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ABSTRACT. We prove Berry-Esseen theorems for sums S,, = Z fioTj—10---0Ty 0Ty where
j=0
f; are functions with uniformly bounded “variation” and T} is a sequence of expanding maps.
Using symbolic representations similar result follow for maps 7; in a small C'* neighborhood of
an Axiom A map and Hélder continuous functions f;. All of our results are already new for a
single map T; = T and a sequence of different functions (f;).

1. INTRODUCTION

1.1. Non-autonomous dynamical systems. A great discovery made in the last century is
that deterministic systems could exhibit random behavior. One of the most notable results in
this direction is the fact that ergodic averages of deterministic systems could satisfy the Central
Limit Theorem (CLT). Since then statistical properties of autonomous hyperbolic dynamical
systems have been studied extensively. However, many systems appearing in nature are time
dependent due to an interaction with the outside world. In the context of dynamical systems
this leads to the study of dynamics formed by a composition of different transformations rather
than a single one. Such systems are often called sequential/time-dependent/non-autonomous
dynamical systems.

Many powerful tools developed for studying autonomous systems are unavailable in non au-
tonomous setting. In particular, the spectral approach developed by Nagaev [71] and extended
to dynamical systems setting by Guivarch and Hardy [41], provides a powerful tool for obtain-
ing asymptotics expansions in limit theorems for dynamical systems. It turns out that complez
Perron Frobenius Theorem proven by Hafouta and Kifer in [46] (building on a previous work of
Rugh [77] and Dubois [34]) provides a convenient tool for asymptotic computations of the char-
acteristic functions in the setting of Markov chains and dynamical systems. This theorem has
already found multiple applications to limit theorems [27, [33], [35] 46, [47, [48, 49, 51]. The goal of
the present paper is to study the rate of convergence in the CLT (aka Berry-Esseen theorems) for
non-autonomous dynamical systems without making any assumptions on the growth of variance
of the underlying partial sum. In a forthcoming work [28] local limit theorems will be considered.

A particular case of a sequential dynamical systems are random dynamical systems. Ergodic
theory of random dynamical systems has attracted a lot of attention in the past decades, see
[58, 65, 22, B, 25] and [62]. This includes, for instance, the theory of random invariant measures,
entropy theory, thermodynamic formalism, multiplicative ergodic theory and many other classical
topics in ergodic theory. Ergodic aspects of (non-random) sequential dynamical systems were
studied for the first time in [12, 3], see also [4], [24, Sections 1-2] and [I4]. We refer to [24]
Section 3] and [48] for examples of expanding maps and to [8 4] [74] for some examples of
sequential hyperbolic sequences (see also Sections and Appendix |C]).

Next we discuss statistical properties of random or sequential dynamical systems. Decay of
correlations for random dynamical systems were obtained in [19, [I0l [7]. Large deviations were
obtained in [59] and the CLT in [60]. Recently limit theorems for random dynamical systems
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have attracted a lot of attention. For hyperbolic maps in a C3+¢ neighborhood of a C3+¢ Anosov
map, the CLT was obtained in [32] (see also [6] 23]). Berry-Esseen theorems (see (L.I))) were
obtained in |46}, 33}, 49, [52]. Concerning statistical properties of non-random expanding sequential
systems, the sharp CLT was obtained in [24] (see also [2, [72]). For hyperbolic systems the CLT
is proven in [§] under the assumption that variance of S,, grows faster than n?/3. Berry-Esseen
theorems in the sequential setup were only obtained in [48] for some classes of maps, under the
assumption that Var(S,) grows linearly fast in n.

1.2. Our results. In this paper we obtain optimal CLT rates. A classical result due to Berry

n
and Esseen [I8] 37, [38] asserts that for partial sums S,, = ZXj of zero mean of uniformly
j=1
bounded iid random variables X; the following optimal uniform CLT rates hold

(1.1) Aoy =sup|P(Sy/on <t) — (L) = O(O‘;l), on = ||Snll 2
teR

where ®(t) is the standard normal distribution function. By now the optimal convergence rate
in the CLT was obtained for wide classes of stationary Markov chains [71l [55] and other weakly
dependent random processes including chaotic dynamical systems [76], 41}, [55], [44], [56], [57], random
dynamical systems [46} 33, 49] uniformly bounded stationary sufficiently fast ¢-mixing sequences
[75], U-statistics [20, [39] and locally dependent random variables [I1), 9, 21]. However, in all of
these processes the variance of S, is of linear order in the number of summands n. To the best
of our knowledge, the only case where optimal rate was obtained without any growth rates on
the variances is for additive functional of uniformly elliptic inhomogeneous Markov chains [27].
In the present paper we obtain optimal CLT rates (in various forms) for Birkhoff sums generated
by a sequence of expanding maps and sufficiently regular functions. This was obtained in [48] for
Holder continuous functions when Var(S,) > cn for some ¢ > 0. Here we consider more general
maps and more general functions (e.g. BV). Most importantly we will not assume any kind of
growth rates for Var(S,).

Our results are applicable to wide classes of expanding transformations including smooth ex-
panding maps, piecewise expanding maps, Markov maps on the interval and sequential subshifts
of finite type. The latter also has applications to additive functionals of finite state uniformly
elliptic inhomogenuous Markov chains, where the main novelty here is that the functionals are
allowed to depend on the entire path of the chain. Our main results also have applications to
sequence of maps in a C! neighborhood of a given C2-Axiom A map (see Appendix . In [32]
limit theorems were studied for random dynamical systems in C3¢ neighborhood of a C3+¢
Anosov maps and Birkhoff sums formed by random C2?*¢ functions. Compared with [32] we
can perturb more general maps in a weaker norm, consider functions which are only Holder
continuous and treat non-random systems. We would like to emphasize that when starting with
sequential SRB measures the closeness of the maps is only needed here to overcome the difficulty
that the variance of the underlying partial sum .S,, does not have to grow linearly fast. We refer
to Remark for a short discussion on this matter.

What we will actually prove is stronger than uniform rates. In Theorem [3.1f(i) we will show
that for every p > 0,

(1.2) Apn = iuﬂlg(l +[t7) [P(Sn/on < t) = (1) = O(0, ")
€

The fact that we can take can positive p allows applications to optimal CLT rates in LP (see

Theorem [3.1f(ii)), to Gaussian expectation estimates (Theorem [3.1fiii)) and to optimal CLT rates

in the Wasserstein distances (Theorem .
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The proof of consists of several ingredients. First, using a general result from [52]
it is enough to verify a logarithmic growth assumption introduced in [27]. This is done in
Proposition To prove this proposition we use ideas from [27] together with an appropriate
martingale-coboundary decomposition. This decomposition is needed in order to obtain the
moment estimates in Proposition which are proven using the Burkholder inequality and ideas
from [24]. Martingale-coboundary decomposition uses a version of real Ruelle-Perron-Frobenius
(RPF), which is proven in Theorem The second tool needed to prove Proposition is
an extension of Theorem to complex operators (Theorem . This result generalizes the
complex RPF theorem in [46] 48] and is proven using simpler arguments (see Appendix @ which
result in conditions which are easier to verify.

Our setup includes a reference measure mg (e.g. Lebesgue or a time 0 Gibbs measure) and a
notion of variation of functions (e.g. variation on [0, 1] or Holder continuity). Then our result
hold true with respect to any initial measure pg which is absolutely continuous with respect to
the reference measure, with bounded density with finite variation. For autonomous systems the
fact that the weak limit is preserved when changing densities is called Eagleson’s theorem [36]
(see also [45, 80]). Eagleson’s theorem concerns the asymptotic behavior, and to show that the
rates are persevered it is reasonable to require that the density is sufficiently regular. In [53]
non-stationary versions of Eagleson’s theorem were discussed. When applied to the setup of this
paper, the results in [53, §3.3.1] show that optimal uniform CLT rates are preserved under a
change of density with bounded variation if the variance of the underlying sum grows linearly
fast in n (under one of the measures). Here we show that the non-uniform optimal rate holds
for all the measures in the above class without any growth assumptions on the variance.

1.3. The layout of the paper. Section [2| describes the classes of maps we consider. Section
presents our main results. Sections [4] and [] are devoted to examples. In the former section we
present specific examples fitting into our abstract framework: expanding and piecewise expanding
maps, subshifts of finite type, etc. In the next section we show that our abstract setting includes
the setups of [24] and [48] as special cases. Section [f] discusses the moment estimates which play
a key role in our analysis. Section [7]is devoted to the analysis of of the characteristic functions
near the origin. This analysis plays a key role in the proof of our main results given in Section
In a forthcoming work, including [28], we combine the results of Section with the estimates
of the characteristic function away from the origin to get further asymptotic results related to
limit theorems.

The examples in Sections [4] and the proof of the main results rely on many non-autonomous
versions of known results for autonomous dynamical systems. Additionally, we find it more
reader friendly to include a presentation of our results for hyperbolic maps in a separate section.
For these reasons the paper has four appendixes. Appendix [A]is devoted to mixing properties
of sequential Gibbs measures. It generalizes the fact that for a topologically mixing expanding
system on a compact manifold there is a unique absolutely continuous invariant measure, which
is mixing exponentially fast for Holder or BV observables. Appendix [B] concerns extension of
classical results for subshift of finite types to their non-autonomous counterparts, including the
theory of sequential Gibbs measures. Appendix [C]is about non-autonomous hyperbolic systems
formed by a sequence of maps (7}) in a small C'-neighborhood of a given Axiom A map. We
show that such systems are sequentially Holder conjugated to the Axiom A map, which will yield
that all our results hold true for these systems. Lastly, Appendix [D] contains a short proof of
the complex sequential Ruelle-Perron-Frobenius Theorem following the arguments of [55]. The
assumptions of our Theorem are easier to verify in specific examples than the assumptions
of the corresponding results in [46, 48].
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2. PRELIMINARIES

2.1. Setup. Our setup here will be a sequential (uniform) version of [19]. Let (Xj, Bj,m;)32,
be a sequence of probability spaces. For a measurable function h : X; — C denote |h|, =
|llp,; = [Ihllr(x;,8;m,)- We suppose that there are notions of variation v; : LY(Xj,m;) — [0, 0]
satisfying

(V1) v;(th) = |t|vj(h), for every t € C and h : X; — C;
vj(g+ h) <v;(g) +vj(h) for every g,h : X; — C;
|hllse < ||R]l1 + Cyarv;(h) for some constant Cyay > 0 (independent of j);

)
) <
)
)

V2
V3
V4) the functions 1 taking the constant value 1 have finite variation and sup v;(1)<oo;

J
V5) there is a constant C' > 0 such that for all j and f, g : X; — C we have

vi(fg) < Ol fllecvi(9) + llglloovs (£));

(V6) if h is a positive function with bounded variation bounded below by a constant ¢ > 0
then vj(1/h) < C(c,vj(h) + [|h|l1,;), where C(z,y) is a function on Ry x R4 which is
increasing in both variables z and y;

(V7) the space of bounded functions with bounded variation is dense in C(X};) (the space of
continuous bounded functions on Xj).

(
(
(
(

Example 2.1. (1) X; are metric spaces such that supdiam(X;) < oo and v; is the Hélder

J
constant corresponding to some exponent a€(0, 1] independent of j.
(2) X; are Riemannian manifolds such that sup diam(X;) < oo and v;(g) = sup |Dg|.

j
(3) X; =[0,1], mj=Lebesgue and each v;(g) is the usual variation of a function g.
(4) X; = X is bounded subset of RY, d > 1 and all m; coincide with the normalized Lebsegue
measure on X. Moreover,

vj(g) = sup 6_0‘/ Osc(g, B:(x))dx
0<e<eo X

for some constants 9 > 0 and « € (0, 1], where B.(x) is the ball of radius € around a point z

and for a set A, Osc(g,A) =  sup  |g(z1) — g(z2)|.
x1,x2€ANX

Next, given a measurable function h : X; — C, denote
1kllBv = WAl Bv,; = [[hll1; 4 vi(h).

