number varies.
These results are not shown for the sake of brevity. We hypothe-
size that this will always be true for any initial conditions as long
as the parameters are large enough, though how big the param-

eters need to be is dependent on grid size and number of parti-
cles. For the parameter choice a = 0.1, b = 0, a longer time
simulation (t = 5000) still shows aggregates in both directions
(Fig. 13).

It is important to note that since the model is stochastic, the
outcomes for a given initial configuration is not unique. This is
demonstrated in Fig. 14 in which we show different results that
are obtained at t = 1500 for the same initial conditions shown
in Fig. 1. In most cases (Fig. 14(a), (c)–(f)), purely horizontal or
vertical aggregates are all that remain. In Fig. 14(b), however, we
have both horizontal and vertical aggregates that will coalesce if
we wait sufficiently long.

4. An ODEs model

4.1. Model derivation

Since simulating a large number of particles on a large grid
is computationally intensive, we derive a system of ODEs to
capture the mean number of particles in each bin. Let P = P( )
denote the probability of the system being in a given state  =
(r, l, u, d, rs, ls, us, ds). Here, r is a k ⇥ k matrix that denotes the
number of right-moving particles at every node. Similarly, (l, u, d)
are matrices that correspond to the number of left, up, and down-
moving particles in every node. The variables with a superscript
‘‘s’’ correspond to the stationary particles and are divided into four
groups based on the last direction of motion that brought them to
their present location, a direction which they remember.

Generally, the evolution of the probability is given by:

@P

@t
( , t)

=
X

i,j,D

✓
Probability that a particle moves out of node (i, j)

in direction D to enter the state { , t}

◆
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(a) t = 100. (b) t = 200. (c) t = 300.

(d) t = 400. (e) t = 500. (f) t = 600.

Fig. 7. Snapshots of the discrete model with a = 0, b = 0.

(a) t = 250. (b) t = 500. (c) t = 750.

(d) t = 1000. (e) t = 1250. (f) t = 1500.

Fig. 8. Snapshots of the discrete model with a = 0.3, b = 0.1.

�
✓
Probability that a particle moves out of node (i, j)

in direction D to leave the state { , t}

◆�

+
X

i,j

✓
Probability that a particle in node (i, j) becomes

stationary to enter or leave the state { , t}

◆
.

(5)

The summation over the direction D corresponds to a summation
in all directions: left, right, up, and down.

Let P̃(., .) denote the probability P of a state with a specified
change. For example, P̃(r

ij

+ 1, r
i+1,j � 1) is P with the number of

right-moving particles at node (i, j), r
ij

, increased by one, and the
number of right-moving particles at (i + 1, j) decreased by one.
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(a) t = 250. (b) t = 500. (c) t = 750.

(d) t = 1000. (e) t = 1250. (f) t = 1500.

Fig. 9. Snapshots of the discrete model with a = 0.3, b = 0.2.

(a) t = 250. (b) t = 500. (c) t = 750.

(d) t = 1000. (e) t = 1250. (f) t = 1500.

Fig. 10. Snapshots of the discrete model with a = 0.3, b = 0.3.

Note that P̃ is not a function; it is notation that greatly simplifies
the derivation below. We recall that vr

ij

denotes the number of
particles within the detection range to the right of node (i, j), and
that v

ij

is the total number of particles within the detection range
in all directions surrounding node (i, j). Accordingly, we define

c

r

ij

= (1 � a � b)
vr

ij

v
ij

,

as the probability that a particle at (i, j) chooses to move to the
right. In addition, we define the probability

c

r

ij

= (1 � a � b)
vr

ij

� 1
v
ij

� 1
.

c

r

ij

is the probability a particle at (i, j) chooses to move to the
right when the number of particles to the right of (i, j) within the
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(a) t = 250. (b) t = 500. (c) t = 750.

(d) t = 1000. (e) t = 1250. (f) t = 1500.

Fig. 11. Snapshots of the discrete model with a = 0.3, b = 0.4.

(a) t = 250. (b) t = 500. (c) t = 750.

(d) t = 1000. (e) t = 1250. (f) t = 1500.

Fig. 12. Snapshots of the discrete model with a = 0.3, b = 0.5.

detection range is vr

ij

� 1 and the total number of particles within
the detection range in all directions surrounding (i, j) is v

ij

� 1.
Similar quantities are defined for the other directions (left, up, and
down).

