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Abstract. We construct conservative smooth flows of zero metric entropy which satisfy the classical
central limit theorem.

1. Introduction

Let (M, ζ) denote a smooth orientable manifold M with a smooth volume ζ and FT be a Cr flow
on M preserving ζ.

In this paper we work exclusively with flows and so the definitions below will be stated for flows.
The definitions are analogous for diffeomorphisms with obvious modifications. Following [4], we define
the class of flows satisfying the Central Limit Theorem as follows:

Definition 1. Let r ∈ (0,∞]. We say that a flow (FT ) ∈ Cr(M, ζ) satisfies the Central Limit Theorem
(CLT) on Cr if there is a function a : R+ → R+ such that for each A ∈ Cr(M),∫ T

0

A ◦ Fs(·)ds− T · ζ(A)

aT

converges in law as T → ∞ to normal random variable with zero mean and variance σ2(A) (such
normal random variable will be denoted N (0, σ2(A))) and, moreover, σ2(·) is not identically equal to

zero on Cr(M). We say that F satisfies the classical CLT if one can take aT =
√
T .

In this definition we used for an integrable function A on M , the notation ζ(A) :=
∫
M
A(x)dζ(x).

In [4] the authors constructed for every r ∈ N, examples of conservative Cr diffeomorphisms and
flows of zero entropy satisfying the classical CLT. However the dimension of the manifold supporting
such flows is a linear function of r and so it goes to∞ as r →∞. In particular the class of zero entropy
systems proposed in [4] does not yield C∞ examples (see the end of the introduction below for more
on this). In the current paper we address, in the context of flows, the C∞ case.

Theorem A. There exists a smooth compact manifold M with a smooth volume measure ζ and a flow
(FT ) ∈ C∞(M, ζ) that has zero metric entropy and satisfies the classical CLT.

We point out that in the examples we will construct to prove the above theorem, the flows will be
smooth but the CLT will hold for all sufficiently regular observables (of class C3).

It is still an open problem to find C∞, zero entropy diffeomorphism which satisfies the classical CLT.
In Section 2 we will explain the reason why our construction does not extend simply to Z actions.

Similarly to [4], the examples we will construct to prove Theorem A belong to the class of generalized
(T, T−1)-transformations which we now define. We will do so in terms of flows, the definitions for
diffeomorphisms being analogous.

Definition 2. Let (KT )T∈R be a Cr-flow, r ∈ N∗ ∪ {∞, ω}, on a manifold X preserving a smooth
measure µ and let τ = (τ1, . . . , τd) : X → Rd be a Cr function (called a cocycle in what follows). Let
(Gt)t∈Rd be an Rd action of class Cr on a manifold Y preserving a smooth measure ν. Set

(1.1) FT (x, y) = (KT (x), GτT (x)y) where τT (x) =

∫ T

0

τ(Ksx)ds.

1
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Then (FT ) is a Cr flow on M = X × Y preserving the smooth measure ζ = µ× ν.

Note that by [4, Lemma 2.1] if the metric entropy of (KT , µ) vanishes and µ(τi) = 0 for every
i ∈ [1, d], then the metric entropy of (FT , ζ) is zero1.

On the other hand, the topological entropy of FT in our example is positive. In contrast in [4] an
example is given of a finitely smooth (T, T−1) diffeo which satisfies the classical CLT and has zero
topological entropy. In fact, the example in [4] has a rotation in the base and so the base is uniquely
ergodic. In our construction the base map has N+1 ergodic invariant measures: the Lebesgue measure
and measures supported at the fixed points. The measures which project to the Dirac measure on the
base but are smooth in the fiber have positive entropy, so the topological entropy of FT is positive. It is
an open problem to construct a smooth flow which satisfies the classical CLT and has zero topological
entropy.

Following [4], the examples we will give to prove Theorem A are of the form (1.1). To be more
specific, we need to explicit our choices for the flow (KT )T∈R, the fiber dynamics (Gt)t∈Rd , and the
cocycle τ .

On the base we will use area preserving smooth flows on T2 with degenerate saddles. These belong
to the class of conservative surface flows called Kochergin flows. They are the simplest mixing examples
of conservative surface flows and were introduced by Kochergin in the 1970s [11]. Kochergin flows are
time changes of linear flows on the 2-torus with an irrational slope and with finitely many rest points
(see Figure 1 and Section 3.1 for a precise definition of Kochergin flows). Equivalently these flows can
be viewed as special flows over a circular irrational rotation and under a ceiling, or roof, function with
at least one power singularity 2

Figure 1. Torus flow with one degenerate saddle acting as a stopping point.

The Kochergin flows that we will consider have ceiling functions with power singularities of exponent
γ ∈ (0, 1/2), and have a rotation number on the base that satisfies a full measure Diophantine type
condition.

For the fiber dynamics, following [4], we only need the property of exponential mixing of all orders.
A classical example of an analytic Rd action which is exponentially mixing of all orders is the Weyl
chamber flow: Let d ≥ 1 and let Γ be a co-compact lattice in SL(d + 1,R). Let D+ be the group of
diagonal matrices in SL(d+ 1,R) with positive elements on the diagonal acting on SL(d+ 1,R)/Γ by
left translation. Then D+ is an Rd action that preserves the Haar measure ν on SL(d + 1,R)/Γ and
that is exponentially mixing of all orders see e.g. [1]. Hence, we can take Gt to be D+.

We are ready now to give a more explicit statement of Theorem A that will be made more precise
in Section 3 after Kochergin flows are precisely defined. We denote µ the Lebesgue measure on T2 and
by λ the Lebesgue measure on T.

1 [4, Lemma 2.1] follows from Ruelle inequality and the fact that the Lyapunov exponents of FT are zero.
2The special flows are defined in Section 3, see equation (3.3) and Figure 2.
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Theorem B. There exists N ∈ N and a Kochergin flow (KT ,T2, µ), with N singularities and a
function τ = (τ1, . . . , τN ) ∈ Cω(T2,RN ) such that µ(τi) = 0, for every i ∈ [1, N ], and such that the
flow (FT ) ∈ Cω(T2 × (SL(N + 1,R)/Γ), µ × ν) defined by FT (x, y) = (KT (x), GτT (x)y) satisfies the
classical CLT.

The dimension of the manifold on which our examples are constructed depends thus on the number
of singularities N that we require for the Kochergin flow. We did not try to optimize this number, but
the one we currently have is of order 100.

In the next section we will define the class of parabolic systems with small deviations and recall the
criterion given in [4] that establishes the classical CLT for skew products above a parabolic system
with small deviations, provided the fiber dynamics are exponentially mixing of all orders. This part
is essentially the same as in [4]. In a nutshell, parabolic flows with small deviations are conservative

flows for which the deviations of Birkhoff averages are o(
√
T ), but for which there exists d ∈ N∗, and

d-dimensional observables whose Birkhoff averages deviate, for every T , by more than (lnT )2 outside
exceptional sets of measure less o(T−5).