Then || - ||py is a complete norm on the space of bounded functions B; with finite variation.
Note that | - [|py; are equivalent to the norms ||g||Bv.co,; = ||9ll0c,j + vj(g), uniformly in j.
Let T; : X; — X411, 7 > 0 be a sequence of measurable maps, such that

(2.1) sup sup vj(hoT}) < oo.
J hwjp1(h)<1

We also assume that the maps are absolutely continuous, that is, (7}).m; < m;41. Let £; denote
the transfer operator of T} with respect to the measures m; and m;i. Namely, if k; = pjdm, for
some p; € Ll(Xj,mj) then L;p; : Xj41 — R is the Radon-Nikodym derivative of the measure
(Tj)«kj. Then L; is the unique linear operator satisfying the duality relation:

(22) [T ygam; = [ seigpim;s
for all bounded measurable functions g on X; and f on X;4;. Denote

ﬁ? = £j+nfl 0:-+0 £j+1 ] ﬁj.
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We make three assumptions which are sequential versions of the assumptions in [19].

(LY1) sup [[£;]Bv < o0
J

(LY2) There are constants p € (0,1), K > 1 and N € N such that for every j and a real function
h € B;j we have

0y (L) < puj(h) + K]

SC) Fora>0letC;, = he LY(m; :h >0, v;(h) <am;(h)}. Then for every a there are
7, J j] J
n(a) > 1 and «(a) > 0 such that for all j, n > n(a) and h € C;

ess-inf L7h > a(a)m;(h).

Note that (LY) stands for “Lasota Yorke” and (SC) stands for “sequential covering”.
In Section (4] we will verify the above assumptions for particular examples.

Remark 2.2. By iterating (LY2) it follows that there is a constant Ky > 0 such that for all j
and all n > N and a real function h € B; we have

(2.3) Vitn(L3h) < p N uj(h) + Kollh 1.

Lemma 2.3. Under (LY1) and (LY2) we have

supsup || L7 1][oc < 00
i n

where 1 denotes the function taking the constant value 1, regardless of its domain.
Proof. Tt follows from the remark and (LY1) that supsupvjn(L£71) < oo. Next, by property
J n

(V3) we have [|[£]1]|oc < [|£71]l1 + Cuarvj+n(L£j1). To complete the proof of the lemma we note
that by taking f =1 in (2.2) with L7 instead of £; and T} instead of T; and using the positivity
of L7 we have [|[L71]j1 = [[1]1 = 1. O

Appendix [A] contains the following result.

Theorem 2.4. Suppose (LY1), (LY2) and (SC).

(i) There is a sequence of positive functions h; which is uniformly bounded in B; and uniformly
bounded away from 0 with m;(h;) =1, and constants C >0,6¢€(0,1) such that for all j >0
we have L;h; = hj;1 and for all n € N,

(2.4) 1£26) = my (Vi e < €™

(ii) Let p; := hjdm;. Then (T})«p; = pjy1. Moreover if [i; = gjdm; is another sequence
satisfying

(2.5) (T5)«hj = fij+1

then lim ||h,—gn|l1 = 0. In fact, if g € BV for some k then lim ||h,—g,| By = 0 exponentially
f t n—oo n—oo
ast.

Remark 2.5. In general, the measures p; are not unique. That is does not imply that
fij = pj for all j. In fact, for every BV density go : Xo — R the measures fi; = (17 ) (godmy) also
satisfy (2.5} . but in general they differ from p; (even when T); does not depend on j). The point
is that the density of fi; is gj—ﬁogo This density satisfies ||gn—hn|| By=0(6") by Theorem .
However g, differs from h,, in general since h,, corresponds to some possibly other choice of gg.
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Remark 2.6. Let g € B;, f € Bj;,. Then for all j,n we have
mj(g - (foTj)) = mjrn((L59)[)-

Plugging (2.4) into the RHS we get [m;(g- f o T}') — m;(g)pjsn(f)] < Cillgllav | f]]16" for some
constant C1 > 0. Hence mjin(foT}') ~ p1j1n(f). In particular if the operators T; and measures

m; are defined for all j € Z so that the assumpions (LY1), (LY2) and (SC) are valid for all j € Z

then y;(f) = lim m;_,(f o Tj",), and so in this case u; is the unique equivariant family of
n—oo

A,

m;

measures such that sup < 0.

J

2.2. Changing the reference measures. It is important to note that once conditions (LY1),
(LY2) and (SC) hold for a given sequence of measures m;, they must hold with a uniformly
equivalent sequence of measures (and hence, all the limit theorems stated in the next section are
valid for initial measures having BV densities with respect to mg). This is the content of the
following result.

Proposition 2.7. Let ;1; be a sequence of probability measures such that p; = h;dm;, with h;
uniformly bounded and bounded away from the origin and supv;(h;) < oo.

J
Then (V1)-(V7) and (LY1), (LY2) and (SC) also hold when we repalce m; by pu;.

This proposition will allow us to prove limit theorems with respect to the Lebesgue measures
(i.e. the case m;=Lebesgue), as well as with respect to the unique absolutely continuous (se-
quentially) invariant measures p; or any other sequence of equivalent measures. This is one of
the advantages of the setup presented in this section.

Proof. First, it is clear that there is a constant C; > 0 such that for every function g : X; — C,

(2.6) Cllgllrmy) < N9l < N9llLrom;)-
Consequently, the BV norms induced from both measures are equivalent. Moreover, since the
measures m; and fi; are equivalent we have || || oo (m;) = || *||Loo(y;)- Therefore (V1)-(V7) remain
true if we replace m; with p;.
Next, the transfer operator L; corresponding to the measures p; and pj41 is given by
ng _ = (g ]) )
hj+1
By (V6), supwv;(1/hj) < co. So conditions (LY1) and (LY2) also hold true with L; instead of
J
L; (possibly with different constants).

Finally, notice that the operator £; is positive. Therefore, if ¢ is a constant such that h; > ¢ > 0
then for every function h > 0,

L (hhj) > cL(h), mji1 as.

Now, since ||1/hj41| r~>D for some constant D < oo, we conclude that for every non-negative
function h and all n we have Lih > DcL7h, a.s. Consequently, the validity of condition (SC)
for the operators L; follows from the corresponding validity for £;, together with (2.6)). O

3. MAIN RESULTS

Let fj : Xj =R, j >0 be a sequence of measurable functions such that sup || fill BV <oo. Set
J

n—1
Su(x) = f;(T)x) where T = Tjyjq 0+ 0 Thypy o T
j=0
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We consider the sequence of functions S, : Xg — R as random variables on the probability
space (Xo, Bo,mg). Our results will be limit theorems for such sequences.

Denote 0, = /Var,,,(S,) and S, = S, — mo(S,). Let F,(t) = Ppy(Sn/on < t) be the
distribution function of S, /o, and let

t
O(t) = 1%/ e " 2y

be the standard normal distribution function.
Recall that the (self-normalized) central limit theorem (CLT) means that for every real ¢

Tim F,(t) = (1),

The CLT in our setup can be proven using martingale coboundary decomposition of and
applying an appropriate CLT for martingales (cf. [42,24]). We refer to §6.2|for a characterization
when ¢, — oco. In this paper we will not give a separate proof of the CLT since our main results
give not only the CLT but also rate of convergence, in various metrics.

Theorem 3.1. Suppose g, — 0.
(1) (A non-uniform Berry-Esseen theorem). Vs > 0 there is a constant Cy such that

sup(1 + [t[*) [ Fa(t) — @(t)] < Cso
teR

(i) (A Berry-Esseen theorem in LP). For all p > 1 we have [|Fj, — ®|| 5 g,y = O(a;h).

(iii) For all s > 1 there is a constant Cs such that for every absolutely continuous function

h: R — Rsuch that Hy(h) == [ 20lds < oo we have (B [A(Sn/0n)] — /hd@‘ < C,H,(h)o 1.

1+|x|®
Next, recall that the p-th Wasserstien distance between two probability measures u, v on R
with finite absolute moments of order p is given by

W,(u,v) =  inf X-Y
(1, V) (Xy;lgcw)l! 17

where C(u, ) is the class of all pairs of random variables (X,Y") on R? such that X is distributed
according to w, and Y is distributed according to v. Combining our estimates with the main
results in [52] also yields the following result.
Theorem 3.2. [A Berry-Esseen theorem in W))] For every p we have

Wp(dFy,d®) = O(a; ")

where dG is the measure induced by a distribution function G.

A key ingredient in the proof of Theorems and is the following proposition, which we
believe has its own interest.

Proposition 3.3. For every p>2 there is a constant C' such that for all >0 and n€N,
1Sl Lr(moy < C(L + [1SjnllL2)-
Moreover, C' depends only on p, sup | f;||pv, and the constants from assumptions (V1)-(V7),

(LY1), (LY?2) and (SC). ’

4. EXAMPLES

Here we exhibit several classes of systems fitting in the abstract setup of Section
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4.1. Piecewise expanding maps on the interval. We take X; = I = [0, 1] and m; =Lebesgue
for all j. Let v; = v be the usual variation of functions on [0, 1]:

n

v(g) = sup sup > lgltnar) — g(tn))l.
n to=0<t1<...<th<tp41=1 =0
d;
We suppose that for each j we can write [0,1] = U I} where I, 1 < k < dj are intervals
k=1

with disjoint interiors such that supd; < oc.
J
We also suppose that for all j and & the restriction T} := Tj|L; is a C? expanding map so

that sup max [T}, ]lec < oo and ¢ :=inf min inf|T],[ > 1. Moreover, we assume that
j 1<k<d; P j 1<k<d, ’

inf min |I;z| > 0.
Jj 1<k<d; 7’

Let L; be the transfer operator of T);, namely the operator given by

g(TTklx)
Lig(x) = Z m
k}!xETj’k(Ijﬂk) .7 jvk

Then (LY1) holds. A standard argument (see [63]) yields that if N satisfies 6V > 2 then there
are constants i > 1 and p € (0,1) such that for all j we have var(L;g) < p var(g)+ ||g||:. Thus,
(LY2) holds.

Next, in order to verify (SC) we can assume that for every interval J C [0, 1] there is n(J) € N
such that for every j we have

n(J) 5 _
(4.1) 7T =0,1].

Under the above condition the verification (SC) is carried out similarly to [19), §1.2].

For piecewise expanding maps satisfying the assumptions described above we get all the limit
n—1

theorems described in the previous section for sums of the form S, = Z fjoT g considered
j=0
as random variables with respect to a measures which is absolutely continuous with respect to

Lebesgue and its density is a BV function. Here, f; must satisfy sup || fj||pv < oo.
J

4.2. High dimensional piecewise expanding maps. Let X; = X coincide with a single
compact subset of R* for some k > 1. Let m be the normalized Lebesgue measure on X and let
v be the variation defined in Example iv).

We suppose that the maps 7} have the following properties. There are constants d € N,
v,Cye > 0 and s € (0,1) with the following properties. For each j there are disjoint sets
Aji, A1 <i<dj <dand maps Tj; : Aj; — X such that:

d;

(i) The sets Aj1, ..., Ajq, are disjoint and m(X \ U A;;) = 0. Moreover, A;; C Aj;

i=1

(ii) Each T}, is a C'™7 function;

(iii) Tjla,, = Tj; and for all j and i and B.(T};A;;) C Tj.i(A;;), where B.(A) is the e-
neighborhood of a set A;
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(iv) For all j and 4 the function J;; = Det(DTﬁl) satisfies that for all z,y € T};(A; ),

Jji(y)
Jji()

- 1‘ < Cdist(z,y)7;

(v) For every z,y € Tj;(A;;) with dist(z,y) < & we have dist(TjTila:, Tj_zly) < s-dist(z,y);

(vi) Each 04, is co-dimension one embedded compact C'-submanifold and

4s Fk
7 Z <1
R P
where T, is the volume of the unit ball in R¥ and Z = supsup g I(z € fl”)
i 5

Under the above assumptions (LY1) and (LY2) with N=1 are satisfied (see [78, Lemma 4.1]).
Next, we also assume that for any open set U there exists n(U) € N such that for all j

n(U)rr _
(4.2) U = X.

