
EXPANDING ON AVERAGE DIFFEOMORPHISMS OF SURFACES:

EXPONENTIAL MIXING

JONATHAN DEWITT AND DMITRY DOLGOPYAT

Abstract. We show that the Bernoulli random dynamical system associated to a expanding
on average tuple of volume preserving diffeomorphisms of a closed surface is exponentially
mixing.
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1. Introduction

1.1. The main result. In this paper, we prove exponential equidistribution and mixing
results for expanding on average random dynamical systems. Suppose that M is a closed
Riemannian surface with a smooth area, and (f1, . . . , fm) is a tuple of diffeomorphisms in
Diff2

vol(M). We then define a random dynamical system, where at each time step we choose
uniformly at random an index i ∈ {1, . . . ,m} and apply fi to M . We call this the (uniform
Bernoulli) random dynamical system onM associated to the tuple (f1, . . . , fm). A realization
of the randomness is then given by a word from Σ = {1, . . . ,m}N. As usual, we equip Σ with
the distance d(ω′, ω′′) = 2−k where k = max{N : ω′

n = ω′′
n for n < N}. We let σ : Σ → Σ

denote the left shift and let µ the uniform Bernoulli product measure on Σ.
For such random dynamical systems, mixing does not hold for all tuples (f1, . . . , fm). We

will introduce an additional hypothesis. We say that a tuple (f1, . . . , fm) is expanding on
average if there exists λ > 0 and n0 ∈ N such that for all v ∈ T 1M , the unit tangent bundle
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of M ,

(1.1)
1

n0
E [ln ∥Dfn0

ω v∥] ≥ λ > 0.

Note that (1.1) is a C1-open condition on the tuple (f1, . . . , fm), so in principle it could be
checked on a computer (cf. [Chu20]).

The main result of our paper is that the systems satisfying (1.1) enjoy exponential mixing.

Theorem 1.1. (Quenched Exponential Mixing) Suppose that M is a closed surface and that
(f1, . . . , fm) is an expanding on average tuple of diffeomorphisms in Diff2

vol(M). Let β ∈ (0, 1)
be a Hölder regularity. There exists η > 0 such that for a.e. ω ∈ Σ, there exists Cω such that
for any ϕ, ψ ∈ Cβ(M),

(1.2)

∣∣∣∣∫ ϕψ ◦ fnω d vol−
∫
ϕd vol

∫
ψ d vol

∣∣∣∣ ≤ Cωe
−ηn∥ϕ∥Cβ∥ψ∥Cβ

where f i
σj(ω)

= fωj+i · · · fωj+1. Further, there exists D1 > 0 such that

(1.3) µ(ω : Cω ≥ C) ≤ D1C
−1.

In fact, the tail bound (1.3) implies a related result, annealed exponential mixing for the
associated skew product. We give the proof of the following in §11.4.

Corollary 1.2. (Annealed Exponential Mixing) Let M be a closed surface, let (f1, . . . , fm)
be an expanding on average tuple in Diff2

vol(M), and β ∈ (0, 1) be a Hölder regularity. Let
F : Σ×M → Σ×M be the skew product defined by

F (ω, x) = (σ(ω), fω0(x)).

Then F is exponentially mixing, that is, there exist η̄ > 0, D such that for any Φ,Ψ ∈
Cβ(Σ×M),∣∣∣∣∫∫ Φ(Ψ ◦ Fn) dµ d vol−

∫∫
Φ dµ d vol

∫∫
Ψ dµ d vol

∣∣∣∣ ≤ De−η̄n∥Φ∥Cβ∥Ψ∥Cβ .

Before we proceed to discussing the relationship of this work with the existing literature,
we will look at some examples of systems satisfying (1.1).

Remark 1.3. Although we have written this paper for a finite tuple (f1, . . . , fm) of diffeo-
morphisms to emphasize the discreteness of the noise, one can consider random dynamics
generated by any probability measure µ on Diff2

vol(M). Similar arguments to the ones we
present here imply the analogous conclusions hold for random dynamics generated by a mea-
sure µ with compact support on Diff2

vol(M), where M is a closed surface.

1.2. Examples. There are a number of sources of tuples (f1, . . . , fm) that are expanding on
average. The random dynamics arising from such tuples may exhibit uniform or non-uniform
hyperbolicity. One of the simplest and archetypal examples is the following.

Example 1.4. Suppose that (A1, . . . , Am) is a tuple of matrices in SL(2,Z) satisfying the
hypotheses of Furstenberg’s theorem, namely the tuple is strongly irreducible and contracting.
Then the Bernoulli random product of these matrices has a positive top Lyapunov exponent.
It follows from the proof of Furstenberg’s theorem, see, e.g. [BL85, Thm. III.4.3], that there
exists N and λ > 0 such that for all unit vectors v ∈ R2,

N−1E
[
ln ∥AN

ω v∥
]
≥ λ > 0.
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Each Ai ∈ SL(2,Z) acts on T2 = R2/Z2, and the associated random dynamics on T2 is
uniformly expanding on average. Because this is an open condition, we see that any volume
preserving perturbation of the Ai is also uniformly expanding. Thus, our theorem applies to
a class of non-linear systems that do not exhibit any uniform hyperbolicity.

In addition, the expanding on average property generalizes to many other random walks
on homogeneous spaces, see for example [EL, Def. 1.4], which uses this property to study
stiffness of stationary measures of random walks on homogeneous spaces.

Expanding on average systems also arise as perturbations of isometric systems.

Example 1.5. Perhaps the first example where this condition was considered for nonlinear dif-
feomorphisms was the paper of Dolgopyat and Krikorian [DK07]. Suppose that (R1, . . . , Rm)
is a tuple of isometries of S2 that generates a dense subgroup of SO(3). Then [DK07] shows
that there exists k0 such that if (f1, . . . , fm) is a sufficiently Ck0 small volume preserving per-
turbation of (R1, . . . , Rm), and the tuple (f1, . . . , fm) has a stationary measure with non-zero
Lyapunov exponents, then (f1, . . . , fm) is expanding on average. See also DeWitt [DeW24].

Other work has explored how ubiquitous expanding on average systems are, in some cases
studying whether expanding on average systems can be realized by perturbing a known system
of interest.

Example 1.6. Chung [Chu20] gives a proof that certain random perturbations of the standard
map are expanding on average (see also [BXY17, BXY18] which studies the size of Lyapunov
exponents for perturbations of the standard map with a large coupling constant). [Chu20] also
presents convincing numerical simulations showing that certain actions on character varieties
are expanding on average as well.

There are also some results that construct expanding on average systems densely in a weak*
sense.

Example 1.7. The paper [Pot22] says that for every open set U ⊆ Diff∞
vol(M), where M is a

surface, there exists a finitely supported measure on U that is expanding on average. This
result was generalized to higher dimensions in [ES23].

1.3. Relationship with other works. Exponential mixing plays the central role in the
study of statistical properties of dynamical systems. In particular, multiple exponential mixing
implies several probabilistic results including the Central Limit Theorem [Che06, BG20],
Poisson Limit Theorem [DFL22],and the dynamical Borel Cantelli Lemma [Gal10] among
others. Further, exponential mixing was recently shown to imply Bernoullicity [DKRH24].

For deterministic systems, however, robust exponential mixing has been only established
for a limited class of systems: uniformly hyperbolic systems in both smooth and piecewise
smooth settings [CM06, Via99, You98], or for partially hyperbolic systems where all Lya-
punov exponents in the central direction have the same sign [dCJ02, CV13, Dol00]. Here
we say that a certain property holds robustly if it holds for a given system as well as for its
small perturbations. In contrast, if additional symmetries are present then there are many
other cases where exponential mixing is known, see [GS14, KM96, Liv04, TZ23]. There are
also checkable conditions for exponential mixing in the nonuniformly hyperbolic setting, see
[You98, You99]. However, except for the aforementioned examples, these conditions hold for
individual systems rather than open sets. On the other hand KAM theory tells us that away
from (partially) hyperbolic systems one has open sets of non-ergodic systems, so one cannot
expect chaotic behavior to be generic.
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The situation is different for random systems. In fact, if the supply of random maps is rich
enough then one show that exponential mixing and other statistical properties hold generically.
Such results are known for stochastic flows of diffeomorphisms [DKK04] as well as for random
deterministic shear flows [BCZG23]. It is therefore natural to ask how large should the set
of random diffeomorphisms must be so that the corresponding random dynamical system
exhibits random behavior. The following conjecture is formulated in [DK07].

Conjecture 1.8. For each closed manifold M with volume and regularity k ≥ 1, there exists
m, such that the space of tuples (f1, . . . , fm) that are stably ergodic is open and dense in(
Diffk

vol(M)
)m

.

The point of this conjecture is that only a tiny bit of randomness, perhaps even the minimum
amount, should be sufficient to ensure robust ergodic and statistical properties for dynamical
system. Consequently, the situation where the driving measure has uniformly small, finite
support on Diff2

vol(M) is the most interesting, and hardest case to consider this question. The
obvious approach to this conjecture is to first to show that an open and dense set of tuples is
expanding on average.

Other papers have significantly extended the properties of expanding on average systems.
One of the first is [BRH17], which shows a strong stiffness property of these systems: any
stationary measure for the Markov process that is not finitely supported is volume [BRH17,
Thm. 3.4]. Thus, in some sense, volume is the only measure whose statistical properties
are interesting to study. The only statistical property beyond ergodicity studied before for
expanding on average systems is large deviations for ergodic sums established in [Liu16,
Thm. 4.1.1]. Our paper provides an additional contribution to this topic by showing that
expanding on average systems enjoy exponential mixing. In fact, Conjecture 1.8 provides an
additional motivation for this work, because it shows that should the conjecture be true, then
exponential mixing is a generic property for random dynamical systems.

Some work has been done towards showing that uniform expansion is a generic property.
In particular, [OP22] shows that one may obtain positive integrated Lyapunov exponent for
conservative random systems on surfaces. This work differs from the papers [Pot22] and
[ES23] as [OP22] does not require an arbitrarily large number of diffeomorphisms to obtain
its result.

Returning to deterministic systems, it is natural to ask for conditions for strong statistical
properties to hold in a robust way. Optimal conditions are not yet well understood. While
there are strong indications that at least a dominated splitting is necessary [Pal00], the best
available results pertain to partially hyperbolic systems. A well known conjecture of Pugh and
Shub [Shu06] states that stably ergodic systems contain an open and dense subset of partially
hyperbolic systems. Currently the best results on this problem are due to [BW10] which can
be consulted for a detailed discussion on this subject. In fact, the methods of Pugh and Shub
also give the K-property [BW10]. Going beyond the K-property remains an outstanding
challenge even in the partially hyperbolic setting. In view of the strong consequences of
exponential mixing it is natural to conjecture the following.

Conjecture 1.9. Exponential mixing holds for an open and dense set of volume preserving
partially hyperbolic systems.

Currently there are two possible ways to attack this conjecture. The first one is based on
the theory of weighted Banach spaces, [AGT06, CL22, GL06, Tsu01, TZ23]. To describe the
second approach recall that the papers [Via08, AV10] show that partially hyperbolic systems
often have non-zero exponents. It is therefore natural to see if one could try to extend the
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methods used in proving exponential mixing in non-uniformly hyperbolic systems to handle
partially hyperbolic setting. As mentioned above, this approach was successful in handling
the case there the central exponents have the same sign. In the present paper we consider
a skew product with a shift in the base and where the Lyapunov exponents in the central
direction have different signs. We hope that a similar approach could be useful for studying
more general skew products, and hopefully could provide a blueprint for studying mixing in
partially hyperbolic systems.

In summary, the present work is the first step in extending mixing to a large class of
smooth systems both random and deterministic, and we hope that various extensions will be
addressed in future works.

Acknowledgments: The first author was supported by the National Science Foundation
under Award No. DMS-2202967. The second author was supported by the National Science
Foundation under award No. DMS-2246983. The authors are grateful to Matheus Manzatto
de Castro for comments on an earlier version of the manuscript.

2. Setting and basic definitions

2.1. Random dynamics and skew products. In this section, we will state some basic
definitions that will be used throughout the paper. Although we introduce many of these
definitions and notations here, we will recall and reintroduce them when they are used; this
section is just an overview.

We begin by recalling the main definition of our setup.

Definition 2.1. We say that a tuple (f1, . . . , fm) ∈ Diff1(M) is expanding on average if there
exists some n0 ∈ N and λ0 > 0 such that for all v ∈ T 1M ,

(2.1) E
[
n−1
0 ln ∥Dfn0

ω v∥
]
≥ λ0 > 0.

Throughout the paper, (f1, . . . , fm) typically denotes an uniformly expanding on average
tuple of volume preserving diffeomorphisms of a closed surface M . However, in some cases,
we merely are referring to a tuple and do not make use of any further assumptions.

We write (Σ, σ) for the one sided shift on m symbols, i.e. Σ = {1, . . . ,m}N with σ being the
left shift. We endow this space with the measure µ, which is the uniform Bernoulli measure
on Σ. Write Σ̂ and µ̂ for the two-sided shift and the invariant Bernoulli measure over µ.

We may view the random dynamics in two ways. First, as a Markov process on M . The
second way, as mentioned in the statement of Corollary 1.2, is as the skew product F : Σ×M →
Σ ×M . This skew product preserves the product measures µ ⊗ vol. When we say that the
tuple (f1, . . . , fm) is ergodic, we mean that the skew product F is ergodic for the measure
µ ⊗ vol. This is equivalent to the absence of almost surely invariant Borel subsets of M of
intermediate measure. See [Kif86] for more discussion of the relationship between the skew
product and the random dynamics on M .

For a word ω ∈ Σ, we write fnω : M →M for the composition fωn · · · fω1 . We use the same
notation for finite words ω. For a sequence of linear maps (Ai)1≤i≤n, we write A

i = Ai · · ·A1.
We do not always start this product with the first matrix, so we also have the notation

Ak
i = Ai+k · · ·Ai+1.

Note that this is compatible with the notation f i
σj(ω)

= fωj+i · · · fωj+1 from above.
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2.2. Stable subspaces. For a sequence of linear maps, we will frequently use the singular
value decomposition when it is defined. If we have a sequence of matrices A1, A2, . . . then,
when it is defined, we write Es

n for the most contracted singular direction of An. We usually
apply this to the sequence of linear maps Dxf

n
ω . We write Es

i (ω, x) for most contracted
singular direction of Dxf

i
ω, and we write Eu

i (ω, x) for the most expanded singular direction
of Dxf

i
ω, should these directions be well defined. Often we will suppress the x and ω and just

write Es
i , other times we will write Es

ω(x).
Throughout the paper we will consider sets Λω

n which are the sets of points x ∈ M that
are (C, λ, ϵ)-tempered for the word ω up until time n, where temperedness is defined in §4.1.
These points are essentially the finite time analogue of a Pesin block, c.f. [BP07].

2.3. Stable manifolds. The most important dynamical objects we will consider are the
stable manifolds and fake stable manifolds. Given a point x ∈ M , we define its stable
manifold to be the set of points

W s(ω, x) = {y ∈M : d(fnω (x), f
n
ω (x)) exponentially fast}.

Note that the stable manifold depends on ω. We denote a segment of length 2δ centered at
x in W s(ω, x) by W s

δ (ω, x). The properties of these “true” stable manifolds are discussed in
Section 5. For general information about stable manifolds in random dynamical systems, see
[LQ95].

As alluded to above, we will not only work with the stable manifolds, but also with finite
time versions of stable manifolds. We will denote by W s

n,δ0
(ω, x) the time n fake stable

manifold of x for the word ω restricted to segment of radius δ0 centered at x. The point
of the fake stable manifolds is that up to time n, they have similar contraction properties
to an actual stable manifold. In the limit, they converge to the true stable manifold. Their
definition is somewhat technical, but a detailed treatment of the fake stable manifolds is given
in Appendix B which essentially concerns itself with a quantified, finite time version of Pesin
theory.

An important application of stable manifolds, fake or otherwise, is their holonomy. Suppose
that we have two curves γ1, γ2 and a locally defined lamination W such that each leaf of W
intersects γ1 and γ2 at a unique point. Let I1 and I2 be the points of intersection of W with
γ1 and γ2. Then W defines a holonomy map HW : I1 → I2 by carrying the unique point of
intersection with a particular plaque of the lamination to the corresponding point in the other
curve.

An important property that such a holonomy may satisfy is absolutely continuity with
respect to volume, which means that it carries Riemannian volume of γ1 restricted to I1 to
a measure equivalent to the restriction to I2 of Riemannian volume on γ2. These properties
will be discussed in more detail in Appendix B.

2.4. Norms. In this paper, we will use many estimates from calculus.
First we consider the norms of curves. An unparametrized curve in a manifold does not

come equipped with any C1 norm, as the C1 norm of a curve is dependent on parametrization.
Consequently, we will always view such a curve with its arclength parametrization. For x ∈ γ,
we may consider the norm of the second derivative of γ at the origin when we view γ as a
graph over its tangent in an exponential chart. We then define ∥γ∥C2 as the supremum of
this norm over all x ∈ γ. Note that this is essentially the same thing as the supremum of the
extrinsic curvature of γ at x over all points x ∈ γ.

Throughout the proof, we will be interested in studying the log Hölder norms of some
densities along curves. We will be slightly unconventional and write ∥ ln ρ∥Cα for the Hölder
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constant of ln ρ, where ρ is a density. Note that this doesn’t include an estimate on ∥ ln ρ∥∞,
as such a norm usually contains. This is because the magnitude of the density is infrequently
the important things in our arguments.

When we work in coordinates, we will write ∥ϕ∥i as the supremum of all the ith partial
derivatives of the function ϕ. For example, if ϕ : R2 → R, then we define

∥ϕ∥2 = sup
x∈R2

max

{∣∣∣∣ d2ϕdxdy

∣∣∣∣ , ∣∣∣∣d2ϕdx2
∣∣∣∣ , ∣∣∣∣d2ϕdy2

∣∣∣∣} .
2.5. Probability facts. In the course of the paper we will some facts from probability, which
we state here for the convenience of readers who are familiar with dynamics but not as much
with probability. Sometimes we will write something like Pω(A) for the measure µ(A) when we
are thinking probabilistically. Also, we will often write E [. . .] when we are taking expectations
with respect to µ, as µ is the measure driving the random dynamics.

The following concentration in equality is very useful for us.

Theorem 2.2. [Ste97, Thm. 1.3.1] (Azuma-Hoeffding inequality) Suppose that X1, X2, . . . is
a martingale difference sequence. Then

(2.2) P

(∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣ ≥ λ

)
≤ 2 exp

(
−λ2

2
∑n

i=1 ∥Xi∥2L∞

)
.

3. Outline of the paper

3.1. Quenched and annealed properties. The main technical result of this paper is a
type of “annealed” coupling theorem, Proposition 7.7. From this theorem we deduce after a
small amount of additional work, quenched exponential equidistribution (Proposition 11.9) as
well as quenched exponential mixing, which, in turn, implies the annealed exponential mixing
(see Corollary 1.2).

Before proceeding, let us recall what is meant, in the probabilistic sense, by an annealed
as opposed to a quenched limit theorem for a random dynamical system defined by Bernoulli
random application of maps (f1, . . . , fm). In an annealed limit theorem, we average over
the entire ensemble whereas in a quenched limit theorem one obtains a limit theorem for
almost every realization of the random dynamics. For example, in the case of equidistribution
consider ϕ : M → R a Hölder observable and ν a probability measure on M , such as a curve
with density. Then annealed equidistribution says:

1

mn

∑
ωn∈{1,...,m}n

∫
ϕ ◦ fnω dν →

∫
ϕd vol,

whereas quenched equidistribution says that for almost every ω ∈ ΣN with respect to the
Bernoulli measure µ on Σ, ∫

ϕ ◦ fnω dµ→
∫
ϕd vol .

Note that the annealed result follows from the mixing of the skew product studied in §6.2.
While the two notions are not always equivalent, our annealed coupling theorem comes

with such fast rates that by the Fubini theorem, we can deduce quenched limit theorems.
This reduction happens in Section 11.
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3.2. Description of the key step. The main results of this paper follow from our annealed
exponentially fast coupling proposition, Proposition 7.7, which says the following. Suppose
we have two standard pairs γ̂1 and γ̂2. Each standard pair is a C2 curve γi along with a
density ρi defined along γ. Suppose that ω ∈ Σ is a random word. We say that two points
x ∈ γ1 and y ∈ γ2 are “coupled” at time k if:

(1) fkω(x) ∈W s
loc(σ

k(ω), fkω(y)),

(2) The stable manifold W s
loc(σ

k(ω), fkω(y)) contracts uniformly exponentially quickly, so

that fkω(x) and f
k
ω(y) attract uniformly exponentially fast, independent of x, y, ω.

In other words, after two points couple at time k they attract uniformly quickly. In fact,
in our coupling procedure if x and y couple at time k then fkω(x) and fkω(y) both lie in a
uniformly (C, λ, ϵ)-tempered stable manifold (see Definition 5.1). Proposition 7.7 constructs
a coupling which occur exponentially quickly in the sense that the set of points where the
coupling time is greater than k has exponentially small measure.

The first step towards constructing the coupling is to show that for two “nice” standard
pairs γ̂1 and γ̂2 that are quite close, there exist uniform ϵ0, ϵ1 > 0 such that with ϵ0 probability
at least ϵ1 proportion of the mass of γ̂1 couples at time 0. Namely, with ϵ0 probability, the
stable manifolds W s

ω intersect γ̂1 and γ̂2 in sets of uniformly large measure, thus those points
can be coupled. This fact implies that a positive proportion of the mass on γ̂1 can be coupled
at the first attempt.

The complement of the pairs that couple is the disjoint union of a potentially large number
of very small curves. For these “leftover” curves we will wait a potentially long time for them
to grow and smoothen and then equidistribute at small scale so that we can try coupling
them again. We refer to this growth and smoothening as “recovery” and the equdistribu-
tion as “precoupling.” As a positive proportion of the remaining mass gets coupled during
each attempt at coupling, we expect only an exponentially small amount of mass to remain
uncoupled after n attempts.

The actual argument is much more complicated for a fairly simple reason: we cannot
determine if two points x and y lie in the same stable manifold until we have seen the entire
word ω. However, we do not want to look into the future at the entire word ω since then we
would loose the Markov character of dynamics and would not be able to use many estimates
that rely on the Markov property. Consequently, we define a “stopping” time for each pair
(x, ω) which tells us when to “give up” on trying to couple during the current attempt and
switch to recovery. For the moment, we regard the coupling argument as having three main
steps:

(1) (Local Coupling) Attempt to couple two uniformly smooth nearby curves γ̂1 and γ̂2.
(2) (Recovery) Show that pieces of curve that fail to couple recover quickly so that their

image become long and smooth.
(3) (Precoupling) There is a time N0 such that given two long smooth curves we can

divide them into subcurves such that for most of the subcurves their images N0 units
of time later are close to each other, so we can then try to locally couple them again.

We now describe the outline of the rest of the paper and how its different sections relate
to the three main steps described above.