We will show that Kochergin flows on the two-torus, with exponent γ ∈ (0, 1/2) for the singularities
of their ceiling function, and with N(γ) singularities, are parabolic with small deviations for typical
positions of the singularities and the slope of the flow.

The exponent of a singularity of the ceiling function is related to the order of degeneracy of the
corresponding saddle point on T2. Limiting the order of degeneracy of the saddles thus limits the
exponents to be strictly less than 1/2. This is important to guarantee that the deviations of the

Birkhoff averages above the Kochergin flow to be o(
√
T ).

The trickiest part of the construction will be to show that if the number of saddles is sufficiently
large then we can construct a smooth observable τ ∈ Cω(T2,RN ) whose Birkhoff averages above the
Kochergin flow deviate by more than (lnT )2 outside exceptional sets of measure less o(T−5).

The Diophantine property imposed on rotation angle a plays a crucial role in insuring refined
estimates on Birkhoff sums of functions with singularities above the circular rotation of angle a, which
in turn can be used to control the Birkhoff sums of observables above the Kochergin flow. Here again,
we did not seek to optimize the Diophantine condition but just made sure it is of full measure.

It turns out that in finite smoothness Cr, certain ergodic rotations on high dimensional tori (the
dimension of the torus goes to ∞ with r) are examples of diffeomorphisms that satisfy the two condi-
tions on the deviations of the Birkhoff averages, in fact they are parabolic with small deviations. For
this reason, they could be used in [4] to construct examples of CLT diffeomorphisms with zero entropy
in finite smoothness.

2. CLT for skew-products above parabolic systems with small deviations

In this section, we describe general conditions on the flow (KT , X, µ) which will allow us to construct
a generalized (T, T−1) flow (FT ) as in Definition 2 that satisfies the assumptions of Theorem A.

Definition 3. Let (KT )T∈R be a Cr-flow on a manifold X preserving a smooth measure µ. We say
that (KT ) is Cr– parabolic with small deviations if the following conditions are satisfied:

S1. for every H ∈ Cr(X) with µ(H) = 0,
1√
T

∫ T

0

H(Kt·)dt⇒ 0, in distribution as T →∞.

S2. there exist C, d ∈ N and a Cr function τ = (τ1, . . . , τd) : X → Rd, µ(τ ) = 0 such that

µ
(
{x ∈ X :

∣∣∣ ∫ T

0

τ (Ktx)dt
∣∣∣ < C ln2 T}

)
= o(T−5).

S3. there exist C > 0,m < 1.1 and x0 ∈ X such that for every δ > 0 sufficiently small, we have
KtB(x0, δ) ∩B(x0, δ) = ∅ for every |t| ∈ (Cδ, (Cδ)−1/m).

Conditions S1 and S2 are used to show that the associated (T, T−1)-flow satisfies the classical CLT
(with the possibility that the variance is identically zero). Condition S3 insures that there exists a
function with non-zero variance.
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The following result based on Theorem 3.2 in [4] reduces the proof of Theorems A and B to that of
finding smooth parabolic flows with small deviations.

Proposition 4. Assume that (KT , X, ζ) is a C∞- parabolic flow with small deviations and of zero
metric entropy. Let (Gt, Y, ν) be a smooth Rd action which is exponentially mixing of all orders. Let

FT (x, y) = (KTx,GτT (x)(y)),

where τ is as in S2. Then (FT , X × Y, µ× ν) has zero metric entropy and satisfies the classical CLT.
Moreover there exists H ∈ C∞(X × Y ) with σ2(H) 6= 0.

Proof. FT has zero entropy due to Lemma 2.1 in [4]. S1 and S2 imply that FT satisfies the classical
CLT due to Theorem 3.2 in [4]. The fact that the variance is not identically zero follows from S3
similarly to the proof of Lemma 8.2 in [4]. �

Let us comment on how conditions S1 and S2 are used in the proof of Theorem 3.2 of [4]. We

split an arbitrary H ∈ Cr(X × Y ) as H(x, y) = H̄(x) + H̃(x, y) where
∫
H(x, y)dν(y) = 0 for each

x ∈ X. The ergodic integrals of H̄ are negligible due to assumption S1. To handle the integrals of H̃
we apply the Central Limit Theorem for arrays over exponentially mixing actions proven in [2]. This
theorem establishes asymptotic normality of ST (y) :=

∫
Rd At(Gty)dmT (t). where the norms of At are

uniformly bounded and the measures mL satisfy the following free conditions:
(a) lim

T→∞
mT (Rd) =∞.

(b) For each r ∈ N, r ≥ 3, and each K > 0,

lim
T→∞

∫
mr−1T

(
B(t,K lnmT (Rd))

)
dmT (t) = 0,

where B(t, v) denotes a ball in Rd of radius v > 0 centered at t.
(c) There exists σ2 = σ2(At) ≥ 0 so that lim

T→∞
VT = σ2, where

VT :=

∫
S2T (y)dν(y) =

∫∫∫
At1(Gt1y)At2(Gt2y)dmT (t1)dmT (t2)dν(y).

To prove Theorem 3.2 in [4] we apply this result with mT being the normalized occupation measure

mT (Ω) = mes(t ≤ T : τt(x) ∈ Ω)/
√
T . Then (a) holds since mT (Rd) =

√
T , (c) holds due to the ergodic

theorem (see [4, §5.1.2] for details), and S2 is used to verify (b) since it implies that τt1(x) and τt2(x)
are unlikely to be close unless t1 and t2 are close (see [4, §5.1.2] for details).

As explained in the introduction a classical example of an analytic Rd action which is exponentially
mixing of all orders is the Weyl chamber flow. It remains to find examples of smooth flows with small
deviations. In light of Proposition 4, Theorem A becomes an immediate consequence of the following
result:

Theorem C. There exists a smooth conservative flow (KT , X, µ) with zero metric entropy that is a
parabolic flow with small deviations.

Theorem C is the main novelty of this work.
Existence of C∞ parabolic diffeomorphisms with small deviations is an open question. In fact, to

the best of our knowledge, the following easier problem is open:

Problem 5. Construct a C∞ diffeomorphism f on a smooth compact manifold X preserving a smooth
measure µ such that:

T1. for every H ∈ C∞(X) with µ(H) = 0 we have
1√
N

∑
n≤N

H(fn·)dt⇒0, in distribution as

T →∞;

T2. there exists x ∈ X and φ ∈ C∞(X) such that {φn(x)} :=
{ ∑
n≤N

φ(fnx)
}

is unbounded.
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In other words, in all the known smooth examples, whenever there exists a zero average function
which is not a coboundary (equivalently T2 holds) then there is a rapid jump in asymptotics of

ergodic averages, i.e. they become of order
√
N or larger. Hence, in light of Katok’s conjecture on

cohomologically rigid diffeomorphisms, one can ask the following:
Does there exist a C∞ diffeomorphism f on a smooth compact manifold X preserving a smooth measure
µ, not conjugated to a Diophantine torus translation, so that T1 holds?

