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Abstract TGF-β is an immunoregulatory protein that contributes to inadequate an-
titumor immune responses in cancer patients. Recent experimental data suggests that
TGF-β inhibition alone, provides few clinical benefits, yet it can significantly amplify
the anti-tumor immune response when combined with a tumor vaccine. We develop a
mathematical model in order to gain insight into the cooperative interaction between
anti-TGF-β and vaccine treatments. The mathematical model follows the dynam-
ics of the tumor size, TGF-β concentration, activated cytotoxic effector cells, and
regulatory T cells. Using numerical simulations and stability analysis, we study the
following scenarios: a control case of no treatment, anti-TGF-β treatment, vaccine
treatment, and combined anti-TGF-β vaccine treatments. We show that our model is
capable of capturing the observed experimental results, and hence can be potentially
used in designing future experiments involving this approach to immunotherapy.

Keywords Immunotherapy · Cancer

1 Introduction

Current cancer therapies predominantly focus on surgery, chemotherapy, and radio-
therapy; each of which carries major side-effects. The immune system is not always
efficient in providing an adequate response to cancer, since cancer cells may not be
easy to identify, and they use various immunosuppression techniques to avoid the im-
mune response. Recently, there has been an increased interest in improving the ability
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of the autologous immune response to target tumors, an approach that is generally be-
ing referred to as “immunotherapy” (Blattman and Greenberg 2004; Ribas et al. 2003;
Rosenberg 2001).

Although animal models have demonstrated that humoral mechanisms may be
relevant to immunotherapy, much of the promising work in tumor immunotherapy
has been focused on T-cell-mediated, antigen-specific vaccines. Previous research
has shown that through cellular immunotherapy, T cells can destroy large, estab-
lished tumors (Rosenberg et al. 2004). Over the years, researchers have taken vari-
ous approaches to tumor immunotherapy. Among these approaches are tumor cell-
based vaccines, peptide-based vaccines, virus-based vaccines, DNA-based vaccines,
and Dendritic cells vaccines; each of which have met varying degrees of success
at reducing or eliminating tumors (see the review papers Dermime et al. 2002;
Rosenberg et al. 2004 and the references therein).

The primary cell-mediated immune response is the process by which the human
immune system responds to a foreign antigen. As a part of this process, cytotoxic
T cells (CTLs) must activate, proliferate, and induce apoptosis in infected cells. To
prevent damage to healthy cells, cell-mediated immune responses must be closely
regulated following antigenic stimulation. There are a number of mechanisms by
which the immune system self-regulates. Among these are various regulatory cells
(such as regulatory T cells and natural suppressor cells) and proteins (such as TGF-
β , CTLA-4, and IL-6) (Murphy et al. 2008).

This work highlights how immunotherapy might be used to overcome the effects
of two such regulatory agents exploited by cancer: regulatory T cells and the Trans-
forming Growth Factor (TGF)-β protein. TGF-β is a protein that controls prolifera-
tion, cellular differentiation, and other functions in most cells. It acts as an antipro-
liferation factor in normal epithelial cells (Cerwenka and Swain 1999). Experimental
evidence has shown that TGF-β can act as both a tumor suppressor and stimulator
(Reiss 1999). In early stages, it acts directly on cancer cells to suppress their growth.
As the tumor progresses, TGF-β stimulates tumor progression by suppressing im-
mune cells and promoting factors that contribute to tumor metastasis. High levels
of TGF-β dampen the function and frequency of antigen presenting cells, cytotoxic
T cells, and helper T cells. Also, TGF-β (in combination with IL-2) has been im-
plicated in inducing an increased number of CD4+CD25+Fox3p+ regulatory T cells
seen in tumors (Flavell et al. 2010). These regulatory T cells (Tregs) play a critical
role in suppressing excessive immune responses. They modulate the function of ef-
fector cells rendering them unable to continue their cytotoxic activity, leading to a
weak or nonexistent immune response to cancerous cells (Beyer and Schultze 2006;
Sakaguchi et al. 2010).