Under the above condition the verification (SC) is carried out similarly to [30, Lemma 3].

One example where holds are Markov maps. That is, we assume that for each ¢, the
image 75 A;; is a union of some of the sets A;,1 . Moreover suppose that the system is uniformly
mixing in the sense that 3¢ such that TfAij = X4y = X for each 4,j. This condition can be
verified as follows. Consider the adjacency matrix A; such that A;(i, k) = 1if TjA;; O Aji1 k.
Then the uniform mixing assumption means that for each j all entries of Aj;¢—1---Aj11.A; are
positive. Now let U be an open set in X; = X. Without loss of generality we may assume that
U is an open ball with center x and radius r. Given k let B, 1 (x) denote the set of points y € X
such that 77"z and T7"y belong to the same elements of our partition (A;4m,q)q for all m < k.
By our assumptions diam(B;x(z)) < Cps” for some constant C > 0, and so for sufficiently large
k we have Bjylg(ﬂs) C U. Accordingly, T]kU contains one of elements of our Markov partition and

then TfHU - X.

4.3. Covering maps and sequential SFT. Suppose that each X; is a metric space. Let d;
be the metric on X; and suppose that diam(X;) < 1. Let v; = v;, be the Holder constant
corresponding to some fixed exponent « € (0, 1].

Assumption 4.1. (Pairing). There are constants £ < 1 and v > 1 such that for every two
points z, 2’ € X1 with djq1(z,2") < & we can write

T Yo} = {yi(e) i <k}, T7'(2) = {wia’) i <k}

where d;(y;(x), yi(2")) <~y 'djy1(z,2) for all 4.
Moreover sup deg(7};) < oo, where deg(T’) is the largest number of preimgaes that a point x can

have under Jthe map T

Denote by Bj(x,r) the open ball of radius r around a point z € Xj.
Assumption 4.2. (Covering). There exists ng € N such that for every j and x € X; we have
(4.3) T (By(2,€)) = Xjtno-

Fix some o € (0, 1] and a sequence of functions ¢; : X; — R such that sup ||¢;[lo < oo. Here
j
|¢lla = sup|@;| +vj(¢;) and vj(¢;) is the Holder constant of ¢; corresponding to the exponent

a. Let L; be the operator which maps a function g : X; — R to a function L;g : X;11 — R given
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by Ljg(x) = ZT ez e?Wg(y). Then (see there is a sequence of probability measures v;
on X; such that (E )*vjs1 = A\jvj, where \; > 0 is bounded and bounded away from 0. Then we
can take any measure m; of the form m; = u]dyj with sup; [|uj|la < oo. This includes the unique
sequence of measures p; which are absolutely continuous with respect to v; and (7})«pj = pj+1
(see § . This setup includes the following more concrete examples.

4.3.1. Smooth expanding maps. Let M be C? compact connected Riemannian manifold, and let
Xj =M forall j. Let T; : M — M be C? endomorphisms of M such that

sup || DT} < oo and sup ||(DT;) Y| < 1.
J J

Then the arguments in [61, Section 4] (see [61, (4.6)]) yield that Assumption |4.1]is in force with
some £ > 0. Next, arguing like at the paragraph below [61, (4.19)]) we see that Assumption
holds if ng is large enough. Take ¢; = —In Jz;. Then by [48, Theorem 3.3 and Proposition 3.4]
(see also [61], Theorem 2.2]) we see that the measures v; described after Assumptions [4.2] coincide
with the normalized volume measure on M. Thus, we get all the limit theorems with respect to
any absolutely continuous measure whose density is Holder continuous.

4.3.2. Subshifts of finite type. Let A; = {0,1,...,d; — 1} with supd; < oco. Le AU be matrices

J
of sizes d; x djy1 with 0-1 entries. We suppose that there exists an M € N such that for every j
the matrix AU . AU+ ... AU+M) hag positive entries. Define

j+k
(4.4) Xy = {(@in)iZo  win € A AU, =1}
Let T; : X; — X1 be the left shift. Consider a metric d; on X; given by
d;(z,y) = o— inf{k: 2 k#Yj K}

With this metric the maps T} satisfy Assumptions and In order to introduce appropriate
measures mg note that we can extend the dynamics for negative times by defining X; for j<0
via appropriate extensions of the sequences (d;) and (A)). Note that such extensions are highly
non-unique. Each one of these extensions gives raise to a unique time 0 Gibbs measure pg
(see Appendix . Thus, all of our results hold true when starting with any measure which is
absolutely continuous with Hoélder continuous density with respect to mg = uo.

4.3.3. Two sided SFT. Using the same notations like in the previous section but also considering
negative integers j, we define

o k
(4.5) X5 = { @)t @ik € A, A;JJ;;] =1}
Let T X — XJH be the left shift, and let T = ]+n 10---0 ]H o T Consider the metric
d on X] given by d; jlz,y) =27 mf“k' 2ik#Yik} | Let j X — X be the natural projection.
By Lemma (proven in Appendix |B)), given a sequence of functions f; X — R with
sup [|fjlla < o0 there is sequences of functions fi + X; - R and u; : X; — R such that
J
sup || fjllaj2 < 00, u = sup [|lu;|lo/2 < 0o and
J J
f; :fjoﬂj+Uj+1oj}—Uj.

n—1

Therefore, denoting S,f = Zf oT we have sup sup |Spf — S f| < 0.
7=0
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Next, let ; denote a Gibbs measure of the two sided shift at time j (see Appendix . Then
i = (Wj)*iyj are also Gibbs measures for one sided subshift and they satisfy the assumptions
(

of Section [2] (see Appendix |B| for details). We view S,f as random variables on (XO, Borel, 7p).
Then
(4.6) A = sup [|Spf = S f| Loe(4) < 00

This is enough to do deduce all of our results for S,f, relying on the corresponding results for
Spf. Indeed, part (ii) of Theorem is a direct consequence of part (i). Theorem [3.1{(iii) also
follows from Theorem [3.1{i). Indeed, for every random variable W with distribution function F
and a function h satisfying Hs(h) < oo we have

E[h(W)] = h(cx) = —F [/OO h'(m)dw} =— /OO b (z)P(W < z)dr = — /00 b (z)F(z)dx.

w —o0 —00

To show that Theorem [3.1(i) for S, f implies Theorem [3.1[i) for S,f, let

F,(t)=P <S”f§t) , Gp(t)=P <S”f < t) where &, = ||Snfllz2 and oy, = || Spf| 2.

on Ko
By (4.6) and the triangle inequality, |0, — k| < A. To complete the proof fix s > 0. Then
F,(t) < Gp(ton/kn + A/kp) < ®(ton/kn + A/ky) + Cs (1 + |ton/kn + A/Kn|5)_1
<B(t)+ C(1+ [t])oy e + Cy(1 + |¢)°)

where in the penultimate inequality we have used that |®(z + &) — ®(z)| < Cee™*"/2 for every z
and € > 0 and that |to, /K, + A/k, —t| < C(|t| + 1)/, for some constant C' > 0. Similarly,

Fo(t) > Gp(ton/kn — AJky)) > ®(t) — C(1 + \t\)agle_CtQ — Cy(1+ [t~

Finally to deduce Theorem [3.2] for S,,f from the corresponding result for S, f let us fix some
p > 1. Then by Theorem [3.2] we can couple S, f with a standard normal random variable Z
so that ||S,f/on — Z||1» < Co,t. Now by Berkes—Philipp Lemma [17, Lemma A.1], we can
also couple all three random variables S, f, S,f and Z so that still holds under the new
probability law.

5. VERIFICATION OF (LY1), (LY2) AND (SC) FOR SOME CLASSES OF MAPS

In this section we will show that the conditions in Section [3| are in force for the classes of
expanding maps considered in both [24] and [4§].

5.1. Verification of our assumptions in the setup of [24]. The following assumption is
taken form [24].

Assumption 5.1. (i) (Xj, Bj,m;) coincide with the same probability space (X,B,m), v; = v
does not depend on j.

(ii) Conditions (LY1) and (LY2) hold with m; = m and v; = v.

(iii) There is a constant dy > 0 such that
(5.1) ess-inf L1 > dy

(note that the condition (5.1)) is denoted by (Min) in [24]). Here 1 denotes the function taking
the constant value 1 on X.

(iv) There are constants C; > 0 and d; € (0,1) such that for every h € B with m(h) =0
(5.2) 1£5lBv < Ché7
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Lemma 5.2. Assumption implies the covering condition (SC).
Thus, Assumption is less general than the combination of (LY1), (LY2) and (SC).
Proof. Since (LY1) and (LY2) hold, Lemma implies that C'=sup ||LF1]|ee € (0,00). Hence
k

using the positivity of the operators L; we see that m-a.s. we have
o < L3P =L7(L)1) < CLr.
We thus conclude that inf ess-inf L?l > 69 = 0p/C.

J
Next, fix some a and let h € C, ; where C, j comes from the condition (SC). Denote ||-|| = [|-|| pv-

Then by (5.2) we have
L5 h —m(h) L7 = [|£}(h —m(h)1)|| < Cil|h — m(R)1|[6T < Co|[h||6T < C3(a)m(h)oT

for some constant C3(a) which depends only on a (we can take Cs(a) = C2(1 + a) because
[l = v(h) +m(h) < (1 +a)m(h)). Using that L1 > d3 > 0 we conclude that

Lih > 6amj(h) — Cs(a)m(h)df = (02 — C3(a)dt)m(h) (m-as.).

Let n(a) be the smallest positive integer such that Cg(a)éqf(a) < 185. Then for n > n(a) we have
1
Lih > §5zm(h) (m-a.s.) and so (SC) holds with a(a) = 1. O

5.2. Verification of our assumptions in the setup of [48]. Consider maps Tj from .
We also suppose that we can extend the sequence (7)) >0 to a two sided sequence (7});cz with
the same properties. This is possible if there is a map T_1 : Xg — X such that the sequence
(T7,)j>0 has same paring property and covering assumption like the sequence (7});>¢ (this is
the case when Xy = X;). Indeed, in this case we can define T; =T_; for j < 0. The need in a
two sided sequences in this context arises from the lack of a given reference measure mg, as will
be elaborated in what follows.

Fix some Hélder exponent a € (0,1] and let ¢; : X; — R, j € Z be such that sup ||¢;]|o < oo.

J

Let the operator L; be given by
Lig(z) = Y % Wg(y).
y:Ty=x

Then as proverﬂ in [48], there are strictly positive functions h; € Bj, probability measures v; on
X; and numbers A; > 0 such that 0 < infinf h; < sup ||hj]|o < co and
J J

(5.3) HL?/)\M - ® Ej+n“a <Cod", d€(0,1)
J+n—1
where \;,, = H A and (v ® h) is the linear operator g — v(g)h. Let
k=j

Li(g9) = Lj(ghy)/Ashj1
and let m; = p; be the sequential Gibbs measures corresponding to the potentials (¢;), that is
pj = hjvj. Then L; is the dual of T with respect to p;. Moreover, (Tj)«pj = ptj+1 and £;1 = 1.

Proposition 5.3. The operators £; obey conditions (LY1), (LY2) and (SC).