To address the terms in (5), we start by considering theways for
the system to enter the state  with a particle moving right from

position (i, j). There are 8 ways in which a right-moving particle
from (i, j) will result in entering the given state:

1. A right-moving particle moves out of (i, j) to the right to
enter the state  . We assume that in a small time step, only
one particle can move at a time and it can only move to a
neighboring space. Therefore, the only way this can occur is
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Fig. 13. The discrete model with a = 0.1, b = 0 advanced to t = 5000. Aggregates
in both directions are observed.

if there were previously r

ij

+ 1 right-moving particles at (i, j)
and r

i+1,j � 1 right-moving particles at (i + 1, j). Since there is
one fewer particle at (i + 1, j) compared to state  , there are
⌫
ij

� 1 detectable particles and ⌫r
ij

� 1 detectable right-moving
particles. There is an additional particle at (i, j), but recall that
this is not counted as a detectable particle. Hence, the rate at
which these particles could move to the right is the sum of the
persistence probability and the neighbor-weight probability,
i.e., a+c

r

ij

. Accordingly, the probability that a particlemoves out
of (i, j) to the right to enter the state is (a+ c

r

ij

)(r
ij

+1)P̃(r
ij

+
1, r

i+1,j � 1).
2. A left-moving particle moves out of (i, j) by choosing to move

to the right: cr
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(l
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+ 1)P̃(l
ij

+ 1, r
i+1,j � 1).
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to the right: cr
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(u
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+ 1)P̃(u
ij

+ 1, r
i+1,j � 1).

4. A down-moving particlemoves out of (i, j) by choosing tomove
to the right: cr
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(d
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+ 1)P̃(d
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+ 1, r
i+1,j � 1).

5. A right-moving but stationary particle initiates a motion to the
right: (a + c
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)(rs
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6. A left-moving and stationary particlemoves to the right: cr
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7. An up-moving and stationary particle moves to the right:
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r
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i+1,j � 1).

8. A down-moving and stationary particle moves to the right:
c

r
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(ds
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ij
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i+1,j � 1).

Combining these eight paths of entering the state  , we obtain
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Our goal now is to derive an expression for the expectation of the
number of the right-moving particles at node (m, n), r

mn

. Hence,
we multiply (6) by r

mn

and sum over i, j, and all possible states  .
Assume for simplicity that neither m nor n are 1 or k. We

consider the first term in (6), and change variables r 0
ij

= r

ij

+ 1 and
r

0
i+1,j = r

i+1,j�1. If (i, j) 6= (m, n) and (i, j) 6= (m�1, n), then (after
returning to our original variables) we are left with r

mn

(a+ c

r

ij

)r
ij

P .
If (i, j) = (m, n), then we have (r

mn

� 1)(a + c

r

mn

)r
mn

P . If (i, j) =
(m � 1, n), we get (r

mn

+ 1)(a + c

r

m�1,n)lm�1,nP . Therefore, the
contribution of first term in (6) is
X

i,j, 

r

mn
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r

ij

)r
ij

P � (a + c

r

mn

)r
mn
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r
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a b c

d e f

Fig. 14. Various possible outcomes at t = 1500 for the same initial condition from Fig. 1. Here, a = 0.3, b = 0.1.
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For the second term in (6): if (i, j) 6= (m�1, n), we get r
mn

c

r

ij

l

ij

P ,
while if (i, j) = (m�1, n), we get (r

mn

+1)cr
m�1,nrm�1,nP . Therefore,

the contribution of the second term in (6) is
X

i,j, 

r

mn

c

r

ij

l

ij

P + c

r

m�1,nlm�1,nP. (8)

Similar expressions hold for the other terms in (6).
We now return to (5) and consider ways for the system to leave

a state due to a particle moving right. There are 8 ways for the
system to leave state due to the motion of a particle to the right.
These can be represented by the following expression:
�
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⇤
. (9)

The terms in (9) represent a loss for the system,which is the reason
for the negative sign. We multiply (9) by r

mn

and sum over i, j
and all states  . After combining the result with the contributions
obtained from all terms in (6), we have
�
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where h
x

i denotes the expectation of x, i.e.,
P

 xP( ). Combining
terms multiplied by c

r

m�1,n and defining ⌘
m,n as the sum of all

particles at (m, n) (stationary and moving), we can simplify (10)
as
a

�⌦
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↵
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In order to obtain the ODE for h
r

mn

i we have to account for
additional items, i.e., the right-moving particles that choose to
move in a different direction or become stationary. We omit the
details for the sake of brevity. Once all terms are accounted for, the
resulting equation becomes

d

h
r

mn

i
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Wenowdefine R
mn

= h
r

mn

i, Rs

mn

=
⌦
r

s

mn

↵
, and use a similar notation

for the other directions. After switching back to i and j as indices,
the ODE for right-moving particles reads
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When i or j is 1 or k, Eqs. (13) are valid with the appropriate
adjustments due to the periodic boundary conditions.