The immunosuppressive effects of TGF-β on immune cells strongly support the
development of TGF-β inhibitors to treat cancer (Derynck et al. 2001; Llopiz et al.
2009). Several inhibitors of TGF-β are in various stages of development (see Flavell
et al. 2010 and the references therein). Several clinical trials have evaluated TGF-
β inhibition in cancer patients with some promising results. Unfortunately, while a
few studies have shown the beneficial effects of anti-TGF-β in tumor treatment (see
Baylor College of Medicine 2006, 2009), Terabe et al. demonstrate that depletion of
TGF-β is not always sufficient to elicit an effective immune response against can-
cerous cells (Flavell et al. 2010; Terabe et al. 2009). Using a mouse model, Terabe
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et al. showed that treatment with anti-TGF-β alone does not enhance the immune
response. However, an anti-TGF-β treatment did appear to facilitate an enhanced
immune response when combined with an immune-boosting vaccine.

The goal of our present study is to understand part of the complex interplay be-
tween cancer, the immune system, and the immunoregulatory mechanisms that lead
to ineffective immune responses. More specifically, we are interested in quantifying
the effects that anti-TGF-β and vaccine treatments might have on the stability of the
tumor-immune dynamic and how the combined treatment might contribute to tumor
clearance as opposed to tumor escape. In order to understand how the suppression
of regulatory mechanisms might affect a cancer vaccine, we develop a mathemati-
cal model to analyze the effects of anti-TGF-β treatment when used in conjunction
with a vaccine as treatments for tumor growth. This is viewed as a step in develop-
ing a framework within which experimentalists may test treatment protocols prior to
conducting their experiments. Our work is based on the experiments of Terabe et al.
(2009).

A number of mathematical models have been developed to describe tumor-
immune dynamics. A review of nonspatial tumor-immune models can be found in Ef-
timie et al. (2011). ODE models provide a framework within which one can explore
the interactions among tumor cells and the alternate agents (such as immune cells,
healthy tissue cells, cytokines, etc.). A general, nonspatial tumor-immune model
considers an effector cell population (CTLs, NK cells, etc.) interacting with tumor
cells. In the earliest models, these interactions are described by two equations, where
the immune cells play the role of the predator, while the tumor cells are the prey
(Kuznetsov et al. 1994). A framework for all such models is developed and ana-
lyzed in d’Onofrio (2005). Many models incorporate different immunotherapeutic
strategies such as injection of cytokines (Cappuccio et al. 2006; de Pillis et al. 2006;
Kirschner and Panetta 1998), transfer of effector cells (Kirschner and Panetta 1998),
or immunization with dendritic cells (Castiglione and Piccoli 2006).

There are several mathematical models that specifically incorporate the effects
of TGF-β on tumor development (Byrne and Gourley 1997; Clarke and Liu 2008;
Kolev 2005; Michelson and Leith 1991; Ribba et al. 2006; Wang et al. 2009). One
such model that considers the effects of TGF-β on tumor growth, while also includ-
ing a treatment that consists of constant infusion of exogenous CTLs, is developed
in Kogan et al. (2010). The model developed in Kirschner et al. (2003) specifically
considers disrupting TGF-β production as a method of tumor treatment. Their math-
ematical model describes tumor growth, immune escape, and anti-TGF-β treatment.
In contrast, this work mathematically studies a combined therapy through TGF-β
inhibition and CTL vaccine.

The structure of this paper is as follows: In Sect. 2.1, we describe the experimental
background that was used as a basis for this work. In Sect. 2.2, we present an ordinary
differential equations (ODEs) model of tumor growth that is then used to investigate
the effects of vaccinations and TGF-β inhibition. Model simulations and a stability
analysis are included in Sect. 3. The main results for the four treatment regimes are
shown in Fig. 2. Closing remarks and directions for future work are given in Sect. 4.
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2 A Model of Tumor Vaccine Enhancement by TGF-β Inhibition