It is interesting to point out that the classical parabolic flows,including horocycle flows and their
reparametrizations, nilflows and their reparametrizations, are not parabolic with small deviations.
Indeed, it follows from the work of Flaminio-Forni, [6] and [7] that the deviations of ergodic averages

in these examples are, for observables that are not coboundaries, of order at least
√
T for a positive

measure set of points. Thus property T1 does not hold for those flows. Moreover these flows are known
not to have a CLT and it is therefore not possible to use them to construct skew products above them
that satisfy the classical CLT.

Finally, let us mention that another way for constructing smooth conservative flows or diffeomor-
phisms with zero entropy and a classical CLT would be to look for zero entropy systems having a
polynomial speed of mixing faster than T−a, a > 1. To the best of our knowledge, such systems are
not yet proven to exist.
The rest of the paper is devoted to the proof of Theorem C. Our examples belong to the class of
smooth flows on surfaces with degenerate saddles (so called Kochergin flows).

For the class of Kochergin flows that we consider all the singularities will be “weakly” degenerate,
i.e. the strength of the singularity will be o(x−1/2). This assumption will relatively easily give us the
condition S1 for any number of singularities. Condition S3 will also be easy to achieve by assuming
that the base rotation (the first return map) is Diophantine. The most interesting and also most
difficult part is to show existence of τ satisfying the assumptions of S2.

3. Construction of parabolic Kochergin flows in the smooth case

3.1. Overview of the construction. We start by defining C∞ Kochergin flows on T2. They were
introduced by Kochergin in [11]. Namely, [11] takes a linear flow on T2 in direction (α, 1) and cuts out
finitely many disjoint disc from the phase space. Inside each such disc one then glues in a Hamiltonian
flow on R2 with a degenerated singularity at c̄ ∈ T2 (corresponding to (0, 0) ∈ R2). Finally one
smoothly glues the trajectories of the linear flow with the trajectories of the Hamiltonian flow. It
follows that each such flow preserves a smooth area measure on T2. Moreover, as shown by Kochergin,
such flows are mixing for all irrational α ∈ T. For more details on the construction we refer the reader
to [11]. In our case we will cut out finitely many discs centered at {c̄i}Ni=1 and glue a Hamiltonian
flow with a degenerated singularity at 0 in the discs centered at points {c̄i}Ni=1. From the construction
it follows that the set T = T × {0} is a global transversal for the flow (we can WLOG assume that
no discs intersects T ) and moreover the first return map is the rotation by α ∈ T. The roof function
f : T → R+ (first return time) is smooth except at the points {ci}Ni=1 which are the projections (to
T ) along the flow lines of the points {c̄i}Ni=1and at which the roof function has a power-like singularity
with exponent γ ∈ (0, 1).

In what follows, when we write {ci}Ni=1 ⊂ T , we allow singularities of the smooth flow (Kt) to be
anywhere on the unit flow lines of the linear flow in direction α, i.e. c̄i = Lαti(ci, 0) with 0 < ti < 1

and where (Lαt ) denotes the linear flow on T2 in direction (α, 1). In fact we will construct good tuples
of points (c1, . . . , cN ) and then we lift them along the flow as described above.

In particular, every point in x ∈ M which is not a fixed point can be written as x = Kwθ, where
θ ∈ T and 0 ≤ w < f(θ). By the construction it follows that

(3.1) f(·) =

N∑
i=1

f̄(· − ci),
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where ci ∈ T denote the projections of c̄i ∈ T2 along the flow lines, where, as shown in [11], f̄ : T→ R+

is C3 on T \ {0}, satisfies
∫
f̄dλ = 1 and

(3.2) lim
θ→0+

f̄ ′′(θ)

θ−2−γ
= A = lim

θ→1−

f̄ ′′(θ)

(1− θ)−2−γ

where A > 0 and γ ∈ (0, 1). In this context Kochergin showed that γ = 1/3 is a possible exponent.
For simplicity we will always assume that (3.2) holds with A = 1. Let us denote K(α, γ, {ci}) the set
of smooth area preserving flows (Kt) on T2 for which Rα is the first return map and the corresponding
first return time f satisfies (3.1) where f̄ satisfies (3.2). In what follows we will always assume that
γ < 1/2.

Thus Kochergin flows are isomorphic to special flows defined as follows. The orbit of of a point
(θ, u), θ ∈ T, u ∈ [0, f(θ)) under the flow (KT ) for positive time t is given by

(3.3) Kt(θ, u) = (θ + nα, u+ t− Sn(f)(θ))

where Sn(f) is the ergodic sum of f and n((θ, u), t) is the unique integer such that 0 ≤ u+t−Sn(f)(θ) <
f(θ + nα). The orbits for negative times are defined similarly.

Let C = (infT f)−1. Notice that n((θ, u), t) ≤ C|t|.

Figure 2. Representation of a 2-torus flow with one degenerate saddle as a special flow
under a ceiling function with a power-like singularity.

Let (an) denote the continued fraction expansion of α and (qn) denote the sequence of its denomi-
nators, i.e. q0 = q1 = 1 and

(3.4) qn+1 = an+1qn + qn−1.

Let

(3.5) D := {α ∈ T : ∃C > 0 such that qn+1 < Cqn ln2 qn for every n ∈ N}.
The set D has full measure by Khintchine’s theorem, [10, Section 13]. The following statement gives
explicit examples of flows that satisfy Theorem C.

Theorem D. For every α ∈ D and every γ < 1/2, there exists s ∈ N and a full measure set C ⊂ [0, 1]s

such that for every (c1, . . . , cs) ∈ C, every Cr flow in K(α, γ, {ci}) with r ≥ 3 is Cr- parabolic with
small deviations.

In the above theorem r may be equal to ∞ or ω. We also point out that the following stronger
result holds: when r = ω, condition S1 will still be satisfied for all C3 functions. Theorem D is a direct
consequence of the following two results.

Proposition 6. For every s ∈ N, every (c1, . . . , cs) ∈ [0, 1]s, every α ∈ D and every γ < 1/2 every
smooth flow in K(α, γ, {ci}) satisfies properties S1 and S3.

Proposition 7. For every α ∈ D and every γ < 1/2 there exists s ∈ N and a full measure set C ⊂ [0, 1]s

such that for every (c1, . . . , cs) ∈ C, every smooth flow in K(α, γ, {ci}) satisfies S2.
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We will now prove Proposition 6.