IThis requires us to have a two sides sequence.
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Proof. First, the uniform boundedness (LY1) of the operators £; follows from the properties of
the non-normalized RPF triplets (or from (5.4))). Second, the Lasota—Yorke inequality (LY2)

was obtained in [46, Lemma 5.12.2]. Note that in [46, Lemma 5.12.2] the weak norm || - ||z1 is
replaced with the (weak) norm || - ||s. However, we have ||g|lcc < &,v(g) + Crllg|lpr with e, — 0
as  — 0. Using this we have that the Lasota—Yorke inequality with respect to (v;(-), |- |[z1) is
equivalent to the Lasota—Yorke inequality with respect to (v;(-), || - ||oc)-

Third, in [48] we proved that there are constants C' > 0 and ¢ € (0, 1) such that for all j,n
and a Holder continuous function h : X; — R,

(5.4) 122k —my(W)1]la < C3"

and so ((5.2) holds. Since £;1=1 we have inf inf £71=8§p=1. Thus we can repeat the arguments
]7n

from the previous section verbatim with time dependent v and m and obtain (SC). |

6. MOMENT ESTIMATES

Let TJ" =Tjip_10---0Tj41 0T}. Consider a sequence of real valued functions fi, € By, k > 0
n—1
such that sup || fx|| sy < co. Our goal is to obtain limit theorems for the sequence S,, = Z fjoTy
k -
7=0
considered as random variables on the probability space (X, B, mg). It what follows it will be
convenient to consider (f;) as two sided sequence by setting f; = 0 for j < 0.

6.1. The pulled back measures and their transfer operators. Consider the sequence of

measures m; = (Tj).mo on (Xj,B;). Then my = mp and for all j > 0 and each bounded
measurable function G : X; — C,

i (G) = mo(G o TY) = mj(G - L£I1).
Remark 6.1. Note that in the case when m; = p; is an equivariant sequence (i.e. (7})«p; =
fj+1) then m; = pj.

Let the operator £~j be the dual of T} with respect to the measure m; and m;41defined by the
duality relation

(6.1) / £+ (Lig)din 41 = / (foTy) g-dm;

for all functions such that both integrals are well defined. Then Ele = 1 because (7})«m; = Mj41.
Let

ﬁ? = Zj+n_1 0---0 ﬁj_,_l o Zj.
Proposition 6.2. There are constants Cy > 0, J € N and dg € (0,1) such that for all j > 0 and
n > 1 such that j +n > J we have
I£5(:) = s ()1l By < Codg-
Proof. Recall that the functions h; in Theorem satisfy n := ir;f ess-inf h;>0. Thus by

we see that ess-inf £71 > n — C¢". Consequently, if we take dp = %7} and J € N such that
cs’ < %n we see that ess-inf L{'1 > d¢ for all m > J. Next, a direct calculation shows that
Lg- Ly1)
£t
decays exponentially fast and using that, due to (V6), sup ||1/h;||py < co. O
J

E;Lg = . Now the proposition follows from Theorem [2.4] noting that ||£{'1 — hy,| By
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6.2. A martingale coboundary representation.

Lemma 6.3. For every sequence of functions f; € B; such that sup | f;|pv < oo there are
functions M; = M;(f) € B; and uj = u;(f) € B; such that !

(6.2) fj = fi = mo(fj o T§) = Mj + ujer 0Ty —uj, j=J.

Moreover, sup |Ju;||py < oo and (M; o Tj); is a reverse martingale difference with respect to
J

the reverse filtration A; = (Tg )"1B; (on the probability space (Xo,Bo,mo)). Furthermore,
sup ||uj|| v is bounded above by a constant which depends only on the constants C' and ¢ from

J
Theorem and on sup || f;||Bv.
J

Remark 6.4. Note that by (V8) we also get that sup || M;||py < oco.
J

Proof of Lemma[6.3, Define £; =0 for j <0 and f; =0 for j < .J. Set

- i
(6.3) wj =Y Ly wfiok =Y Ly pfi-k
k=1 k=1

Since 7,(fs) = 0 for all s > 0 by Proposition uj € Bj and sup |lu||py < oo. Set
J

M; = fj + uj — ujy1 o Tj. It remains to show that M; o Tg is indeed a reverse martingale
difference. To prove that we notice that E[M; o Tj|A;11] = £;(M;) o Tg“. On the other hand,
a direct calculation using (6.3]) shows that £;(M;) = 0. O

6.3. On the divergence of the variance. The first step in proving a central limit theorem
is to show that the individual summands are negligible in comparison with the variance of the
sum. In particular, we need to know when the variance is bounded. In this section we prove the
following result.

Theorem 6.5. The following conditions are equivalent.
(1) lim inf Var,,,(S,) < oo.
n—oo
(2) sup Vary,,(Sp) < oo
neN
(3) We can write f; = mo(fjo Tg) + Mj + ujiq o Tj — u; with uj, M; € Bj such that M; o Tg
is a reverse martingale difference on (Xo, By, mg) with respect to the reverse filtration Tj; J B;,
sup [[u; || By < oo, sup |[M;[|pv<oco, and ZVarmo(Mj o Tj)<oo.
J J »
J

Proof. First, it is enough to prove the theorem when mg(f; o Tg ) =0 for all j. In this case, by
Lemma [6.3] we can write

fj=mo(fj o T) + My +ujir o Tj — wj = My + ujr1 0 Tj — g

with w; and M; like in (3), except that in general the sum of the variances of AM; might not
converge. Notice now that

(6.4) [|Sn — SnMHL2(mo) <||Sn — SnM”LOO(mo) < 2sup HujHLoo(mj) =U < o0
J
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n—1
where S, M = ZMj o Tg.
j=0
Now assume (1), and let nj; be an increasing sequence such that ny — 0o and oy, =[Sy, || 2<C
for some constant C' > 0. Then by (6.4)), HSnkMH%Q(mO) < (C+U)? < co. However, since M;oT}

is a reverse martingale, we have

np—1
3 Vatyy (M 0 T9) = 180, M 2oy < (C+ U
j=0
n—1 )
Now, since V;, := [|S, M]3, = Z Var,,, (M, 0Ty ) is increasing we conclude that the summability
=0

condition in (3) holds. This shows that (1) implies (3).
Next, (2) clearly implies (1). Thus, to complete the proof it is enough to show that (3) implies
(2), but this also follows from (6.4)) since the latter yields HSnH%Q(mO) < (Vp+U)% < o0 O

6.4. Quadratic variation and moment estimates. Recall that the (unconditioned) qua-
dratic variation difference of the reverse martingale difference M; o Tj is given by ¢;(M) =
M 3»2 o Tj. Henceforth we denote Q; = M ]2 and let

Jj+n—1
Sjn=Sjnf = > feoTf, Sjn=Sjn—mi(Sjn) = Sjn —mo(Sjn o T3).
k=j
SjnM and S;,Q are defined similarly.

Proposition 6.6. There is a constant C' which depends only on the constants from Theorem

and on sup || f;||py such that for all j > J (where J comes from Proposition we have
J
Var,, (S;,Q) < C(1+ Var(Sj,f)).

Proof. First, to simplify the notation let us assume that j = J = 0. Denote
9; = Q; —m;(Q;) = Q;j — mo(Q; ° T§)

n—1
and Sp,g = Z gj o T, g . The argument below is similar to the first part of the proof of [24]
j=0
Theorem 4.1], but we provide the details to make our paper self contained. By Proposition
(using that my = mg) we have

Emol(Sng)?] <2 > Y ‘ﬁ?O((gk o Ty) - (e OTé]))‘ =2 > > ‘ﬁlk(gk : Eﬁ_kgz)‘

0<t<n 0<k<l 0<b<n 0<k<l

<Co > > mullgeDlgellsvey™=Co Y mullgel) | D lgellmvey ™

0<l<n 0<k<t 0<k<n k<t<n
<co > mkllgel) =co Y mollgro Tg]) < 2co Y mo(Qx o Ty)
0<k<n 0<k<n 0<k<n

for some constant ¢y (the first inequality of the last line uses that sup ||g;|| gy < 00). Here ﬁj are
J

the transfer operators defined by (6.1). Observe that mq(Qy o T )=mq((My o T¥)?) and, because
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of the orthogonality property, Z mo((MyoTF)?) = Var,,, (S, M). Now the result follows from
0<k<n

(6.4). 0

Proof of Proposition[3.3. It is enough to prove the theorem for j > J, since to get the result for
0 < j < J we can just take C' large enough.

To simply the notation, we will only prove the theorem when j = J = 0, the proof when
j > J >0 is similar.

Notice that it is enough to prove the claim for p = 2" for all m. Moreover, by replacing f;

with f; — po(fj o Tg) we can and will assume that o (Sy,) = 0 for all n.
We use induction on m. For m = 1 the result is trivial. Suppose that the statement is true
for some m > 1. In order to estimate ||.S, f||am+1 we first use thatE|

[Snfllgm+r < C 4 [|Sn M||gms

for some constant C' which depends only on the constants C' and § from Theorem and on
| fI| == sup || f;||Bv since ||Spf — SpM]|| e is bounded in n. So it suffices to show that
J

(6.5) [Sn M|Jgm+1 < C(1 4 [[Snfll2)

for an appropriate constant C'.
(6.5]) follows from a version of Burkholder’s inequality for martingales (see [69, Theorem 2.12]).
Let 04, ....,0,, be a martingale difference with respect to a filtration (.7-});1:1 on a probability space.

Let D, =01 +02+...40, and E,, = D% +0% + ... +D?L. Then, for every p > 2 there are constants
¢p, Cp > 0 depending only on p such that

1/2

1/2
/5 < IDally < CyllEnll, )5

(6.6) ol Enll,)s <

Applying with the (reverse) martingale difference M o Tg we see that

(6.7) 190 M |1 < | Sn QI

where S, = So,,Q and a,, depends only on m. Applying the induction hypothesis with the

sequence of functions Qj =Q; —mp(Qjo Tg ) we see that there is a constant R, > 0 depending
only of m and the constants in the formulation of Proposition [3.3] such that

152Qll2m < Rin(1+ [1SnQ]|2)-
Since E[S,, Q] = Var(S, M), Proposition [6.6] gives
19, Qll2m < 153 @ll2m + E[SnQ] < Ryn (1 + C(1 + Var(S,f))) + Var(S, M)
< R (14 Var(S,f)) + Var(S, M)
for some other constant R],. Using that sup ||Sy, f — S, M|/ < co we see that there is a constant

C > 0 such that Var(S,M)<C(1 + Var(S, f)). Thus, there is a constant R!, > 0 such that
192 Qll2m < Ry, (14 Var(S,,[)).
Now ((6.5]) follows from (|6.7)), completing the proof of the proposition. O

n—1

2Where S, M = ZMJ‘ ng, M; = M;(f).

Jj=0
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7. LOGARITHMIC GROWTH CONDITIONS
In this section we prove the following result.

Proposition 7.1. Let f; : X; — R be a sequence of functions such that sup || f;|| pv <oo and
J

m;(f;) = 0. Suppose 02 = Var,,, (S,) — co. Let Ay (t) = Inmg(e*S»f/on). Then for every k > 3
there are constants d; > 0 and Cj > 0 such that

sup  [AB(1)] < Cpo, B2

te[—dkan,ékan]
where A,(lk) is the k-th derivative of the function A,,.

The proof uses the complex Ruelle-Perron-Frobinuous theorem, see Theorem below.

7.1. Sequential complex RPF theorem. Take a sequence of real valued functions f; € B;
and || f|| = sup || f;l|pv < oc. Consider the operators L;.(h)=L;(he*’i) (where z € C). We need

J
the following result.
Lemma 7.2. (i) sup ||£;.||pv < C(z) for some continuous function C(z) (of exponential order
J

in |z|).

(ii) The map z—L; . is analytic and its k-order derivatives L;; j satisfy sup ||L;¢ x|y < Ci(2)
J

for some continuous function C(-) (of exponential order in |z|).

k
Proof. Since ||e*%i|| gy Z Gl ”f lav and by (V5), HffHBv < C¥||£;|%, for some constant

C, we get sup ||e*i | gy < eC‘Z| for some constant ¢ > 0.
J
The analyticity of the operators follows from the analytiticty of the map z — e*/i, and the

estimate on the norms of the derivatives is obtained similarly to part (i). O

The following result is a consequence of the more general perturbation theorem (Theorem
in Appendix @
Theorem 7.3. There is a constant 7y > 0 such that for every complex number with |z| < r( there
are sequences \(2) = (X;(2)), \;(2) € C\ {0}, h®) = (hg-z)),hg»z) € Bj, m®) = (mgz)),mg-z) € B}
with the following properties.