2.1 Biological Background

Our mathematical model is based on the experimental data presented in Terabe et
al. (2009). In this study, Terabe et al. examined whether TGF-β neutralization can
potentiate immune responses caused by a CTL-inducing vaccine. Their goal was to
determine the conditions under which this enhanced immune response inhibits and/or
eliminates tumor growth in a TC1 mouse tumor model. This particular tumor line ex-
presses the human papilloma virus (HPV) E6 and E7 genes (i.e., the tumor is slightly
immunogenic) and manifests in lung epithelial cells. Twenty thousand cancer cells
were injected into the right flank of the mouse and four days after tumor challenge,
mice were immunized with HPV peptide. The TGF-β inhibitor used for experiments
was 1D11; a murine anti-TGF-β monoclonal antibody that neutralizes all three iso-
forms of TGF-β . This antibody was shown to have minimal side effects in normal,
tumor-free animals. The main results of Terabe et al. (2009) can be summarized as
follows:

1. Blocking TGF-β enhances the effects of an antitumor peptide vaccine. In the case
where both treatments were given, the tumor burden was significantly lower than
any other treatment option tested; and 40 % of mice remained tumor-free for at
least 55 days after tumor challenge.

2. Anti-TGF-β enhances the quantity and the quality of the vaccine-induced CD8+
CTL responses.

3. The enhancement of the immune response was shown to not be due to:

• suppression of CD4+CD25+ Tregs.
• suppression of IL-17 producing T cells.
• Natural Killer T cell-induced TGF-β production by Myeloid-derived Suppres-

sor Cells.

The conclusion of the experimental study in Terabe et al. (2009) was that
monotherapy with anti-TGF-β did not have a significant impact on tumor growth. The
anti-TGF-β did, however, significantly enhance the efficacy of the peptide vaccine by
inducing an increased number of tumor antigen-specific CTLs, which is critical for
the effective elimination of tumors.

2.2 A Mathematical Model

In order to quantitatively study the experimental setup of Terabe et al. (2009), we
developed a mathematical model. In this model, we follow the dynamics of the tumor
size, denoted T (t); TGF-β concentration, denoted B(t); activated cytotoxic effector
cells, denoted E(t); regulatory T cells, denoted R(t); and vaccine-induced cytotoxic
effector cells, denoted V (t). A diagram of the different interactions between these
elements is shown in Fig. 1.

Our mathematical model is written as the following system of ODEs:
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Fig. 1 A diagram of the
interactions between the
different populations in the
mathematical model
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Equation (1) describes the tumor size measured in mm2. The tumor follows logis-
tic growth dynamics with growth rate, a0, and carrying capacity, 1/c0. The second
term on the RHS of (1) describes the ability of immune cells to induce apoptosis of
tumor cells. This clearance rate is inversely related to the amount of TGF-β present
in the system (i.e., TGF-β diminishes CTL ability to induce apoptosis in tumor cells).
The last term defines the action of vaccine cells on tumor cells. Since vaccine cells
are considered to be fully differentiated, they are assumed to be unaffected by the
inhibitory effects of TGF-β . Vaccine cells induce the death of tumor cells at a rate δ0.

The dynamics of the concentration of TGF-β cytokine, measured in ng/ml, are
described in Eq. (2). Experimental evidence has shown that TGF-β production by
tumor cells is low for small tumors but “switches” on as the tumor grows; promoting
immune evasion (Paillard 2000). The use of Eq. (2) as a model for TGF-β production
is described in Kirschner et al. (2003). As in Kirschner et al. (2003), the maximum
rate of TGF-β production is represented by the parameter a1; c2 is the critical tumor
size at which the switch occurs; and the decay rate of the protein is d .

Equation (3) describes the dynamics of the number of effector T cells in the sys-
tem. The first term represents immune recruitment. Effector cells are activated pro-
portionally to the number of interactions with tumor cells. This term is multiplied by
(1+ c3T B)−1 to account for the combined negative effect of tumor growth and TGF-
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β production on immune recruitment and proliferation. The parameter c3 represents
the magnitude of the inhibition associated with tumor growth and TGF-β . A propor-
tion, r , of effector cells differentiate into regulatory T cells (a process that is further
discussed in the next paragraph). The final term of this equation models the removal
of effector T cells from the system. These cells have both a natural death rate; as-
sumed to be the natural death rate for all effector cells, δ1; and a death/removal rate
that is proportional to the mass action interaction with regulatory T cells, δ0. These
magnitudes are assumed to be the same.