The first goal of the paper is show that for any point x ∈M that for most words ω ∈ Σ the
stable manifolds W s(ω, x) have good properties including good distribution of their tangent
vector, controlled C2 norm, and that they contract quickly. To do this, we will need to obtain
good estimates onDfnω . We show that for typical words ω, Dfnω has a putative stable direction
that has all of the properties that the stable direction of a Pesin regular point would have.
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We formalize these properties with our notion of (C, λ, ϵ)-temperedness, which is described
in detail in §4.1. We remark, however, that this notion is weaker than the usual notion of
ϵ-temperedness used in Pesin theory. We show that there exist λ, ϵ > 0 such that for almost
every word ω that the trajectory will exhibit (C(ω), λ, ϵ)-temperedness for some C(ω) > 0.
Further, we obtain estimates for the tail of C(ω). We then also study the distribution of Es

ω(x),
the stable direction for the word ω at the point x and obtain estimates on the regularity of
this measure, which show that the distribution of Es(ω) and hence the stable manifolds is
not concentrated in any particular direction, see Proposition 4.11. This discussion occupies
Section 4. Through the application of Azuma’s inequality, we are able to show that a typical
trajectory exhibits temperedness.

In Section 6, we study the mixing properties of the skew product map F . The proofs rely
on the properties of stable manifolds that are recalled in Section 5. Mixing plays a crucial
role in the Finite Time Mixing Proposition given in Section 9. This plays an important role
at the precoupling stage.

Section 7 contains the precise statement of the main coupling Proposition 7.7. We then
divide the proof into three main parts: the Local Coupling Lemma 7.10, the Coupled Recovery
Lemma 7.9, and the Finite Time Mixing Proposition 7.11 which corresponds to steps (1)–(3)
in the outline above. Lemma 7.9 is proven in Section 8, Proposition 7.11 is proven in Section 9,
and Lemma 7.10 is proven in Section 10.

Finally, in Section 11 we derive our main results from the main coupling proposition: we
derive Theorem 1.1 and Corollary 1.2 from Proposition 7.7.

The paper contains two appendices. Appendix A describes how the smoothness of a curve
which is transversal to the stable direction improves under the dynamics, while Appendix B
discusses fake stable manifolds and their holonomy. In particular, we show that these objects
converge exponentially fast to true stable manifolds and holonomies respectively. While the
estimates in the appendices are similar to several results in Pesin theory, we provide the proofs
in our paper since we could not find exact references in the existing literature. This is partially
due to the fact that we put a greater emphasis to the finite time estimates because we want to
preserve the Markov property of the dynamics and hence cannot base our coupling algorithm
on the knowledge of the future behavior of orbits.

3.3. Mixing in hyperbolic dynamics. We now compare our work with strategies used in
other works. Historically the first mixing results for hyperbolic systems relied on symbolic
dynamics, see [Bow75, Rue78, Sin72, PP90]. Currently the most flexible realization of this
approach is via symbolic dynamics given by Young towers ([You98]). Later, several methods
working directly with the hyperbolic systems were developed. In particular, we would like
to mention weighted Banach spaces developed in [GL06] (see [Bal00] for a review) as well as
the coupling approach developed in [You99]. We note that most hyperbolic systems could
be analyzed by each of these methods but a different amount of work is required in different
cases. For example, a recent paper [DL23] constructs weighted Banach spaces suitable for the
billiard dynamics. However, these spaces are necessarily complicated reflecting the complexity
of billiards systems.

In our work, we use the coupling approach. This method was originally used in [You99] to
handle symbolic systems, while the modifications which allow working directly on the phase
space are due to [Dol00, CM06]. The two papers mentioned above implemented the coupling
methods for systems with dominated splitting. In our case, we have to deal with the general
non-uniformly hyperbolic situation and this significantly expands the potential applications
of the coupling method.
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An attractive feature of our result is that we make only one assumption (1.1) which is, in
fact, open. Our result is an example of a successful implementation of the line of research ask-
ing which dynamical properties follow just from existence of a hyperbolic set with controlled
geometry. This direction is exemplified by a conjecture of Viana [Via98], which asks if the exis-
tence of positive measure hyperbolic set implies existence of a physical measure. While several
important recent results obtained progress on this question (see [BO21, Bur24, BCS23, CLP22]
as well as [BCS22] which deals with a measure of maximal entropy), much less is known about
qualitative properties. In the present (and a follow up) paper we are able to get a full package
of statistical properties starting from a simple assumption (1.1).

Below we list key ingredients of our approach since similar ideas could be useful in studying
other hyperbolic systems.

(1) Using martingale large deviation bounds, we demonstrate an abundance of times where
the orbit of a given vector is backward tempered.

(2) Using two dimensionality and volume preservation, we promote exponential growth of
the norm to existence of a hyperbolic splitting.

(3) Using Pesin theory we show that hyperbolic set cannot have gaps of too small a size
since these gaps would be filled with orbits of slightly weaker hyperbolicity.

(4) We use fake stable manifolds and quantitative estimates on their convergence to con-
struct a finite time “fake” coupling.

(5) Using a Mañe type argument we show that a fake coupling converges quickly to a real
coupling for most trajectories.

Finally, we would like to mention that recently a different approach to quenched mixing
based on random Young towers has been developed, see [ABR22, ABRV23]. So far, the authors
have proved the existence of random towers for relatively simple systems where hyperbolicity is
uniform at least in one direction. It might be possible to obtain exponential mixing in our case
by verifying the conditions of [ABRV23], however, this would not simplify our analysis. Indeed
the main ingredients of the Young towers is the following: the existence of a positive measure
horseshoe, an exponential tail on the return time, and a finite time mixing estimate. The last
ingredient is already established in our paper. To construct a large horseshoe would require
estimates similar to our local coupling lemma of Section 10, while having an exponential
tail on return times would be similar to our recovery lemma of Section 8. In addition there
several technical properties of Young tower whose verification would require additional space
and effort. For this reason we prefer to give a direct proof of exponential mixing in our setting
rather than deducing our result by a lengthy verification of the conditions of the deep recent
work of [ABRV23].

4. Estimates on the growth of vectors and temperedness

In this section, we study infinitesimal properties of uniformly expanding random dynam-
ical systems. The main results of this section are a proof that the sequence of linear maps
Dfω0 , Dfω1 , . . . , Dfωn applied along the trajectory of a point x typically has a splitting with
most of the same properties as a point in a Pesin block has. Moreover, we give quantitative
estimates on the angle between the vectors in the splitting, as well as the probability that the
splitting experiences a renewal.

4.1. Tempered vectors and sequences of linear maps. In this subsection we discuss
some notions of tempering for sequences of linear maps. We remark that typical notions
of tempering used in Pesin theory involve both lower and upper bounds, i.e. they involve a
statement like eλ−ϵ ≤ ∥A|Eu∥ ≤ eλ+ϵ. We will only take one of these two bounds to avoid
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having to do more estimates than necessary. Further, the version of tempering used in Pesin
theory is often adapted so that the value of λ is a particular Lyapunov exponent for a particular
measure. In such a context, a tempered splitting will have expansion at rate eλ−ϵ rather than
at rate eλ, as we have below. Compare for example, with the definition of (λ, µ, ϵ)-tempered
in [BP07, Def. 1.2.]. In the language of this section, points that are (λ, µ, ϵ)-tempered in the
sense of [BP07], have a splitting that is (C, λ− ϵ, ϵ)-tempered in our sense.

Before we get to our ultimate notion of a tempered splitting, Definition 4.2, we first record
several estimates and introduce intermediate notions.

Definition 4.1. Consider a finite or infinite sequence of linear maps (An)n∈I between a
sequence of normed 2-dimensional vector spaces Vi, where I is either N or a set of the form
{1, . . . , n}, and Ai : Vi → Vi+1.

(1) We say that (An) has (C, λ, ϵ)-subtempered norms when

∥Ai+j∥ ≥ eCeλie−ϵj∥Aj∥,

for all i ≥ 1, j ≥ 0, with i+ j ∈ I.
(2) We say that a vector v is (C, λ, ϵ)-subtempered for the sequence of linear transforma-

tions Ai if

(4.1) ∥Am
k v

k∥ ≥ eCeλme−ϵk,

where Am
k = Ak+m · · ·Ak+1 and vk = Akv/∥Akv∥, for all k,m ∈ N with k +m ∈ I.

(3) We say that the vector v is (C, λ, ϵ)-supertempered if

(4.2) ∥Am
k v

k∥ ≤ eCeλmeϵk,

for all m, k and vk as above.
(4) Similarly, we may speak of a vector v ∈ TxM being sub or super tempered for a

sequence of diffeomorphisms (fn)n∈I if it sub or super tempered for the sequence of
differentials Dxf1, Df1(x)f2, . . ., etc.

Finally, we say that a sequence of maps has an (C, λ, ϵ)-tempered splitting if there exists
a pair of directions eu and es such that the action of the maps is (−C, λ, ϵ)-subtempered on
eu and (C,−λ, ϵ)-supertempered on es. In addition, we impose a lower bound on the angle
between these two directions. Note that we do not require the angle itself to be tempered in
the sense that it locally decays slowly: we just require that it stay bounded below by a slowly
decaying function.

Definition 4.2. We say that a finite or infinite sequence A1, . . . , An of linear maps Ai : Vi →
Vi+1 of 2-dimensional inner product spaces has a (C, λ, ϵ)-tempered splitting if there exists a
pair of unit vectors es, eu ∈ V1 such that

∥Am
k (Akeu)∥/∥Akeu∥ ≥ e−Ceλme−ϵk,(4.3)

∥Am
k (Akeu)∥/∥Akes∥ ≤ eCe−λme+ϵk,(4.4)

∠(Akes, Akeu) ≥ e−Ce−ϵk.(4.5)

Similarly, we say that this sequence of maps has a reverse tempered splitting, if the sequence
of maps A−1

n , . . . , A−1
1 has a tempered splitting.

In the rest of this section we will show that typically the sequence of differentials along a
random orbit has a tempered splitting.
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4.2. Temperedness of sums of real valued random variables. In order to study the
temperedness of vectors, we will first study additive sequences of real random variables. This
will be sufficient for our purposes because one may think of the norm of a vector acted upon
by matrices as the sum of random variables of the form ln ∥Av∥∥v∥−1.

In what follows, we will be studying tempered sequences of sums of real valued random
variables. The results of this subsection will be used in the proof of Proposition 4.16, which
says that tempered times occur exponentially fast.

Definition 4.3. If X1, . . . , Xn is a finite or infinite sequence of real numbers then we say that
this sequence is (C, λ, ϵ)-tempered if for each 0 ≤ j < k ≤ n, we have that

(4.6)
k∑

i=j+1

Xi − λ(k − j) + jϵ ≥ C.

We also say that a finite sequence X1, . . . Xn is (C, λ, ϵ)-reverse tempered if the sequence
Xn, . . . , X1 is (C, λ, ϵ)-tempered.

Note that for fixed λ, ϵ > 0 every finite sequence is (C, λ, ϵ)-tempered for a sufficiently negative
choice of C. Further, note that this condition is harder to satisfy for large positive C, and
easier to satisfy for very negative C.

We are interested in finding tempered times for sequences of random variables.

Proposition 4.4. Fix constants c > λ0 > λ1 > 0 and ϵ > 0. Then there exist D1, D2 > 0
such that the following hold. Suppose that X1, X2, . . . is a submartingale difference sequence
with respect to a filtration (Fn)n∈N such that

(1) |Xi| ≤ c;
(2) E [Xi|Fi−1] ≥ λ0.

Then the temperedness constant of the random sequence has an exponential tail. Namely, for
C ≥ 0,

(4.7) P(X1, X2, . . . , is not (−C, λ1, ϵ)-tempered) ≤ D1 exp(−D2C).

Under the same assumptions on a finite sequence, (4.7) holds with the same constants.

Proof. For a fixed C, for the sequence to be (−C, λ1, ϵ)-tempered, for each pair of indices
0 ≤ j < k the following inequality must be satisfied:

(4.8) Xk + · · ·+Xj+1 − (k − j)λ1 + jϵ ≥ −C.

To estimate the probability of this event consider χk+1 = E [Xk+1|Fk], and let X̂k=Xk+1−χk+1.

Then the sequence X̂k is a martingale difference sequence. Then,

P(Xk + · · ·+Xj+1 − (k − j)λ1 + jϵ ≤−C)=P(X̂k + · · ·+ X̂j+1+

k∑
i=j+1

χi − (k − j)λ1 + jϵ ≤−C)

≤P

∣∣∣∣∣∣
k∑

i=j+1

X̂i

∣∣∣∣∣∣ ≥
∣∣∣∣∣∣−

k∑
i=j+1

χi + (k − j)λ1 − jϵ−C

∣∣∣∣∣∣
≤P

∣∣∣∣∣∣
k∑

i=j+1

X̂i

∣∣∣∣∣∣ ≥ |−(k − j)(λ0 − λ1)−jϵ−C|


because we know that the term in the right hand absolute value is negative and χi ≥ λ0 > λ1.
Then by Azuma’s inequality (Thm. 2.2),

(4.9) P (Xk + · · ·+Xj+1 − (k − j)λ1 + jϵ ≤ −C) ≤ 2 exp

(
−(m(λ0 − λ1) + jϵ+ C)2

2mc2

)
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≤ 2 exp

(
−m(λ0 − λ1)

2 + 2(jϵ+ C)(λ0 − λ1)

2c2

)
,

where m = k− j. Summing over j and m we obtain that there exist D1, D2 > 0 independent
of n such that:

(4.10)
n∑

k≥j+1

P(Xk + · · ·+Xj+1 − (k − j)λ1 + jϵ ≤ −C) ≤ D1 exp(−D2C),

which gives the needed conclusion. □

We now estimate the probability that a sequence of random variables as above first fails to
be tempered at a time n. This will be used to ensure that failure times in the local coupling
lemma have an exponential tail.

Proposition 4.5. Fix constants c > λ0 > λ1 > 0 and ϵ > 0. Then there exists η > 0 such
that the following holds. For each C there exists D1 such that if X1, X2, . . . is a submartingale
difference sequence with respect to a filtration (Fn)n∈N and

(1) |Xi| ≤ c;
(2) E [Xi|Fi−1] ≥ λ0,

then if S is the first n such that X1, X2, . . . , Xn is not (C, λ1, ϵ)-tempered then:

P(S ≥ n) ≤ D1e
−ηn.

Proof. To obtain a proof of the proposition we show that except on a set of exponentially small
probability, the sequence X1, . . . , Xn satisfies better estimates than (C, λ1, ϵ)-temperedness
requires for the constraints related on Xn+1. In fact, these estimates are so much better than
what is needed, that regardless of what Xn+1 is the sequence will remain (C, λ1, ϵ)-tempered
as long as X1, . . . , Xn is (C, λ1, ϵ)-tempered. Hence the sequence fails to be tempered for the
first time at time n+ 1 with exponentially small probability.

We claim that there exist η,D1 > 0 such that with probability at least 1−D1e
−nη, for all

0 ≤ j < n,

(4.11)
n∑

i=j+1

Xi − λ1(n− j) + jϵ ≥ C + (n− j)(λ0 − λ1)/2.

We now estimate the probability that (4.11) holds for each 0 ≤ j < n. This is the same as
estimating the probability that

n∑
i=j+1

Xi < λ1(n− j)− jϵ+ C + (n− j)(λ0 − λ1)/2.

Note that this is the same inequality as (4.8), with (n− j)(λ0 − λ1)/2 added to the constant
C appearing there. Thus (4.9) gives

P

 n∑
i=j+1

Xi < λ1(n− j)−jϵ+C+
(n− j)(λ0 − λ1)

2

≤2 exp(−((n− j)(λ0 − λ1)/2+jϵ+ C)2

2(n− j)c2

)
As at least one of j and n− j exceeds n/2 in size, we see that there exists a > 0 such that

P

 n∑
i=j+1

Xi < λ1(n− j)− jϵ+ C + (n− j)(λ0 − λ1)/2

 ≤ e−an.
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Hence there exists D1 > 0 such that

n−1∑
j=0

P

 n∑
i=j+1

Xi < λ1(n− j)− jϵ+ C + (n− j)(λ0 − λ1)/2

 ≤ D1e
−(a/2)n.

Thus we see that there is a set of probability 1−D1e
−(a/2)n such that the inequalities (4.11)

all hold. In particular as long as n is sufficiently large, for a realization X1, . . . , Xn in this
set, it follows that X1, . . . , Xn, Xn+1 is necessarily also (C, λ1, ϵ)-tempered if X1, . . . , Xn is.

This implies that the probability of X1, X2 . . . failing to be (C, λ1, ϵ)-tempered for the first

time at time n is at most D1e
−(a/2)n, and the proposition follows. □

4.3. Tempered splittings from tempered norms. In this subsection, we show that one
may obtain a tempered splitting for a sequence of matrices in SL(2,R) when the norms of the
matrix products are themselves tempered. Namely, we show that if the norms of a product
of matrices has subtempered norm in the sense of Definition 4.1, then the product has a
hyperbolic splitting. The proof consists of several steps. The first step is to show that there
is a stable subspace on which the product’s action is super-tempered.

As before, we write An = An · · ·A1. We denote by sn the most contracted singular direction
of An and by un the most expanded singular direction. Recall that for A ∈ SL(2,R) we have
∥As∥ = ∥A∥−1 where s is a unit vector in the most contracted singular direction.

Before proceeding to the next proof, we see how the most contracted singular direction
changes as we compose more matrices. Note that the following computation does not use any
temperedness assumptions. Define αn as follows:

(4.12) sn = cosαnsn+1 + sinαnun+1.

Then we can compute that

∥An+1sn∥ =

√
∥An+1∥−2 cos2 αn + ∥An+1∥2 sin2 αn ≥ ∥An+1∥ sinαn.

But we also have the estimate:

∥An+1sn∥ ≤ ∥An+1∥∥An(sn)∥ = ∥An+1∥∥An∥−1.

Thus

(4.13) sinαn ≤ ∥An+1∥
∥An+1∥∥An∥

.

We now observe that if the sequence (An)n∈N has a well defined stable direction Es, then
sn → Es and we can estimate their distance by

(4.14) ∠(Es, sn) ≤ D
∑
m≥n

αm.

This is good because we expect this sum to be dominated by its first term in the presence of
non-trivial Lyapunov exponents.

Now consider a sequence of matrices A1, A2, . . . whose norm is (C, λ, ϵ)-tempered and such
that each matrix has norm bounded above by Λ > 0. If we have ∥Anv∥ ≥ eCenλ for some
unit vector v, then

(4.15) ∠(Es, sn) ≤ D
∑
m≥n

e−2CΛe−2mλ ≤ eD
′−2CΛe−2nλ,

for some D′ depending only on λ.
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Proposition 4.6. Suppose that C0, λ, ϵ,Λ > 0 are fixed. Then there exist D and N ∈ N such
that if A1, . . . , An, n ≥ N is a sequence of matrices in SL(2,R) with (C, λ, ϵ)-subtempered
norms. Then:

(1) There exist perpendicular vectors s and u so that (Ai)1≤i≤n has a (max{0,−3C}+D,λ−
2ϵ, 3ϵ) tempered splitting in the sense of Definition 4.2. In the case that ∥An∥ > 1, we may
take s and u to be the most contracted and expanded singular directions of An, respectively.

(2) In the case of an infinite sequence (Ai)i∈N with subtempered norms there exists an or-
thogonal pair of unit vectors s and u that defines such a splitting. Further, there ex-
ists a unique one dimensional subspace Es such that any non-zero v ∈ Es that satisfies
lim sup
n→∞

n−1 ln ∥Anv∥ < 0 is in Es.

(3) Finally, there exists N0(C) = ⌈(C + ln(2))/λ⌉ and D′ such that for n ≥ N0 and m2 ≥
m1 ≥N0, and any (C, λ, ϵ)-tempered sequence of matrices (Ai)1≤i≤n as above, Am1 and
Am2 have unique contracted singular directions Es

m1
and Es

m2
and moreover,

∠(sm1 , sm2) ≤ e−4C+D′
e−2(λ−ϵ)m1 .

The analogous statement also holds for n = ∞.

Proof. If ∥An∥ = 1, choose arbitrarily a vector sn. Otherwise, let sn be a unit vector most
contracted by An. Let sm be the most contracted vector for Am. If sm does not exist because
∥Am∥ = 1, then there is no most contracted direction, and we instead set sm = sn. Let un be
a unit vector in the orthogonal complement of sn. We show that un and sn define a tempered
splitting. This requires estimating three things: the contraction of sn, the growth of un, and
the decay of the angle between them.

We now proceed with the proof of (1). First, we will show that the action on the vector sn
is super-tempered. Define αm as in (4.12). Then there exists some D1 such that

(4.16) sinαm ≤ D1
∥Am∥

∥Am∥∥Am+1∥
.

Indeed for indices m where sm and sm+1 are both defined by the actual most contracting
directions, this follows as in (4.13). Otherwise, note that one of Am or Am+1 has norm 1,
hence the right hand side is uniformly bounded below by e−2Λ, and thus there exists such
a D1.

From (4.16), it is immediate that there exists D2 > 0 such that

(4.17) ∠(sm, sn) ≤ D2

∑
m≤j<n

∥Aj∥
∥Aj∥∥Aj+1∥

.

From (C, λ, ϵ)-subtempered norms we have for all m+ l ≤ n,

(4.18) ∥Am+l∥ ≥ eCeλl∥Am∥e−ϵm.

Combining (4.17) and (4.18), and the uniform bound ∥A∥ ≤ eΛ, we get

(4.19) ∠(sm, sn) ≤ D2e
−2C+2Λ∥Am∥−2e2ϵm

∑
0≤l<n−m

e−2λl ≤ D2Dλe
−2C+2Λ∥Am∥−2e2ϵm

Hence there exists D3 > 0 such that for all 0 ≤ m ≤ n,

∥Amsn∥ ≤ ∥Am∥−1 + sin∠(sn, sm)∥Am∥ ≤ ∥Am∥−1 +D3Dλe
−2C+2Λ∥Am∥−1e2ϵm

≤ (1 +D3Dλe
−2C+2Λe2ϵm)∥Am∥−1.(4.20)
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We now check that sn is supertempered. This is more complicated. Write ŝkn forAksn/∥Aksn∥.
For all j + k ≤ n, we have

∥Aj
kŝ

k
n∥∥Aksn∥ = ∥Aj+ksn∥.

Thus

∥Aj
kŝ

k
n∥ ≤ ∥Aj+ksn∥∥Aksn∥−1.

Applying (4.20) with m = j + k we get

∥Aj
kŝ

k
n∥ ≤ (1 +D3Dλe

−2C+2Λe2ϵ(j+k))∥Aj+k∥−1∥Aksn∥−1(4.21)

By subtemperedness, ∥Aj+k∥ ≥ eCejλe−kϵ∥Ak∥, thus

∥Aj
kŝ

k
n∥ ≤ e−Ce−jλekϵ(1 +D3Dλe

−2C+2Λe2ϵ(j+k)).

Hence there exists D4 such that

(4.22) ∥Aj
kŝ

k
n∥ ≤ e−min{−C,−3C}+D4e−j(λ−2ϵ)e3kϵ.

Thus sn is (max{0,−3C}+D4, λ− 2ϵ, 3ϵ)-supertempered.
Next we estimate how fast the angle between sn and un = (sn)

⊥ decays. This will lead to a
growth estimate on un. Consider the angle θm between Amsn and Amun. Because the maps
are in SL(2,R),

(4.23) 1 = ∥Amsn∥∥Amun∥ sin θm.

Hence by (4.20),

(4.24) sin θm ≥ 1

∥Amsn∥∥Am∥
≥ (1 +D3Dλe

−2C+2Λe2ϵm)−1.

For 0 ≤ D3Dλe
−2C+2Λe2ϵm ≤ 1,

(4.25) sin θm ≥ 1/2.