Proof of Proposition 6. We first show S3. we consider the representation of Kt as a special flow over
a rotation as in (3.3). We have

Kt(θ, u) = (θ + nα, u+ t− Sn(f)(θ))

for some |n| ≤ C|t| where Sn(f) is the ergodic sum of f . Let x0 = (θ, u) be any point which is not
a fixed point of the flow. If n = 0, then S3 holds since the second coordinates differ by at least Cδ,
(as the vector field is positive since x0 is not a fixed point). If n 6= 0 then the first coordinates differ
by at least ‖nα‖. Since α ∈ D it follows that there is a constant Cα > 0 such that ‖nα‖ ≥ Cα

n log4 n
.

In particular, the first coordinates of Kt(θ, u) and (θ, u) differ by at least C′

t log4 t
(as |n| ≤ C|t|). It is

enough to take m = 1/2 (or in fact any fixed m < 1) to get S3.
Property S1 was proven in [4] in case there is just one singularity (i.e. N = 1). However the proof

works with minor changes for multiple singularities. Alternatively, one can also use Theorem 1.1. in [8]
in the context of surfaces of genus 1. In this case the asymptotic growth in L1 is given in formula (1.5)
of [8] (Note that b(σ, |α|) appearing in RHS of that formula equals to γ < 1

2 for the case considered in
our paper). �

The proof of Proposition 7 is the most important part of the paper. The rest of Section 3 as well
as Section 4 is devoted to its proof.

In §3.2, we give useful estimates on ergodic sums of functions with singularities above circular
rotations of frequency α ∈ D.

In §3.3, we give the criteria along which the singularities should be selected. We state Proposition
13 that says that, under the condition α ∈ D, the typical choice of the singularities satisfies the criteria.

In §3.4, we explain how the cocycle τ must be chosen. We state the main part of the proof,
Proposition 14 that says that the chosen cocycle satisfies S2.

In §4.1, we prove Proposition 13 and in §4.2 we prove Proposition 14.

3.2. Preliminary estimates on ergodic sums of functions with singularities.

Lemma 8. Let f̄ be as in (3.2). Then for every N ∈ N and every x ∈ T

|SN (f̄)(x)−N
∫
T
f̄dλ− f̄(xmin,N )| = O

(
Nγ ln5N

)
,

where xmin,N = min
0≤j<N

‖x+ jα‖.

Proof. This follows from the assumptions on α and from Proposition 5.2. in [3]. In fact [3, Propositon
5.2] is proven for monotone observables, but by our assumptions (3.2) we can write f̄ = g+ h where g

is monotone and satisfies (3.2) and h is of bounded variation. The ergodic sums of g are O
(
Nγ ln5N

)
by [3] while the ergodic sums of h are O(ln4N) by Lemma 25 from Appendix A. �

We want to describe the set where ergodic sums of the function f̄ satisfying (3.2) are small. For
small enough ε > 0 let

(3.6) AN := {x ∈ T : |SN (f̄0)(x)| ≤ Nγ2+ε},
where f̄0 = f̄ −

∫
T f̄dλ.

The rest of this section is devoted to the proof of the following :

Proposition 9. Let δN = 1
N1+γ/5 . There are a1, . . . a3N ⊂ T such that

(3.7) AN ⊂
3N⋃
i=1

(−δN + ai, ai + δN )

holds for every sufficiently large N ∈ N.

Proof. Let f̄ be as in (3.2). First we state the following lemma giving lower bounds on the size of f̄ ′′:
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Lemma 10. For sufficiently large N ∈ N and for every x ∈ T \ {−iα}N−1i=0 we have

SN (f̄ ′′)(x) ≥ N2+γ ln−10N.

Proof. Notice that by the fact that A > 0 in (3.2) it follows that there is a κ0 > 0 such that f̄ ′′ is
positive on [0, κ0) ∪ (1− κ0, 1). In particular there exists C > 0 such that for any 0 ≤ j < N and any
x ∈ T, SN (f̄ ′′)(x) ≥ f̄ ′′(x+jα)−CN . We use it for j which minimizes the ‖x+sα‖ over 0 ≤ s < N , i.e.
x+jα = xNmin. It follows that if n is such that N ∈ [qn, qn+1), then 0 < xNmin <

1
qn

. Then the statement

follows from (3.2) and the diophantine assumption on α as q2+γn ≥ q2+γn+1 ln−8(qn+1) ≥ N2+γ ln−8N . �

Consider the interval partition PN of T by points {−iα}N−1i=0 . Then by (3.2) it follows that SN (f̄0)(·)
is a C3 function on Int(Ij) for every interval Ij ∈ PN . Let Ij = [aj , bj). By Lemma 10 it follows that
SN (f̄ ′)(·) is monotone on Ij . By d’Hôpital’s rule SN (f̄ ′0)(·) satisfies lim

x→a+j
SN (f̄ ′0)(x) = −∞ and

lim
x→b−j

SN (f̄ ′0)(x) =∞. So let aj,1 = yj ∈ Ij be the unique point such that SN (f̄ ′0)(aj,1) = 0. Note that

SN (f̄ ′0)(x)− SN (f̄ ′0)(aj,1) = SN (f̄ ′′0 )(θx)(x− aj,1)

In particular, if Jj,0 is an interval of size 2
N1+γ/5 centered at aj,1, by Lemma 10 it follows that for

x ∈ Ij \ Jj,0

(3.8) |SN (f̄ ′0)(x)| ≥ N2+γ ln−10N · 1

N1+γ/5
= N1+4γ/5 ln−10N.

Consider the two disjoint intervals Kj,1 and Kj,2 in Ij so that Kj,1 ∪ Kj,2 = Ij \ Jj,0. Then for

w = 1, 2, let xj,w ∈ Kj,w be the point minimizing SN (f̄0)(·) on Kj,w. If SN (f̄0)(xj,w) ≥ Nγ2+ε, then
AN ∩ Ij ⊂ Ji,0. If not, let Jj,w be an interval of size 2

N1+γ/5 centered at xj,w. Then for every x ∈ Kj,w,
we get

|SN (f̄0)(x)− SN (f̄0)(xj,w)| = |SN (f̄ ′0)(θx||x− xj,w|
for some θx ∈ Kj,w. So if x ∈ Kj,w \ Jj,w, then by (3.8) we get

|SN (f̄0)(x)| ≥ N1+4γ/5 ln−10N · 1

N1+γ/5
− SN (f̄0)(xj,w) ≥ N3γ/5 ln−10N −Nγ2+ε > Nγ2+ε,

if ε > 0 is small enough (remember that γ < 1/2). It then follows that

AN ∩ Ij ⊂ Jj,1 ∪ Jj,2 ∪ Jj,0.

and the Jj,w are intervals of size 2
N1+γ/5 centered at aj,w. Then AN ⊂

N⋃
j=1

[Jj,1 ∪ Jj,2 ∪ Jj,0]. This gives

(3.7) and finishes the proof. �

3.3. Choosing the singularities. We will consider a Kochergin flow (Kt) with γ < 1/2, α ∈ D, and
a roof function f given by

(3.9) f(·) =

s+3∑
i=1

f̄(· − ci),

where s := b 50γ c. In this subsection we describe the choice of the ci ∈ T . In the process, we will explain

why it is preferable for the presentation to index the singularities from 1 to s+ 3 instead of from 1 to
s with a larger s.

