Supplementary problems.

(1) Let $X_1, X_2 \dots X_n$ be a sequence of independent random variables each X_i having symmetric distribution, that is

$$P(\xi \in A) = P(X_i \in -A)$$

for any Borel set $A \subset \mathbb{R}$. Assume that $E(X_i^4) < \infty$ for $i = 1 \dots n$. Consider the sums $S_n = \sum_{j=1}^n X_j$. Show that

$$P(\max_{k< n} |S_k| > t) \le \frac{\mathbb{E}(S_n^4)}{t^4}.$$

(2) Let $X_1, X_2 \dots X_n \dots$ be independent random variables such that for large n

$$P(X_n = 1) = \frac{1}{n^{\alpha}}, \quad P\left(X_n = \frac{1}{n^{\beta}}\right) = \frac{1}{2}, \quad P\left(X_n = -\frac{1}{n^{\beta}}\right) = \frac{1}{2} - \frac{1}{n^{\alpha}}.$$

For which α and β does $\sum_{n=1}^{\infty} X_n$ converge?

(3) Let $X_1, X_2 \dots X_n \dots$ be iid having Gaussian distribution with zero mean and variance σ^2 . Let $S_n = \sum_{j=1}^n X_j$. Compute

$$I(a) = \lim_{n \to \infty} \frac{\ln P(S_n \ge an)}{n}$$

(4) Let $X_1, X_2 \dots X_n \dots$ be iid such that $M_X(t) = \mathbb{E}(e^{tX}) < \infty$ for all $t \in \mathbb{R}$. Set $S_n = \sum_{j=1}^n X_j$,

$$I(a) = \lim_{n \to \infty} \frac{\ln P(S_n \ge an)}{n}$$

Show that $I(a) \to -\infty$ as $a \to +\infty$.

(5) Let X be a bounded random variable. Define

ess sup $(X) = \{ \sup x : P(X > x) > 0 \}$, ess $\inf(X) = \{ \inf x : P(X < x) > 0 \}$. Consider the moment generating function $M_X(t) = \mathbb{E}(e^{tX})$. Show that

$$\lim_{t \to \infty} \frac{\ln M_X(t)}{t} = \operatorname{ess\,sup}(X), \quad \lim_{t \to -\infty} \frac{\ln M_X(t)}{t} = \operatorname{ess\,inf}(X).$$

(6) Let (X_1, X_2, X_3, X_4) be a Gaussian random vector with zero mean and covariance matrix

Compute $P(X_1, X_2 | X_3, X_4)$.

(7) A fair coin is tossed 12 times. Let M be the number of heads during the first 6 tosses and N be the total number of heads. Compute P(M|N=8).