Otherwise, as 1/(1 + x) ≥ 1/(2x) for x ≥ 1,

(4.26) sin θm ≥ (2D3)
−1D−1

λ e2C−2Λe−2ϵm.

In both cases, we see that there exists D5 such that

(4.27) sin θm ≥ emin{2C,0}−D5e−2ϵm.

Finally, we estimate the rate of growth of un. First, note that because sn and un are
orthogonal, applying (4.24) and (4.20) to (4.23) gives

∥Amun∥ = (sin θm)−1∥Amsn∥−1 ≥ 1 · (1 +D3Dλe
−2C+2Λe2ϵm)−1∥Am∥.

Then letting ûkn = Akun/∥Akun∥, we can estimate ∥Aj
kû

k
n∥ as before:

∥Aj
kû

k
n∥ = ∥Aj+kun∥∥Akun∥−1(4.28)

≥ (1 +D3Dλe
−2C+2Λe2ϵ(j+k))−1∥Aj+k∥∥Ak∥−1(4.29)

≥ (1 +D3Dλe
−2C+2Λe2ϵ(j+k))−1eCe−ϵkeλj∥Ak∥∥Ak∥−1(4.30)

= (1 +D3Dλe
−2C+2Λe2ϵ(j+k))−1eCe−ϵkeλj .(4.31)

If D3Dλe
−2C+2Λe2ϵ(j+k) < 1, then

(4.32) ∥Aj
kû

k
n∥ ≥ 1

2
eCe−ϵkeλj .
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Otherwise, as 1/(1 + x) ≥ 1/(2x) for x ≥ 1, we see that there exists D5 > 0 such that:

(4.33) ∥Aj
kû

k
n∥ ≥ (2D3)

−1D−1
λ e2C−2Λe−2ϵ(j+k)eCe−ϵkeλj ≥ eD5e3C−2Λe−3ϵke(λ−2ϵ)j .

So, we see that there exists D6 such that

(4.34) ∥Aj
kû

k
n∥ ≥ emin{C,3C}+D6e(λ−2ϵ)je−3ϵk,

which shows that un is (max{0,−3C}+D6, λ− 2ϵ, 3ϵ)-subtempered.
We can now conclude by reading off the constants for the splitting we just obtained from

equations (4.22), (4.27), and (4.34) and comparing with Definition 4.2. Thus there is D7

depending only on λ,Λ, ϵ, such that sn and un define a subtempered splitting with constants:

(4.35) D7 = (max{0,−3C}+D7, λ− 2ϵ, 3ϵ).

This finishes the proof of the first conclusion of the proposition.
The proof of (2) is straightforward, similar to part (1), and very similar to a usual proof of

Osceledec theorem [Via14, Ch. 4], so we omit it.
Item (3) also follows from the above proof once we know that N is large enough that

the stable subspace is well defined. This certainly holds if n ≥ ⌈(C + ln(2))/λ⌉ since then
∥An∥ ≥ 2. Then from equation (4.19) and temperedness of the norm, if m1 ≤ m2, we have
that

∠(sm1 , sm2) ≤ D2Dλe
−2C+2Λ∥Am1∥−2e2ϵm1

≤ D2Dλe
−2C+2Λe2ϵm1(e−2Ce−2m1λ) ≤ e−4C+D8e−2(λ−ϵ)m1 ,

for some D8, which gives item (3). □

4.4. Tempered splittings for expanding on average diffeomorphisms. In this sub-
section, we apply the above developments to describe hyperbolicity of expanding on average
random dynamical systems. There are two main results, the first is Proposition 4.8, which is
a quantitative estimate on the probability that Dxf

n
ω has a (C, λ, ϵ)-tempered splitting. The

second estimate is Proposition 4.14, which controls the stable direction for this splitting.
To begin, we estimate the probability that the sequence ∥Dxf

n∥ is tempered.

Proposition 4.7. For a closed surface M , suppose that (f1, . . . , fm) is a uniformly expanding
on average tuple in Diffvol(M) with constants n0 and λ0. Then for all 0 < λ1 < λ0 and all
sufficiently small ϵ > 0, there exists D,α > 0 such that for all x ∈M ,

(4.36) µ({ω : ∥Dxf
n
ω∥ is not (−C, λ1, ϵ)−subtempered}) ≤ De−αC .

Proof. This follows from the estimates on temperedness obtained for submartingales. Essen-
tially, for a fixed v ∈ T 1

xM , Xn = ∥Dxf
nn0
ω v∥ is a submartingale with respect to a filtration

Fn generated by the coordinates of ω, and E [Xn|Fn−1] ≥ λ0. Thus Proposition 4.4 gives that
for all sufficiently small ϵ > 0, and 0 < λ1 < λ0, there exist D1, D2 > 0 such that:

P(∥Dxf
nn0∥ is not (−C, λ1, ϵ)-tempered) ≤ D1e

−D2C .

Then to obtain temperedness along the entire sequence, not just times of the form nn0, note
that we have a uniform bound on the norm and conorm of all ∥Dxfωi∥, 1 ≤ i ≤ m. □

Since a tempered sequence of norms implies the existence of a tempered splitting by Propo-
sition 4.6, the following is immediate.
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Proposition 4.8. Suppose that M is a closed surface and (f1, . . . , fm) is uniformly expanding
on average tuple of diffeomorphisms in Diff2

vol(M) with expansion constant λ0. Then for all
0 < λ1 < λ0, and sufficiently small ϵ > 0, there exists D,α > 0 such that for all x ∈ T 1M ,

(4.37) µ({ω : Dxf
n
ω does not have a (C, λ, ϵ)− tempered splitting}) ≤ De−αC .

In particular, for all x ∈ M and almost every ω, Dxf
n
ω has a well defined one-dimensional

stable subspace Es
ω(x).

Below, it will be important to consider the probability that a trajectory that is (C, λ, ϵ)-
tempered suddenly fails to be tempered. In order to quantify this we will introduce an
auxiliary quantity for (C, λ, ϵ)-tempered orbits of length n. We call this the cushion of the
orbit and it measures how far the inequalities from Definition 4.1(1) are from failing.

Definition 4.9. If the sequence of matrices A1, . . . , An is (C0, λ, ϵ)-tempered, then we define
its cushion U to be

U = min
0≤k<n

[
ln ∥An∥ − ln ∥Ak∥ − C0 − (n− k)λ+ ϵk

]
Note that a trajectory can have such a large cushion that whatever happens at the next
iterate, the trajectory will not fail to be tempered. The cushion reflects the only inequalities
relevant to tempering that the term An+1 would affect, should it be added to the sequence.

The following proposition is a large deviations estimate that says that typically the cushion
is quite large.

Proposition 4.10. For a closed surface M , suppose that (f1, . . . , fm) is an expanding on
average tuple in Diff2

vol(M) with expansion constant λ0 > 0. For fixed C0, let U(n, ω, x) be
the cushion of Dxf

n when viewed as a (C0, λ, ϵ)-tempered trajectory.
Then for any C0, λ < λ0, and ϵ > 0, there exist δ, η,D > 0 such that

P(U(n, ω, x) < nδ|Dxf
n
ω is (C0, λ, ϵ)-tempered) ≤ De−ηn.

Proof. The proof is straightforward: we are just estimating the difference between ln ∥Dxf
n
ω∥

and ln ∥Dxf
i
ω∥.

Note that in order for a given trajectory to fail to have a cushion of size ϵ̄n, it needs to be
the case that for each 0 ≤ k ≤ n, that

(4.38) ϵ̄n > ln ∥Dxf
n
ω∥ − ln ∥Dxf

k
ω∥ − C0 − λ(n− k) + ϵk.

Call this event Ωn,k. Note that this event is a subset of the event that

ϵn+ C0 ≥ ln ∥Dxf
n
ω∥ − ln ∥Dxf

k
ω∥ − λ(n− k)

As before, ln ∥Dxf
n
ω∥− ln ∥Dxf

k
ω∥−λ(n−k) is a submartingale with differences bounded by

some Λ > 0. Hence as ϵ̄n+C0 is positive for n sufficiently large, it is less than the expectation
of ln ∥Dxf

n
ω∥ − ln ∥Dxf

k
ω∥ − λ(n− k). Thus Azuma’s inequality gives

P(Ωn,k) ≤ P
(∣∣∣ln ∥An∥ − ln ∥Ak∥ − E

[
ln ∥An∥ − ln ∥Ak∥

]∣∣∣ > ϵ̄n+ C0

)
≤ 2 exp

(
−(ϵ̄n+ C0)

2

2Λn

)
≤ C1 exp

(
− ϵ

2Λ
n

)
.

Summing over k, we find that the probability that at least one of the inequalities (4.38) fails
for 1 ≤ k ≤ n is exponentially small, which gives the result. □
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Next, we study the distribution of the stable subspaces in an expanding on average system.
We obtain two estimates. First, we obtain an estimate on the distribution of all stable
subspaces through a point, Proposition 4.11. Second, in Proposition 4.14, we show that the
empirical distribution of stable subspaces converges quickly to the actual distribution of the
true stable subspaces.

Proposition 4.11. Suppose that M is a closed surface and that (f1, . . . , fm) is an expanding
on average tuple of diffeomorphisms in Diff2

vol(M). Then there exist constants C,α > 0
such that if νsx denotes the distribution of stable subspaces through the point x, then for each
v ∈ PTxM ,

νsx({z | d(z, v) ≤ ϵ}) ≤ Cϵα,

where d is the angle between those points and P(TxM) denotes the projectivization of TxM .

Naturally, before proceeding with the proof, we must show for v ∈ T 1M that the norm of
Dxf

n
ωv along a typical trajectory does grow exponentially. In fact, we show that even slow

exponential growth is quite unlikely.

Lemma 4.12. In the setting of Proposition 4.11, suppose that (1.1) holds with constants
n0 ∈ N and λ0 > 0. Then there exist γ,C > 0 such that if v ∈ T 1M , then

(4.39) Pω(∥Dfnωv∥ ≤ eλ0n/3) ≤ Ce−γn.

Proof. First, note that by considering the Taylor expansion of e−t, that for sufficiently small
t and all v ∈ T 1M ,

E
[
e−t ln ∥Df

n0
ω v∥

]
≤ (1− (n0λ0/2)t).

Next, observe that writing v for v/∥v∥,

E
[
e−t ln ∥Df

2n0
ω v∥

]
= E

[
e−t ln ∥Df

n0
ω v∥e

−t ln ∥Df
n0
σn0 (ω)

(Df
n0
ω v)∥

]
≤ E

[
e−t ln ∥Df

n0
ω v∥(1− (n0λ0/2)t)

]
≤ (1− (n0λ0/2)t)

2 ,

where we have used the independence of σn0ω from ωi for i < n0. Similarly, by boundedness
of the C1 norm of the fi, we see inductively that there exists D > 0 such that for all n,

E
[
e−t ln ∥Dfn

ω v∥
]
≤ D (1− (n0λ0/2)t)

n/n0 ≤ e−nλ0/2,

since 1− t/2 < e−t for small t. By Markov’s inequality

P(∥Dfnωv∥ ≤ eλ0n/3) ≤ P(e−t ln ∥Dfn
ω v∥ ≥ e−tλ0n/3)

≤
E
[
e−t ln ∥Dfn

ω v∥]
e−tλ0n/3

≤ D
(1− (n0λ0/2)t)

n/n0

e−tλ0n/3
≤ De−nλ0t/2+λ0nt/3 ≤ De−nλ0t/6. □

For v ∈ T 1M , let Bϵ(v) be the set of directions w with sin(∠(v, w)) ≤ ϵ and Λ be the
maximum of the norm of ∥Dxfi∥ over the set of all 1 ≤ i ≤ m and x ∈M .

Lemma 4.13. For all σ > 0 sufficiently small there exist 0 < θ < 1 such that for any
v ∈ P(TxM) and sufficiently small ϵ > 0, if − λ0

6Λ ln(ϵ) ≤ n ≤ − λ0
3Λ ln(ϵ), and

δ = max
u∈Bϵ(v)

sin∠(Dfnωu,Df
n
ωv),

then

P(δ ≤ ϵ1+σ and for all u ∈ Bϵ(v), ∥Dfnωu∥ ≥ 2−1enλ0/3∥u∥) ≥ 1− ϵθ.
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Proof. By Lemma 4.12, for each n we have ∥Dfnωv∥ ≥ eλ0n/3 on a set of measure 1− Ce−γn.
Then for any unit vector u with sin(∠(v, u)) ≤ ϵ,

∥Dfnωu∥ ≥ ∥Dfnωv∥ − ∥Dfnω (u− v)∥ ≥ eλ0n/3 − ϵeΛn ≥ eλ0n/3/2,

as long as ϵ is sufficiently small and n satisfies n ≤ − λ0
3Λ ln(ϵ).

Since the fi are volume preserving, the areas of the triangles between vectors are preserved.
Since all vectors in Bϵ(v) are stretched, we see that

sin∠(Dfnωv,Df
n
ωu) = ϵ∥Dfnωv∥−1∥Dfnωu∥−1 ≤ 2ϵe−(2/3)λ0n.

But if n ≥ − λ0
6Λ ln(ϵ) and ϵ is sufficiently small, then sin∠(Dfnωv,Df

n
ωu) ≤ 2ϵe−

2
3
λ0

λ0
6Λ

(− ln(ϵ)).
Thus we see that for sufficiently small ϵ and σ > 0 that for n satisfying

− λ0
6Λ

ln(ϵ) ≤ n ≤ − λ0
3Λ

ln(ϵ)

it holds that sin∠(Dfnωv,Df
n
ωu) ≤ ϵ1+σ for all ω in a set of size 1− Cϵ−γn. □

Proof of Proposition 4.11. Using Lemma 4.13 we may now conclude. Fix some σ > 0 as in
the lemma, Λ/(6λ0) < α < Λ/(3λ0) and let ϵ > 0 be small enough that the lemma applies.

Let ϵ1 = ϵ and then define ϵk = ϵ(1+σ)k . Let bk = ⌊−α(1 + σ)k ln(ϵ)⌋ and nk =

k−1∑
k=0

bk be an

increasing sequence of times. By our choice of α we may apply the lemma to each additional
block of iterations of fω of length bk with ϵ = ϵk. We then define:

ηωk (ϵ, v) = max
w∈Bϵk

(Df
nk−1
ω v)

sin∠(Df bkω w,Df
bk
ω v),

τωk (ϵ, v) = inf
w∈Bϵk

(Df
nk−1
ω v)

∥Df bk
σnk−1ω

w∥.

Lemma 4.13 asserts that for every v and k that

P(ηωk (ϵk, v) ≤ ϵ1+σ
k and τωk (ϵk, v) ≥ 2−1eλ0(nk−nk−1)/3) ≥ 1− ϵθk.

As the dynamics is IID and the above estimate is independent of the vector v ∈ P(TM), we
see that there exists C > 0 such that:

(4.40) P

(
for all k ηωk (ϵ, v) ≤ ϵk and τωk (ϵ, v) ≥

eλ0nk/3

2

)
≥

∞∏
i=1

(
1− ϵθk

)
≥ 1− Cϵθ.

By Proposition 4.8, at the point x almost every word ω has a well defined stable subspace
Es

ω(x). If a vector v ∈ T 1
xM satisfies (4.40), then for any w ∈ Bϵ(v), ∥Dfnk

ω w∥ ≥ eλ0nk/32−k,
which grows rapidly in k as long as ϵ was chosen sufficiently small. Thus this vector cannot
be in Es

ω(x). Thus P(Es
ω(x) ∈ Bϵ(v)) ≤ Cϵθ, and we are done. □

Next we check that if we consider the distribution of stable subspaces for finite time real-
izations of the dynamics that the distribution of the finite time stable subspaces converges
quickly to the stationary stable distribution. Essentially this should be true for the same
reason that it is true for IID matrix products. The proof is a slight extension of the argument
that appears above.

Proposition 4.14. Suppose that M is a closed surface and (f1, . . . , fm) is an expanding on
average tuple in Diff2

vol(M). There exist c0, C, θ such that for any x ∈ M and v ∈ T 1
xM , if
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N0 ≥ c0 |ln(ϵ)| the following holds. Let Es
n(ω) be the maximally contracted subspace of the

product Dxf
n
ω . Then:

(4.41) P(for some n > N0, E
s
n(ω) ∈ Bϵ(v) or E

s
n(ω) does not exist) ≤ Cϵθ.

Proof. The proof of the above fact is essentially a corollary of the estimates obtained in the
proof of Lemma 4.13.

We apply that same proof and choose sufficiently small 0 < σ < λ0/(3Λ) where λ0 and Λ
are as in that proposition, as are bk and nk. Then we find that there exists C, θ such that for

all sufficiently small ϵ > 0, we have equation (4.40), so for ϵk = ϵ(1+σ)k ,

(4.42) P(for all k δωk (ϵ, v) ≤ ϵk and τωk (ϵ, v) ≥ 2−1eλ0nk/3) ≥ 1− Cϵθ.

This shows as before that at the times nk, that we have the estimate

∥Dfnk
ω w∥ ≥ eλ0nk/32−k

for all w ∈ Bϵ(v) on a set of measure 1 − Cϵθ. In particular, as we chose σ quite small, for
k ≥ 2, we see that for any time n from nk−1 to nk, that

∥Dfnωw∥ ≥ ∥Dfnk−1
ω w∥e−(n−nk−1)Λ ≥ enk−1λ0/3−(n−nk−1)Λ.

But by choice of σ, that exponent is at least

((1 + σ)k−1λ0/3− ((1 + σ)k − (1 + σ)k−1)Λ) ln(ϵ) = (1 + σ)k−1(λ0/3− σΛ) ln(ϵ) > 0.

Thus from the definition of the nk in Lemma 4.13, we see that on a set of probability 1−Cϵθ

for any n > n1 = |α(1 + σ) ln(ϵ)|, that Es
n(ω) does not lie in Bϵ(v) and the result follows. □

4.5. Reverse tempered sequences. We are interested in reverse tempered times since they
are key for proving smoothing lemmas. The main result of this subsection is Proposition 4.18,
which shows that the waiting time until a reverse tempered time occurs has an exponential
tail.

The following lemma estimates how much the temperedness of a sequence improves when
we prepend entries on it. Note that by reversing the order of the sequence, this gives the
corresponding estimate for reverse temperedness.

Lemma 4.15. Suppose that a1, . . . , an is a (C, λ0, ϵ) tempered sequence and b1, . . . , bm is a
(D,λ1, ϵ/2) tempered sequence where λ1 − λ0 > ϵ, then b1, . . . , bm, a1, . . . , an is

(min{D,mϵ/2 + C +D,mϵ+ C}, λ0, ϵ)

tempered sequence.

Proof. Let c1, . . . , cm+n denote the new joined sequence and let C ′ be the (λ0, ϵ) temperedness
constant for this sequence. Each pair of indices 0 ≤ j < k ≤ n+m gives a constraint on the
constant of temperedness:

(4.43) C ′ = min
0≤j<k≤n+m

jϵ+

k∑
i=j+1

(ci − λ0).

Note that the only pairs of indices that offer a non-trivial constraint are those with at least
one of j+1, k ≥ m+1. The constraint arising from a pair of indices with j, k ≤ m, is certainly
satisfied as long as the temperedness constant is at most D. This leaves two cases.
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For a pair of indices j < m < k, we obtain the constraint that

(4.44) C ′ ≤ jϵ+

m∑
i=j+1

(bi − λ0) +

k∑
i=m+1

(ai − λ0).

But by temperedness, we can bound the right hand side below:

jϵ+
m∑

i=j+1

(bi − λ0) +
k∑

i=m+1

(ai − λ0) ≥ D +
jϵ

2
+ (m− j)(λ1 − λ0) + C ≥ mϵ/2 +D + C.

If both j + 1, k ≥ m + 1, then as the sequence a1, . . . , am is already (C, λ0, ϵ)-tempered, the
constraint on these entries of the sequence improves by mϵ as they are now additionally offset
by m from 0. So, they give the constraint C ′ ≤ C +mϵ.

Taking the minimum over the three bounds above gives the result. □

Using the above, we will now prove that for submartingale difference sequences the renewals
of backward temperedness have exponential tails.

Proposition 4.16. (Exponential return times to the tempered set) Fix c > λ0 > λ > 0 and
pick 0 < ϵ < (λ0 − λ)/3. There exist C0, D1, D2 > 0 such that the following holds. Let
X1, X2, . . . be a submartingale difference sequence with respect to a filtration (Fn)n∈N such
that for all n ∈ N,

(1) |Xn| < c;
(2) E [Xn|Fn−1] ≥ λ0.

Fix N ∈ N and let T denote the first time k after N such that X1, . . . , XN+k is (C0, λ, ϵ)-
reverse tempered. Then

(4.45) P(T > N + k) ≤ D1e
−D2k.

Proof. The proof has essentially two steps. First, in the following claim, we study how long
it takes for a sequence with bad temperedness constant to recover. This happens with linear
speed because we are studying a submartingale sequence with E [Xn|Fn−1] uniformly bounded
away from zero. We estimate how fast the reverse-temperedness constant improves as we
append blocks of a fixed size ∆0. As a sequence of length N might have a bad temperedness
constant, to obtain the result we then apply the tail estimate on the temperedness constant
for sequences of length N . As each of these things has an exponential tail, we obtain the
result.

The main claim is the following.

Claim 4.17. There exist C0 and A,B > 0 independent of N , such that if X1, . . . , XN is
(R, λ, ϵ)-tempered and T is the first time greater than N that is (C0, λ, ϵ)-reverse tempered,
then

P(T > N + k|X1, . . . , XN is (R, λ, ϵ)-tempered) ≤ AeR−Bk.

Proof. Let λ1 = (λ+λ0)/2 and denote by Bi,∆ the backwards (λ1, ϵ/2)-temperedness constant
of the sequence Xi+1, . . . , Xi+∆. By Proposition 4.4, there exist A2, B2 (independent of i and
∆) such that for C ≥ 0,

P(Xi+1, . . . , Xi+∆ is not (−C, λ, ϵ)-tempered) ≤ A2e
−B2C .

As this tail on the temperedness constant is independent of i and ∆, we see that there exists
∆0 sufficiently large and δ > 0 such that for any i ∈ N,
(4.46) E [∆0ϵ/2 +Bi,∆0 |Fi] > δ > 0.
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We now check how much appending a block of length ∆0 improves temperedness. Let C ′
i

denote the backwards (λ, ϵ)-temperedness constant of the sequence

X1, . . . , XN , XN+1, . . . , XN+i∆0 .

and let Di denote the (λ1, ϵ/2) backwards tempered constant of the sequence

XN+(i−1)∆0+1, . . . , XN+i∆0 .

Then by Lemma 4.15,

C ′
i+1 = min{Di+1, ϵ∆0/2 +Di+1 + C ′

i, ϵ∆0 + C ′
i}.

We also define Ĉ0 = C ′
0 and

Ĉi+1 = min{ϵ∆0/2 +Di+1 + Ĉi, ϵ∆0 + Ĉi}.

Note that by (4.46) there exists δ > 0 depending only on c, λ, λ1, ϵ, such that

(4.47) E
[
Ĉi+1|FN+i∆0

]
− Ĉi ≥ δ > 0.