Repeating the derivation in all other directions we obtain the
system
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(14)

The form of the ODEs in (14) is intuitive. For example, consider
the equation for L

ij

. There are two possibilities for the number
of left-moving particles at (i, j) to increase. First, a most recently
left-moving particle at (i + 1, j) could continue in its previous
direction with probability a. Second, any particle at (i+ 1, j) could
choose to move to the left with probability (1 � a � b) multiplied
by the ratio of particles to the left versus all detectable particles.
Also, after an infinitesimal amount of time, all particles at (i, j)
have either moved elsewhere or become stationary, hence the
�L

ij

term. Similarly, the form of the equation for Ls
ij

is also clear:
increases occur when left-moving particles become stationary
with probability bwhile decreases occur when stationary particles
become non-stationary with probability 1 � b.

4.2. Simulations

We follow [1] and approximate expectations of quotients and
products of random variables by quotients and products of expec-
tations to close the system. We would like to see how the ODE
model compares to an ensemble average of the discrete model.
First, we randomly place 1000 particles on an 11 ⇥ 11 grid and
assign each particle a memory in the form of its last direction of
motion, with equal probabilities for each direction. These initial
conditions are then used for simulating the dynamics of bothmod-
els. We then run the simulations until the configuration reaches a
steady state (t = 1000 for the ODE model and t = 500 for the
stochastic particle model). The stochastic particle model is run in
NetLogo and the ODE model is run in Matlab using ODE45 with
default parameters. We run the stochastic model 5000 times and
average over all simulations. The results are shown in Fig. 15 for a
variety of a and b values.

We note that there are both similarities and differences be-
tween the ODE and averaged results. In Fig. 15(a)–(c), the ODEs
generate a few aggregates that increase in length as a increases, as
observed in the discrete model simulations. Most of these aggre-
gates can also be seen in the corresponding ensemble average, but
the number of particles found in these positions is much smaller,
as the averaging procedure causes the particles to be more spread
out. In addition, the averaged pictures have aggregates where no
aggregates appear from the ODEs. For instance, in Fig. 15(b) and
(c), we have both horizontal and vertical aggregates on the right
side, but only horizontal aggregates on the left. We have seen that,
except for small values of the parameters, only purely horizontal
or vertical aggregates arise. The ODEs, therefore, seem to give re-
sults comparable to an individual realization of the model, rather
than an average. We also note that in Fig. 15(d), the ODEs show lit-
tle variation in the number of particles found in each position. We
discuss this further below.

We now proceed to simulate the ODEmodel in different setups.
We initialize the system by taking the number of left, right, up, and
down moving particles on each position to be Poisson with mean
2. We assume no stationary particles initially. Fig. 16 shows a time
series of the ODE model on a 50 ⇥ 50 grid with 20208 particles.
By time t = 100, distinct aggregates have begun to form. As time
progresses, aggregates coalesce and become more Gaussian.

Fig. 17 shows the results obtained at t = 1000 when b = 0 and
a 2 {0.1, 0.2, 0.3, 0.4}. For a = 0.1, many small peaks form. For
a = 0.2, we have fewer and broader peaks. Gaussian behavior is
apparent for a = 0.3. Finally, for a = 0.4, there are no aggregates;
this demonstrates a breakdown in the ODEs when the parameters
become too large. It may be this behavior that is linked to the
loss of preferential locations for aggregates to form in the discrete
model.

In Fig. 18 we fix b = 0.1 and vary a. Results are shown at t =
1000. There is no significant difference between the results shown
in Fig. 18 and those that were shown in Fig. 17. The only noticeable
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Fig. 15. Comparisons between the ODE model (left) and the stochastic model averaged over 5000 runs (right).
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Fig. 16. Time evolution of ODE with a = 0.3, b = 0 on a 50 ⇥ 50 grid.
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Fig. 17. Results from the ODE model at t = 1000 for b = 0 and a = 0.1, 0.2, 0.3, 0.4.

difference is that Fig. 18(c) contains non-Gaussian aggregates. In
fact, if we run the simulation for a longer time, Gaussian-type
aggregates emerge. This is shown in Fig. 19 for time t = 2000.
Such aggregates take longer time to form due to the nonzero value
of the probability to remain stationary b.

The simulations shown so far suggest that the only types of
long-term behavior we get are Gaussian or random. However, this
is not the case: for example, if we let (a, b) = (0.35, 0), we always
have non-Gaussian behavior nomatter how long we run the simu-

lation (see Fig. 20). As demonstrated on the 11 ⇥ 11 grid, what we
are seeing in the ODE simulations is reminiscent of an individual
simulation rather than an ensemble average. Accordingly, simula-
tions of the discrete model on the larger grid also show the same
patterns: horizontal and vertical aggregates that coexist at large
times, whose lengths increase with a, and with the number of par-
ticles in each bin decreasing with their distance from themiddle of
their aggregate.
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Fig. 18. Results from the ODE model at t = 1000 for b = 0.1 and a = 0.1, 0.2, 0.3, 0.4.