Equation (4) describes the number of Tregs in the regulatory T cell compartment.
Though regulatory T cells originate from both CD4+ and CD8+ T cells (Sakaguchi
et al. 2008), this model follows the principles of minimal design by considering only
CD8+ effector T cells as precursors to Tregs. The feedback mechanism in this model
applies as long as CTLs induce the production and/or recruitment of Tregs. A similar
approach to simplifying the modeling adaptive regulation was taken in Kim et al.
(2010) and Wilson et al. (2010).

In the model, Tregs differentiate from (or are recruited by) effector T cells at a
rate r . The second term is the rate at which Tregs die. These cells provide negative
feedback to the effector T cell population. Regulatory T cells should be considered
as removing effector T cells from the system rather than killing them. While it is
possible that effector T cells die upon interaction with regulatory T cells, that is not
necessarily the only explanation. As suggested in Kim et al. (2007), it is also possible
that some effector cells might turn into memory cells, some might lose their effector
function, and others might migrate away from the lymph node and carry out effector
functions in the periphery. For the purposes of the model, suppressed cells, cells that
have migrated, and dead cells are irrelevant to the dynamics, so we consider them all
to be removed from the system.

Equation (5) describes the vaccine. The vaccine is modeled as an influx of acti-
vated tumor-specific cytotoxic T cells. These cells are impulsively introduced into the
system at day 3 and are considered to be fully differentiated (i.e., no longer dividing).
If the vaccine is given,

g(t) = g0δ(t − 3),

where g0 = 5,000 and δ(t) is the Dirac delta function. If the vaccine is withheld,

g(t) ≡ 0.

Vaccine cells have a natural death rate of δ1. This aspect of the model deviates from
the experimental setup. In the experiment, a peptide vaccine is given to induce the
production and proliferation of CTLs, while here, we model the vaccine as a di-
rect injection of CTLs. The model vaccine is more in line with vaccination through
adoptive T cell transfer and, therefore, might make the model more adaptable to ex-
periments involving less antigenic tumors. Some of the consequences of this design
decision will be discussed in the Sects. 3 and 4.

3 Results

In our simulations, we consider the following four scenarios:
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Table 1 The baseline control parameter values used in the simulations

Parameter Units Description Estimate Source

a0 day−1 tumor growth rate 0.1946 fit to data (Terabe et al. 2009)

1/c0 mm2 tumor carrying capacity 369 fit to data (Terabe et al. 2009)

δ0 #−1 day−1 effector T-cell induced tumor death
rate/removal rate of CTLs by Tregs

1 × 10−5 estimated

c1 ml/ng TGF-β inhibitory parameter for
CTL induction of tumor death

100 estimated

a1 days−1 ng/ml maximal production rate of TGF-β 0.3 Kirschner et al. (2003)

c2 (mm2)2 steepness coefficient of TGF-β
production

300 Kirschner et al. (2003)
or estimated

d day−1 degradation rate of TGF-β 7 × 10−4 Kirschner et al. (2003)

f #−1 day−1 tumor antigenicity 0.62 estimated

c3 ml / (ng mm2) combined tumor growth and TGF-β
inhibitory parameter for activation
of CTLs

300 estimated

r #−1 rate of effector T cells that become
regulatory T cells

0.01 Kim et al. (2010)

δ1 day−1 natural death of CTLs, Vaccine
cells, and Tregs

1 × 10−5 estimated

(a) no treatment
(b) vaccine treatment
(c) anti-TGF-β treatment
(d) combined anti-TGF-β and vaccine treatment.

The list of the parameters used in our simulations is given in Table 1. The param-
eters a0 and c0 were approximated using a nonlinear least squares fit to the control
data presented in Terabe et al. (2009). Baseline values for a1, c2, and d were ob-
tained from Kirschner et al. (2003). The value for the immuno-suppressive effects
of TGF-β , c1, was estimated based on data presented in Terabe et al. (2009). The
rate of effector cells that differentiate into regulatory cells, r , was given in Kim et al.
(2010) and falls in accordance with the range presented in Sakaguchi et al. (2008).
A parameter sensitivity analysis was performed on the model parameters.