Suppose that we define T so that we decide to stop when C ′
i ≥ −ϵ∆0/2. Observe that if

i+ 1 is the first index such that Ĉi+1 ≥ 0 then because

Ĉi+1 ≥ ϵ∆0/2 +Di+1 + Ĉi,

and Ĉi < 0 we must have that Di+1 ≥ −ϵ∆0/2. Thus

(4.48) C ′
i+1 ≥ min{Di+1, ϵ∆0/2 +Di+1 + C ′

i, ϵ∆0 + C ′
i} ≥ −ϵ∆0/2.

Let C0 = −ϵ∆0/2. Thus if k is the first index such that Ĉk ≥ 0, then T < n+∆0k. Thus we

need to obtain a bound for the first time Ĉi ≥ 0.
We now bound the tail on the first time Ĉi ≥ 0. Note that Ĉi is a submartingale. Further

let M be an upper bound on
∣∣C ′

i+1 − C ′
i

∣∣ over all i (an upper bound exists because |Xi| < c).

Let χi = E
[
Ĉi|Fn+(i−1)∆0

]
≥ δ > 0. Then βi = Ĉi+1−χi is a martingale difference sequence.

We now estimate:

P(Ĉk ≤ 0) ≤ P

(
−R+

k∑
i=1

βk ≤ −
k−1∑
i=0

χi

)
≤ P

(
k∑

i=1

βk ≤ −kδ +R

)
Thus for k ≥ R/δ, by Azuma’s inequality (Theorem 2.2),

P(Ĉk ≤ 0)≤ 2 exp

(
−(kδ −R)2

2kM2

)
≤2 exp

(
− kδ2

2M2
+
Rδ

M2
− R2

2kM2

)
≤2 exp

(
−k δ2

2M2
+R

(
δ

M2

))
.

If δ/M2 ≤ 1, then we are already done with B = δ2/(2M2∆0). Otherwise, if δ/M2 > 1, then
for k ≥ 2R/δ, which is the only range where the bound is less than 1, the right hand side is
bounded above by

2 exp

(
−k δ2

2M2
+R

(
δ

M2

))
≤ 2 exp

(
R− k

δ2

2M2

M2

δ

)
,

and thus the estimate holds with B = δ/(2∆0) in this case as well. This finishes the proof of
the claim. □
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Let A,B and C0 be as in the claim. From Proposition 4.4, there exists D1, D2 such that
for all C ≥ 0,

P(X1, . . . , XN is (−C, λ, ϵ)-tempered) ≥ 1−D1 exp(−D2C).

From the claim we know that if X1, . . . , XN is (−C, λ, ϵ)-tempered and T is the waiting time
for a future (C0, λ, ϵ)-tempered time, then

P(T > N + k) ≤ AeC−Bk.

Combining these two estimates we see that

P(T > N + k) ≤P(X1, . . . , XN is (−Bk/2, λ, ϵ)-tempered and T > N + k)

+ P(X1, . . . , XN is not (−Bk/2, λ, ϵ)-tempered)

≤ A exp(Bk/2−Bk) +D1 exp(−D2Bk/2)

≤ A exp(−Bk/2) +D1 exp(−D2Bk/2).

The conclusion is now immediate. □

The above results imply that expanding on average diffeomorphisms have frequent reverse
tempered times.

Proposition 4.18. Suppose that (f1, . . . , fm) is an expanding on average tuple of diffeomor-
phisms in Diff2

vol(M). There exist λ > 0 such that for all sufficiently small ϵ > 0, there exists
C0, C, α such that for all x ∈ M and N ∈ N, if we let T (x) be the first (C0, λ, ϵ)-reverse
tempered time for ∥Dxf

n
ω∥ that is greater than or equal to N , then

P(T (x) ≤ N + k) ≥ 1− Ce−αk,

and Dxf
T (x)
ω has a well defined splitting into maximally expanded and contracted singular

directions.

Proof. Xn = ∥Dxf
nn0∥ is a submartingale satisfying the hypotheses of Proposition 4.16,

hence Xn satisfies the required estimate on reverse tempered times. The last claim follows
from Proposition 4.6. □

Proposition 4.18 shows that there is a uniformly large density subset of points such that
Dxf

n
ω is reverse tempered. We now show that the stable direction of the resulting tempered

splitting does not lie too close to any particular vector v.

Lemma 4.19. Suppose that (f1, . . . , fm) is an expanding on average tuple in Diff2
vol(M), for

M a closed surface. There exist D,α, c0 and C, λ > 0 such that for all sufficiently small
ϵ > 0, x ∈ M and interval I ⊂ T 1

xM , if n ≥ c0 ln |I|, where |I| is the length of I, if T (x) is
the first time greater than n that the sequence Dxf

n
ω has a (C, λ, ϵ) reverse tempered splitting,

denoting the most contracted direction of Dxf
n
ω by Es

T ,

P(Es
T ∈ I|T (x) ≤ n+ k) ≤ C |I|α .

Proof. This probability equals
P(Es

T ∈ I and T (x) ≤ n+ k)

P(T (x) ≤ n+ k)
. By Proposition 4.18, the de-

nominator is at least 1 − C1e
−kC2 , for some C1, C2. If c0 is as in Proposition 4.14, then for

n ≥ c0 ln |I|, then the numerator is bounded above by P(Es
T ∈ I) ≤ C3 |I|α . □
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5. Stable manifolds of expanding on average systems

In this section we show Proposition 5.3, which says that with probability 1− C−α a point
has a stable manifold of length at least C. The proof has two parts. First we state a abstract
proposition that gives the existence of a stable manifold with good properties through a point
x provided that there exists a tempered hyperbolic splitting along the orbit of x. We then
estimate the probability that this criterion holds.

In §2.3 we introduced the stable manifolds for the random dynamics. We now introduce a
quantitative property of them that will be of use later.

Definition 5.1. We say that a stable manifold W s(ω, z) is (C, λ, ϵ)-tempered if the length of
W s(ω, z) is at least C−1 and the points in the stable manifold attract uniformly quickly: for
x, y ∈ fnω (W

s
C−1(ω, z)),

dfn+m
ω (W s

C−1 (ω,z))
(fmσn(ω)(x), f

m
σn(ω)(y)) ≤ Ce−λmeϵn.

Now we give a quantitative estimate on the number of stable curves of a given C2 norm
and length. This result follows from a careful reading of the construction of stable manifolds
in the book of Liu and Qian [LQ95], in particular, Theorem III.3.1, which constructs stable
manifolds of random dynamical systems lying in a certain type of Pesin block that the authors

denote by Λl,r
a,b,k,ϵ. In the case that the random dynamics only arises from a finite collection

of diffeomorphisms (i.e. has bounded C2 norm), the constraint from the r parameter does
not matter—r essentially measures how small a neighborhood of x one must look at for the
map in an exponential chart to be uniformly close to its derivative. In our setting, once we
pick sufficiently large r0 > 0 there is no constraint. The number k is our case also does not
matter—it specifies the dimension of the splitting we are considering.

In the 2-dimensional setting a point x ∈ M lies in Λl,r
a,b,k,ϵ for the sequence of diffeomor-

phisms f1, f2, . . . if, writing f
n+k
n = fn+k · · · fn+1, we have an invariant splitting along the

trajectory Es
fn(x) ⊕ Eu

fn(x) such that for the reference metric on the manifold we have that:∣∣∣Dfn+k
n (fn(x))|Es

∣∣∣ ≤ leϵne(a+ϵ)k∣∣∣Dfn+k
n (fn(x))|Eu

∣∣∣ ≥ l−1e−ϵne(b−ϵ)k

∠(Es
fn
1 (x), E

u
fn
1 (x)) ≥ l−1e−ϵn.

This is defined at the beginning of [LQ95, Sec. 3]. In the language we have been using above,

a (−C, λ, ϵ)-tempered trajectory belongs to the set ΛeC ,r0
λ,−λ,1,ϵ. From [LQ95, Thm. III.3.1], we

may now deduce the following proposition.

Proposition 5.2. Suppose that (f1, . . . , fm) is a tuple in Diff2
vol(M), where M is a closed

surface. Fix λ, ϵ > 0. Then there exist constants D1, D2 such that if (ω, x) is a (−C, λ, ϵ)-
tempered trajectory, then W s

ω(x) exists and is at least D1e
−2C long. Further, on this interval,

its C2 norm is at most D2e
6C (when viewed as a graph over its tangent space at x). Moreover

these estimates are e7ϵ-tempered along the trajectory.

Proof. From the above discussion, a (C, λ, ϵ)-tempered point lies in ΛeC ,r0
λ,−λ,1,ϵ. So, we just

need to recover the estimates from the proof of [LQ95, Thm. III.3.1]. In fact these estimates
are stated there. As we are keeping λ, ϵ fixed, the conclusion will follow once we compute
the quantities αn and βn appearing in that theorem given our particular choices. Although
[LQ95] only shows the stable manifolds are C1,1, the estimates provided there on the Lipschitz
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constant of the derivative is enough for controlling the C2 norm because we know that the
stable manifolds are in fact as smooth as the dynamics, which is C2 [Arn98, Rem. 7.3.20].

First we explain how to estimate βn, which controls the norm. The first quantity that gets
defined in the proof is c0 = 4Ar′e2ϵ. Here, A is the quantity appearing in the proof of [LQ95,

Lem. 1.3], which is equal to 4(l2)(1 − ϵ−2ϵ)−1/2. Thus c0 ≤ C1e
2C . Therefore the quantity

D = (1 − e−2ϵ)−3(1 + e−2ϵ)2c0e
−a on p. 66 of [LQ95] is at most C2e

2C . Hence βn, which is
defined on p. 68 of [LQ95] as 2DA2e7ϵn and controls the norm of the stable curve, is at most
C3e

6Ce7ϵn.
The length of the curve given by the quantity αn defined on p. 68 of [LQ95] where it is

defined to be A−1r0e
−5ϵn. From the definition of A given above, this is bounded below by

C4e
−2Ce−5ϵn. We are done. □

We then estimate the probability that a stable manifold is (C, λ, ϵ)-tempered.

Proposition 5.3. Suppose that (f1, . . . , fm) ∈ Diffvol(M) is a uniformly expanding on average
tuple, where M is a closed surface. Then there exists λ, ϵ, α > 0 such that for all C > 0

µ({ω :W s
ω(x) is not (C, λ, ϵ)-tempered}) ≤ C−α.

Proof. As the maps f1, . . . , fm are uniformly C1+Hölder and uniformly expanding, the tra-
jectory is (−C, λ, ϵ)-tempered with probability 1 − De−αC by Proposition 4.8. This stable
curve is at least D1e

−2C long from Proposition 5.2. The contracting of the stable manifold
required by Definition 5.1 then follows from a standard graph transform argument, appearing
in Chapter 7 of [BP07] or [LQ95, Lem. 3.2], or from keeping track of the contraction in the
graph transform arguments in §A.4. □

6. Exactness of the skew product

We now consider measure theoretic properties of the skew product F : Σ ×M → Σ ×M .
We begin with the most basic property, ergodicity, in Proposition 6.1. Then we show that
this system is exact in Proposition 6.5. As exactness implies mixing, this proposition plays a
key role in the proof of finite time mixing in Section 9 where it is used in the proof of fiberwise
mixing in Proposition 9.1.

6.1. Ergodicity. The ergodicity of expanding on average systems has been known since
[DK07, Section 10]. We need an extension of this result. Consider the diagonal skew product

(6.1) Fk : Σ×Mk → Σ×Mk given by (ω, x1, . . . , xk) 7→ (σ(ω), fω0(x1), . . . , fω0(xk)).

Note that Fk preserves the measure µ⊗ volk.

Proposition 6.1. Suppose that (f1, . . . , fm) is an expanding on average tuple in Diff2
vol(M)

for M a closed surface. Then for each k ∈ N, Fk is ergodic with respect to µ⊗ volk.

We will not include a full proof of the above proposition as the result for F = F1 is
explained quite clearly in [Chu20, §3.2] as well as [Liu16, Lem. 4.41]. For k > 1, the result
can be deduced along similar lines. No higher dimensional dynamics is needed because the
dynamics is a product and hence all dynamical constructs, like stable manifolds, are just
products of the constructs for the system F1.

The proof of Proposition 6.1 relies implicitly on the following lemma which will be important
in Section 6.2 as well. For x ∈M , we let Bδ(x) denote the ball of radius δ centered at x.
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Lemma 6.2. Suppose that (f1, . . . , fm) is an expanding on average tuple in Diff2
vol(M). Then

there exist 0 < δ1 < δ2 and λ, ϵ, C0, ϵ0 > 0 such that for all x ∈ M there exist two positive
measure subsets V1, V2 ⊆ Σ and a pair of transverse cones C1, C2 defined on Bδ2(x) by parallel
transport of cones based at x such that the following holds. Let Λω denote the set of (C0, λ, ϵ)-
tempered points in Bδ1(x) under the dynamics defined by ω, and set

Qω(x) =
⋃

y∈Λω∩Bδ1
(x)

W s
δ2(ω, y).

Then

(1) For i ∈ {1, 2}, ωi ∈ Vi, and y ∈ Λωi the stable manifold W s
δ2
(ω, y) is uniformly contracting

and tangent to Ci.
(2) For i ∈ {1, 2} and ωi ∈ Vi, the laminations by stable manifolds satisfy the usual absolute

continuity properties:
(AC 1) If K ⊆ M is a Borel set, and for almost every y ∈ Λωi the Riemannian leaf
measure of K ∩W s

δ2
(ωi, y) is zero, then vol(Qωi ∩K) = 0.

(AC 2) If T is a transversal to Ci and K ⊆M is a Borel set, and for a positive measure
subset of z ∈ T , W s

δ2
(ωi, z) ∩K has positive leaf measure, then vol(K) > 0.

(3) For i ∈ {1, 2} and ωi ∈ Vi, vol(Q
ωi ∩Bδ1(x)) > .99 vol(Bδ1(x)).

This lemma is implicit in Chung [Chu20] and Liu [Liu16], and further can be deduced from
the propositions we prove below. In particular, our Propositions 10.12 and B.13 contain the
needed claims. Lemma 6.2 allows a random version of the Hopf argument where the stable
manifolds for different words ω ∈ Σ play the role of the stable and unstable manifolds in the
usual Hopf argument. This can be used to prove Proposition 6.1. We will not repeat this
argument here as it is adequately explained in the sources mentioned.

6.2. Strong mixing. Here we show that for k ≥ 1 the skew product Fk : Σ×Mk → Σ×Mk

defined in (6.1) is strong mixing for the measure µ⊗ volk. We will use this property later. A
good reference for many of the properties discussed in this section is [Roh67].

Definition 6.3. An endomorphism T of a Lebesgue space (M,B, µ) is exact if
∞⋂
n=0

T−nB = N ,

the trivial sub-sigma algebra of M .
An invertible map, i.e. an automorphism, T of a Lebesgue space (M,B, µ), is called a

K-automorphism if there exists a sub-sigma algebra K ⊂ B such that:

(1) K ⊂ TK; (2)
∨∞

n=0 T
nK = B; (3)

∞⋂
n=0

T−nK = {∅,M}.

Both exact systems and K-automorphisms are strong multiple mixing [Roh64, p. 17, 27],
[Roh67, 15.2]. Further, an endomorphism is exact if and only if its natural extension is a
K-automorphism [Roh64, p. 27].

We now describe how one may show that an automorphism T : (M,µ) → (M,µ) is exact.
The Pinsker partition ofM is the finest measurable partition π(T ) ofM that has zero entropy.
This means that any other measurable partition with zero entropy is coarser, mod 0, than
π(T ). It turns out that T is aK-automorphism if the Pinsker partition of T trivial, i.e. π(T ) =
{∅,M}, see [Roh67, 13.1,13.10]. In fact, the conditions enumerated in the definition of K-
automorphism above essentially say that the Pinsker partition is trivial.

A useful fact for studying the Pinsker partition is the following.
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Lemma 6.4. (see [BP07, p. 288], [Roh67, 12.1]) If a measurable partition η satisfies Tη ≥ η
and

∨∞
n=0 T

nη = ϵ, the partition into points, then
∧∞

n=0 T
−nη ≥ π(T ) .

Here we use the standard notation for partitions where we write A ≤ B if A is coarser than
B. An example of a partition satisfying the hypotheses of Lemma 6.4 is the partition of a
shift space Σ into local stable sets, W s

loc(ω) = {η : ωi = ηi for i ≥ 0}.
We now show for k ≥ 1 that the map Fk defined above is mixing.

Proposition 6.5. Let (f1, . . . , fm) be an expanding on average tuple in Diff2
vol(M) for M a

closed surface. Then the associated skew product F : Σ ×M → Σ ×M is exact, and hence
strong mixing of all orders, for the measure µ⊗vol. The same holds for Fk : Σ×Mk → Σ×Mk.

Proof. To show exactness and hence strong mixing of F , we will show that the natural exten-
sion of the skew product F : Σ×M → Σ×M has the K-property. As before, we denote by Σ̂
the two sided shift, so that the natural extension of F is F̂ : (Σ̂×M, µ̂⊗ vol) → (Σ̂, µ̂⊗ vol),

where µ̂ is the Bernoulli measure on Σ̂. Note that the measure on the natural extension has
this simple description because each fi preserves volume.

We begin by showing that modulo 0, any element of the Pinsker partition is of the form
Σ̂× U where U ⊆ M . The local stable sets of the words ω ∈ Σ̂, form a measurable partition
of Σ̂ indexed by the elements of Σ. Further, the sets {W s

loc(ω)× {x}}x∈M form a measurable

partition of Σ̂×M . If we let η denote this partition, then
∧∞

n=0 F
−nη is the partition into sets

of the form Σ̂× {x}, where x ∈ M . By Lemma 6.4, we see that π(F̂ ) ≤ {Σ̂× {x} : x ∈ M}.
Note that this shows that the atoms of the Pinsker partition of F̂ are of the form Σ×A where
A are the atoms of a partition of M. We denote this partition by P and the atom containing
a point x ∈M by P(x).

We now show that the Pinsker partition is even coarser by using the dynamics in the fiber;
in fact our goal is to show that π(F̂ ) has an atom with positive mass. From Liu and Qian,

there is a measurable partition of Σ̂ ×M subordinate to the partition into full stable leaves
[LQ95, Proposition VI.5.2] where each atom is a non-trivial curve in a stable leaf. This shows
that for almost every x ∈ M and almost every ω, that Lebesgue almost every y ∈ W s(ω, x)
is in P(x). (This uses AC1 for the stable lamination.) Let Gωi be the subset of Qωi of points
y such that W s

δ2
(ωi, y) satisfies that almost every z ∈ W s

δ2
(ωi, y) is in P(y). Note that there

there is a subset V̄i of full measure in Vi such that for ωi ∈ V̄i, G
ωi has full measure in Qωi .

Now for ω2 ∈ V̄2 and z ∈ Gω2 , consider the intersection of a leaf W s
δ2
(ω2, z) with G

ω1 , where

ω1 ∈ V̄1. Suppose that for some such z the set Gω1 ∩W s
δ2
(ω2, z) has positive measure. Then

by definition of Gω1 , almost every y ∈ Gω1 has W s
δ2
(ω1, y) saturated with points in P(z),

and hence by AC2, P(z) has positive measure. Thus the Pinsker partition has a positive
measure atom. If there were no such point z, then for almost every z ∈ Gω2 , the intersection
Gω1 ∩W s(z, ω2) has zero leaf measure. Thus by AC1, Qω2 ∩Qω1 ∩Bδ1(x) has measure zero.
But as Qω1 and Qω2 each take up .99 proportion of the volume of Bδ1(x), this is impossible.

Thus we see that there is a positive volume atom of P. Let Σ × A be this atom of π(F̂ ) of
positive measure.

As F̂ is ergodic, it must cyclically permute a finite number of these positive measure sets.
Because F̂ is expanding on average, every power of F̂ is also expanding on average. Hence,
by Proposition 6.1, every power of F is ergodic. Thus the Pinsker partition has only a single
non-trivial element, hence π(F̂ ) is trivial. Hence F̂ is a K-automorphism and so F is exact.

For the higher “diagonal” skew products Fk, the proof proceeds along very similar lines.
As before, one has stable and unstable manifolds in each of the factors of Mk and hence
through any particular point (x1, . . . , xk) ∈ Mk, one has the stable/unstable manifold that
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is the product of the stable manifolds W
s/u
loc (ω, xi). Hence in the extended system the stable

an unstable foliations are transverse as before. By using these, one can similarly deduce that
the Pinsker partition is finite. Further, from Proposition 6.1 every power of Fk is ergodic,
which, as before implies that the Pinsker partition is trivial and thus the K-property holds
for F̂k : Σ̂×Mk → Σ̂×Mk. □

7. Coupling

In this section we present our main technical tool: the coupling lemma. We divide its proof
into several steps according to the plan from Section 3. Accordingly, this section contains the
outline of the rest of the paper.

7.1. Standard pairs and standard families. The proof of exponential mixing in this paper
proceeds by showing that if µ1 and µ2 are two measures with smooth densities and ψ is a
Hölder function then µ1(ψ ◦ fnωx) − µ2(ψ ◦ fnωx) is exponentially small. Taking µ2 to be vol
and µ1 to be the measure with density ϕ we obtain Theorem 1.1. Unfortunately, the set of
measures whose densities satisfy a certain bound on their Hölder norm is not invariant by the
dynamics, since compositions worsen Hölder regularity. So we need to consider a larger class
of measures: the measures that are convex combinations of measures on (unstable) curves.
This leads to notions of standard pairs and standard families that we now recall. We refer to
[CM06, Chapter 7] for a detailed discussion of these notions.

Definition 7.1. A standard pair in a Riemannian manifold M is an arclength parametrized
C2 curve γ : [a, b] → M of bounded length along with a log-Hölder density ρ defined along γ
(or equivalently [a, b]). We denote the pair of the curve and density by γ̂ for emphasis.

There are two different ways of thinking about standard pairs. The first is that a standard
pair is literally a pair of a curve and a density as in Definition 7.1. The second way is that we
think of γ̂ = (γ, ρ) as a “thickened” version of the underlying curve γ where the “thickness” is
given at a point x by ρ(x). More precisely, we may think of γ̂ as a subset of [a, b]× [0,max ρ]
comprising the points (c, y) where y ≤ ρ(c). We will often write x ∈ γ̂ when referring to a
point in this set associated to γ̂. By thinking of the standard pair in this manner, we can
imagine geometrically subdividing the pair into pieces. This type of subdivision is frequently
used below.

Each standard pair defines a measure onM given for continuous ψ : M → R by the formula

(7.1) ρ̂γ(ψ) =

∫
γ
ψ(x)ρ(x)dx

where dx denotes the arclength parametrization of γ.
A standard curve comes with a notion of regularity. The regularity of γ̂ is determined by

the C2 norm of γ as well as the C2 norm of the density along γ. We recall now some notions
from §2.4. Recall that we define the C2 norm, ∥γ∥C2 , of the curve γ as the supremum of its
second derivative as a graph over its tangent space in exponential charts.

Definition 7.2. Suppose that γ̂ is a C2 standard pair consisting of a curve γ and a density
ρ. We say that γ̂ is R-good if

(1) The length of γ is at least e−R.
(2) The C2 norm of γ is at most eR.
(3) The density of ρ satisfies ∥ ln ρ∥Cα ≤ eR, where we measure distance with respect to the

arclength parameter of γ. Recall that Cα only means the Hölder constant of the function.

We say that a standard pair γ̂ is R-regular when at least (2) and (3) are satisfied.
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Note that a larger R corresponds to a less regular curve.

Definition 7.3. For a standard pair γ̂ = (γ, ρ), we say that x ∈ γ has an R-good neighborhood,
if there is a subcurve γ′ ⊆ γ containing x such that (γ′, ρ|γ′) is R-good.