By running simulations for many more choices of parameters,
we discover that whether aggregates form, does not depend solely
on the value of a + b. For example, aggregates form for (a, b) =
(0.2, 0.2) but not for (0.4, 0). Nevertheless, there does appear to
be a constraint on some linear combination of the parameters.
To find this constraint, we note that aggregates form for a = 0
and any 0  b < 1. In some cases, we have numerical prob-
lems solving the ODE with a = 0 for large times, so instead we

stop these simulations at t = 100. We also note that aggregates
form for (a, b) = (0.367, 0), but not for (0.368, 0). Hence, we hy-
pothesize an approximate constraint for aggregate formation as
a/.368 + b < 1. This constraint accurately predicts aggregate
formation in every instance when we vary both a and b over the
set {0, 0.1, 0.2, . . . , 1} (see Fig. 21). In addition, the constraint cor-
rectly predicts that aggregates do not form for (a, b) = (0.3, 0.19)
but do form for (0.3, 0.182) (see Fig. 22).
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Fig. 19. Results from the ODE model at t = 2000 for a = 0.3, b = 0.1.

In order to test whether this constraint depends on the spe-
cific initial conditions, we rerun the above calculations with new
Poison-distributed initial conditions. We find that the same ap-
proximate constraint holds true for these cases as well, even if we
alter the mean of the distribution. We also checked whether the
constraint depends on the specific distribution used to generate
the initial conditions. Choosing the distribution to be uniform on
{0, 1, 2, . . . , 8} led to a similar constraint with a slightly different
constant, a/.357 + b < 1.
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Fig. 21. The region of parameter space for which aggregates form in the ODE
model. The model was run, varying a and b over {0, 0.1, 0.2, . . . , 1}. The dark
circles represent parameter values for which aggregates form. The constraint line is
provided for reference.

5. Conclusions

In this paper we generalized the one-dimensional model of
Galante and Levy [1] to two dimensions. At every time step parti-
cles may persist their motion in their current direction with prob-
ability a, remain stationary with probability b, or move toward one
of their neighboring particles with equal probabilities. Since there
are no exclusion principles in place, multiple particles are allowed
to occupy every spot on the lattice, and hence when a particle
changes its direction of motion, the new direction is chosen based
on a probability that is proportional to the fraction of the neigh-
boring particles in any given direction.

All simulations demonstrated that the limit pattern that
emerges is a collection of vertical and/or horizontal aggregates. The
lengths of the aggregates increases with the persistence probabil-
ity a. This can be explained by the fact that aggregates can only
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Fig. 20. Results from the ODE model at t = 1000 and 5000 for a = 0.35, b = 0.
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Fig. 22. Demonstration that the constraint accurately predicts the lack of aggregates for (a, b) = (0.3, 0.19) and the existence of aggregates for (0.3, 0.182).

increase in length when a particle on the aggregate edge persists,
which is unlikely for small a. When a is fixed and the probability to
remain stationary b varies, we note again the emergence of aggre-
gates, the number of which steadily decreases as time elapses and
aggregates coalesce. This occurs more rapidly for small values of
b as expected. Our simulations suggest that we will always be left
with purely vertical or horizontal aggregates if the simulations are
run for a sufficiently long time, assuming there is a non-zero prob-
ability of particles moving towards their neighbors and the param-
eters are not too small.

The discrete system was followed by a system of ODEs that
was derived in order to capture the time evolution of the expected
number of particles. Since this requires us to estimate expecta-
tions of products and quotients by products and quotients of ex-
pectations, we run Monte Carlo simulations of the discrete model
to compare to the ODE results. Though quantitatively different,
the ODE model captures much of the behavior seen in individual
runs of the particle model. We then run the ODE model for fixed b

and varying a. As in the discrete simulations, we obtain aggregates
whose lengths increase with a. Unlike the discrete simulations,
the ODEs transition into randomness when a linear combination
of the parameters becomes too large. This raises some questions
including: Why does this transition occur? Why is the constraint
linear? Why is the constraint largely unaffected by the initial con-
ditions, including the particular distribution used? These questions
can form the topic of further study.

While the derivation of the model was motivated by a biologi-
cal problem, it is likely that similar models can be applied in other
setups. While many models were written in order to describe ag-
gregation patterns, there are very few examples of mathematical
models which involve a discrete selection process (in our case, in
terms of selecting the direction of motion). It is more common
to write models in which the selection process is conducted in
some averaged sense, e.g., using some mean field approximations.
A unique feature of this model is that while aggregation patterns
emerge sooner or later, they are never in steady state: aggregate

positions solidify after enough time has passed, but particles con-
tinue tomovewithin their aggregates. Most importantly, given the
memory that is embedded in the system (in the form of the last di-
rection ofmotion), stationary particles can restart theirmotion and
drift away from an aggregate.
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