3.1 Simulations

Numerical solutions of (1)–(5) were obtained using Matlab (version R2010a)
ODE23 solver. Starting with the initial measurements presented in Terabe et al.
(2009), we begin our simulations at day 3 after tumor presentation and conclude all
simulations on day 30. At the initial time point, we assume that tumor antigenicity
has led approximately 100 activated effector T cells to be present at the site of the
tumor. This is consistent with the number of mouse precursor CTLs presented in
Blattman et al. (2002) in which they estimated the number of Db GP33-specific CD8
T cells to be 2 × 102.

Figure 2 shows results of our simulations in the four treatment regimes along with
the corresponding experimental data. The simulation and the control data to which it
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Fig. 2 The dynamics of the tumor size in four treatment regimes. Shown are the results of the numerical
simulations on top of the experimental data from Terabe et al. (2009)

was fit are shown in Fig. 2(a). As previously mentioned, the control data set was used
to approximate some of the model parameters. We calibrated the no-treatment model
to follow the growth trend of the experimental data. While the precise timing of the
observed phenomena is not captured by the present model, it is the qualitative aspects
of the increase and decrease in the tumor size that we are seeking. The goal of this
model is to capture the phenomena of tumor escape with monotherapy, and the peak
tumor size and tumor eradication in the case of a combined therapy. These biological
aspects are clearly captured by the current model.

In Fig. 2(b), the vaccine treatment is modeled as an addition of 5,000 effector T
cells to the vaccine equation at day 3 of simulation. These cells are assumed to be
resistant to TGF-β . In this case, there is a steady growth of the tumor throughout
the simulation. The vaccine facilitates conditions that lead to a smaller tumor at the
final time step. These cells do not multiply once added to the system, and hence the
benefit of the vaccine slowly diminishes at the natural death rate for vaccine cells.
This means that if the initial size of the vaccine is not large enough to overpower the
tumor growth, then the tumor will always escape immunosurveillance.

We model TGF-β inhibition as an increase of c2 from 300 to 7,000. This effec-
tively delays the “switch” of TGF-β production by approximately 8 days. The results
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Fig. 3 A comparison of the
dynamics of the tumor size for
all treatment regimes

of this simulation are shown in Fig. 2(c). In this case, we see that the tumor remains
small for the duration of TGF-β inhibition. However, soon after the TGF-β levels
begin to recover, tumor growth quickly becomes uncontrolled. Similar results were
seen for other values of c2. In simulation, we see that singular TGF-β inhibition leads
to a reduction in final tumor load at 30 days of simulation. This initial delay of tumor
growth differs from the original data in Terabe et al. (2009), however, the final result
of uncontrolled tumor growth remains similar.

The final case, Fig. 2(d), shows the predictions of the model when both TGF-β and
vaccine treatments are administered. Similar to the experimental results in Terabe et
al. (2009), we see that a combined treatment is sufficient to induce tumor eradication.
Model simulations lead to agreement with experiments concerning the peak tumor
size. The timing of this maximum tumor size will be the addressed in the discussion.
Simulations show an initial phase of tumor growth, but at approximately day 21, the
immune system is able to clear the tumor. This suggests that such an outcome is the
result of long-term presence of CTLs provided by the vaccine, in combination with
the TGF-β inhibitor that provides an initial boost to the host’s native immune system.

Figure 3 compares the tumor growth in all four treatment regimes. It is clear that
while monotherapy results in a slowing down of the tumor growth, the tumor is still
able to escape immunosurveillance and grow uncontrolled. Only in the case of dual
therapy is the immune system able to eradicate the tumor.