For c̄ ∈ T2 let Vκ(c̄) be the ball of radius κ > 0 centered at c̄.

Recall that AN is defined in (3.6) as AN := {x ∈ T : |SN (f̄0)(x)| ≤ Nγ2+ε}.
For n ∈ N and c ∈ T let

(3.10) G(c, n) =

2qn+1⋃
Z3k=−2qn+1

Rkα

[
c− 1

qn ln5 qn
, c+

1

qn ln5 qn

]
.
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Let S(T, (iv)
s
v=1) be the set of points x = (x,w) such that

(3.11) {x,KT (x)}
⋂ ⋃

j∈{i1,...,is}

Vκ(c̄j)= ∅

and

(3.12) {x+N(x,w, T )α+ uα}|u|≤2Tγ ,u∈Z
⋂ ⋃

j∈{i1,...,is}

[
− 1

2T γ ln7 T
+ cj , cj +

1

2T γ ln7 T

]
= ∅.

Definition 11. We say that the set of singularities {c1, . . . , cs+3} is good if

(G1) For every i, j ∈ {1, . . . , s+ 3}, for any n sufficiently large

G(ci, n) ∩G(cj , n) = ∅

(G2) For any choice of pairwise different elements i1, . . . , is from {1, . . . , s+3} and for N sufficiently
large

λ
( s⋂
w=1

AN + ciw

)
≤ N−6

(G3) For sufficiently large T > 0, for every x ∈ T2 there is (i1, . . . , is) ⊂ {1, . . . , s + 3} such that
x ∈ S(T, (iv)

s
v=1)

The set of good tuples will be denoted by C.

Let us shortly explain how the above properties are used. Property (G1) implies that the orbit of
any point x and any time T can visit at most one of the neighborhoods of the {cj}, i.e. if the orbit goes
very close to ci then it stays at a controlled distance away from all the other cj with j 6= i. Property
(G2) implies that if we define the roof function f to have singularities at the {cj}, then for most points
(except a set of measure N−6) the ergodic sums up to time N of f will be polynomially large. Here is
where we use that we have more singularities – each of them produces a bad set of measure ≤ N−δ0

and we roughly show that the bad sets are independent for our choice of singularities. Property (G3)
implies that for a short orbit (of size T γ) of every point x does not enter the ball of radius T−γ ln−7 T
centered at ci for at least s indices i.

Remark 12. Notice that by property (G1) and the diophantine assumptions on α it follows that for
any i, j ∈ {1, . . . , s+ 3}, and any 0 < |u| ≤M (with M sufficiently large)

‖ci − cj + uα‖ ≥ 1

M log20M
.

Indeed, if n is the largest for which M ≤ qn+1, then by (G1) it follows that ‖ci−cj+uα‖ ≥ 1
2qn log5 qn

≥
1

M log20M
, the last inequality by the diophantine assumption on α.

The reason why we preferred to index the singularities from 1 to s + 3 is that we need, for each x
and every T , that there exist at least s singularities such that (G3) holds. In Lemma 17, we will see
why considering s+ 3 singularities instead of s is sufficient for insuring (G3).

The choice of the singularities c1, . . . , cs+3 is based on the following result that we will prove in
Section 4.1.

Proposition 13. For the set C of Definition 11, we have Lebs+3(C) = 1.

3.4. Choosing the cocycle τ . Define a C∞ function τ = (τ1, . . . , τs+3) : T2 → Rs+3 as follows: For
i ∈ {1, . . . , s + 3} let τi : T2 → R be a C∞ mean zero function such that τi = 1 on Vκ(c̄i) and τi = 0

on Vκ(c̄j) with j 6= i, for some small 0 < κ <
1

2
min
i 6=j
‖c̄i − c̄j‖.
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Proposition 14. Assume (c1, . . . , cs+3) ∈ [0, 1]s+3 are good as in Definition 11. Then, the flow (Kt)
defined as in (3.1) satisfies S2. More precisely, the function τ satisfies

ν
(
{x ∈ T2 :

∥∥∥∫ T

0

τ (Ktx)dt
∥∥∥ < C ln2 T}

)
= o(T−5).

where ν is the Haar measure on T2.

4. The proofs of technical propositions.

4.1. Proof of Proposition 13. We will always fix s = b 50γ c. We start with (G1).

Lemma 15. There is a set F ∈ [0, 1]s+3 of full Lebesgue measure such that for any (c1, . . . , cs+3) ∈ F ,
for every i, j ∈ {1, . . . , s+ 3}, for any n sufficiently large

G(ci, n) ∩G(cj , n) = ∅,

where the sets G(c, n) are as in (3.10).

Proof. Define

(4.1) Fn :=
{

(c1, . . . , cs+3) ∈ [0, 1]s+3 : G(ci, n) ∩G(cj , n) = ∅, for any i 6= j
}
.

We have the following:
Claim. For n sufficiently large, we have

Lebs+3(Fn) ≥ 1− 1

ln2 qn
.

Proof of the claim. We say that d ∈ T is n-far from c ∈ T if G(c, n) ∩G(d, n) = ∅. We have

λ({d : d is n far from c} ≥ 1− 8qn+1

qn ln5 qn
≥ 1− 8C

ln3 qn
,

the last inequality since α ∈ D. Notice that Fn contains vectors (c1, . . . , cs+3) ∈ [0, 1]s+3 such that c1
is any number in [0, 1], c2 is n-far from c1, c3 is n-far from c2 and n-far from c1, and so on until cs is
n-far from cj for every j < s. Therefore,

Lebs+3(Fn) ≥
s+3∏
`=1

(
1− 8C`

ln3 qn

)
≥ 1− ln−2 qn,

if n is sufficiently large. �

Thus the set

(4.2) F :=

+∞⋃
m=1

⋂
n≥m

Fn

satisfies Lebs+3(F) = 1 and the condition of Lemma 15. �

We proceed to (G2).

Lemma 16. There is a set D ∈ [0, 1]s of full Lebesgue measure such that for any (c1, . . . , cs) ∈ D, for
N sufficiently large

λ
( s⋂
i=1

AN + ci

)
≤ N−6

where AN is as in (3.6).
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Proof. We have the following, where addition is mod 1.

Claim. Let N ∈ N, δ > 0, b1, . . . bN ∈ T and let A ⊂ T be such that

A ⊂
N⋃
i=1

(−δ + bi, bi + δ). Then for any s ∈ N

(4.3)

∫
[0,1]s

λ
( s⋂
i=1

(A+ ti)
)
dt1 . . . dts≤(2Nδ)s.