Note that if x is in an R-good neighborhood of γ̂, this does not imply that x is centered
in long neighborhood. The point x might still be quite close to the edge. Later we will also
deal with points x that are centered in an R-good neighborhood, meaning that the segments
on either side of x form R-good neighborhoods.

Definition 7.4. A standard family is a collection of standard pairs {γ̂θ}θ∈Λ indexed by points
from a probability space (Λ, λ).

Thus in the case that λ is atomic we just have a finite collection of standard pairs (counted
with weights).

We say that a standard family is R-good if each standard pair that comprises it is R-good.
We will only consider standard families where the goodness is bounded below.

Given a standard family {γθ}θ∈Λ we can associate a measure by integrating the measures
corresponding to individual standard pairs with respect to the factor measure λ. For a function
ψ : M → R, we set

(7.2) ρ̂Λ(ψ) =

∫
Λ
ρ̂γθ(ψ)dλ(θ)

where ρ̂γθ is defined by (7.1).
A particularly useful property of standard families is that they can represent volume. It is

straightforward to check that a standard pair representing volume exists by using charts.

Proposition 7.5. Given a closed smooth manifold M endowed with a volume, there exists
some C > 0 and a C-good standard family Pvol such that the associated measure represents
volume on M , i.e. for any continuous function∫

ϕdPvol =

∫
ϕd vol .

Below we will use a näıve estimate saying that the goodness of a standard pair can deteri-
orate at most exponentially quickly.

Proposition 7.6. Suppose that (f1, . . . , fm) are C2 diffeomorphisms of a closed manifold.
Then there exists C, η > 0 such that for any standard pair γ̂ that is R-good and any ω ∈ Σ,
fnω (γ̂) is max{C +R+ nη,C + nη}-good.

Proof. The condition that the length of the curve can shrink at most exponentially fast is
clear from the uniform bound on the derivative. The fact about the C2 norm of curve follows
immediately from Lemma A.9. This leaves the estimate on the density, which follows from
Lemma A.7 because the C2 norm of fnω grows at most exponentially. □

Note that the representation (7.2) (including the representation of the volume from Propo-
sition 7.5) is highly non-unique. One type of non-uniqueness that we shall often exploit in
our proof is the possibility to divide a standard pair into pieces. To do so we partition the
underlying curve γ into multiple disjoint subcurves γ1, . . . , γn. We then obtain a subdivision
of (γ, ρ) from the restrictions (γ1, ρ|γ1), . . . , (γn, ρ|γn). We give each piece unit mass for the
indexing measure λ. Note that (γ, ρ) as well as the standard family {(γi, ρ|γi)}1≤i≤n both
represent the same measure on M .
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A more subtle type of subdivision occurs when we view a standard pair as a subset of
γ×[0,max ρ] and partition this subset in the vertical direction. Similarly, we will obtain a new
standard family. But now the underlying curves of the family may not be disjoint. For a simple
example, something we do multiple places in the local coupling argument is take a standard
pair (γ, ρ), a number α ∈ (0, 1), and subdivide this standard pair into {(γ, αρ), (γ, (1− α)ρ)}
and give each piece mass 1 for the indexing measure λ. Alternatively, we could take γ̂1 = γ̂2 =
(γ, ρ) and allow the indexing measure assign them mass α and 1 − α, which gives the same
measure onM independent of α. Below, we will often think of this geometrically: we take the
region associated to the standard pair in γ × [0,max ρ) and slice it into regions. Projecting
the Lebesgue measure on each region down to γ naturally defines a standard pair.

Next, if we have a standard family γ̂ and a subfamily γ̂′ of γ̂ defined by some subdivision
of γ × [0,max ρ) as mentioned above, then we define γ̂ \ γ̂′ to be the standard family defined
by the complement of γ̂′ in the subdivision.

7.2. Main coupling proposition. We now state the main technical result of the paper,
from which the main mixing results of this paper are a consequence.

Proposition 7.7. Suppose that (f1, . . . , fm) is an expanding on average tuple in Diff2
vol(M),

where M is a closed surface. There exists λ > 0 such that for all sufficiently small ϵ > 0,
there exist C,α > 0, such that for any R, a goodness of standard pairs, the following holds.

Let γ̂1 and γ̂2 be two standard pairs with associated measures ρ1 and ρ2 of equal mass that
are R-good. Then we have the measures µ ⊗ ρi on Σ × γ̂i, where µ is the Bernoulli measure
on the one sided shift. There exists a coupling function Υ: Σ× γ̂1 → γ̂2, where for each ω the
map Υ(ω, ·) : γ̂1 → γ̂2 is measure preserving, and a time T̂ (ω, x) such that

f T̂ (ω,x)
ω (x) ∈W s

σT̂ (ω,x)ω,C−1(f
T̂ (ω,x)
ω Υ(ω, x)),

and this stable manifold is uniformly (C, λ, ϵ)-tempered in the sense of Definition 5.1. Further

Pω,x(T̂ (ω, x) ≥ n) ≤ emax{R,0}e−αn.

The proof of this proposition is a combination of a local coupling lemma (Lemma 7.10)
along with a recovery procedure.

When we attempt to couple two curves, we will insist that they are in a configuration that
allows us to try and apply the Local Coupling Lemma (Lemma 7.10). What we mean by this
is that the curves have controlled regularity and are sufficiently near to each other.

Definition 7.8. Let γ̂ be a standard pair and x ∈ γ. We say that x is (C, δ)-well positioned
in γ̂ if γ̂ is C-regular and x is δ distance away from the endpoints of γ, with distance measured
along γ.

We say that two standard pairs γ̂1 and γ̂2 are in a (C, δ, υ)-configuration if there exist x
which is (C, δ)-well positioned in γ̂1, and y which is (C, δ)-well positioned in γ̂2 such that
d(x, y)<υ.

The proof of Proposition 7.7 proceeds along the following steps. We start with two C0-good
standard pairs, γ̂1 and γ̂2. Here C0 is some uniform regularity appearing in Proposition 7.9
that we may obtain starting from an arbitrarily bad curve by waiting long enough.

(1) We prove that for a large proportion of words ω ∈ Σ, the images fnω (γ̂1) and fnω (γ̂2) are
mostly quite regular, and moreover, there is a large measure subset of the images that can
be paired to form (C1, δ, υ)-configurations for some C1 that is worse that C0. This relies
on the mixing properties of our system studied in Section 6, and the needed conclusions
are made precise in Proposition 7.11.
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(2) We then run a “local” coupling argument on each tiny (C1, δ, υ)-configuration. At each
time step, we attempt to couple the remaining well tempered points using “fake” stable
manifolds. This local coupling argument, Lemma 7.10, has a number of steps and draws
on several intermediate estimates.

(a) There are C, λ, ϵ > 0 and a cone field Cθ that is uniformly transverse to both γ1 and
γ2 such that the probability that any point is (C, λ, ϵ)-tempered and has Es tangent to
Cθ is positive. Further, the probability that the tempering fails at time n is exponentially
small.

(b) For a (C, λ, ϵ)-tempered point at time n, we see that there is a “fake” stable manifold
W s

n given by taking a curve nearly tangent to Dfnω (E
s
n) and pushing this curve backwards

by (Dfnω )
−1. (This construction is the subject of §B.4)

(c) There exist worse (C ′, λ′, ϵ′) such that for every (C, λ, ϵ)-tempered point x in γ1, all

points within distance∥Dxf
n
ω∥−(1+σ) of are (C ′, λ′, ϵ′)-tempered points at time n. (This is

the content of Proposition 10.3). These (C ′, λ′, ϵ′)-tempered points also have fake stable
manifolds. We will try to couple these thickened neighborhoods of the (C, λ, ϵ)-tempered
points with some neighborhoods in γ2 determined by the fake stable holonomies. At the
time when Dxf

n
ω fails to be (C, λ, ϵ)-tempered with Es tangent to Cθ we discard the point

x and stop trying to couple it.
(d) For (C ′, λ′, ϵ′)-tempered points, the holonomies of the fake stable manifolds W s

n

between γ1 and γ2 converge exponentially fast to the true, limiting stable holonomy.
Moreover, the image of a point x ∈ γ1 under Hs

n has fluctuations, as n changes, of size
∥Dxf

n
ω∥−1.99, i.e. the distance between Hs

n(x) and H
s
n+1(x) in γ2 is at most ∥Dxf

n
ω∥−1.99.

(This is proved in Proposition B.12.)
(e) The points we try to couple with on γ2 are the image of the points on γ1 under the

fake stable holonomy Hs
n.

(f) By carefully choosing subdivisions of the standard pairs γ̂1 and γ̂2 we may discard
mass from the standard pairs so that at the end of the procedure a positive proportion
of the mass above each (C, λ, ϵ)-tempered point remains. The control on the size of the
fluctuations of Hs

n relative to the lengths of the intervals of (C ′, λ′, ϵ′)-tempered points

containing the (C, λ, ϵ)-tempered points ∥Dxf
n
ω∥−1.99 ≪ ∥Dxf

n
ω∥−(1+σ) allows us to ensure

that we always have enough points on γ2 to try to couple with.
(3) We prove that we may find simultaneous recovery times for a pair of R-good standard pairs

(Proposition 7.9), so that if we have failed to couple and are left with a short standard
subcurve of γ̂1 we can have this subcurve recover at the same time as a subcurve of γ̂2.

(4) Once we recover we will try to couple again using steps (1)–(3) above. Each time we
try to couple, a positive amount of mass couples, and as the tail on the recovery time is
exponential we do not spend too much time recovering.

7.3. Statements of the lemmas for use during coupling. We now state the main propo-
sitions and lemmas that are used in the proof of Proposition 7.7.

Lemma 7.9. (Coupled Recovery Lemma) Let M be a closed surface and let (f1, . . . , fm) be
an expanding on average tuple with entries in Diff2

vol(M). There exist C0, D1, α > 0 such that
if γ̂1 = (γ1, ρ1) and γ̂2 = (γ2, ρ2) are R-good standard families of equal mass then there is a

pair of stopping times T̂1 and T̂2 defined on γ̂1 and γ̂2 with the following properties:

(1) There is an exponential tail on the stopping time. Namely,

(µ⊗ ρ1)((ω, x) | T̂1(ω, x) > n) ≤ D1e
max{R,0}−αn.
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(2) If z ∈ γ̂i is a point that stops at time n, and Bi(z) is the connected component of z in the

set {x ∈ γ̂i : T̂i(ω, x) = n}, i.e the set of points z ∈ γ̂i stopped at time n, then f T̂i(z)
ω (Bi(z)) is

a C0-good standard pair.

(3) For each ω ∈ Σ, we always stop on the same amount of mass of γ̂1 and γ̂2 at each time

n. Specifically, for each ω and n, denote Si(ω, n) = {x ∈ γ̂i : T̂i(ω, x) = n}. For each pair
(ω, n) there is a measure preserving map Φω

n : S1(ω, n) → S2(ω, n) carrying C0-good connected
components of S1(ω, n) to C0-good connected components of S2(ω, n).

The following lemma is the most technical part of the coupling argument.

Lemma 7.10. (Local Coupling Lemma) Suppose that (f1, . . . , fm) is an expanding on average
tuple. There exists 0 < τ < 1 such that for any C1 > 0 there exists δ0, L,D1, D2, β, C, λ, ϵ > 0
such that for any 0 < δ′ < δ0 there exists δ1 and ϵ0, a0 > 0 such that for any two standard
pairs γ̂1 and γ̂2 that are in a (C1, δ

′, υ)-configuration with υ ≤ τδ′, we may couple a uniform
proportion of the points on the two curves with an exponential tail on the points that do not
couple.

Specifically, for two C1-good standard pairs γ̂1, γ̂2 of the same mass in a (C1, δ
′, υ)-configuration

with υ ≤ τδ′, there is a point x ∈ M , a ball Bδ0(x) ⊂ M and connected components Γ1 and
Γ2 of γ̂1 ∩Bδ1(x) and γ̂2 ∩Bδ1(x) such that Γ1 and Γ2 each contain a0 proportion of the mass
of γ̂1 and γ̂2 respectively.

Further, there exist a pair of stopping times T̂1(ω, x) and T̂2(ω, x) defined on γ̂1 and γ̂2
such that if BT̂i(ω, x) ⊆ γ̂i denotes the block of points stopped at the same time as x, then

(1) For all ω, n there exists Ψω
n : {x ∈ γ̂1 : T̂1(ω, x) = n} → {x ∈ γ̂2 : T̂2(ω, x) = n} such

that if T̂i(ω, x) = n, then B(ω, x) is an nL-good standard pair and Φω
n carries B(x) to an

nL-good standard pair B(Φω
n(x)) ⊆ γ̂2 of equal mass that is also stopped at time n.

(2) For each ω, the set of points in γ̂1 and γ̂2 where T̂i = ∞ are of equal measure and more-
over these sets are intertwined by a measure preserving stable holonomy along uniformly
(C, λ, ϵ)-tempered stable manifolds.

(3) There exists D1 > 0 such that (µ ⊗ ρ̂1)({(ω, x̂) : T̂1(ω, x̂) = n}) ≤ D1e
−βn. For γ̂2, we

have a similar estimate, (µ⊗ ρ̂2)({(ω, x̂) : T̂2(x̂) = n}) ≤ D1e
−βn.

(4) For all x ∈ Γ1, the measure of words ω such that T̂i(ω, x) = ∞ is at least ϵ0.

In the lemma above, part (2) says that the points where T̂i = ∞ are coupled and such
points attract exponentially fast. Part (4) says that the probability that the next coupling
attempt is successful is at least ϵ0. Part (3) says that the probability that “a point” stops and
fails to couple at time n is exponentially small, while part (1) controls he regularity of the set
of such points.

The following proposition says that there is a fixed time N0 required for the C0-good pairs
produced by the coupled recovery lemma to get into position for the application of the local
coupling lemma. The proof relies on the mixing properties from Section 6.

Proposition 7.11. (Finite Time Mixing) Suppose (f1, . . . , fm) is an expanding on average
tuple as in Proposition 7.7. For any fixed C0 > 0, there exist C1, C2, δ, υ > 0 such that the
following holds.

(1) C1, δ, υ > 0 are such that a (C1, δ, υ)-configuration satisfies the hypotheses of the Local
Coupling Lemma 7.10 with C1 = C1, δ

′ = δ, and υ = υ.
(2) There exists N0 ∈ N and b0 > 0 such that for any C0 regular standard pairs γ̂1 and γ̂2 of

equal mass, for .99% of the words ω ∈ {1, . . . ,m}N0, there is a subdivision P 1
ω , P

2
ω of the
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standard families fN0
ω (γ̂1) and f

N0
ω (γ̂2) and subfamilies Q1

ω, Q
2
ω of P 1

ω and P 2
ω, and a map

Ψ: Q1
ω → Q2

ω preserving measure such that the following hold.
(a) Each pair γ̂ ∈ Q1

ω is associated by Ψ with a pair Ψ(γ̂) such that these pairs have
equal mass and satisfy (1) above.

(b) The set Q1 =
⋃

ω∈Σ̂{σ
N0(ω)} ×Q1

ω has measure b0ρ1(γ̂) with respect to µ̂⊗ ρ1. The

same holds for Q2.
(3) The complement of Q1

ω in fnω (γ̂1) is a standard family of C2-good standard pairs. The
same holds for Q2

ω.

As mentioned before, the proofs of these lemmas appear later in the paper. Lemma 7.9
is proven in Section 8, Proposition 7.11 is proven in Section 9, and Lemma 7.10 is proven in
Section 10.

7.4. Proof of the main coupling proposition. We now show how to deduce the main
coupling proposition, Proposition 7.7, from the various results stated in this section. We need
a preliminary estimate showing that if we fail to couple then the whole failed attempt does
not take too long. In the lemma below the recovery time is the sum of three terms:

(1) The time when we stop trying to locally couple as in Lemma 7.10 item (3);
(2) The time it takes for a point to recover so that it belongs to a C0-good pair as in the

Coupled Recovery Lemma 7.9;
(3) The fixed time N0 where the point has a chance to enter a (C1, δ, υ)-configuration

according to Proposition 7.11.
The following lemma verifies that each trip through the coupling procedure has an expo-

nential tail on its duration.

Lemma 7.12. In the setting of Proposition 7.7, for each C there exist Ĉ and r̄ such that if
γ̂1 and γ̂2 are C-good standard pairs of equal mass, then

(µ⊗ ρ1)((ω, x̂) : (ω, x̂) fails to couple and the recovery time is greater than n) ≤ Ĉe−r̄n.

Proof. Take a small κ > 0 that will be specified below. First we try to locally couple, and
then we recover. Let T be the recovery time and S be the time when we stop our attempt at
coupling (ω, x). Then if T ≥ n then either:

(i) S ≥ κn or (ii) S ≤ κn and the time it takes the corresponding part of the curve to
recover is at least (1− κ)n.

The probability of the first event is exponentially small due to Proposition 7.10(3). In the
second case since S ≤ κn, it follows that (ω, x) belongs to κLn-good component. Thus by
Proposition 7.9 the probability that the recovery takes more than (1 − κ)n time is less than

D1e
(κL−α(1−κ))n which is exponentially small if κ < α/(L+ α). □

The main coupling proposition is now easy to deduce because each coupling attempt couples
a positive proportion of the remaining mass and, from Lemma 7.12, there is an exponential
tail bound on how long a coupling attempt takes.

Proof of Proposition 7.7. Let N(ω, x) + 1 be the number of total attempts at local coupling

before (ω, x) couples. Let T̂ (ω, x) be the time when (ω, x) couples, and let Tk(ω, x) be its
kth recovery time, i.e. the k + 1st time we attempt to locally couple. As a positive amount
of mass couples each time we apply the local coupling lemma, we see that there exists δ > 0
such that

(7.3) (µ⊗ ρ1)((ω, x) : N(ω, x) > k) ≤ e−kδ.
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Next we show that for points that take k-attempts at local coupling to couple, that these
attempts occur linearly fast. This will follow once we have a tail bound on Tk. By Lemma 7.12,
T1 has an exponential moment. In particular, supE

[
etT1

]
= M(t) is finite for t ≤ r where

r < r̄ and r̄ is the constant from Lemma 7.12 and the supremum is taken over all pairs γ̂1, γ̂2
of C1-good standard pairs which are in (C1, δ, υ)-configurations as required by Lemma 7.10
and produced by Proposition 7.11.

Extend Tk = TN (ω) if k > n(ω). A straightforward induction shows that E
[
etTk

]
≤M(t)k.

Thus by the Chernoff bound (µ⊗ ρ1)(Tk ≥ n) ≤M(t)ke−tn. In particular taking t = r, there

is some β > 0 such that (µ ⊗ ρ1)(Tk ≥ n|N = k) ≤ eβke−rn. Fix some small number α such
that 0 < βα < r/2. Then

(µ⊗ ρ1)(TN > n and N ≤ αn) ≤ (µ⊗ ρ1)(Tαn > n) ≤ D1e
−r/2n.

By (7.3), with probability 1 − e−δαn, a point (ω, x) couples after at most αn trials, and the
result follows. □

8. Proof of the Coupled Recovery Lemma

8.1. Recovery times. In this subsection, we use the preceding lemmas to describe a recovery
algorithm for the C2 norm of an irregular curve and estimate the tail of the recovery time.

The next definition describes an iterate of fnω that has a good enough splitting that fnω (γ)
will have a good neighborhood of a particular point. Note that a “good enough” splitting
requires both a condition on the hyperbolicity as well as a condition on the angle between the
curve γ and and the stable subspace. This definition will be used in the proof of the recovery
lemma.

Definition 8.1. Fix a tuple of non-negative numbers (C, λ, ϵ, A, ϵ′, R). For a standard pair
γ̂, a point x ∈ γ and a word ω ∈ Σ, we say that n is a (C, λ, ϵ, A, ϵ′, R)-backwards good time
for x, γ, ω if n = Amax{R, 1}+ i, for some i ≥ 0 and

(1) Dfnω has a (C, λ, ϵ)-reverse tempered splitting, for which we write Es
m, E

u
m for the

stable and unstable subspaces of this splitting in Tfm
ω (x)M .

(2) ∠(Es
0, γ̇(x)) ≥ e−ϵ′i.

The following lemma asserts that this type of backwards good time is sufficient to conclude
that an R-good curve γ has its neighborhood of x smoothed by the random dynamics fnω .

Note that the second condition in the lemma considers the situation where γ “recovers”
in a neighborhood of x prior to time n. It is important in this case to know that from that
point on, we can just restrict to the portion of the curve that has already recovered. This
is useful because it helps us deal with situations where we wish to “stop” on certain parts
of the curve and know that the parts we have stopped on will not be needed later when a
different part of the curve recovers. Recall from Definition 7.2 that an R-regular curve has
all the characteristics of R-good curves except that it is not required to be e−R long.

Lemma 8.2. Suppose M is a closed surface and that (f1, . . . , fm) is a tuple in Diff2
vol(M).

Then for any λ > 0, sufficiently small ϵ, ϵ′ > 0, and any C > 0, there exists A,C0, C1 > 0
such that for any R-regular standard pair γ̂ = (γ, ρ) and any (C, λ, ϵ, A, ϵ′, R)-backwards good
time n for ω ∈ Σ and x ∈ γ if:

(1) γ̂ is R-good, or
(2) there exists a time 0 ≤ m < n and a subinterval I ⊆ γ such that fmω (I) contains a

neighborhood of fmω (x) that is e−C1e−.8λ(n−m)-long;
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then fnω (γ̂) contains a C0-good neighborhood of fnω (x). Moreover, if (2) holds, this neighborhood
is contained in fnω (I).

The above lemma follows immediately from the result below. The second paragraph of the
statement of the lemma essentially says: if there is another point in γ that also experiences a
recovery time, then we can stop on that recovering segment while still leaving enough of the
curve γ so that x can still recover.

Lemma 8.3. (Deterministic Recovery Lemma) Given a closed surfaceM and a tuple (f1, . . . , fm)
in Diff2

vol(M), for any α, λ > 0 and all sufficiently small ϵ, ϵ′ > 0 and any C > 0, there exist
C0, A > 0 such that for any R-good standard pair γ̂ = (γ, ρ), and any word ω such that time n
is a (C, λ, ϵ, A, ϵ′, R)-backwards good time for x ∈ γ, then there exists a neighborhood B(x) ⊆ γ

of size at most e−.9λn such that fnω (B̂(x)) is C0-good, i.e. the pushforward of the standard pair
γ̂ restricted to B(x) is C0-good.

Further, there exists C1 such that for ω, x, γ as in the first part of the lemma, if I ⊆ γ is
an interval containing x and for some 1 ≤ m < n, fmω (I) has length at least e−C1e−.8λ(n−i),
then fnω (I) contains a C0-good neighborhood of fnω (x).

Proof. We divide the proof into several steps. We begin by fixing some preliminaries. For
the given (C, λ, ϵ), we apply Proposition A.13 with e−iϵ′ = θ, which gives us the constants
ϵ0, ℓmax, D2, . . . , D8 appearing in that proposition.
Step 1. (Length of fnωγ) By Proposition A.13(2), if

(8.1) n ≥ D5 +
max{R, 0} − 2 ln(e−iϵ′)

.99λ
,

then fnωγ contains a neighborhood γn of fnω (x) of length ℓmax. For ϵ
′ sufficiently small relative

to λ, it follows that (8.1) holds as long as n ≥ A1max{R, 1}+ i for some A1 depending only
on D5, λ, ϵ

′.
Step 2. (C2 estimate) By Proposition A.13(3)

(8.2) ∥γn∥C2 < D6e
−2.9λneD7 ln θ max{∥γ∥C2 , 1}+D8.