We show the dynamics of the individual populations in the control case and the
combined treatment case in Fig. 4 and Fig. 5. Figures 4(a) and 5(a) show how the tu-
mor population changes over time. Figures 4(b) and 5(b) demonstrate the dynamics
of the TGF-β concentration. In the no-treatment scenario 4(b), we see that the TGF-β
levels are increasing with the tumor size. These high levels of TGF-β , particularly at
later time points, contributes to the suppression of the effector T cell concentration
as seen in Fig. 4(c). In the combined treatment scenario, TGF-β levels are kept very
low (see Fig. 5(b)). This contributes to a robust immune response peaking on day 16
with just under 140,000 CTLs present in the system (Fig. 5(c)). The regulatory T cell
populations are shown in Figs. 4(d) and 5(d). Though these regulatory cells are effec-
tive at ending the immune response in both cases, the maximum ratio of regulatory
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Fig. 4 Simulated population dynamics of the individual populations in the control case: (a) Tumor size
(mm2), (b) TGF-β concentration (ng/ml), (c) CTL population (number of), (d) Treg population (number
of)

cells to T cells is 0.075 in the no-treatment case and 0.062 in the case of a combined
treatment. This aligns with the results of Terabe et al. (2009) which indicated that
TGF-β inhibition does not suppress Treg production, but it does increase the ratio of
effectors to Tregs in each of the treatment scenarios.

3.2 Stability Analysis

In order to analyze the stability of the system, we begin by considering the Jacobi
matrix of (1)–(4) with V ≡ 0. It is as follows:

⎛
⎜⎜⎜⎜⎝

a0(1 − 2c0T ) − δ0E
1+c1B

δ0c1ET

(1+c1B)2
−δ0T

1+c1B
0

2T a1c2
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⎟⎟⎟⎟⎠
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Fig. 5 Simulated population dynamics of the individual populations with combined treatment: (a) Tu-
mor size (mm2), (b) TGF-β concentration (ng/ml), (c) CTL population (number of), (d) Treg population
(number of)

A steady state analysis of the system reveals two feasible (nonnegative) steady
states. The solution including maximum tumor capacity, T = 1/c0, B = a1

d(1+c2c
2
0)

,

E = R = 0, is stable while the all zero, T = B = E = R = 0, solution is unstable.
This implies that even in the case of successful treatment, simulations will eventually
lead to a nonzero tumor equilibrium. Hence, we consider treatment to be successful
if the size of the tumor is reduced to less than the size of one cell or if the tumor is
reduced to a “manageable” size for the duration of simulation. As previously men-
tioned, all other steady states contain at least one negative component, implying that
they are not feasible for the given biological system. This implies that there is no
“small-tumor” equilibrium in which a tumor is maintained at a nonzero, nonlethal
size by immune cells. In Fig. 6, we present a phase portrait displaying the relation
between tumor size and effector cells when combined treatment is simulated. Here,
we see that for tumors with high antigenicity, the tumor load is reduced to near zero
for a period of time before the immune response is no longer able to control the tu-
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Fig. 6 Effector T cell versus tumor size phase portrait when combined treatment is simulated with differ-
ent levels of tumor antigenicity. Depending on the antigenicity, the tumor load is reduced to near zero for
a period of time before the immune response is no longer able to control the tumor (Color figure online)

mor. For mildly antigenetic tumors, effector cells are only mildly stimulated by the
presence of the tumor and cannot impose tumor shrinkage to manageable levels.

To determine the parameters to which the model is most sensitive, we performed a
sensitivity analysis. This was done by varying each parameter over a range of values
centered around a baseline value and observing the size of the tumor at the end of
30 simulated days. Figure 7 shows the results of this parameter sensitivity analysis
with Fig. 7(a) and Fig. 7(b) displaying the results for the no treatment case and the
combined treatment case, respectively. In the no treatment case, variations of param-
eters leads to very little changes in the final tumor size. This shows that for a wide
range of cases, a lack of treatment will lead to uncontrolled tumor growth. In the
case of combined treatment, the system was found to be sensitive to a1, the param-
eter quantifying the maximal production rate of TGF-β , c2, the quantity describing
the size at which a tumor begins to produce TGF-β , and f , the quantification of a
tumor’s antigenicity. The system is most sensitive to the parameter f which aligns
with the results concerning the corresponding parameters in de Pillis et al. (2005) and
Kirschner et al. (2003).