Proof of the claim. The LHS of (4.3) equals to

∫
Ts+1

s∏
i=1

χ−A(tj − x)dt1 . . . dtsdx =

lambda(A)s where the equality uses the change of variables uj = tj − x and where χW denotes the
characteristic function of a set W . �

We now apply the claim to the sets AN defined by (3.6), δN = 1
N1+γ/5 and s = b 50γ c. Then, using

Proposition 9 ∫
[0,1]s

λ
( s⋂
i=1

(AN + ti)
)
dt1 . . . dts ≤ N−9.

So by Markov’s inequality the set

BN :=
{

(t1, . . . , ts) ∈ [0, 1]s : Lebs

( s⋂
i=1

(AN + ti)
)
≤ N−6

}
,

satisfies Lebs

(
BN

)
≥ 1− 1

N2
. We now define the set D as

D :=

+∞⋃
m=1

⋂
N≥m

BN

Then D is a full measure subset of [0, 1]s that satisfies the condition of Lemma 16. �

We finally define the set C that satisfies the requirements of Proposition 13

(4.4) C :=
{

(c1, . . . , cs+3) ∈ [0, 1]s+3 : (ci1 , . . . , cis) ∈ D ∩ F for every i1, . . . , is ∈ {1, . . . , s+ 3}
}
.

It follows from Lemmas 15 and 16 that λ(C) = 1 and that it satisfies (G1) and (G2). We still have
to prove (G3). For any point x ∈ T2 and any time t there are at most two indices ix, jx ≤ s + 3 for
which x ∈ Vκ(c̄ix) and Ktx ∈ Vκ(c̄jx) in particular for any point x and any time t we can choose at
least s + 1 indices j1 . . . , js+1 for which x and Ktx are not κ close to the points c̄` with ` = ji. This
is the main reason why we work with s+ 3-tuples instead of s-tuples.

For the following statement, recall the definition of the sets S(T, (iv)
s
v=1) in (3.11).

Lemma 17. For sufficiently large T > 0, for every x ∈ T2 there exists (i1, . . . , is) ⊂ {1, . . . , s + 3}
such that x ∈ S(T, (iv)

s
v=1)

Proof. Notice that there is at most one cj such that x ∈ Vκ(c̄j) and at most one cj′ such that
KTx ∈ Vκ(c̄j′). It is thus enough to show that there is at most one cj′′ such that

{x+N(x,w, T )α+ uα}u∈[−Tγ ,Tγ ] ∩
[
− 1

2T γ ln10 T
+ cj′′ , cj′′ +

1

2T γ ln10 T

]
6= ∅.

Indeed, if there were two different cj1 and cj2 , then for some |k| ≤ 2T γ ,

‖cj1 − cj2 + kα‖ ≤ 1

4T γ ln10 T
.

Let n ∈ N be unique such that T γ ∈ [qn, qn+1]. The above condition would, by the fact that α ∈ D
imply that (see (3.10)) G(cj1 , n) ∩ G(cj2 , n) 6= ∅. This however contradicts the fact that any s- tuple
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of coordinates of the vector (c1, . . . , cs+3) belongs to F and in particular to Fn if n is sufficiently large
(see (4.1)). �

Proposition 13 follows from Lemmas 15, 16 and 17. �

4.2. Proof of Proposition 14. From now on we assume that (Kt) is as in (3.1) with (c1, . . . , cs+3)
good.

For T > 0 and x = (x,w) ∈ T2 recall thatN(x,w, T ) denotes the number of returns of {Kt(x,w)}t≤T
to T× {0}. Then N(x,w, T ) ≤ CT , where C = (infT f)−1.

The following lemma allows us to relate the ergodic sums of τj to those of f̄0(· − cj). It relies on
the fact that τj equals 1 on a small ball centered at c̄j and equals 0 on a small ball centered at c̄i, for
i 6= j. The control of the error is due to the fact that α ∈ D.

Lemma 18. Let τ = τj with j ∈ {1, . . . , s+ 3}. Then for T sufficiently large∣∣∣N(x,w,T )−1∑
u=0

∫ f(x+uα)

0

τ(Kt(x+ uα, 0))dt−
N(x,w,T )−1∑

u=0

f̄0(x+ uα− cj)
∣∣∣ ≤ ln4 T.

where f̄0 = f̄ −
∫
T f̄dλ and f̄ is as in (3.2).

Proof. Denote

ϕτ (x) =

∫ f(x)

0

τ(Kt(x, 0))dt, and fj = f̄(x− cj).

To alleviate the notation in this proof, we assume that cj = 0. For a function g : T→ R define

gκ = χ[−κ,κ]g, gκ = (1− χ[−κ,κ])g.

Since τ = 1 on Vκ(cj), we have the following identity

ϕτ (x) = (ϕτ )κ(x) + (ϕτ )κ(x) = (fj)κ(x) +

∫ f(x)

0

(τ − 1)(Ktx)χ−[κ,κ](x)dt+ (ϕτ )κ(x)

Notice that the functions hκ(x) =
∫ f(x)
0

(τ −1)(Ktx)χ−[κ,κ](x)dt and (ϕτ )κ belong to the class BV (T).
With this notation, denoting also N = N(x,w, T ), we need to bound

SNϕτ − SNfj +N

∫
T
fjdλ = SN (hκ) + SNϕ

κ
τ − SNfκj −N

(∫
T
hκdλ+

∫
T
ϕκτdλ−

∫
T
fκj dλ

)
where in the LHS we used that

∫
T ϕτdλ = 0 because

∫
T2 τdλ = 0. Since hκ, ϕκτ and fκj are all of

bounded variation, the bound of the lemma follows from Lemma 25. �

We will often use the following decomposition of the orbital integral: for x=(x,w)∈T2

(4.5)

∫ T

0

τ(Kt(x))dt =

N(x,w,T )−1∑
i=0

∫ f(x+iα)

0

τ(Kt(x+ iα, 0))dt

−
∫ w

0

τ(Kt(x, 0))dt+

∫ T+w−SN(x,w,T )(f)(x)

0

τ(Kt(x+N(x,w, t)α, 0))dt.

Corollary 19. Let τ = τj with j ∈ {1, . . . , s+ 3}. Then with N = N(x,w, T )∣∣∣∣∣
∫ T

0

τ(Kt(x))dt−
N−1∑
i=0

f̄0(x+ uα− cj)

∣∣∣∣∣ ≤ C · (|f̄(x− cj)|+ |f̄(x+Nα− cj)|+ ln4 T
)

Proof. We use (4.5). By Lemma 18, we can replace the first term of the LHS by

N−1∑
i=0

f̄0(x+ uα− cj).