Thus there exists A2, C2 such that as long as n ≥ A2max{R, 1}+ i, that ∥γn∥C2 ≤ C2.
Step 3. (Smoothing the density) From Proposition A.13(4) applied to D9 = C2 from the
previous step, we see that there exists D10, D11 such that the following holds. If ∥γn∥2 < D8,
then the pushforward of ρ along γn is given by:

(8.3) ∥ ln ρn|γn∥Cα ≤ D10e
−.9αλneD7 ln θ(1 + ∥ ln ρ∥Cα + ∥γ∥C2) +D11.

In particular as long as N ≥ A2max{R, 1} + i, the above estimate holds. In the case that
this estimate holds, then as ∥ ln ρ∥Cα and ∥γ∥C2 are both at most eR, we similarly see that
there exists C3 and A3 such that if n ≥ A3max{R, 1} + i then ∥ ln ρn|γn∥Cα ≤ C3. Thus we
see that there exists A such that the conclusion of the first paragraph holds.

For the claim in the second paragraph of the Lemma, we can apply Proposition A.13(2).
The choice of A,C0 in the first part of the proof imply that for such n, ℓmax is realized and thus
by the final part of item (2) then the preimage of γn in f iωγ has length at most D4e

−.9λ(n−i),

thus if f iω(I) has length at least D4e
−.8λ(n−i), then the image of f iω(I) will have image that is

a C0 good neighborhood of fnω (x). □

Next we show that the recovery times from the above lemma occur frequently.

Proposition 8.4. Let M be a closed surface and suppose that (f1, . . . , fm) is an expanding
on average tuple in Diff2

vol(M). There exists λ > 0 such that for any A > 0 and sufficiently
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small ϵ, ϵ′ > 0, there exist C > 0 and α3 > 0 such that for any R-good standard pair γ̂, if for
x ∈ γ we let T̂ (ω, x) be the first (C, λ, ϵ, A, ϵ′, R)-backwards good time. Then

(8.4) (µ⊗ ρ)((ω, x) : T̂ (ω, x) > Amax{R, 1}+ i) ≤ Ce−α3i.

The same holds for the analogous stopping time defined on an R-good standard family.

Proof. It suffices to prove this estimate at a single point x as we may then integrate the
resulting estimate over all of γ̂. From Proposition 4.18 there exist C1, α1 and C, λ > 0 such
that for all sufficiently small ϵ > 0 there exists N ∈ N such that if we let S(ω) be the stopping
time that stops at the first (C, λ, ϵ)-reverse tempered time of Dxf

n
ω greater than any fixed

n ≥ N , then at that time there is a well defined splitting TxM = Es
S ⊕ Eu

S into maximally
expanded and contracted singular directions, and

(8.5) P(S(ω) > n+ k) ≤ C1e
−α1k.

By Lemma 4.19 there exist C2, α2 > 0 such that as long as n ≥ c0 |ln θ|,

(8.6) P(∠(Es
S , γ̇(x)) < θ|S ≤ n+ k) < C2θ

α2 .

Hence there exists α3 > 0 such that if S is the first time greater than n = c0ϵ
′i that has a

reverse tempered splitting, then

(8.7) P(∠(Es
S , γ̇(x)) < e−ϵ′i|S ≤ n+ k) < C2e

−α2ϵ′i.

In particular, as long as ϵ′ is sufficiently small relative to c0, then c0ϵ
′i < i/2. Let S be the

first (C, λ, ϵ)-reverse tempered time greater than Amax{R, 1} + i/2. Multiplying equations
(8.5) and (8.7), we find that there exist C3, α3 > 0 such that:

P(S ≤ Amax{R, 1}+ i and ∠(Es
S , γ̇) ≥ e−ϵ′i) ≥ 1− C3e

−α3i. □

We now state without proof a more technical variant of the preceding lemma. It will be used
in the proof of the coupled recovery lemma to allow “recovery times” for the hyperbolicity.
We will divide the iterates of the system into blocks of size ∆q + ∆, where ∆, q ∈ N. Each
block will be divided into two pieces one of length ∆q and one of length ∆. We will only
be interested in backwards good tempered times that occur in the second part of the block,
which has length ∆. This is to ensure that there are large (temporal) gaps between possible
recovery times. The following lemma shows that given this extra restriction on the backwards
good times, we still have an exponential tail.

Proposition 8.5. Let M be a closed surface and suppose that (f1, . . . , fm) is an expanding
on average tuple in Diff2

vol(M). There exists λ > 0 such that for any A > 0 and sufficiently
small ϵ, ϵ′ > 0, there exist C > 0 and α4 > 0 such that for all ∆, q ∈ N and any R-good
standard pair γ̂, for any N ≥ Amax{R, 1}, if for x ∈ γ we let T̂ (ω, x) be the first time greater
than equal to N such that

⌈Amax{R, 1}⌉+ j(q + 1)∆ + q∆ < T̂ (ω, x) ≤ ⌈Amax{R, 1}⌉+ (j + 1)(q + 1)∆,

for some j > 0 and T̂ is a (C, λ, ϵ, A, ϵ′, R) backwards good time, then

(8.8) (µ⊗ ρ)((ω, x) : T̂ (ω, x) > N + i(q + 1)∆) ≤ Ce−α4i∆.
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8.2. Coupled Recovery Lemma. In this subsection, we prove the coupled recovery lemma,
Lemma 7.9. In the statement we view the standard pair as the uniform distribution on the
subset of γ × [0,∞) of pairs (x, t) where t ≤ ρ(x). We do this so that we may define stopping
times for γ̂ that stop on only part of the fiber over each point in γ. Additionally, in an abuse
of notation, we will identify the density ρ with a measure that we also call ρ.

Proof of Lemma 7.9. After initial preliminaries, the proof divides into two parts. The first
part is a coupled stopping procedure, which takes a word ω ∈ Σ and two standard pairs γ̂1
and γ̂2, and shows which parts of each curve get stopped as we follow the dynamics specified
by ω so that we always stop on the same amount of mass of each pair. In the second part we
show that with high probability the procedure from the first part actually stops on all but
an exponentially small amount of γ̂1, γ̂2 in a linear amount of time. In the proof, we consider
the case that R > 1 as otherwise we can stop immediately and conclude.

We now fix some constants. By Proposition 8.5 there exists λ > 0 such that for any A > 0
and sufficiently small ϵ, ϵ′ > 0, there exists C > 0 and α > 0 such that (C, λ, ϵ, A, ϵ′, R)-
backwards good times at the end of blocks of length (q + 1)∆ occur exponentially fast after
any time N greater than Amax{R, 1} for an R-good standard pair γ̂, i.e. (8.8) holds.

We then apply Lemma 8.2, which shows that for this choice of λ,C, ϵ, ϵ′, A, that any R-
good standard pair γ̂ and any (C, λ, ϵ, A, ϵ′, R)-backwards good time to x ∈ γ̂, fnω (x) has a
C0-good neighborhood in fnω (γ̂), i.e. the dynamics smoothens a neighborhood of x and makes
it C0 regular. Lemma 8.2 also gives the constant C1 so that as long as f iω(I) contains a

neighborhood of f iω(x) of size at least e−C1e−.8λ(n−i), then fn−i
σi(ω)

(f iω(I)) contains a C0-good

neighborhood of fnω (x).
For the rest of the proof we will not repeat (C, λ, ϵ, A, ϵ′, R)-backwards good but just refer

to such times as tempered times with this particular choice of constants being understood.
In the proof that follows, we divide the iterates of the system into blocks of size (q + 1)∆.

We will attempt to stop on a neighborhood of a point x when Dxf
n
ω has a tempered time in

the interval (⌈AR⌉+ i(q + 1)∆ + q∆, ⌈AR⌉+ (i+ 1)(q + 1)∆]. This is the ith block, if there
is such a tempered time, then we say that this is a tempered block. In the following, there
will be points x that experience a tempered block ending at ⌈AR⌉+ iq∆ but that we do not
stop because there was not enough mass stopping on the other curve to couple them. For
these curves, we then wait for their next tempered time relative to the original curve. That
we only allow stopping on the last ∆ iterates of a block of length (q + 1)∆ is to ensure that
the hyperbolicity has enough time to stretch what remains of the recovered neighborhood of

f
⌈AR⌉+i∆
ω (γ) so that it can recover to be a C0-good curve at the tempered time.
In the proof we only try to couple recovered curves at the very last time in each block,

whereas a curve may have a tempered time up to ∆ iterates before then. If we have a C0-good
curve, γ̂, and we apply the dynamics from (f1, . . . , fm) at most ∆ additional times, then there
is some C ′

0 ≥ C0, so that the image of the curve will still be C ′
0 good even after those extra

iterates. Consequently, for any α > 0, there exists δ(α) > 0, such that if γ̂ is a C ′
0 good curve,

and we trim off the end segments of the curve of length e−δ, then we have lost at most e−α

proportion of the curve, where α is some number we will choose below. Further, note that as
long as δ is sufficiently large, the trimmed off curves will be e−δ-good and that when we trim
a C ′

0-good curve, what remains will also still be δ-good.
The proof involves four additional parameters some of which were alluded to above, and

which we choose to be sufficiently large that the following hold:
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(1) There is an exponential tail on the wait for the first tempered block. For any N ≥ ⌈AR⌉,
if T (ω, x) is the next tempered block after N , then

(8.9) Pω(T (ω, x) ≥ N + i(q + 1)∆) ≤ e−iα.

(2) We also fix a small constant β > 0. Then by possibly increasing ∆ even further we can
arrange that β < α/7 and in addition have that α is greater than the cutoffs in Claims 8.6
and 8.7 below.

(3) We then choose q sufficiently large that e−δ > e−C1e−.8λq∆, where δ is the goodness of
the recovered curve from above and depends on α and ∆.

Note that when picking the constants above, from the statement of Proposition 8.5 we first
choose ∆ to make e−α arbitrarily small and both (1) and (2) hold. Then we increase q to
ensure that (3) holds as well, which does not affect (1) or (2).
Part 1: Coupled Stopping Procedure. Fix a word ω ∈ Σ. We begin with two standard
pairs γ̂1 and γ̂2. We will let P i

n be the subset of γ̂i that has not been coupled after n
attempts at coupled stopping, i.e. it consists of points that are not permanently stopped at
time ⌈AR⌉+ i(q + 1)∆. Note that P i

n is naturally viewed as a standard family. We let Iij be

the set of points in P i
j whose (j + 1)st block is a tempered block. For every point x ∈ P i

j its

next stopping time T (x, ω) is defined to be the end of the next tempered block for that point.
To simplify the notation, we write N0 = ⌈AR⌉.

An inductive assumption of the following procedure is the following:

For any γ̂ ∈ P i
j , and x ∈ γ̂, γ̂ is sufficiently long that if for some k > j,(8.10)

the kth block is tempered, then f
(q+1)(k−j)∆

σN0+(q+1)j∆(ω)
(γ̂) is C ′

0-good.

For i ∈ {1, 2}, let Ũ i
j be the union of the C ′

0 good intervals of the points x ∈ Iij at the end

of the (j + 1)st block; if two intervals within a single standard pair in P i
j overlap, we take

their union, so some intervals may be longer than e−C′
0 . Note that Ũ i

j is a C ′
0-good standard

family. Then for each standard pair I ∈ Ũ i
j , we discard the interval of size e−δ from the end

of the interval. This gives us a new standard family U i
j ⊆ Ũ i

j . By choice of δ(α) from above,

ρi(U
i
j) ≥ (1− e−α)ρi(Ũ

i
j).

We now choose which of the subpairs in Ũ1
j and Ũ2

j to stop on for our fixed word ω. Suppose

without loss of generality that U1
j has less mass than U2

j . We now stop on all points in U1
j . We

would like to stop on all the points in U2
j , however U

2
j has too much mass compared with U1

j .
To compensate, we subdivide the standard family to create pieces with the appropriate height
so that we can stop on a set of equal mass to U1

j . First we subdivide γ̂2 vertically at height

ρ1(U
1
j )(ρ2(U

2
j ))

−1ρ2 so that we keep over each point the same proportion of the mass. Call the

two pieces of γ̂2 by A and B, where A is the piece with mass ρ1(U
1
j )(ρ2(U

2
j ))

−1ρ2(γ̂2). Then

if we take A′ to be the restriction of the standard pair A to the points over U2
j , this subpair

satisfies that ρ2(A
′) = ρ1(U

1
j ). We stop on all points in A′. The map Φ in the statement of

the proposition associates A′ and U1
j . The complement of these stopped sets A′ and U1

j then

defines a pair of new standard families P i
j+1.

In order for us to be able to proceed with this argument inductively, we must verify that
the inductive assumption (8.10) still holds. From the second part of Lemma 8.2, as long as

x ∈ f
N0+(j+1)(q+1)∆
ω (γ) has length at least e−δ, and a point x experiences another tempered
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time q∆ iterates later, then by choice of q,

e−δ > e−C1e−.8λq∆,

so by that lemma if there is a future tempered time n > N0 + (j + 1)(q + 1)∆ + q∆, then
at that time the image of x will lie in a C0-good pair. Note that as we only consider future
tempered times that are at least q∆ past the point where the curve is e−δ long that by our
choice of constants and the last part of Lemma 8.2 the assumption (8.10) holds inductively.

This completes the description of the stopping procedure. We now turn to estimating the
tail of the stopping time.

Part 2: Rate of Stopping. Let A1
n and A2

n be the pairs (ω, x) ⊂ Σ × γ̂1 and Σ × γ̂2 that
have not permanently stopped at time n(q + 1)∆, i.e. after n attempts at coupled stopping
they are still not stopped. Our goal now is to show that (µ⊗ ρ1)(A1

n) has an exponential tail.
We begin with several claims. The idea is that if the amount of mass that has not stopped at
time n is large, then this implies that a large proportion of points will have a tempered time
very quickly. If a large proportion of each curve has a tempered time, then we can stop on
these points and obtain the result.

In this part of the proof, we will write all stopping times as if we had reindexed things so
that N0 = ⌈AR⌉ is time 0, ⌈AR⌉+ (q + 1)∆ is time 1, etc, to avoid a mess of notation. Keep
in mind from our choice of constants earlier that we can pick ∆ as large as we like at the
beginning of the proof to ensure that α is as large as we like below.

Claim 8.6. For any β > 0, there exists α0 ≥ 2β such that for all α ≥ α0, if we have chosen
the block size ∆ as above to ensure an e−nα tail on tempered times pointwise (8.9), then if
for some n ∈ N and all i < n, (µ ⊗ ρ1)(A

1
i ) ≤ e−iβeβ and e−nβ ≤ (µ ⊗ ρ1)(A

1
n) ≤ e2βe−nβ,

then at the end of the next block, 1− e−
99
100

α proportion of the points (ω, x) in A1
n experience

a tempered time.

Proof. Let T (ω, x) denote the next tempered time for (ω, x) ∈ A1
n then we wish to study a

conditional probability P(T (ω, x) > n+1|(ω, x) ∈ A1
n), as this gives a bound on the probability

that we stop at the next attempt. Then

P(T (ω, x) > n+ 1|(ω, x) ∈ A1
n) =

P(T (ω, x) > n+ 1 and (ω, x) ∈ A1
n)

P(A1
n)

(8.11)

Let Bn
j ⊆ A1

n be the set of trajectories that have not had a tempered time since iterate j and

hence are in A1
n for this reason. Thus A1

n = ⊔n
j=0B

n
j . Note that Bn

j ⊆ A1
j as these points

certainly weren’t stopped at time j. Hence

P(T (ω, x) > n+ 1|(ω, x) ∈ A1
n) =

∑n
j=0 P(T (ω, x) > n+ 1 and (ω, x) ∈ Bn

j )

P(A1
n)

≤
∑n

j=0 P(T (ω, x) > n+ 1 and (ω, x) ∈ A1
j )

P(A1
n)

≤ (P(A1
n))

−1
n∑

j=0

e−(n−j+1)αe−βj+2β by (8.8)

≤ e2βen(β−α)e−α
n∑

j=0

ej(α−β) = e2βe−α
n∑

j=0

e(n−j)(β−α) = e2βe−α
n∑

j=0

ej(β−α)

≤ e2βe−α(1 + 2e(β−α)) ≤ e−
99
100

α,

for α sufficiently large relative to β. This is the needed claim, so we are done. □
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The following claim shows that if most of the remaining pairs (ω, x) are experiencing a
tempered time at time n then we stop on a relatively large amount of mass at that step.

Claim 8.7. There exists α0 such that for all α ≥ α0, if B
1
n and B2

n are the subsets of A1
n and

A2
n having tempered times at time n+ 1 and if for i ∈ {1, 2},

(8.12) (µ⊗ ρi)(B
i
n) ≥ (1− e−α)(µ⊗ ρi)(A

i
n),

then

(8.13) (µ⊗ ρi)(A
i
n+1) ≤ e−α/3(µ⊗ ρi)(A

i
n).

Proof. Let π : Σ× γ̂1 → Σ denote the projection. Associated to A1
n and A2

n we have a measure
µ̃n on Σ, given by

µ̃n(X) = (µ⊗ ρ1)(π
−1(X) ∩A1

n).

Note that if we had used A2
n to define µ̃n, we would have obtained the same result.

Let Ai
n(ω) denote π

−1({ω}) ∩Ai
n. We claim that there is a set X ⊆ Σ such that µ̃n(X) ≥

(1− e−α/2)(µ⊗ ρ1)(A
i
n) and for ω ∈ X, we have that

(8.14) ρ1(A
1
n(ω) ∩B1

n) ≥ (1− e−α/2)ρ1(A
1
n(ω)).

Otherwise there would exist a set Y such that µ̃n(Y ) > e−α/2(µ⊗ρ1)(A1
n) such that for ω ∈ Y ,

equation (8.14) fails. Then by Fubini, we would find

(µ⊗ ρ1)(B
1
n) ≤ ((1− µ̃n(Y )) + µ̃n(Y )(1− e−α/2))(µ⊗ ρ1)(A

1
n) < (1− e−α/2)(µ⊗ ρ1)(A

1
n),

which is impossible from our assumption (8.12).

Thus we may find a set X1 ⊆ X such that µ̃n(X1) ≥ (1 − e−α/2)(µ ⊗ ρ1)(A
1
n) and for

ω ∈ X1, (8.14) holds. Similarly we may find a set X2 such that the same holds for A2
n. Then

µ̃n(X1 ∩X2) ≥ (1− 2e−α/2)µ̃n(A
1
n) and for every point ω ∈ X1 ∩X2, each curve in Ai

n(ω) has

at least 1− e−α/2 proportion of its remaining mass recovering. As described in the first part
of the proof, we then trim segments of length e−δ off these subcurves, which by the choice of
δ, leaves us with (1− e−α) proportion of the remaining mass. Thus on each curve there is at
least

(1− e−α/2)(1− e−α)(µ⊗ ρ1)(A
1
n(ω))

mass to stop on. Hence by the estimate on the measure of such ω, we can stop on

(1− 2e−α/2)(1− e−α/2)(1− e−α)(µ⊗ ρ1)(A
1
n)

of the remaining mass. In particular, this implies that for sufficiently large α, that the
unstopped mass remaining at the (n+ 1)th step satisfies:

(8.15) (µ⊗ ρ1)(A
1
n+1) ≤ e−α/3(µ⊗ ρ1)(A

1
n),

as desired. □

We can now conclude the desired rate of stopping. From our choice of constants, we have
β > 0 sufficiently small and α > 0 sufficiently large that β < α/7 and both Claims 8.6 and
8.7 of the proof hold. As mentioned previously, from the choice of ∆ at the beginning, we
may take α as large as we like. Then we will show that for n ∈ N,
(8.16) (µ⊗ ρ1)(A

1
n) ≤ e−nβeβ.

We consider two cases depending on how much mass is left at time n.

(1) First, suppose that

(8.17) (µ⊗ ρ1)(A
1
n) ≤ e−nβ
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Then certainly, (µ⊗ ρ1)(A
1
n+1) ≤ eβe−(n+1)β.

(2) If at time n,

(8.18) e−nβ ≤ (µ⊗ ρ1)(A
1
n) ≤ e2βe−βn,

and at all previous times (µ⊗ρ1)(A1
n) ≤ eβe−nβ, then Claim 8.6 applies to A1

n and A2
n, which

gives that at time n+1, that 1− e−99/100α proportion of the points in A1
n and A2

n will recover
at time n+ 1. Thus by Claim 8.7 and our choice of α > 7β, we see that

(8.19) (µ⊗ ρi)(A
i
n+1) ≤ e−

99
300

α(µ⊗ ρi)(A
i
n) < e−2β(µ⊗ ρi)(A

i
n),

and for the next iterate we are back in the first case, (µ⊗ ρ1)(A
1
n+1) ≤ e−(n+1)β.

In order to conclude, we apply the two options above inductively to obtain equation (8.16)
for all n. In fact, we will show something slightly stronger: there are never two consecutive
indices n, n+ 1 such that

e−nβ < (µ⊗ ρ1)(A
1
n) ≤ e−nβeβ

holds for both n and n+ 1.
Throughout the induction either we have

(8.20) (µ⊗ ρi)(A
i
n) < e−βn or e−nβ ≤ (µ⊗ ρi)(A

i
n).

In the former case, we may apply item (1) in the list just mentioned.

Suppose we are in the latter case, that at time n− 1 that (µ⊗ ρi)(A
i
n) < e−β(n−1) and at

time n that e−βn ≤ (µ ⊗ ρi)(A
i
n) ≤ e−β(n−1), and that for all prior iterates equation (8.16)

holds. Then we may apply (2) above to find that

(8.21) (µ⊗ ρi)(A
i
n+1) < e−2β(µ⊗ ρi)(A

i
n) ≤ e−2βe−(n−1)β = e−(n+1)β.

Thus for the iteration n + 1 we have (µ ⊗ ρi)(A
i
n+1) < e−(n+1)β. Note that this means that

the second case in (8.20) cannot occur twice in a row. Hence we may proceed inductively to
verify that (8.16) holds for every n. This concludes the proof of the lemma. □

9. Precoupling

In this section, we prove the finite time mixing proposition, Proposition 7.11, which prepares
curves for the application of the local coupling lemma.

9.1. Fibrewise mixing. In this subsection we study fiber-wise mixing properties of the skew
product F : Σ×M → Σ×M . A skew product being mixing does not imply that it has any
mixing properties fiberwise. For example, the system could be isometric on the fibers. For
this reason we will leverage the mixing of Fk : Σ ×Mk → Σ ×Mk. We will obtain a sort of
coarse fiberwise mixing by using a concentration of measure argument. The basic idea of the
argument is that if A is a subset of M , and B ⊂ Σ×M is a set giving equal measure to each
fiber, then if B does not mix with A fiberwise, then it implies that on many fibers A∩Fn(B)
is quite concentrated. As a consequence of this concentration we show that Fk cannot be
mixing as there are too many points that stay in the set Ak ⊂Mk.