Due to the expression of the HPV E6 and E7 genes, the type of tumor considered
for the model is considered to be reasonably antigenic. What happens if a less anti-
genic tumor is considered? This case is considered in Fig. 8. Here, we reduce the
value of the tumor antigenicity parameter, f . As previously mentioned, our sensitiv-
ity analysis suggests that the final tumor size is sensitive to this parameter. Figure 8
shows the results of reducing f from 0.62 by 10 % to 0.56. In this case, there is
a mild immune reaction, peaking around day 20 after tumor presentation. This im-
mune response is capable of reducing the size of the tumor. However, the reduction of
antigenicity causes the immune response to be unsustainable, leading to the eventual
unbounded growth of the tumor.
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Fig. 7 Model sensitivity analysis. Done by varying each parameter over a range of values centered around
a baseline value and observing the size of the tumor at the end of 30 simulated days. (a) No treatment case:
variations of parameters leads to very little changes in the final tumor size. (b) Combined treatment: the
system was found to be sensitive to a1, the parameter quantifying the maximal production rate of TGF-β ,
c2, the quantity describing the size at which a tumor begins to produce TGF-β , and f , the quantification
of a tumor’s antigenicity

4 Discussion

The qualitative aspects of the simulations align with the data described in Terabe et
al. (2009). Obtaining precise quantitative matches with the data proved difficult as the
data was presented as averages without error estimates or statistical measurements.
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Fig. 8 A simulated tumor
growth for a mildly antigenic
tumor (f = 0.56)

However, the general characteristics of each of the four cases has been captured by
the present model. For instance, in the case where both vaccine and TGF-β inhibitors
were given, the model predicts that the tumor size will reach its peak on day 5 and
tumor eradication will occur on day 21. The data suggests that these events occur
respectively on days 15 and 27. Also, unlike the data presented by Terabe et al.,
in which TGF-β inhibition lead to no significant delay in tumor growth, the model
displays a slowed down (yet uncontrollable) tumor growth in the case of a TGF-β
treatment. Modifying the model to better capture the timing of these events will be
considered in future work. The choice of modeling the vaccine as an adoptive T cell
transfer as opposed to a peptide vaccine could be one of the causes for the discrepancy
in timing. In the model, T cells are immediately available to begin killing tumor cells,
where as in the case of a peptide vaccine there would be a delay between the time of
the vaccine and the time that newly recruited CTLs would be activated and available.
This design choice contributes to the lack of need of delay differential equations and
makes the model amendable to study questions regarding adoptive T cell transfer.

The means by which tumors evolve is nontrivial and all aspects of tumor treat-
ment cannot be included in a single model. Our mathematical model highlights
just one possible way of combining tumor treatments to promote tumor eradication
through an immune response. A number of biological experiments and mathemat-
ical models have highlighted the fact that immunotherapy alone is not always ef-
fective in eradicating a tumor (Akhurst and Derynck 2001; Cappuccio et al. 2006;
Currie 1972; Dermime et al. 2002; Flavell et al. 2010; Kirschner et al. 2003;
Terabe et al. 2009). Here, we show how combined immunotherapy treatments might
work through different mechanisms to promote tumor clearance. Simulations of the
model (1)–(5) show qualitative agreement with the data in Terabe et al. (2009). In
the case of administering either the vaccine or the TGF-β inhibitor, we see a tempo-
rary delay in tumor growth; but this delay is not sustainable over time. The vaccine
alone is not enough to eradicate the tumor, and though TGF-β is inhibited in the ini-
tial days of tumor presentation, the protein level recovers soon thereafter, regaining
its immunosuppressive effects. Tumor eradication requires a combination of therapy
approaches. Our results suggest that the vaccine allows for the development of a sig-
nificant and long-term immune response that is minimally affected by the TGF-β that
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is present at later time points. The TGF-β inhibitor provides conditions that help the
populations of immune cells to expand during the initial phases of tumor presenta-
tion. One very pertinent follow up question is: Does one treatment amplify the other
or do they act independently of each other? The data collected in Terabe et al. (2009)
seems to support the notion that one treatment amplifies the other, but further study
is required in order to reach a conclusive understanding.

The results of this work provide an initial analytical framework for studying im-
munotherapy via TGF-β inhibition in combination with vaccine treatment. Opti-
mally, future studies should be conducted in combination with experiments. Control
of nonlinear processes will play a vital role in determining the effectiveness of treat-
ments and in obtaining a protocol for their administration.
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