For the last two terms in (4.5) we use that τj vanishes on Vκ(c̄i) for i 6= j, that w ∈ [0, f(x)) and
T + w − SNf(x) ∈ [0, f(x+Nα)). �



SMOOTH ZERO ENTROPY FLOWS SATISFYING THE CLASSICAL CLT 13

We will split the proof of Proposition 14 into two cases: Case 1 in which we will consider points
(x,w) with very close visits to the set of singularities, and Case 2 which covers the complimen-
tary points. Fix ε � 1. Recall again that recall that N(x,w, T ) denotes the number of returns of
{Kt(x,w)}t≤T to T× {0}.
Case 1. N(x,w, T ) < T 1−ε.

Proposition 20. If (x,w) is such that N(x,w, T ) < T 1−ε then

(4.6) max
j∈{1,...,s+3}

∫ T

0

τj(Ktx)dt ≥ ε2T.

In all of this section we sometimes simply denote N(x,w, T ) by N . First observe the following.

Lemma 21. For any ε > 0, if T is sufficiently large and N(x,w, T ) < T 1−ε, there exists j ∈ {1, . . . , s+
3} and u ∈ [0, N(x,w, T )] such that ‖x+ uα− cj‖ ≤ 1

εT 1/γ .

Proof. Assume that for any j ∈ {1, . . . , s + 3} and any u ≤ N , ‖x + uα − cj‖ ≥ ε−1T−1/γ . This can

be expressed as xmin,N+1 ≥ ε−1T−1/γ .
Observe that by definition 0 ≤ T + w − SNf(x) ≤ f(x + Nα). By Lemma 8 (applied to all the

functions f̄(· − cj)) it follows that if ε is sufficiently small

T ≤ SN+1(f)(x) ≤ C(N + f(xmin,N+1)) ≤ CT 1−ε + 2εγT ≤ T/2,

a contradiction. �

Proof of Proposition 20. We will split the proof in several cases.

Case I. There is j ∈ {1, . . . , s+ 3} and u ∈ [1, N − 1] such that ‖x+ uα− cj‖ ≤ ε−1T−
1
γ .

Lemma 8 applied to the function fj := f̄0(· − cj) then implies that

(4.7) SNfj(x) ≥ εγT/2.

Since α ∈ D (defined in (3.5)), we have that for u′ ∈ {0, N}, ‖x+ u′α− cj‖ ≥ N−1−ε ≥ (CT )−1−ε.
Corollary 19 and equation (4.7) then imply

(4.8)

∫ T

0

τj(Ktx)dt ≥ εγT/4.

Case II. For any j∈{1, . . . , s+ 3} and any u ∈ [1, N − 1] we have ‖x+ uα− cj‖ > ε−1T−
1
γ .

We split this case in several sub-cases.

Case II.1. There exists j∈{1, . . . , s+ 3} such that ‖x− cj‖ ≤ ε−1T−1/γ and f(x)−w>εT .
By the diophantine assumption α ∈ D it follows that for any sufficiently large M ∈ N and for any

j the set {x+ uα− cj}0≤u≤M ∩ [−M−1−ε,M−1−ε] is at most a singleton. Indeed, if n is the largest
for which M < qn+1, then for any 0 ≤ u < u′ ≤M ,

‖(x+ uα− cj)− (x+ u′α− cj)‖ ≥ ‖(u− u′)α‖ ≥ min
k<qn+1

‖kα‖ ≥ Cα

qn log5 qn
≥ Cα

M log10M
.

Since M log10M �M1+ε for M large enough, the statement follows.
In particular, since N < T 1−ε it follows that

(4.9) ∀u ∈ [1, N ] : ‖x+ uα− cj‖ ≥ N−1−ε.

We have, since τj = 1 on all but a bounded part of the fiber above3 x

(4.10)

∫ f(x)−w

0

τj(Ktx)dt ≥ εT/2,

3 This means that there exists a c > 0 such that τj(x, u) = 1 for all u ∈ [c, f(x)].
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while (4.9) and exactly the same argument as in Corollary 19 imply that∣∣∣∣∣
∫ T

f(x)−w
τj(Ktx)dt

∣∣∣∣∣ ≤ εT/4.
Hence (4.10) allows to conclude that

∫ T
0
τj(Ktx)dt ≥ εT/4.

Case II.2. There exists j ∈ {1, . . . , s+ 3} such that ‖x− cj‖ ≤ ε−1T−1/γ and f(x)− w ≤ εT .

Notice that for any j′ ∈ {1, . . . , s + 3} and any u ∈ [1, N − 1], ‖x + uα − cj′‖ > ε−1T−
1
γ . Indeed,

if not then 2ε−1T−1/γ ≥ ‖x+ uα− cj′ − (x− cj)‖ = ‖cj − cj′ + uα‖ which contradicts Remark 12, as
|u| < N ≤ T .

This however by Lemma 8 implies that SN−1(f)(x+α) ≤
√
εT (as N ≤ T 1−ε and (x+α)min,N−1 ≥

ε−1T−
1
γ ).

By definition, SN+1(f)(x) ≥ T + w ≥ SN (f)(x). We have T + w − SN (f)(x) = T + (w − f(x)) +
SN−1(f)(x+α) ≥ T −εT −

√
εT . This implies that for times t ∈ [T0, T ], with T0 =

√
εT +εT , the orbit

Kt(x,w) is in the last fiber above x+Nα. In particular this means that f(x+Nα) ≥ T − εT −
√
εT .

By the definition of f this is only possible if there exists j′ ≤ s+3 such that ‖x+Nα−cj′‖ ≤ ε−1T−
1
γ .

Since SN−1(f)(x+α) ≤
√
εT , the decomposition in equation (4.5) used as in Corollary 19 implies that∫ T

0
τj′(Ktx)dt ≥ ε2T.

Case II.3. For all j ∈ {1, . . . , s + 3}, ‖x − cj‖ > ε−1T−1/γ . Since we are in Case II, this implies the

following bound: ‖x+ uα− cj‖ ≥ ε−1T−1/γ for u ∈ [0, N − 1] and all j ≤ s+ 3. Putting this together

with Lemma 21 we get that there exists j′ ≤ s + 3 such that ‖x + Nα − cj′‖ ≤ ε−1T−
1
γ . We then

conclude as in Case II.2. �

Case 2. N(x,w, T ) > T 1−ε.
We will now split the phase space T2 into finitely many disjoint sets, and we will estimate the

ergodic integrals separately on them. Recall that Vκ(c̄) is the ball centered at c̄ and of radius κ > 0.
Let i1, . . . , is be different elements from {1, . . . , s+ 3}.

Because (c1, . . . , cs+3) is good, it follows from (G3) that Proposition 14 is implied by

Proposition 22. For every choice (i1, . . . , is) ⊂ {1, . . . , s+ 3}

(4.11) LebT2

(
{x ∈ S(T, (iv)

s
v=1) : max

j∈{i1,...,is}

∣∣∣ ∫ T

0

τj(Ktx)dt
∣∣∣ ≤ T γ2+ε/2}

)
= o(T−5).