(i) The maps z — \j(2), z — hgfz)
bounded uniformly in j.

(ii) We have X;(0) =1, m;o) =my, plO = hj, mg-z)(l) = m§z)(h§z)) =1 and

(2)

and z — m;’ are analytic in z and their norm are

»Cg zh( z) _ =\ (Z)hgjzp (Ejvz)*mg‘i = )\j(z)mg-z).

(iii) There are d3 € (0,1) and C3 > 0 such that

|25 = Nn(m ()

j J+nH < G503

where EZZ = Ej+n—1,z o---0 £j+1,z 9] »Cj,z and )\j,n(z) = )\j+n_1(z) ce )‘j-i-l (z))\j(z).

3Here if 7 is a map from {|z| < 7o} to a Banach space we take ||7]| = sup [v(2)].

|z[<ro
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7.2. Proof of Proposition Let Aj(z) be like in Theorem and let IL;(z) be an analytic
branch of In Aj(z) so that II;(0) = 1.

Lemma 7.4. There are 9 > 0 and Ay > 0 such that for every complex number z with |z| < &g
and all j,n with j +n > J we have

Jj+n—1
lnEmO[ez(S”“f_ij)]— Z I;(2)| < Ay.
k=j

Proof. Since mg = 1o we have By, [e*(Sn+if=%1)] = mj+n(£zzl) where

L7 .(9L31)

e
£

Using Theorem |7.3(iii), and the facts that mj(ﬁél)zl, essinf(£6+"1)200 >0 and sgp 1£§]| v < oo

(7.1) L3.(9) = L (¥l g) =

we get
M (L] 1) = Ajin(2)Ujin(2) + O(85).
, B
where 93 € (0,1) and Uj,(2) = mg-z) (L3 jin (Hjsn,z)s Hitn,. = Eﬂ:ﬁ. Next the function
G(z) = ﬁzj+n(£~;-le) —Ajn(2)Ujn(2) is analytic. Since mj+n(£~§€01) = )\jo,n(())Ujm(O) = 1 we have
G(0)=0. Applying the maximal modulus principle to the function @ we get

Mjsn(L].1) = Ajn(2)Ujin(2) + 20(55)
namely, the error term is O (2d5) and not only O(d%5). Next

Thj—i—n(Hj—&-n,z) = mj+n(Hj+n,z£6+n1) = mj—&-n(hg‘j}n)-

Since A;(0) = 1 and Aj(z) are uniformly bounded and analytic in z, we can write the above in
the following form

ijan(£2.1) = N (2) (Usn(2) + 20(87)), 81 € (0,1).

The functions U; ,(z) are analytic, uniformly bounded in z and they take the value one at z = 0.
Thus, we can take the logarithm of both sides to conclude that, if |z| is small enough then

In By [+ =550] = In \j o (2) + Vjn(2)
where Vj,,(2) =InUj,(2) = In(1 4+ O(2) + 20(6})) = O(1). O
Using the Cauchy integral formula we derive the following result.

Corollary 7.5. Let Ajn(z) = InE,,,[e*(5i+»/=% /)], Then there exists ¢ > 0 such that for every
s > 1 there is a constant Cs > 0 such that for every complex z with |z| < ¢ and all j,n with
j+n>J we have

j4+n—1

(7.2) M) = Y )| < ¢
k=j

where ¢(®) denotes the s-th derivative of a function g.

Remark 7.6. Clearly, (7.2) also holds when j + n < J since then the number of summands is
uniformly bounded.
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Set
j+n—1
(73) Hjm(z) =

(]

I (2).
k=j

Lemma 7.7. Let B be a constant and let £k > 2. Then if B is sufficiently large there are
constants D and ¢ depending only on B and k so that for every ¢ € [—rg, 9] and each j,n such
that B < Var(Sjinf — S;f) < 2B we have
(k)¢
i) < D,
Proof. Applying [27, Lemma 43] with S = S, f — S;f we see that there is r = r(B) such that
if t € [—r,r] then
~ k‘ .
[R§) )] < DiBony IS
for some constant Dj which depends only on k. Using also Corollary we derive that
k).
L) (it)] < DiBo |57,
Next, by Proposition [3.3| we have E,[|S|*] < C(k, B). These estimates prove the lemma. O

Proof of Proposition[7.1. Fix some k > 3. Since 0n = ||Sn|12(me) — 00, using the martin-
gale coboundary representation from Lemma [6.3] given B > 0 large enough we can decompose
{0,...,n—1} into a disjoint union of intervals Iy, ..., I}, in Z so that I; is to the left of I;;1 and

(7.4) B < Vary,(Sr;) < 2B
where St = Z fjoT g for every interval I. Now, by Lemma there is a constan A>0
Jjel

1l 172

independent of B such that |||.S,f||z2 — (Z Vary,, (Mj o Té“)) < A and for each j > J we
k=J

1/2
have |||S; |12 — Z var,, (M o TF) < A.
kel
Hence, if we also assume that B > (4A)? then it follows that
(7.5) Cy < kpjo2 < Cy
for some constants Cy,Co > 0 which depend only on B. Next, let II;(z) = Zﬂk(z) Then by

kel
Lemma there are constants rp > 0 and Dy such that sup sup Hgf) (zt)‘ < D,;.. Hence,

Jte[—rE,rk]

(7.6) sup

te [—Tk ,Tk]

ng(it)‘ < Dyk, < CoDyo2.

Combining this with Corollary [7.5] and taking into account that o, — oo we see that

o [300)]| < Do

tE[—T‘k,’I‘k]

for some constant Dy, and the proof of the proposition is complete. O

4We can take A = 2sup ||u; ||z, where u; are the coboundaries from (6.2) .
J
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7.3. Proof of Theorems and Let A, (t) = mg(e™*5#/on). Applying Theorems 5 and 9,
and Corollary 11 from [52] to W,, = S,, /o, we see that in order to prove Theorems [3.1] and
it is enough to show that for every u > 3 there are constants d,,C, > 0 such that the function

Ay (t) is well defined, differentiable u times on [—8,0,,8,0,] and  sup [AM(8)] < Cuo;, 2.
|t|S0'n5u
However, this is exactly Proposition

APPENDIX A. PROOF OF THEOREM [2.4]

A.l. Proof of Theorem [2.4](i). Let o > 0 be such that n := p+¢c9 < 1 and let a > 0 be a
constant such that agy > Ky, where p and K( come from ([2.3)). Then it follows from ([2.3) that
for every n > N and all j > 0 we have
,C;'LC]'M C Cj+n7ap1+N—n+K0 C Cj—i—n,na-
Given C > 0 consider the cone
Ki(C)={g9€ Bj, g>0, esssupg< C essinf g}

where the essential supremum and infimum are with respect to m;. Denote by d; the projective

Hilbert metric associated with the cone C;, (see [16, 66]). Then by [19, (1.1)] the projective

diameter of KC;(C) N Cj e inside Cj, does not exceed a constant R = R(a,n,V,C) which de-

pends only on a,n,C and V' := supwv;(1). Next, combining (V3), (SC), and the relation
J

(L3)*mjtn = mj, we see that there are constants M > N and C' (depending on a but not on j)
such that for every j and n > M we have

ﬁ?Cj’a C K:JJrn(C)

We conclude that for every j and n > M the projective diameter of L7C;q inside Cjin,q does
not exceed R.
The next step of the proof is the following result.

Lemma A.1l. (a) There is a constant A > 0 such that for every a, j and h € Cjq,
[p]l < Amy(h)

(b) If @ > V then there is a constant 9 > 0 such that every real valued g € B; can be written
in the form g = g1 — g2 where g; € Cjq and ||g1]| + ||g2]| < 7ollg]|-

Proof. To prove (a) we note that if h € Cj, then ||h|| = m;(h) +v;(h) < (1 +a)m;(h) so we can
take A =1+ a.

In order to prove (b), given g € B; we take Cy = Co(g) = ||glloc + 2% |9l v It is immediate
to check that g+ Cy € Cj 4. Since Cy < C||g||py for some constant C' which does not depend on
j we have g = (g + Cy) — Cp and, with || - || = || - || BV,

lg + Coll + 1Coll < [lgll + 2[[Coll < llgll(1 4 2Co +2CoV) < rlig||

for some constant r = r(a,V,C). Thus we can take g1 = (g + Cp) and g2 = Cj (the constant
function). Note that go € C;, since a > V. g

Based on Lemma the proof of proof of Theorem (ii) is completed like in |46, Chapters
4 and 5]. In fact, here the situation is much simpler, and for readers’ convenience we provide the
details. First, by taking f =1 in (2.2) and letting g vary we see that (L})*m;, = m; for all j
and n. Next, fix some a large enough and take two sequences of functions gy, f, € C, 4. Denote
Gjn = L7gj and Fj, = L7 f;. Then, since the projective diameter of the image of L;C, ; inside
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Ca k+s does not exceed R if s > M, we see by [66, Theorem 1.1] that for every j and n > M we
have

dj (Ejn, Gjn) < (e(R))(=D/M)

where ¢(R) = tanh(R/4) € (0,1).
For a positive function g, define the normalized iterates by

_ Lg B Lg
mjn(Llg)  my(g)
Then by [46, Theorem A.2.3] and Lemma [A.1](1) we have

(A1) 12355 = g5l < GALR) D/,

Next, fix some function hg € Cq such that mg(ho) = 1 and for j > 0 define h; = Eéhj. Then
hj41 = Ljh; and mj(h;) = 1 for all j > 0. Therefore,

(A.2) Ll = hjin

for all j > 0 and n > 0. Moreover, h; € C,; (due to the equivariance of the cones). By taking

gj = h; in (A.1)) and using (A.2) we see that

1L £ = hjnl| gy < A(e(R))l(n=1)/M]

1
2
Multiplying by m;(f;) we get that, with 6 = (¢(R))YM, for all f € C, ; we have
1E5F () = mj(F)hjnll < my(f)BS"
where B is some constant. Using Lemma [A.1b) we obtain (2.4) with C' = 2rB. O
A.2. Proof of Theorem [2.4((ii). To see why (T}).jt; = pjt1, take a measurable function
g : X; — R and write
[(T5)+115](9) = nj(g 0 Tj) = mj(hjg 0 Tj) = mj1((Lihy) - 9) = mj1(hj+19) = Hjt1(9)-

To prove asymptotic uniqueness of 15, let fi;=g;dm; be another sequence of probability measures
such that (T})«fi; = fij4+1. We show that lim |hj—g;|[1=0. We claim that
j—)OO

(A3) Ejgj = gj+1, Mjy1 — a.€.
Indeed given a function f: X;1; — R we have

mj+1((L£59;)f) = mj(g;(f o T})) = fi;(f o Tj) = fij+1(f) = mj1(gj+1f)

proving (A.3). Iterating (A.3)) we see that g, = L{go, mp-a.e. Next, let € > 0 and let go : Xg — R
be a BV function such that ||go — go||1 < €. Normalizing ¢ if needed we can always assume that
mo(qo) = 1. By Theorem [2.4{(i) we see that

Hﬁqu — hnHBV < CHQQHBv(gn — 0, as n — 0Q.
On the other hand,
1£690 — gnllr = L6400 — Lo gollr < [[£5([g0 — go)llr = [lg0 — dol| < e.

Therefore, by taking n large enough we get that ||k, —gn |1 < €, and the proof of Theorem [2.4[(ii)
is complete. ([l
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APPENDIX B. GIBBS MEASURES FOR SF'T.