Proposition 9.1. Suppose that the skew product Fk : Σ×Mk → Σ×Mk from (6.1) is mixing

for µ ⊗ volk for all k ∈ N. Let A ⊆ M be a positive measure set. Then for all ϵ1, ϵ2 > 0 if
U ⊆ Σ̂×M is a set giving exactly mass α0 > 0 to (1− ϵ2) of the fibers of Σ̂ and 0 to the rest,
then there exists N ∈ N, such that for all n ≥ N , there exist (1 − 2ϵ2) proportion of words

ω ∈ Σ̂, such that

(9.1) vol(A)α0(1− ϵ1) ≤ vol(fnω (Uω) ∩A) ≤ vol(A)α0(1 + ϵ1),
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where we write Uω ⊆M for the portion of U in the fibre over ω.

Proof. We will prove the lower bound; the upper bound then follows by taking the complement
of A. For the sake of contradiction, suppose that the lower bound in (9.1) is false. Then there
exist ϵ1, ϵ2 > 0 such that for arbitrarily large n, there exist measure 2ϵ2 words ω such that

(9.2) vol(Uω) = α0 and vol(fnω (Uω) ∩A) < vol(A)α0(1− ϵ1).

For these words ω

(9.3) vol(fnω (Uω) ∩ (M \A)) ≥ α0(vol(M \A) + ϵ1 vol(A)).

We now consider what this implies on Σ̂×Mk. Write Uk for the union of the sets {ω}×Uk
ω .

Then for the words ω satisfying (9.2), we obtain

(9.4) (volk)(Fn
k,ω(U

k
ω) ∩ {σk(ω)} × (M \A)k) ≥ αk

0(vol(M \A) + ϵ1 vol(A))
k,

because fiberwise this intersection is equal to the product (fnω (Uω) ∩ (M \ A))k. Thus inte-
grating over this set of ω of measure 2ϵ2, we find that

(9.5) (µ̂⊗ volk)(Fn
k (U

k) ∩ Σ̂× (M \A)k) ≥ 2ϵ2α
k
0(vol(M \A) + ϵ1 vol(A))

k.

Note that (µ̂⊗volk)(Uk) ≤(1− ϵ2)αk
0 by the definition of U . Since (µ̂⊗volk)(Σ̂× (M \A)k) =

vol(M \A)k, mixing of Fk implies that for sufficiently large n,

(9.6) (µ̂⊗ volk)(Fn
k (U

k) ∩ Σ̂× (M \A)k) ≤ (1− ϵ2/2) vol(M \A)kαk
0 .

For large k the bounds (9.5) and (9.6) are incompatible, so we obtain a contradiction. □

9.2. Proof of the finite time mixing proposition. In this subsection we prove the finite
time mixing Proposition 7.11. The idea is straightforward. We can saturate the curve γ̂ with
stable manifolds to embed γ̂ in a positive measure set that will contract onto the image of γ̂
forward in time. As the skew product F : Σ̂ ×M → Σ̂ ×M is fibrewise mixing (Proposition
9.1), this positive measure thickening of γ̂ must equidistribute for most words. Simultaneously,
we know that most images of γ̂ will be relatively smooth. This allows us to conclude.

In the proof we will need some intermediate claims.

Definition 9.2. An ϵ-thickening of a curve γ for a word ω ∈ Σ consists of two pieces of
information. The first piece is a subset γ0 ⊂ γ that will be thickened. The second piece is a
set of the form ⋃

x∈γ0

W s
ϵ(x)(ω, x),

and W s
ϵ(x)(ω, x) is the local stable leaf of radius 0 < ϵ(x) < ϵ through x. We will often denote

such sets by κω(γ).

Note that although the thickening can in principle be defined over all of γ, we will usually
only use it on a special subset γ0 that has better properties.

The following lemma shows that we may choose thickenings of γ so that the pushforward
of the volume along the thickening to γ by the stable holonomy is proportional to ρ on γ0.

Lemma 9.3. (Local Thickening Lemma) Fix ϵ1 > 0 and C0 > 0, a level of goodness of
standard pairs. For any ϵ2 > 0, there exist ϵ3, c1, C2, ϱ > 0 such that for 1 − ϵ2 of words
ω ∈ Σ, and any C0-good standard pair γ̂ = (γ, ρ) of unit mass, we can form an ϵ1-thickening
of γ, κω(γ), in the sense of Definition 9.2, such that:

(1) Let πs be the projection to γ along the stable leaves. Then πs∗(vol |κω(γ)) = c1ρ|πs(κω(γ))

and ρ(πs(κω(γ))) > ϱ.
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(2) Every stable leaf in κω(γ) is uniformly (C2, λ, ϵ3)-tempered under forward iterations.
(3) The choice of thickening κω(γ) depends measurably on ω.

Proof. We know that for every point x and almost every word ω, that x is in the Pesin block
Λω
∞(C) for some sufficiently large C, and on a measure one subset, Es is not tangent to γ. Thus

we can saturate a positive measure subset of γ with stable manifolds with uniformly controlled
geometry by increasing C. By taking a shorter subset of the saturating stable curves in such
a Pesin block, we can ensure that the volume measure of the saturation projected along the
stable leaves to γ gives a measure that is proportional to ρ restricted to the images of πs. □

The following lemma says that if we start with C-good curve, then we can ensure that a
large proportion of the images of the curve are C0-good at any time in the future.

Lemma 9.4. For any ϵ > 0, there exists C0, such that for any C > 0, a level of goodness,
there exists N0 ≥ 0, such that for any C-good standard pair γ̂ and all n ≥ N0, there exists a
set Σn

0 ⊆ Σ of measure at least 1− ϵ, such that for ω ∈ Σn
0 ,

(9.7) ρ(x : fnω (γ̂) has a C0-good neighborhood of fnω (x)) ≥ (1− ϵ)ρ(γ̂).

The same holds for a C-good standard family.

Proof. This is immediate from Proposition 8.4, which says that for large enough ∆, we may
ensure that 1 − ϵ of the pairs (ω, x) will have a tempered time between times n + ∆ and
n+ 2∆ for any n. We choose N0 large enough that such a tempered time recovers a C-good
curve to being D-good for some uniform D. Then we wait until to the end of the block, which
gives a further, bounded loss of goodness. As in other places in the paper, a Fubini argument
gives the fiberwise estimate stated here. Finally, note that this argument is independent of
n ≥ N0. □

We are now ready to prove the finite time mixing proposition.

Proof of Proposition 7.11. The outline of the proof is as follows. We first find a collection
of balls in M that a thickened version of γ1 and γ2 will mix onto due to the fibered mixing
lemma. Then once mixing is accomplished most subcurves of fnω (γ1) and fnω (γ2) will still
be long. Consequently, if there are subcurves intersecting a small ball Bυ(x) then those
subcurves will form a (C1, δ, υ) configuration for some C1. To achieve this setup, we will
construct subsets Σ0, . . . ,Σ4 of Σ. Each of these sets will consist of words ω that have some
particular finite time mixing properties, so that their intersection has all the properties we
need to conclude along the lines just described. We will also have some additional parameters
mi that are chosen below.

The input to this proposition requires some constants. First, let 0 < τ < 1 be the constant
from the Local Coupling Lemma, Lemma 7.10, which says that the conclusions of that lemma
hold for (C, δ, τδ)-configurations for any C as long as δ is sufficiently small relative to C. We
then obtain the following claim—note that this holds for all sufficiently small δ with a uniform
lower bound in the last term.

Claim 9.5. There exists m0 such that for all sufficiently small δ > 0, we can find a family
of disjoint balls Bi = Bδi(xi) in M such that:
(1) Each Bi has equal volume between (1/10)δ2 and 10δ2;
(2) Each Bi contains a ball B′

i of diameter at most τδ/2 so that d(∂B′
i, ∂Bi) > δ/2;

(3) Each B′
i contains a ball B′′

i with the same center and radius between τδ/9 and τδ/10, and
the balls B′′

i all have equal volume;
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(4) vol(
⋃
i

B′′
i ) ≥ 10−m0.

We now pick Σ0, which are words where γ1 and γ2 have good thickenings. Both γ1 and
γ2 are C0-good by assumption. Then for any m1 ∈ N, which we will pick later, we see
that there exists c1, which is distinct from C1, and ϱ such that there is a set Σ0 ⊆ Σ, such
that µ(Σ0) > 1 − 10−m1 such that for ω ∈ Σ0, there exists a thickening κω(γi), i ∈ {1, 2}
satisfying the properties of Lemma 9.3. By possibly shrinking the thickening we may make
the thickenings each have the same identical mass ϱ. For the words in Σ0, we form a set
U1 ⊆ Σ×M by taking the union of the sets {ω}×κω(γ1), similarly we define U2. We denote
by U1

ω the part of U1 above ω and use a similar notation for U2
ω.

We now choose C1, the regularity of the pairs that will be in (C1, δ, τδ)-configurations in
the conclusion of the proposition, as well as Σn

1 and Σn
2 , words where most images of γ̂1 and

γ̂2 are C1-good curves. Choose C1 > 0 such that the conclusion of Lemma 9.4 holds for a
set Σn

1 of words of measure (1 − 10−m2), for some m2 that we will choose later, so that for
ω ∈ Σn

1 ,

(9.8) ρ1(x : fnω (γ̂1) has a C1-good neighborhood of fnω (x)) ≥ (1− 10−m2)ρ1(γ̂1).

For all ϵ > 0, there exists D(ϵ) > 0 such that for a C0-good standard pair γ̂ = (γ, ρ), the
measure of the points x ∈ γ̂ such that

(9.9) ρ(x ∈ γ : d(x, ∂γ̂) < D) < ϵρ(γ).

Recalling Definition 7.8, the previous equation implies that there exists D1 > 0 such that we
may strengthen the conclusion in equation (9.8) above:

(9.10) ρ1(x : fnω (x) is (C1, D1)-well positioned in fnω (γ̂1)) ≥ (1− 10−(m2−1))ρ1(γ̂1).

Call this set of (C1, D1)-well positioned points G1
n,ω. Similarly, for γ̂2 there exists a set Σn

2

and a set G2
n,ω with this same property.

Take a covering Bi as in Claim 9.5 applied with the parameter δ small enough that the
local coupling lemma holds for (C1, δ, τδ)-configurations. Let m1 = m2 = m3 = m4 = 20.

Next we choose Σn
3 and Σn

4 , which are sets that mix the thickenings of γ̂1 and γ̂2 onto the
balls B′′

i . Let ϵ2 = 10−m3 from above, and let 0 < ϵ1 < 10−m3 . Then by the fibrewise mixing
proposition (Proposition 9.1), there exists N1 such that for n ≥ N1, there is a set Σn

3 of ω ⊆ Σ
of µ-measure 1 − 2 · 10−m3 such that for ω ∈ Σn

3 , U
1
ω mixes onto the B′′

i for each B′′
i in the

covering, i.e. for ω ∈ Σn
3 ,

(9.11) (1− 10−m3)ϱ vol(B′′
i ) ≤ vol(fnω (U

1
ω) ∩ {ω} ×B′′

i ) ≤ vol(B′′
i )ϱ(1 + 10−m3).

Similarly we have a cutoff N2, and sets Σn
4 such that the same holds for U2. We will strengthen

this estimate even further, we will let B′′′
i be a ball with the same center as B′′

i but with
slightly larger radius so that the ratio of the volumes vol(B′′′

i )/ vol(B′′
i ) = 1 + 10−m4 . Then

by possibly enlarging the numbers N1 and N2, we can arrange that the same estimate holds
simultaneously for the sets B′′′

i as well.
Now consider what happens for ω ∈ Σ0 ∩Σn

1 ∩Σn
3 . These are words ω where γ1 has a good

thickening by stable manifolds, and many of the points in the image of γ̂1 are good standard
pairs and there is equidistribution. For any m4 as long as n is sufficiently large, the diameter
of the image of any W s

ϵ(x)(ω, x) leaf in the thickening of γ̂1 is at most τδ/102m4 . Thus from

the measure preservation of the projection πs of fnω (Uω) onto f
n
ω (γ̂1), we see that if some point

x ∈ fnω (U
1
ω) is in B

′′
i , then as B′′′

i contains a neighborhood of B′′
i of radius τδ/10m4 , all points
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on fnω (W
s
ϵ(x)(ω, x)) and, in particular, the points of γ̂ lie in this set. Hence, writing ρn,ω1 for

the density on fnω (γ̂1),

(9.12) ρn,ω1 (fnω (γ̂1) ∩B′′′
i ) ≥ vol(B′′

i )(1− 10−m3)ρ1(γ̂1).

We claim that for such ω ∈ Σ0∩Σn
1 ∩Σn

3 that there exists a subfamily of the B′′
i containing

at least 90% of the B′′
i , and such that for each of these B′′

i ,

(9.13) ρn,ω1 (G1
n,ω ∩B′′′

i ) ≥ vol(B′′′
i )ρ1(γ̂)/2.

Suppose that this were not the case, then for such an ω there is a set of 10% of the balls B′′′
i

such that for these balls we have ρn,ω1 (G1
n,ω ∩B′′′

i ) < vol(B′′′
i )ρ1(γ̂)/2. Then, from (9.10) and

the fibrewise mixing estimate (9.11),

vol(fnω (Uω) ∩
⋃
i

B′′
i ) ≤

ρn,ω1 (G1
n,ω ∩

⋃
iB

′′′
i )ϱ

ρ1(γ̂)
+ 10−(m2−1)ϱ

≤ .1
∑
i

vol(B′′′
i )ϱ

1

2
+ .9

∑
i

vol(B′′′
i )ϱ(1 + 10−m3) + 10−(m2−1)ϱ

≤ .96
∑
i

vol(B′′′
i )ϱ ≤ .96(1 +

1

10m4−1
)ϱ
∑
i

vol(B′′
i )

which contradicts fiberwise mixing of U1 with the set
⋃

iB
′′′
i .

Now consider ω ∈ Σ0∩Σn
1∩Σn

2∩Σn
3∩Σn

4 . We have that for 90% of the balls B′′′
i , that B′′′

i has
radius at most τδ/8, and this ball contains points of fnω (γ̂1) that are (C1, D1)-well centered of
measure at least ρ1(γ̂1)τ

2δ2/200. The same holds for γ̂2 for a possibly different 90% of balls.
Thus for 80% of the balls B′′′

i each of fnω (γ̂1) and fnω (γ̂1) contains measure ρ1(γ̂1)τ
2δ2/200

points that are (C1, D1)-well centered. As these points are in a ball of radius τδ/8. From our
choice of δ, it follows that any pair of such images is (C1, δ, τδ)-configured. Thus the needed
conclusion follows by possibly subdividing the standard pairs we have identified so that they
may be coupled in a measure preserving way. We may now conclude because
µ(Σ0 ∩ Σn

1 ∩ Σn
2 ∩ Σn

3 ∩ Σn
4 ) ≥ 1− 10−m1 − 2 · 10−m2 − 4 · 10−m3 ≥ 1− 10−19. □

10. Proof of the Local Coupling Lemma

10.1. Inductive local coupling procedure. To prove the Local Coupling Lemma 7.10,
we would like two positive measure sets to be intertwined under the true stable holonomy.
However, at any finite time, we do not yet know what the true limiting stable manifold is. To
compensate, at finite times we approximate the limiting holonomy by using the fake stable
manifolds. In the proof of the local coupling lemma, we will consider the differences between
different standard families as discussed in §7.1.

To begin this section, we introduce a notion of a “fake coupling” of two standard pairs
γ̂1 and γ̂2. We use fake couplings because in our setting we cannot use the stable manifold
as is done in the deterministic setting. In the deterministic setting, if γ̂1 and γ̂2 are near
each other, then we can immediately determine which points in γ̂1 attract to which in γ̂2
by using the stable holonomy. We work in an opposite manner: at each time n we discard
points that cannot couple yet. For example, if y ∈ γ̂2 and none of the time n fake stable
manifolds come near y, then y can’t couple because the true stable manifold is near the fake
one. Consequently, we stop trying to couple y at time n. After we see the dynamics for all
time, the points that remain in γ̂1 and γ̂2 are those that can be coupled with each other using
the stable manifold. Hence after the fact, we see that they were coupled. The fake coupling
is not a coupling. A time n fake-coupling is a pair of subfamilies P 1

n ⊆ γ̂1 and P 2
n ⊆ γ̂2 that
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could potentially be coupled by the true stable manifolds. For a time n fake coupling, we
insist that the holonomies of the time n fake stable manifolds carry P 1

n to P 2
n . Another way

to describe this is that P 1
n and P 2

n seem coupled until time n.
The definition of a fake coupling that follows that is adapted to the neighborhood Bδ0(x)

from Proposition 10.12 and relies on the constants obtained in that proposition. Fake stable
manifolds W s

n and their properties are discussed in detail in Appendix B.

Definition 10.1. Suppose that γ̂1 and γ̂2 are two standard pairs that we are attempting to
couple that are (C, δ′, υ)-configured where C, δ, υ are parameters as in Proposition 10.12. Fix
some x and neighborhood Bδ0(x), Cθ as in part 4 of that Proposition. We will use the other
constants from that proposition as well without reintroducing them.

For n ≥ N , we say that P 1
n ⊆ γ̂1 and P 2

n ⊆ γ̂2 are a (b0, η̂)-fake coupled pair at time n ≥ N
for some word ω on Bδ0(x) if the following statements hold. Write ρ1n and ρ2n for the densities
of P 1

n and P 2
n on γ1 and γ2. Let I1

n and I2
n be the underlying curves of P 1

n and P 2
n .

(1) P 1
n and P 2

n have equal mass and (Hs
n−1)∗(ρ

1
n) = ρ2n.

(2) Hs
n−1 carries I1

n to I2
n.

(3) If x ∈ γ1 is (C, λ, ϵ, Cθ)-tempered for times N ≤ i ≤ n, then x ∈ I1
n.

(4) At each point x in the curve underlying P 1
n , we have that

ρ1n(x) ≥ b0
∏

N≤i≤n

(1− e−iη̂)ρ1(x).

We will see below that if for a given word ω we are able to arrange that the statements
above hold for each n, then in the limit, for each point x ∈ γ1 that is (C, λ, ϵ)-tempered and
in each P 1

n that at least ϵ0 of the mass above x in γ̂1 couples. Thus as typically a positive
measure set of x have this property, a positive proportion of the mass of P 1

n couples.
The structure of the rest of this section is as follows. In §10.2 and §10.3 we show that if a

trajectory has a tempered splitting then nearby trajectories also have tempered splittings. In
§10.4 we prove Proposition 10.12 which shows how small a scale we need to work at in order
to run a coupling procedure. Then in §10.5 we prove the local coupling lemma in two steps.
First, we prove Lemma 10.13, which describes a deterministic local coupling procedure that
can be applied to a fixed word ω under the choice of constants provided by Proposition 10.12.
We then finish the proof of Lemma 7.10 by using that the hypotheses of this deterministic
local coupling procedure are satisfied with high probability.

10.2. Nearby points inherit tempered splitting. In this subsubsection we prove Propo-
sition 10.3, which says that nearby trajectories inherit splittings from each other. This will
be used later to show that the set of points on a curve that have a tempered splitting after
n iterations is quite fat. The idea that points close to hyperbolic orbits inherit hyperbolicity
is useful in many problems in dynamics. For example, a classical Collet–Eckmann condition
is used in one dimensional dynamics to show that near critical orbits recover hyperbolicity if
the critical orbit is hyperbolic (see [CE80]). Analogous results for two dimensional strongly
dissipative maps appear in [BC91, WY01]. In this paper we present a version for general two
dimensional maps based on Pesin theory.

We begin with a fact showing how far attracting and repelling directions of a linear map
of RP1 move under perturbation.
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Lemma 10.2. Fix some λ > 1, then there exists C, ϵ0, δ0, N0 > 0, such that if L : R2 → R2

is a linear map of the form

(10.1)

[
σ1 0
0 σ2

]
with |σ1| , |σ|−1

2 ≥ |λ| > 1, g0 : RP1 → RP1 is the induced map, and gϵ is a perturbation with
dC1(g0, gϵ) = ϵ < ϵ0, then:

(1) gϵ has a unique repelling fixed point rϵ and a unique attracting fixed point aϵ, and these
satisfy d(rϵ, (0, 1)) ≤ Cϵ, d(aϵ, (1, 0)) ≤ Cϵ.

(2) On the neighborhood Bδ0((0, 1)), ∥Dgϵ∥ ≥ λ− Cϵ and on the neighborhood Bδ0((1, 0)),
∥Dgϵ∥ ≤ λ−1 + Cϵ. These neighborhoods are overflowing and under-flowing, respectively.

(3) If y /∈ Bδ0((0, 1)), then g
N0
ϵ (y) ∈ Bδ0((1, 0)).

We omit the proof of the above lemma as these are standard facts about the dynamics in
a neighborhood of a hyperbolic fixed point. The proof of the next result is long and relies on
a number of intermediate lemmas.

Proposition 10.3. (Nearby points inherit temperedness) Fix C0, C1, λ, α, ϵ0, D0, σ > 0 and
0 < λ′ < λ. Then for sufficiently small ϵ > 0 there exist ν, k,D1, N > 0 such that kϵ < ϵ0 and
if we have a sequence of matrices of length n ≥ N (Ai)1≤i≤n ∈ SL(2,R) that are uniformly
bounded in norm by D0 and are (C0, λ, ϵ)-tempered, and (Bi)1≤i≤n is another sequence of

matrices such that ∥Ai −Bi∥ ≤ C1e
−α(n−i) then:

(1) Bi has a (D1C0, λ
′, kϵ)-subtempered splitting with the stable direction equal to the

contracting singular direction of Bn, and
(2) The angle between (Bi)

n
i=1 and (Ai)

n
i=1’s stable directions is at most e−νn.

(3) ∥Bn∥ ≥ ∥An∥(1−σ).

Proof. Before we begin, observe that due to the presence of the factor D1 in the conclusion,
it suffices to show that the needed claim holds for n sufficiently large as we may always deal
with small n by adjusting D1. Let λ̂ = λ+λ′

2 .
As long as ϵ0 < (λ − λ′)/2, we may view the sequence of matrices Ai in the finite time

Lyapunov charts from Lemma A.1, where we view the sequence as being (C0, λ̂, ϵ +
λ−λ′

2 )-

tempered. In these charts, we have: Ai =

[
σ1,i 0
0 σ2,i

]
, where min{σ1,i, σ−1

2,i } ≥ eλ̂. From

Lemma A.1, the ratio of the reference norm and the Lyapunov norm at step i is OC1,α,λ,λ′(e4ϵi).

As Bi is a perturbation of size e−α(n−i) by viewing Bi in the same Lyapunov coordinates
as Ai, we have that

(10.2) Bi =

[
σ1,i 0
0 σ2,i

]
+OC1,α,λ,λ′(e−α(n−i)e4ϵi),

where min{σ1,i, σ−1
2,i } ≥ eλ̂.

Using this representation, we will now study Bi as a perturbation of the matrix product
involving the Ai. For most i, the two are quite close and consequently Bi will inherit tem-
peredness of its norm. The remaining i will be negligible. To show this, we first identify
where the stable direction of Bn lies. Then using this we show that the norm of Bi is sub-
tempered up to a particular time. Then we do a little bookkeeping to show that if we relax
the subtemperedness condition, then norm will remain subtempered up to time n.

First we study how temperedness changes as we continue appending matrices to a sequence.
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Lemma 10.4. Fix some bound e∆ > 1. Suppose that A1, . . . , An is a sequence of matrices
whose splitting into singular directions is (C, λ, ϵ)-tempered. Then for any k and sequence
B1, . . . , Bm with ∥Bi∥ ≤ e∆ and m < ∆−1(nkϵ − C), the sequence A1, . . . , An, B1, . . . , Bm is
(C, λ− kϵ, kϵ)-tempered.