We will now further partition the set S(T, {iv}sv=1) (defined in (3.11)) into level sets according to
the values of N(x,w, T ). For u ∈ [T 1−γ−ε, CT 1−γ ], u ∈ N let

(4.12) W (u, {iv}sv=1) := {x = (x,w) ∈ S(T, {iv}sv=1) : N(x,w, T ) ∈ [uT γ , (u+ 1)T γ)}.

Since u ≤ CT 1−γ to establish Proposition 22 it is sufficient to prove

Proposition 23. For T sufficiently large, for every s-tuple (i1, . . . , is) ⊂ {1, . . . , s + 3}s, for every
u ∈ [T 1−γ−ε, CT 1−γ ]

(4.13) LebT2

(
{x ∈W (u, {iv}sv=1) : max

j∈{i1,...,is}

∣∣∣ ∫ T

0

τj(Ktx)dt
∣∣∣ ≤ T γ2+ε/2}

)
≤ T−6+6ε,

where W (u, {iv}sv=1) is as in (4.12).

Proof of Proposition 23. Since the indexing set {iv}sv=1 is fixed, we will drop it from the notation of
W (u).

In all this proof, we will suppose that x = (x,w) ∈W (u) for some fixed choice of u ∈ [T 1−γ−ε, CT 1−γ ]
and i1, . . . , is. In the proof, we may use τ to denote any of the functions {τi} for i ∈ {i1, . . . , is}. From
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the decomposition (4.5) and (3.11), we have for any j ∈ {i1, . . . , is}

(4.14)

∣∣∣∣∣∣
∫ T

0

τj(Kt(x))dt−
N(x,w,T )−1∑

u=0

f̄0(x+ uα− cj)

∣∣∣∣∣∣ ≤ (lnT )5.

We have

(4.15)

N(x,w,T )−1∑
u=0

f̄0(x+ uα− cj) = S[uTγ ](f̄0)(x+ cj) +

N(x,w,T )∑
`=[uTγ ]

f̄0(x+ `α− cj)

In the following lemma we use (G3) to see that the contribution of the second summand is of lower
order, so that we can in the sequel focus only on the first one.

Lemma 24. For every x ∈ T so that (x, 0) ∈W (u) and for every j ∈ {i1, . . . , is},∣∣∣N(x,w,T )∑
`=[uTγ ]

f̄0(x+ `α− cj)
∣∣∣ < T γ

2+ε2 ,

for sufficiently large T > 0.

Proof. We have

N(x,w,T )∑
`=[uTγ ]

f̄0(x+ `α− cj) = SN(x,w,T )−[uTγ ](f̄0(· − cj)(x+ [uT γ ]α).

By (3.12) and since |[uT γ ]−N(x,w, T )| ≤ T γ it follows that

{x+ [uT γ ]α+ uα}N(x,w,T )−[uTγ ]
u=0

⋂[
− 1

2T γ ln7 T
+ cj , cj +

1

2T γ ln7 T

]
= ∅.

This and Lemma 8 gives |SN(x,w,T )−[uTγ ](f̄0(· − cj)(x+ [uT γ ])α)| = O(T γ
2

ln200 T ). �

Since uT γ ≥ T 1−ε implies that [uT γ ]γ
2+ε ≥ T γ

2+ε/2, it follows from (4.15) and Lemma 24, that
(4.13) holds if we show that

(4.16) λ
(
{x ∈ T : max

j∈{i1,...,is}
|S[uTγ ](f̄0)(x− cj)| ≤ [uT γ ]γ

2+ε}
)
≤ T−6+6ε.

By (G2) in the definition of (c1, . . . , cs+3) being good, we have that the LHS of (4.16) is less than
(uT γ)−6 ≤ T−6+6ε. This gives (4.13). The proof of Proposition 23 is now finished. �

Proposition 14 follows from Propositions 20 and 22. �
With Propositions 13 and 14 proved, Theorem D, and therefore Theorems A, B, C, are established.

�

Conclusion and a remark on the real analytic case. We have constructed conservative smooth
flows of zero metric entropy which satisfy the classical central limit theorem. The starting point of
the paper is the following finding of [4] : to a flow that is Cr-parabolic with small deviations as in
Definition 3 (r ∈ N∪{∞}) it is possible to associate a Cr (T, T−1)-flow that satisfies the classical CLT
(with the possibility that the variance is identically zero). The conditions S1 and S2 imply that FT
satisfies the classical CLT due to Theorem 3.2 in [4], and the condition S3 in Definition 3 insures that
there exists a function with non-zero variance so that the CLT is not a trivial one.

The novelty of this note is to prove the existence of smooth conservative flows that are parabolic
with small deviations. We actually showed that Kochergin flows on the two-torus, with sufficiently
many singularities, and with exponent γ ∈ (0, 1/2) for the singularities of their ceiling function, are
parabolic with small deviations for typical positions of the singularities and the slope of the flow.

To give examples of real analytic flows of zero metric entropy which satisfy the classical central limit
theorem using the same approach one needs to first show that Kochergin flows as the ones used in this
paper can be constructed in the real analytic category.
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Then one has to show that there exists an analytic τ satisfying S2, and that due to S3 there exists
an analytic function H with σ2(H) 6= 0. The construction of analytic τ and H can be made following
the same lines as in the smooth case using approximation arguments.

However, since the construction of Kochergin flows uses surgeries, it is more intricate to carry it to
the real analytic category. In fact the existence of real analytic Kochergin flows is not straightforward
from Kochergin’s original construction and requires some care. Including this extension in the current
paper would encumber it with technicalities that are out of the scope of the paper and we preferred
to leave it for a separate work on surface flows. Modulo this extension, it is easy to modify the rest of
the construction included in this paper to get real analytic flows of zero metric entropy which satisfy
a non trivial classical central limit theorem.
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Appendix A. Ostrovski estimate.

Several proofs in our paper rely on the following standard estimate.

Lemma 25. If α ∈ D where D is given by (3.5) and h ∈ BV (T ) then for all x ∈ T |SN (h)(x)| ≤
O(ln4N).

Proof. Recall the classical Denjoy-Koksma inequality: if h ∈ BV (T) then for every x ∈ T and every
n ∈ N

(A.1) |Sqn(h)(x)− qn
∫
T
h(x)dx| ≤ 2Var(h).

To bound SN (h)(x) for general N ∈ N we use the Ostrovski expansion to write

N =

m∑
k=1

bkqk where qm ≤ N < qm+1 and bk ≤ ak. We then use cocycle identity, (A.1) and the fact

that m = O(lnN) while our assupmtion (3.5) implies that for k ≤ m we have ak = O(log2N). �
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