In this section we denote by T; : X; — X;1, a one sided topologically mixing sequential
subshift of finite type and by T : X; — X1, j € Z the corresponding two sided shift. For a
point (zj,zj41,...) € X; and m € N let

[l’j,ZEjJrl, ...,l’j+m71] = {($;+k)k20 S Xj : l‘;-+k = Tjtk, Vk < m}
be the corresponding cylinder of length m. Cylinders in X ; are denoted similarly.
Remark B.1. The reason we consider here negative indexes j is to provide a complete theory
which includes uniqueness of Gibbs measures (see Section |B.2)) and relations with two sided shift
via a non-stationary version of Sinai’s lemma (see Lemma [B.2)). If we begin with a one sided
shift then there are many Gibbs measures corresponding to a given sequence of potentials, each
of which corresponds to an extension of the shift to negative indexes and an extension of the

sequence of potentials to a two sided sequence. Considering negative indexes j also allows us to
uniquely define two sided shifts which have applications to non-autonomous hyperbolic systems

(see Appendix .
B.1. A sequential Sinai’s Lemma. Let 7; : Xj — X be given by
7 ((Tj4k)kez) = (k) k>0-

Lemma B.2. Fix some o € (0,1] and let ¢; : X; — R be uniformly Holder continuous with

exponent «. Then there are uniformly Holder continuous functions u; : X ; — R with exponent
a/2 and ¢; : X; — R such that

Vi = uj —ujy1 0T+ ¢jom.
Moreover if [[1);]lo — 0 then [u;l,/2 — 0.

Proof. The proof is a modification of the proof of [I5, Lemma 1.6]. For each j and ¢ take a point
alt) = (ag.ﬂ’_tlz)k € X; such that ag-]’t) =t. For y = (yj+1)x € X; define

Tj(y) = (?/%k)kez € Xj

where y;'-‘HC =Ytk if k>0 and y}ﬁrk — a9 if < 0. Let

Gtk
(B.1) wi(y) = > (Va(TFy) = v (Tiri(w)))
k=0

To see that the RHS of (B.1)) converges note that since y and r;(y) have the same values at the
coordinates indexed by j+k for k>0 (i.e. with indexes to the right of j) we have

(B.2) [Vs0(TFy) = Vi (T3 ()] < va(Wye0)27
oo

and so sup |u;| < Zva(¢j+k)2_ak. Thus, supsup |uj| < oo. Moreover, if v,(1;) — 0 then
k=0 IX

sup |u;| — 0.

X5

Next, we claim that the function 1; —u; +ujy1 0 T] depends only on the coordinates indexes
by j + k for £ > 0 (so it has the form ¢; o 7;). Indeed,

o0
~ ~ ~k ~k ~
uj —ujpr 0Ty =1+ (Tj+k o Ty orj = Yitkt1 0 Tjty orjn "TJ‘) ‘
k=0
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Note the the sum on the above right hand side depends only on the coordinates indexed by j+ &
for £ > 0, and the claim follows.

In view of the above, in order to complete the proof of the lemma it is enough to obtain
appropriate bounds on the Holder constants of the functions u; (corresponding to the exponent

/2). For that end, let y and 3/ in X be such that Yjtk = y§-+k for every |k| < n for some n > 0.
Using (B.2]) we have
[n/2] [n/2] )
[ (y) = u; ()] < Z sk (TFy) = ia (T | + Z sk (T () = wya (T ()

+2 Z Ua(¢j+k)2_ak =1+ Ir + Is.
k>[n/2]

To show that u; is Hélder continuous with exponent «/2 (uniformly in j) we use that
‘¢j+kz(Tfy) - ¢j+k(Tfy')‘ < sup v (¥s)2~ "R
S

and similarly with r;(y) and r;(y’) instead of y and ¢/, respectively. So I + I < C27"%/2,
Moreover, we note that Iy < C27"/2,

[n/2]

Next, if [|t)jlla — O then I + I < Z Va(1hj11)2” TR < £,9719/2 with e; — 0. Similarly,
k=0

I3 < 5j2”0‘/2 for e; with the same properties. O

B.2. Sequential Gibbs measures for one sided shifts.
Definition B.3. Let ¢; : X; — R be a sequences of functions such that sup ||¢;|lo < oo for some
J

€ (0,1]. We say that a sequence of probability measures ;; on X is a sequential Gibbs family
for (¢;) if:
(i) For all j we have (Tj)«pj = ftj+1

(ii) There is a constant C' > 1 and a sequence of positive numbers (\;) such that for all j,
every point (z;4x)r in X; and every r > 0 we have

0_1657’T¢($)/)\j7r < 'yj([xj, v :Ej+7~71]) < Cesj’rd)(x)/)\j’r

Jj+r—1

where S; .¢(z Z¢]+s (Tjz) and N = [ M
k=j

We say that two sequences (a;) and (f3;) of positive numbers are equivalent if there is a
sequence ((j) of positive numbers which is bounded and bounded away from 0 such that for all
j we have a; = Cjﬁj/Cj+1'

We need the following simple result.

Lemma B.4. Two positive sequences (o) and (f5;) are equivalent if and only if there is a
constant C' > 0 such that for all j and n we have C' < a;,,/8jn < c.

Proof. It is clear that there exists such a constant C' if (a;) and (3;) are equivalent. On other
hand, suppose that such a constant exists. Then, for j > 0 define {; = By /. Clearly,

a;/B; = (j/Cj+1. For j < 0 we define similarly (; = oaj+17|j|/6j+1,|j|. ([
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Theorem B.5. For every sequence of functions ¢; : X; — R such that sup ||¢;||o < oo for some

J
a € (0,1] there exists unique Gibbs measures ;. Moreover the sequence ();) is unique up to
equivalence.

We will see below that the measures p; can be expressed in terms of the strong limits of
the normalized operators L7 associated with the sequence (¢;) defined in (B.4). The rate of
convergence is exponential, see (B.5|) below.

Proof. Existence of ;1; was proven in [48]. Let us recall the main arguments. First, we define the
operator L; which maps a function g : X; — R to a function L;g : X411 — R given by

Lig(z) = ) e®Wg(y).
ijidf

Then, in [48] it was shown that there is a positive sequence (A;) which is bounded and bounded
away from the origin, a sequence of positive functions h; with uniformly bounded Hélder norms
(corresponding to the same exponent « of ¢;), which are also uniformly bounded below by a
positive constant, and a sequence of probability measures v; on X; such that vj(h;)=1 and for
all j,n and a Holder continuous function g on Xj,

(B.3) 1(Xjn) T L7 g = vj(9)hjsnlla < Collgllad™
for some constants C' > 0 and § € (0,1) which do not depend on j,n and g. Here

L;L = Lj+n—1 ©---0 Lj+1 o Lj.
Then the Gibbs measures constructed in [48] are given by u; = h;jdv;. Moreover, the operator
L; given by

L;(gh;)
B.4 Lig(x) =L
is the dual of the Koopman operator corresponding to 7; with respect to p; and p;11 and
(because of (B.3)),
(B.5) 1£79 = 1 (9)1la < Cligllad™
for some C > 0. In the derivation of (B.5]) we used that sup||1/h;|a < co.
J

Now, let us suppose that there is another Gibbs measure fi; associated with a sequence 5\]-.
Namely, (T})«fi; = fij+1 and for every point z € Xj,
(C) 155 )X < ([, 1, e wjara]]) < Ce¥ir?@) /N,

for some constant C' > 0. Let us first show that the sequences ()\;) and (};) are equivalent.
Indeed, for all j and n, by the Gibbs property of both p; and f;,

Cil Z esj’n¢(xy)/)\j,n < Z IU’J([y]a ) yj-‘rn—l]) <C Z eSj’n¢(my)/Aj,n

(Y- Yj+n—1] [Yjs-rYjtn—1] [Yjr-sYjtn—1]
and
(é«)—l Z 6Sj,n¢($y)/j\j7n < Z ﬂj([yja ey ijrnfl]) < C Z eSj,nd)(my)/;\j’n
(Y Yjtn—1] (Y- Yjtn—1] (Y5 Yjtn—1]

where the point z, is an arbitrary point inside the cylinder [y;, ..., Yj4+n—1]. On the other hand,

1= > i vienal) = > ([ Yirna])-

[YjssYitn—1] [YresYjtn—1]
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Hence,

(o)t <cc
Ajn
and the equivalence of the sequences ()\;) and (};) follows from Lemma
Next, we show that fi; = u; for all j. We first need the following result. Let H;, denote

the space of Holder continuous functions on X; with the Holder exponent «, equipped with the

usual a-Hélder norm || - ||o. Let HY, denote its dual, and denote by || - [|o the (operator) norm
on the dual, as well. Let £%: H7,, , — H , be the dual operators of £;. Then it follows from

- that for every j,n and Kjtn € Hj

J+n,a
(B.6) I(CL5) Kjrn = Kjan(Litn)pilla < Cllkjanllad™

where 1 is the function on X}, which takes constant value 1. In particular, if we take k;4, = fij11
then, since fij4n1j4, = 1, we see that

(B.7) (L) fijen — pj as n — oo.
Next, we claim that
(B.) (L2) iy = fiy.
Once the claim is proven, combining it with (B.7]) we obtain fi; = u;, as required
Now, because of the Gibbs properties of both y; and ji; and since ();) and ()\;) are equivalent

we see that f; < pj. Let p; = % denote the corresponding Radon Nikodym derivative. In
order to prove (B.8]), we will show that for every j,

(B.9) pj+1oTj =pj, pj—as

implies that pj4n 0T} = p;. Therefore, for every bounded measurable function g : X; — R,
(LF) Rjan(9) = Rjan(LF9) = tjanPitnLlg) = 1i(g - Pjn o T7)) = p15(g - i) = it;(g)

and (| - follows (note that in the third equality above we have used that L7 is the transter

operator of T} with respect to p; and Wjtn)-

To complete the proof of the theorem we need to prove . By identifying both measures
p; and fi; as measure on the two sided shift Xj (see next section), we can assume that p; and
fi; are mapped by Tj to pj41 and fij41, respectively. In what follows we will abuse the notation
and denote the lifted measures by p; and fi;. The identification of the function p; to Xj will
also be denoted by Pj; namely, we write p;(...,zj_1,2;,Tj11,...) = pj(zj, Tj41,...). Now, since

(Tj)eptj = pjr1 and (Tj)ufi; = fij41 for every bounded measurable function f : X1 — R we
have

wi(pi(f o Ty)) = fi;(f o Ty) = fijs1(f) = pjr1(pjsrf) = pi((pjsr o Ty) - (f o Ty)).

Since Tj is invertible we can replace f o7} with a general bounded measurable function g on X
and (| . ) follows. D

B.3. Gibbs measure for two sided shifts.

Definition B.6. Let 1); : Xj — R be a sequences of functions such that sup |[1)j]|o < oo for
J

some « € (0,1]. A sequence of probability measures 7; on X ;j is a Gibbs family for (1;) if

(i) For all j we have (T})«v; = Yj+1-
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(ii) There is a constant C' > 1 and a sequence of positive numbers (\;) so that for every point
(Yj+x)r in X; we have

CeSim VW N < ([, Yjts oo Yjar1]]) < CeSirvW N,
r—1 ~ J+r—1
where S; 9 (y) = Z ¢j+8(Tj§y) and Aj, = H Ak-
s=0 k=j

Proposition B.7. Every uniformly Hélder continuous sequence v; (with respect to some expo-
nent a € (0,1]) admits a unique sequence of Gibbs measures ;.

Proof. Let ¢; be the functions obtained in Lemma Let p; be the unique sequential Gibbs
measure on the one sided shift space X; corresponding to the functions (¢;). Since (T;_g)«ptj—r =
p; using Kolmogorov’s extension theorem we can extend p; to the space of two sided sequences

Xj. Let us denote this measure by ~;. It is clear that (7}).y; = ~;+1. To prove the second
condition in the definition of a sequential Gibbs measure we notice that for every point € Xj,

Vi[5, oo @jrra]) = ([, s @jrra]) X Ajeir®omi (@)
where (;) is the sequence associated with the Gibbs measure ;;. Now, by Lemma we have
that
eSirdomi(x) — oSir(x)
and hence ~; is a sequential Gibbs measure corresponding to the functions 1;, and (A;) is the
corresponding associated sequence.

To prove uniqueness of y; constructed above, we note that if 7, is another Gibbs measure then
the measure fi; defined by the restriction of «; to the o-algebra generated by the coordinates
with indexes j + k,k > 0 projectsﬂ to a Gibbs measure on X;. Hence fi; = u;, where p; is the
unique sequential Gibbs measure corresponding to the functions ¢;. On the other hand, since
(Tj)*’yj = Yj41, for every r > 0 the restriction of ¥; to the o-algebra generated by the coordinates
indexed by j + k for k > —r coincides with the restriction of ;_, to the o-algebra generated
by the coordinates indexed by j —r + k for k > 0, which, as explained above, projects on X;_,
to pj—,.. Hence, for every r the measures v; and 7; agree on the o-algebra generated by the
coordinates indexed by j + k for k > —r (as both coincide with p;_,). By taking r — —oo we
conclude that v; = ;. ([l

APPENDIX C. SMALL PERTURBATIONS OF HYPERBOLIC MAPS

C.1. Hyperbolic sets. Let M be a compact C? Riemannian manifold equipped with its Borel
o-algebra B. Denote by d(-,-) the induced metric. Let T : M — M be a C? diffeomorphism.

Definition C.1. A compact T invariant subset A C M is called a hyperbolic set for T if there
exists an open set V' with compact closure, constants A € (0, 1) and «g, Ag, By > 0 and subbudnles
I' and I'* of the tangent bundle T'A such that:

(i) The set {x € M : dist(xz,A) < ap} is contained in a open subset U of V such that TU C V
and Ty is a diffeomorphism with sup max(||D,T|, ||D.T~}|) < Ao;
zcU
(i) TA =T T% DT(I'") =1%, DT(I'*) = I'* and the minimal angle between I'* and I'* is
bounded below by «;
(iii) For all n € N we have

| D T™v|| < BoA™||v|| Vv eT% and || DT "v| < BoA"||v|| Vv e Tq.

5By “projects” we mean that if the restriction is denoted by ~; then (m;).v; = py.
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Definition C.2. A hyperbolic set is called
(i) locally mazximal if the set U above could be chosen so that A = m T"U (that is, A is the

nez
largest hyperbolic set contained in U);

(i) hyperbolic attractor, if in addition, U could be chosen so that TU C U (in the case when
M = AT is called Anosov).

We say that A is the basic hyperbolic set if it is infinite locally maximal hyperbolic set such
that 7| is topologically transitive.

Henceforth, we assume that A is topologically mixingﬁ basic hyperbolic set.

A powerful tool for studying hyperbolic maps is given by a symbolic representations. Namely,
every topologically mixing basic set A admits a Markov partition (see [79, Chapter 10]) which
gives raise to a semiconjugacy 7 : X — M where X is a topologically mixing subshift of a finite

type.

C.2. Structural stability. Now, consider a sequence of maps 7 = (T : M — M);cz. Denote
by di(f,g) the C! distance between f and g. We have the following result.

Theorem C.3. If §1(7) := supdi (7', Tj) is small enough then there is a sequence of sets A; C M

J
and homeomorphisms hj : A — A; (that we think of as a “sequential conjugacy”) such that h;
and hj_l are uniformly Hélder continuous,

(Cl) TjAj = Aj_|_1 and Tj o) hj = hj+1 oT.
Moreover sup ||h; —Id|[co — 0 as 61 (7T) — 0.|j|
J

The sets (A;) are sequentially hyperbolic for the sequence 7 in the following sense. They
are compact, satisfy TjA; = Aj;; and there exist constants A’ € (0,1) and oy, A1, By > 0 and
sequences of subbudnles I'j={I']  : z € A;} and I'Y={T'}, : € A;} of the tangent bundle T'A;
such that, for each j:

(i) The set {z € M : d(z,A;j) < oy} is contained in an open subset U; of V' such that T;U; C V
and Tj|y, is a diffeomorphism satisfying

sup sup max(| DTy, D757 ) < A
i xEUj

(i) TA; = T3 @ T¥, DT;(I%) =TI

111, DT(TY) =T, and the minimal angle between I'; and
I'} is bounded below by ax;

(iii) For every n € N and all j we have ||D,T}'v|| < By - (X')"|Jv|| for every v e T,
and || D, T;"v| < By - (X)"|Jv] for every v €T}, where T, " = (Tr,)~ "

(iv) TyU; C Ujyr and () T} ,Ujon = A

n=0
6Topological mixing assumption can be made without a loss of generality. Indeed (see e.g. [(9, Chapter 8])

P
an arbitrary basic set A can be decomposed as A = U Aj so that TA; = Aj+1 moa p Where A are topologically
j=1
mixing basic hyperbolic sets for T77. Then we could apply the results discussed below to (77, A;).
"Note that in Theorem we can also consider one sided sequences (7j);>0 because they can be extended
to two sided ones. The reason we consider two sided sequences is because the definition of hyperbolicity requires
considering negative times to define the unstable subspaces.
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Theorem is proven in [62, Example 4.2.3], [40, Example 2.5] and [64, Theorem 1.1]) except
the Holder continuity of h; and hj_1 was not discussed there. The proof of Holder continuity
is quite standard but for completeness it is included in §C.4 We note that in [62, 40 64] the
smallness of |T; — T'||c1 was not uniform in j, which led to non-uniform in j hyperbolicity.
However, when §1(7) is uniformly small then the arguments in the proofs yield the uniform
hyperbolicity.

C.3. Limit Theorems. Let 7; = hjow. Then 7; provides a semiconjugacy between the sequence
T and the subshift 3 describing the symbolic dynamics of T. Given a sequence of Holder functions
¢; on Aj let ¢; = ¢; om;. Note that 1; are Holder continuous due to Holder continuity of ;.
Let v; be the Gibbs measures for {¢;} which exist due to the results of Appendix [Bl Define
measures p; on Aj; by p;(A) = Vj(ﬂ'j_lA). Given a sequence of Holder functions f; on A; let
g; = fjomj. Thus S,f = Spgomy* and so (S, f)(x) when x is distributed according to o has
the the distribution as (S,g)(w) when w is distributed according to vy. We thus obtain

Corollary C.4. Theorems and are valid for (S, f)(x) where x is distributed according
to ug.

We also have the following result (see [40, Theorem 4.3]).

Theorem C.5 (Sequential SRB measures). Suppose that A is a hyperbolic attractor. Then
there is a sequence of probability measures p; on A such that (7}).u; = pj41 and

i = tim (T7",).(pjndVol)

for every uniformly bounded sequence of probability densities p, on I',,. The measures (u;),
J € Z are the unique family of equivariant measures such that the conditional measures of u;
on the unstable manifolds (see at time j are absolutely continuous with respect to the
Riemannian volume on these submanifolds.

Moreover pi; can be obtained by the construction described above corresponding to the se-

quence of functions ¢; = —InJ (Tj]r;_i), where J(-) stands for the Jacobian matrix.
n—1
Therefore W,, = Z [ (T3 x) satisfies all the limit theorems in Section [3| when z is distributed
§=0

according to a measure having a Holder density with respect to .

Remark C.6. When starting with a time zero sequential SRB measure Theorems and
hold for uniformly hyperbolic sequences (7)) without the assumption that the maps 7} are close,
if iminf,, o %Var(Sn) > 0. Indeed, in this setup we can use the functional analytic approach
of Bakhtin [§] together with the perturbative approach in Section IE The reason this works
well only when liminf,, %Var(Sn) > 0 is that when the variance grows sublinearly fast our
proofs rely on a block decomposition technique. This involves a sufficiently smooth martingale
coboundary representations, a tool which is not available in the setup of [§] since the transfer
operators acts on spaces of distributions and not functions. See also [43] for a similar functional
approach, which has applications to sufficiently close non-autonomous hyperbolic sequences (see

[43, Section 7]).

C.4. Holder continuity of the conjugacies. To prove the Hélder continuity of h; and hj_1
we need some background.
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Local stable and unstable manifolds. For € small enough, and x € A; define st(:c,e) to be the
set of all points y € A; such that d(7}'z, T}'y) < € for all n and d(7}'z, T}'y) — 0. Similarly, we
define W}'(z,€) to be the set of all points y € A; such that

d((T},) e, (T],) 7 ly) < e

for all n and d((77} )Tl (T3 )" ty) — 0. Then (see [40, [62] and [70]) Wi(z,e) and Wi(x,¢)
are manifolds and tangent space of W7(z,¢) at x is I'; ; while the tangent space of W“(x £) at
z is I'y ;. Moreover, there are constants C >0 and ¢ € (0,1) such that for every j,

(C.2) d(T}'z, Tj'y) < C6" for all y € W (w,¢)
and

n -1 n —1 n U
(C.3) d((T72,) =, (T}1,,) " y) < C6" for all y € Wj'(z,¢)

Remark C.7. Like in the autonomous case, we have the following (see [70, Proposition 3.5]).
Define Wj(x, B) to be the set of all points y€A; such that d(T}'z, Tj'y)<p for all n > 0. Similarly,

let W;(x, ) be the set of all points y € A; such that d((Tj"_n)_lx, (T]T‘_n)_ly) < B foralln > 0.
Then for every 5 < %E,

W;(a:,ﬁ) C Wj(r,e) and W?(x,ﬁ) C Wj(z,e).
This essentially means that, like in the autonomous case, up to replacing € with %5, the local
stable/unstable manifolds can be defined using only the condition about the e-closeness of the
forward /backward orbits.

Let us also denote by W#(z,e) and W¥(z, ) the local stable and unstable manifolds of  with
respect to T' (then all the above properties hold true).

Proof of Hélder continuity. The proof is a minor modification of the proof of [54, Proposition
19.1.2], but for readers’ convenience we provide the details. We only prove that h; is Holder
continuous, the proof that h;l is Holder continuous is analogous, see below. Fix some ¢ small
enough (in a way that will be determined later). We say that z,y € A are s-equivalent if
y € W3(z,¢e). Similarly, we say that they are u-equivalent if y € W*(z,¢). Then, using local
coordinates and that the angles between the stable and unstable directions are uniformly bounded
below we see that if € is small enough then there is a constant K such that

(C.4) d(z,y)? +d(y, 2)? < Kid(z, 2)?

for every x,y, z € A such that z is s-equivalent to y and y is u-equivalent to z, and d(x, z) < e. In
view of in order to show that h; is Holder continuous it suffices to show that restrictions of
hj to both unstable and stable manifolds are uniformly Holder (see e.g. [54, Proposition 19.1.1]).
We will consider h;|W¥(z,¢), the result for h;|W?(x,¢) follows by replacing 7' by 7.

Let us prove that h;|W*(z,€) are uniformly Holder continuous. Fix some g9 > 0. By uniform
continuity of h; proven in [64], there exists 0 < dy < € such that for every j and every z,y € A
with d(z,y) < do we have d(h;(x),h;(y)) < €o. Let z,y € A be such that y € W"(x,e). Denote
p = d(x,y) and let K > 1 be a Lipschitz constant for 7. Assuming that p < K~2§y there is
a unique natural number n such that K"p < dy < K"tlp. Then d(T*z, T"y) < K"p < do
for all & < n and so d(hjinT"z, hj1nT"y) < €o. Since y € W¥(x,¢) and d(T*z, T*y)<dy<e
for 0 < k < n we have T"y € W"(x,e). Using Remark and the equicontinuity of (hg),
we see that hj,T"y € Wi, (hjnT"x,e") where &' =¢'(c) =0 as ¢ -0 (we can take ¢’ =
sup(sup{d(hx(a), hr(b)) : d(a,b) < e}). Thus, by fixing € small enough and using (with the

k
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above £’ instead of £) we see that there are constants C' > 0 and ¢ € (0, 1) such that
d(h;(x), hj(y)) = d((T]) " hjsnT" 2, (T}) " hjpnT"y) < O eg

— CegK " = CegK (K "1)° < (CegK®6; %) = (CeoKe8;°)d(z, y)°
[1n 8|

where ¢ = 1= > 0.

This shows Hoélder continuity of h;. The proof that h;l is Holder continuous is similar except
we use the equivalence relations induced by Wj'(z,¢) and by W} (z,e). O
APPENDIX D. PERTURBATION THEOREM

D.1. The statement. Let (Bj,| - ||j);>0 be a sequence of Banach spaces and

Aj : Bj — Bj;1 be a sequence of bounded linear operators. We assume here that there are
(Ajs hj,v5) € (C\ {0}) x Bj x B} where B} denotes the dual space of B; so that
(D.1) Ajhj = Ajhjer,  (4A5) Vi = Ay
We will also assume that dim(B;) > 1 and that v;(h;) = 1.

Let C be a complex Banach space. Let € > 0. Denote by B¢(0,¢) the open ball in C around
0 with radius . For each t € B¢c(0,¢) let Ag.t) : Bj — Bj11 be a sequence of bounded operators
such that Ag-o) = Aj. Set A?" = Ag.i)ﬂ%1 0---0 A§-t). In the sequel, for any sequence of operators
Rj: Bj = Bjy1 we will denote R} = Rjyp—1 00 Rj110R;. Write C'=C\{0}.
Assumption D.1. (i) inf|\;| > 0.

J

(ii) There are constants Cp, >0 such that for all j and g € B; so that v;(g)=0 we have

(D.2) 147 91l < Collg|dg-
j+n—1
Moreover, lim inf inf |)\j7n]1/” > &, where \j, = H Ak
n—oo g k:j

®)

(iii) The maps t — Aj" are analytic in some neighborhood U of the origin (which does not

depend on j) and sup HAgt)H are uniformly bounded in j.
teu

The main result in this section is as follows.

Theorem D.2 (A sequential perturbation theorem). Under Assumption for every d1 > dg
there exist 71, C7 > 0 such that for every 7 € N and t € Bg(0,r1) we have the following.

(i) There are triplets (A;(t) e V(-t)) € C' x Bj x B}, which are uniformly bounded in j,# so that

LA
APR = xnl, AP = x .

Moreover, A;(0) = Aj, hg.o) = hj, 1/](-0) = v}, and the triplets are analytic functions of ¢ and their

norm is uniformly bounded. Furthermore, yj(hg.t)) = l/](-t)(hg,j) = y](.t)(hg.t)) = 1. If instead of
(t) ()
J J
k € N with uniform bounds on the C* norms, then the above triplets are C* functions of ¢ with
uniformly bounded C* norms.

(ii) Consider the operators Pj(t) : Bj — Bj41 given by Pj(t)g = )\jyj(-t) (g)hg-?_l.

analyticity of t — A\’ we assume that C is a real Banach space and t — A}’ is C* for some

Then

Py = gm0 (O,
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and denoting Ej(-t) = Agt) — Pj(t) we have A;’n = P]t — E;n and
(D.3) IES"™ || < Cio7

D.2. Preparations for the proof of Theorem Our first result shows that we can always
consider two sided sequences instead of one sided ones.

Lemma D.3. We can extend both sequences (Bj, || - ||j)j>0 and (4;) >0 to two sided sequences

such that (D.1]) and Assumption still hold.

Proof. For j < 0 we take B; = By. Then we take a nonzero v_; € By and set v; = v_; for j < —1.
We also define \; = 149y for j < 0. Finally, we take a nonzero h_; € By such that v_;(h_1) =1
and define hj = h_; for all j < 0. For j < 0, define A;(g) = (1 + do)v—1(9)hjr1 = Ajvj(9)hjt1.
It is clear that holds with the new two sided sequences. Assumption is in force since
for j <0, if vj(g) = 0 then A;(g) =0 and so A}g = 0. O
Henceforth we assume that we have a two sided sequence satisfying and Assumption .

Remark D.4. If the operators A; are defined for all j € Z then the proof of Theorem [D.2| (which
proceeds by applying the Implicit Function Theorem) shows that the projections P; constructed
in the theorem are unique. The uniqueness does not hold if the operators are only defined for
j € N (cf. the discussion after Theorem [2.4)).

Lemma D.5. (i) Let the operator Q; : B; — B; be given by Q;(g) = vj(g9)h;. Then for every j
and g € Bj we have vj(Q;9) = v;(g).

(ii) Consider the operator P; : Bj — Bji; given by

Pig = \jvj(g)hjt1.
Then P; coincides with A; on 7; := span{h;} and
Ajr1Pj = Pjadj = P By, and Pj = Ajnv(-) .
Therefore, with F; = A; — P; we have
E]n = A? - P]n = A;L — )\j,n’/j(')hj+n-

In particular, A7 = P;" + E7'.
Proof. (i) v; (vj(9)h;) = vj(9)vi(hj) = vi(g).

(ii) We have Pjh; = A\jvj(hj)hj = Ajhjy1. So Aj and P; coincide on n;. Next, the identity
Pl = AjnVj(-)hjqn follows by induction on n. For n = 1 is it just the definition of P;, and to
prove the induction step, if P}' = AjnVj(-)hjin then

PP (g) = Pjpn(P}g) = Xjnvi(9) Pin(hjin) = X (9)Njtnhjinir = Njns1v5(9)hjnia.
Since (A;)*vj4+1 = A\jv; we have Aj 1 Pj = Pj11A; = Pj1Pj, because all three expression above
coincide with the operator

g = N+ (9)hjr2 = PH(g).
Using this the proof that E} = A;L - P proceeds by induction on n. O

Lemma D.6. Suppose that Assumption |D.I|holds and let C be a constant so that sup ||Q;||<C.
J

Then for all g € Bj,

(D.4) 1479 = Xjnvi(9)hjenll = AT = PP < (C'+1)Collglldg-

Proof. Set Rjg = g — Qjg. By Lemma[D.5, v;(R;g) = 0. So by (D.2) applied to R;g
1459 = Xjnvi(@hjnll = AT (Rig)|| < (C +1)Collglldg - .
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Lemma D.7. Let R; : B; — Bj1 be a sequence of operators. Suppose that there are constants
d9, Co > 0 such that for all j,n we have

IR}l < Cody-
Then for every d; > dg there exist constants g > 0 and C7 > 0 with the following property. For
any other family S; : Bj — Bj1 of linear operators satisfying sup ||R; — S;|| < €9 we have
J
1571 < C1éy'-
Proof. Let 61 > 6o and let ng be so that Cydy° < %51“’. Let g9 > 0 be so small such that

sup [|[R; — S| < eo
j
implies sup [|S7°[| < ¢1°. It is indeed possible to find such e since
J

HS;-LO — R?OH S C(Co,(go,no)é“o

for some constant C'(Cy, dp, ng) which depends only on Cp, d and ng.
Now, given n € N let us write n = kng + ¢ for some 0 < ¢ < ng. Then

k—1
ISF1 < TT 1S5 ol - 1195m0 | < (20 + Codo) 6767 O
u=0

D.3. Proof of Theorem [D.2l

Proof. We first prove the existence of triplets. Denote
H; = {9 € Bj: vj(g) =0}
Since Ajvj11=A;jv; we have AjH; C H;11. Also, for every g; € H; we have v;(h; + g;)=1 and
vir1 (A (hy + 9)) = Nj(Ajvien) (hy + g5) = Njvj(hy + g5) = A

Consider the space H of sequences g = (g;) so that g; € H; for all j, equipped with the norm
lg|| := sup||g;|| < oo. Define a function F': C x H — H by
J

(F(t,9)); = AV (hjo1 + gj1) — v (AY  (hjo1 + gj-1)) (B + g5) -

Then F(0,0) = 0, and F is analytic in ¢ (in the case C* dependence on ¢ this map is differentiable
k times).

We claim that the partial derivative ® := (0F/0H)(0,0) is an isomorphism. Indeed, a direct
computation shows that (@g)j = Aj_19j—1 — Ajgj. Assume first that there is g € H so that

(D.5) Aj-19j-1 = Ajg;-
When the restrictions A; : H; — H; satisfy
(D.6) 147 9511 < Collg; Il 65

since on Hj; the functionals v; vanish. Iterating (D.5) we see that A%g; = Ajngjtn. Plugging in
AP g
j —n instead of j in we get that g; = f\’_”ig] and so

j—n,n
o9
[Ajinl
for some € € (0,1) and a constant C’, where in the second inequality uses Assumption ii).

Hence g = 0.

lg;ll < Collgl <CE" =0
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. . . — = A?—ng]_” . .
Now we show that ® is surjective. Take g € H. Set h; = — Z ————— . This series converges
n—0 )\j—n,n
. L Al_,95 , o . .
uniformly in j since || ———=|| < C'||g||e" where € and C” are like in the previous estimates. It
j_nun

is immediate that

Aj-rhj-1 = Ajhj = Ajg;-
Applying the implicit function theorem in Banach spaces (e.g. [5, Theorem 3.2]) we get that
there is g9 > 0 so that for every t € Bc(0,¢p) there is gi) = (g](.t))j € H so that

F(tag(t)) = 0.

Moreover, the function t — §*) is analytic and so by possibly reducing £y we can assume that it
is bounded (in the case of C* dependence on t we get that this map is of class C*).

Now we construct the families V( ) First, we obtain from ) that

(D.7) 1(A7)" = Ajnhjvill < 0050
where h;‘+n(,u) = p(hj4n). Let E; C BS be the space of all functionals yi; such that ;(h;) = 0.

Then (A;)*E;j+1 — E; since

(A5) pit1(hg)=p+1(Ajh;) = Ajujy1(hjtr) = 0.

Let E be the Banach space of sequences fi = (1) such that p; € E; for all j and
|2l += sup [[p5]| < 0. Define
J

(Gt ), = (A i1+ mir1) = N5+ )

where \;(t) = v;(h%). Then G(0,0) = 0 and G is a well defined function on {t : [|t|| < o} for
some gg > 0. Moreover, G is analytic in £. We consider G as a function from a neighborhood of
(0,0) € Cx E to E.

Now, a direct computation shows that the derivative of G at (0,0) in the direction E is the
operator given by

= (0G/dE)(0,0)i1); = (Aj)"pjr1 — Ajt-

Let us show that W is injective. If fi belongs to its kernel then (A4;)*uj41 = Aju;, and so
(A7) tjtn = Ajnpy. Using we get that ||p;]| < Ce™ for some constants ¢ € (0,1) and
C > 0. Therefore i1 = 0.

Next, ¥ is also surjective since for any g € E we have (A;)*kjy1 — Ajk; = Aju; where
o0

A" ) *
Kj = — Z W (the convergence of this series follows from (D.7))).
n=0 ’

Hence, by the implicit function theorem there is an analytic function ¢t — &) = (K
values in E so that

9); with

(A) (g + 511 = XD + 550 = 0.

Take I/(-t) =v;+ /-;(-t) and notice that Vj(.t)(h(.t)) does not depend on j. Indeed, we have

) = (t) ()\ (t)hm ) = (t) (A(t)h t))‘

t
A(Or8 () = v, W =v

v (RS ) = (A (h0) = 200 (S

( (
J Vit J
We conclude that there is a function ¢(t) such that I/J(-t) (hg-t)) = ¢(t) for every j > 0. The functions
¢(t) are bounded and analytic and ¢(0) = 1. Thus, by decreasing ||¢|| if necessary we can assume

that [c(t)| > 4. Next, by replacing h§t) with h§t)/c(t) (or VJ(.t) by Vj(t)/c(t)) we can just assume
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that ¢(t) = 1. Like in the construction of g, in the case t — (Ag-t)) is of class C* all the above
functions of ¢ are differentiable k times.

Finally, the exponential convergence follows by Lemma @ applied with R; = A; — P; and

Sj = Agt) —p? (when t is close enough to 0) where Pj(t) =\j (t)uj(-t)(-)h(-t) taking into account

i 7+1

that by Lemma [D.5 S}' = Az-’n — P]t” = A;ﬁn — )\j,n(t)u](.t)(-)h(t) O

il

Jjt+n:
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