Proof. A straightforward generalization of Lemma 4.15 gives that if we have a sequence of
matrices A1, . . . , An with (C, λ, ϵ)-tempered norm and we append a sequence B1, . . . , Bm that

is (−∆m,λ − ϵ, ϵ)-tempered, then the concatenation is a (C̃, λ − kϵ, kϵ) tempered sequence
with

(10.3) C̃ = min{C,C −m∆+ nkϵ/2,−m∆+ nkϵ}.

Thus the needed conclusion holds as long as m ≤ nkϵ− C

∆
. □

The following lemma gives tight control on where vs, the most contracted vector for the
sequence (Bi)

n
i=1 lies. Below we will write gi,ϵ for the map on RP1 induced by Bi, viewed in

the Lyapunov coordinates above. We write giϵ for the composition gi,ϵ ◦ · · · ◦ g1,ϵ.

Lemma 10.5. For all C0, C1, α, λ, λ
′, D0 > 0 as above and all sufficiently small ϵ > 0, there

exists ν > 0 and Ns ∈ N such that if n ≥ Ns and (Bi)
n
i=1 is a sequence of matrices as above,

a perturbation of (Ai)
n
i=1, a sequence of matrices with a (C0, λ, ϵ)-subtempered splitting, then

the most contracted direction of Bn, vsB, lies within a neighborhood of size e−nν of the most
contracted direction of An.

Proof. We will use the perturbed dynamics gi,ϵ on RP1 from above and prove this result by
studying how fast a vector near the vector (0, 1) escapes and goes to (1, 0). We will use the
estimates of Lemma 10.2 freely and not restate them here. Given δ0 > 0 in the conclusion of
that lemma, we see that as long as the size of the perturbation is at most some ϵδ0 , then on

the neighborhoods of size δ0 of (0, 1) the expansion is by a factor of at least e.9λ̂ and similarly

in the δ0-neighborhood of aϵ, the contraction of distance is by a factor of e−.9λ̂. As long as ϵ
is sufficiently small relative to α and i ≤ 99

100n, then gi,ϵ is a perturbation of size less than ϵδ0
and the estimate for the norm of gi,ϵ on Bδ0((1, 0)) and Bδ0((0, 1)) holds.

Next, we study the norm growth of v over its entire trajectory. Define Φi
ϵ : RP1 → R+ by

(10.4) Φ1
ϵ (v) = ln

∥Biv∥
∥v∥

.

Then ∥Biv∥ is the sum of Φi
ϵ along the trajectory of v. We divide the trajectory of v into

three segments. The first segment is when v is does not yet lie in Bδ0((1, 0)). The middle
segment is when it lies in Bδ0((1, 0)) and Bi remains a small enough perturbation of Ai that
we may use the approximations of Lemma 10.2. Finally, during the last part of the trajectory
i is so big that these estimates no longer hold. We will let 1 < n1 < n2 < n denote the indices
where giϵ(v) first enters Bδ0((1, 0)) and n2 the index where the approximations of Lemma 10.2
first cease to hold. We now proceed to estimate how large n1 and n2 are. Then using this
information we will calculate ∥Bnv∥.

By estimating in this manner, we will see that any vector that starts at distance more
than e−nν from (0, 1) cannot be a stable vector as its norm grows. Below, we will track the
estimates for Bi, the same apply to Ai. Consequently, we see that the stable vector for both
Ai and Bi must lie within distance e−nν of (1, 0) for some sufficiently large ν.

We now estimate n1, i.e. we study how long it takes a vector v near (0, 1) to leave Bδ0((0, 1)).
We claim that if ν is sufficiently small then for sufficiently large n, any vector v that starts
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e−nν away from (0, 1) will exit Bδ0((0, 1)) after at most (2ν/λ)n iterates. To this end consider

d(giϵ(v), (0, 1)) ≥ d(giϵ(v), gi,ϵ(0, 1))− d(gi,ϵ((0, 1)), (0, 1))

≥ e.9λ̂d(gi−1
ϵ (v), (0, 1))

(
1− C1e

−nαei(α+4ϵ)

e.9λ̂d(gi−1
ϵ (v), (0, 1))

)
As long as i ≤ (1/3)n, ϵ < α/100, and n is sufficiently large,

(10.5) C1e
−nαei(α+4ϵ) ≤ e−

α
2
n.

Thus if ν < α/2, then for sufficiently large n, if d(gi−1
ϵ (v), (0, 1)) ≥ e−nν , then

(10.6)

(
1− C1e

−nαei(α+4ϵ)

e.9λ̂d(gi−1
ϵ (v), (0, 1))

)
≥ e−.1λ̂.

From the above, we see that as long as n is sufficiently large, i ≤ n/3, and the trajectory
of v has not left the Bδ0((0, 1)) after i, iterates, then

(10.7) d(giϵ(v), (0, 1)) ≥ e.8λ̂d(gi−1
ϵ ((0, 1)), (0, 1)).

Proceeding iteratively, we see that after i iterations, assuming i ≤ n/3 and that the trajectory
of v has not left Bδ0((0, 1)),

(10.8) d(giϵ(v), (0, 1)) ≥ e.8λ̂id(v, (0, 1)).

In particular, if giϵ(v) has not left Bδ0((0, 1)) after (2ν/.8λ̂)n, iterates then we would have

that d(giϵ(v), (0, 1)) ≥ eνn, which is absurd.
Thus as long as ϵ < α/10 it follows for sufficiently large n that giϵ(v) exits Bδ0((0, 1)) after

at most 2ν
.8λ̂
n steps. Moreover, by Lemma 10.2, it enters the neighborhood Bδ0((1, 0)) after an

additional N0 iterates. Thus for sufficiently large n, n1 ≤ 2ν
.79λ̂

n.

We now estimate n2. In the Lyapunov charts, Bi is a perturbation of Ai of size e
−α(n−i)e4ϵi.

Lemma 10.2 ceases to hold when the size of the perturbation is size Oϵ0(1). This will occur

when e−α(n−i)e4ϵi is order 1, which happens when i ≈ α
α+4ϵn. If ϵ is sufficiently small relative

to α, then α/(α + 4ϵ) ≥ 1 − 8ϵ/α. Hence by picking some N ′
2 depending only on ϵ0, δ0 and

C1, we see that n2 may be chosen to be the smallest number satisfying n2 ≥ (1− 8 ϵ
α)n−N ′

2.
Hence for sufficiently large n we can take the bound n2 ≥ (1− 9 ϵ

α)n.

Thus between times n1 and n2 there are at least (1− 9 ϵ
α − 2ν

.79λ̂
)n iterates. As long as n is

sufficiently large and

(10.9)

(
1− 9

ϵ

α
− 2ν

.79λ̂

)
>

1

2

which we can certainly arrange if we take ϵ, ν sufficiently small, we see that there are at least
n/2 iterates between n1 and n2.

We now estimate ∥Bnv∥. Let us first consider the norm ∥Bn2v∥ by estimating in the
Lyapunov metric. Let vi equal giϵ(v). Then, for i ≤ n1 and n sufficiently large, using (10.2)
and (10.5) and the inequality eX + Y ≤ eX+Y , valid for X,Y ≥ 0, we obtain

∥Bi∥′ ≤ e∆ + e−
α
2
n ≤ e∆+e−

α
2 n

. Taking logarithms we get ln ∥Bi∥′ ≤ ∆+ e−
α
2
n. Thus,

ln ∥Bn2v∥′ ≥
n2∑

i=n1

Φi
ϵ(v

i) +

n1∑
i=0

Φi
ϵ(v

i) ≥ (n2 − n1).8λ̂−
(
n

2ν

.79λ̂

)
(∆ + e−

α
2
n).
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This is the amount of growth in the Lyapunov coordinates. For the original metric, by
Lemma A.1(3) this implies from our bounds on n1 and n2, that

(10.10) ln ∥Bn2v∥ ≥ (n2 − n1).8λ̂− n
2ν

.79λ̂
(∆ + e−

α
2
n)− 4n2ϵ.

Since ln ∥Bi∥ ≤ ∆, and because n− n2 ≤ (9ϵ/α)n, and n2 − n1 > n/2, we see that

(10.11) ln ∥Bn∥ ≥ .4λ̂n− n
2ν

.79λ̂
(∆ + e−

α
2
n)− n24ϵ−

9∆ϵn

α
.

So, we may conclude if

(10.12) .4λ̂− 2ν

.79λ̂
− 9∆

ϵ

α
> 0,

which is certainly true as long as ϵ and ν are sufficiently small relative to α, λ′, and ∆. □

Remark 10.6. Note that the proof of the previous claim shows something more precise: letting
vsA, v

u
A be the most contracted and expanded direction of An, in the Lyapunov charts both vsA

and vsB lie within the neighborhood Bδ0((0, 1)) and v
u
A and vuB both lie within the neighborhood

Bδ0((1, 0)) of where the conclusions of Lemma 10.2 hold.

Now that we have located where vs, and hence vu lies, we check that the norm of Bi is
subtempered.

Lemma 10.7. For any ϵ0 > 0, suppose that we have a sequence of matrices as above. Then
there exists k(C, λ, ϵ, α,∆) such that kϵ < ϵ0 and the norm ∥Bi∥ is (C, λ − kϵ, 4kϵ) sub-
tempered.

Proof. From Lemma 10.2, we see that if vu ∈ (Es
0)

⊥, then vu lies in Bδ0((1, 0)). Given any
β0 > 0 and n sufficiently large, any vector v in this neighborhood satisfies that for i < n2,

(10.13) Φi
ϵ(v) ≥ (1− β0)λ.

Thus we see that along the trajectory from time 1 to n2 that every vector that begins in
Bδ0(0, 1) is (C, (1−β0)λ, 0)-subtempered for the sequence of matrices Bi viewed in Lyapunov
charts. Take β0 such that (1− β0)λ > (λ+ λ′)/2.

With respect to the reference metric, such a sequence is (C, (1− β0)λ, 4ϵ)-tempered due to
Lemma A.1(3). This gives temperedness up to time n2.

Recall that Lemma 10.4 says that if we extend the sequence by m matrices where

m < ∆−1(nkϵ− C),

then the result will be (C, (1− β0)λ− kϵ, 4kϵ)-tempered. In our case because n2 ≥ (1− 9ϵ
α )n,

we would like to append 9ϵ
α matrices of norm at most e∆ and have the resulting sequence still

be tempered. So, we need that

(10.14)
9ϵ

α
n < ∆−1(nkϵ− C)

For sufficiently large n, this holds as long as kϵ∆−1 > 9ϵ/α, that is, k > 9∆/α. Taking ϵ
sufficiently small we can arrange that kϵ < ϵ0. In particular choosing β0 sufficiently small, we
can have that (1− β0)λ− kϵ ≥ λ′, so the needed conclusion holds. □

The first and second conclusions of Proposition 10.3 for sufficiently large n are now imme-
diate from the two lemmas once we apply Proposition 4.6, which constructs a splitting for a
norm subtempered sequence.
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We now turn to the proof of the third conclusion of the proposition. We need additional
estimates.

We let n2 be as above; it is the point past which the estimate in Lemma 10.2 ceases to
hold. Note that there exists β1 such that ∥Ai − Bi∥′ ≤ e−β1(n2−i) where ∥ · ∥′, denotes the
Lyapunov metric. Also, recall that from our choice of n2, that on a neighborhood of (1, 0) of

size δ0 that Bi contracts distances by a factor of e−.9λ̂.

Claim 10.8. There exists β2 > 0 such that if vu is the unstable vector for the Ai, then

d′(Aivu, Bivu) ≤ Ke−β2(n2−i),

where d′(u1, u2) =

∥∥∥∥ u1
∥u1∥′

− u2
∥u2∥′

∥∥∥∥′ is the metric on RP1 with corresponding to the Lyapunov

metric.

Proof. Recall that in the Lyapunov coordinates, we have Ai((1, 0)) = (1, 0). Further, from the
previous Lemma, vA is within distance e−nν of (1, 0). Consequently, we begin by suppose that
v is a vector with d′(v, (1, 0)) < e−nν and then seeing how this vector shadows the trajectory
of (1, 0). Then as both vA and vB are vectors satisfying this property, the needed conclusion
follows by the triangle inequality.

This can be seen inductively because, by that lemma1,

d′(Bi(v), (1, 0)) ≤ d′(Bi(v), Bi(1, 0)) + d′(Bi(1, 0), (1, 0))

≤ e−.9λ̂d′(Bi−1(v), (0, 1)) + C∥Ai −Bi∥′.

We may continue inductively as long as Biv still lies in the neighborhood Bδ0 . For such i
before this point, the form of the estimate that we obtain is:

d′(Bi(v), (1, 0)) ≤ e−nνe−.9iλ̂ + C

i∑
j=1

e−.9λ̂(i−j)∥Aj −Bj∥′ ≤ C ′e−β2(n2−i).

Note that as this estimate is growing exponentially quickly that the difference between the
index i where it first exceeds δ0 and n2 is of size at most ln(C ′)/β2, which is constant. Hence
by possibly adjusting the constant, the needed result follows.

To conclude we apply apply the triangle inequality to the corresponding estimates on
d′(Bi(v), (1, 0) and d′(Ai(v), (1, 0)) □

Before proceeding further, we record an additional quantitative estimate about the norms
of the maps considered in Lemma 10.2.

Claim 10.9. For a matrix A as in Lemma 10.2, for all σ > 0, there exists ϵ1 > 0 such that
if E : R2 → R2 is a matrix of norm ϵ ≤ ϵ1, then if v ∈ RP1 with d((1, 0), v) ≤ ϵ1:

(1) |ΦA(v)− ΦA+E(v)| ≤ ∥E∥.
(2) |ΦA(v)− ΦA((1, 0))| ≤ (σ/2) ln ∥A∥.

Proof. This claims follows easily because we are restricting to a neighborhood in RP1 where
A has large norm. Note that if v is a unit vector v and ϵ1 is sufficiently small then ∥Av∥ and
∥(A + E)v∥ are both greater than 1, hence as ln is 1-Lipschitz on [1,∞), so the first claim
follows. The second claim is straightforward because by assumption A = diag(σ1, σ2). □

1 Note that Lemma 10.2 applies to the Lyapunov metric since the eigenvalues of the matrices Ai are
uniformly bounded in both in both original and Lyapunov coordinates.
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Similar to before we have the map Φ′
A(v) = ln(∥Av∥′/∥v∥′) on RP1; note that this measures

the expansion of vectors with respect to the Lyapunov metric. By possibly decreasing the
constants in the statement of Lemma 10.2, we can arrange that the conclusions of Claim 10.9
hold as well for all i ≤ n2. (Both statements hold with respect to the Lyapunov metric,
see footnote 1). We record two facts that follow from Claim 10.8 along with the estimate

∥Ai −Bi∥′ ≤ e−β1(n2−i):∣∣Φ′
Ai
(Ai−1vu)− Φ′

Ai
(Bi−1vu)

∣∣ ≤ (σ/2) ln ∥Ai∥′∣∣Φ′
Ai
(Bi−1vu)− Φ′

Bi
(Bi−1vu)

∣∣ ≤ ∥Bi∥′ ≤ e−β1(n2−i).

Using these claims, we now estimate ∥Bn2vu∥′:∣∣∥Bn2vu∥′ − ∥An2vu∥′
∣∣ = ∣∣∣∣∣

n2∑
i=1

Φ′
Ai
(Ai−1vu)− Φ′

Bi
(Bi−1vu)

∣∣∣∣∣
≤

n2∑
i=1

∣∣Φ′
Ai
(Ai−1vu)− Φ′

Ai
(Bi−1vu)

∣∣+ ∣∣Φ′
Ai
(Bi−1vu)− Φ′

Bi
(Bi−1vu)

∣∣
≤

n2∑
i=1

(
(σ/2) ln ∥Ai∥′ + e−β1(n2−i)

)
Thus we see that ln ∥Bn2∥′ ≥ (1− σ/2) ln ∥An2∥′ −C1. Using this we now estimate the norm
of ∥Bn∥. As the norm of all Bi and Ai are uniformly bounded by e∆ by assumption, it follows
that |ln ∥An∥ − ln ∥An2∥| ≤ (n− n2)∆. Thus,

ln ∥Bn∥ ≥ ln ∥Bn2∥ − (n− n2)∆

≥ (1− σ/2) ln ∥An2∥ − 4n2ϵ− C1 − (n− n2)∆

≥ (1− σ/2) ln ∥An∥ − (σ/2)(n− n2)∆− 4n2ϵ− C1 − (n− n2)∆.

By subtemperedness ln ∥An∥ ≥ λn−C2 for some C2, and hence if ε is small enough compared
to λ and σ, then as n− n2 = O(ϵ) the estimate of part (3) of Lemma 10.2 holds. □

Proposition 10.3 implies that nearby points have close splittings so that the blocks where
a tempered splitting fails to exist are not too small.

10.3. Cushion of nearby points. In this subsection, we prove a refinement of the estimate
from the previous subsection. Recall Definition 4.9. We show that points with very close
trajectories have cushion that differs by O(1). This will be used later because it shows that if
a short curve has a single point with bad cushion, then all of these points have bad cushion.

Proposition 10.10. Fix (C0, λ), Λ > 0, σ > 0, ϖ > 0, then for all sufficiently small ϵ > 0
there exists N and D such that the following holds. Suppose that (Ai)1≤i≤n and (Bi)1≤i≤n are
sequences of matrices in SL(2,R) with norm at most eΛ that are (C0, λ, ϵ)-tempered such that

∥Ai −Bi∥ ≤ C1e
−σ(n−i)e−nϖ. Let U(A) and U(B) denote the cushion of A and B. Then

|U(A)− U(B)| ≤ D.

Proof. In view of the definition of the cushion, it suffices to prove that there exists D > 0
such that for two such sequences and 1 ≤ k ≤ n,

∣∣ln ∥Ak∥ − ln ∥Bk∥
∣∣ ≤ D. This will follow

from the claim below, which gives an exponential shadowing for the most expanded directions
of Ak and Bk
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Claim 10.11. There exists N1, D1 such that as long as n ≥ N , There exists β2(λ, ϵ, σ) and
K(C0, λ,Λ, σ,ϖ, ϵ) such that for any N ≤ k ≤ n the following holds. If vk is the unstable
vector for the Ak, then for i ≤ k,

d(Aivk, B
ivk) ≤ K(e−β2(k+i) + e−nϖ/2).

Proof. This essentially follows due to an enhancement of the argument surrounding Claim 10.8,
which we can improve due to the stronger assumptions of the present claim.

As before, we work in Lyapunov charts, and estimate the distance that a vector near (1, 0)
can drift away from it. Comparing with (10.2), when we look in the Lyapunov charts adapted
to the sequence A1, . . . , Ak, we now have that

Ai =

[
σi,1 0
0 σ2,i

]
= Bi +OC,λ,Λ(e

−σ(n−i)e−ϖne4ϵi).

Hence Lemma 10.2 holds for all 1 ≤ i ≤ n, i.e. for the entire sequence, as long as ϵ is
sufficiently small relative to ϖ. Note that this implies that there exists some C ′ such that
∥Aj −Bj∥′ ≤ C ′e−σ(n−i)e−ϖne4ϵi.

We now do an induction similar to that in Claim 10.8. Denote

dn,k,i = e−kνe−.9λ̂i + C̄e−n(2/3)ϖe−σ(n−k),

where C̄ is a large constant that will be chosen below. From Lemma 10.2, we can take δ0 so

small that any vector making angle less than δ0 with (1, 0) is contracted by at least e−.9λ̂.
Take N so large that for all N ≤ k ≤ n we have that dn,k,0 ≤ δ0 and hence also for all
i ≤ N , dn,k,i ≤ δ0. We now verify by induction on i that if we start with a vector v such that

d′(v, (1, 0)) ≤ e−kν , then for all i ≤ k, d′(Bi(v), (1, 0)) ≤ dn,k,i. Indeed

d′(Bi(v), (1, 0)) ≤ e−.9λ̂dn,k,i−1 + ∥Ai −Bi∥′

≤ e−kνe−.9iλ̂ + e−.9λ̂C̄e−n(2/3)ϖe−σ(n−k) + C ′e−σ(n−i)e−ϖne4ϵi.

As long as C̄ is sufficiently large and ϵ is sufficiently small relative to ϖ, it then follows that:

d′(Bi(v), (1, 0)) ≤ e−kνe−.9λ̂i + C̄e−n(2/3)ϖe−σ(n−k) ≤ dn,k,i.

Thus for 1 ≤ i ≤ k,

d′(Biv,Ai(1, 0)) ≤ C1(e
−kνe−.9λ̂i + C̄e−n(2/3)ϖe−σ(n−k)).

Lemma A.8, which compares distance on S1 for different metrics, implies that as long as ϵ is
sufficiently small relative to λ and σ, then respect to the reference metric on RP1 that there
exists C2 such that

d(Biv,Ai((1, 0))) ≤ C2(e
−kνe−.45λ̂i + C̄e−nϖ/2e−σ(n−k)).

The above estimate holds for any vector v at distance e−kν from (1, 0).
In particular, from Lemma 10.5 whose weaker hypotheses (Ai)1≤i≤k and (Bi)1≤i≤k satisfy,

we see that vkA and vkB are both within e−kν distance of (1, 0) in the Lyapunov charts as long as
k ≥ N2 for someN2. Thus by specializing to these vectors and applying the triangle inequality,

we find that d(BivkA, A
ivkA) ≤ C3(e

−kνe−.45λ̂i + e−nϖ/2), which is the desired claim. □
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Because the norm of all the matrices we are considering is uniformly bounded by eΛ, the
estimate in Claim 10.11 gives that for k > N ,∣∣∣ln ∥Ak∥ − ln ∥Bk∥

∣∣∣ ≤ k∑
i=1

Ke−β2(k+i) + e−nϖ/2 ≤ K ′

for some fixed K ′. Note that this gives the conclusion of the lemma about cushioning for
all indices greater than N . For those less than N , since there are only finitely many such
words and the norms of matrices are bounded, we can accommodate them by increasing the
constant in the conclusion of the theorem. □

10.4. Scale selection proposition. Given two nearby standard pairs, we can attempt to
“couple” them using the fake stable manifolds. For this we need more quantitative estimates
on how close and smooth standard pairs need to be so that we can couple a significant
proportion of them. For example, if they are too far apart then a fake stable leaf may
not reach from one to the next. Proposition 10.12 below are mostly a summary of results
appearing elsewhere in the paper. Note that the first parts of the proposition are statements
about temperedness and splittings on uniformly large balls in M . Part (4) shows that for
fixed C0 if we consider sufficiently small (C0, δ, υ)-configurations that on balls of radius O(δ)
that transversality to the contracting direction and temperedness of the splitting imply that
the holonomies between the curves in a configuration exist and converge exponentially fast.

Below we say that a curve and a cone field are θ0-transverse if the smallest angle they make is
at least θ0. Also, see Definition B.11 in the appendix for the definition of (C, λ, ϵ, C)-tempered,
which means (C, λ, ϵ)-tempered plus the additional condition that the stable direction lies in
the cone C.

Proposition 10.12. Suppose that (f1, . . . , fm) is an expanding on average tuple in Diff2
vol(M)

with M a closed surface. There exists λ > 0 such that for any 0 < λ′ < λ, 0 < σ there exists
0 < ϵ0, τ < 1 such that for any 0 < ϵ < ϵ′ < ϵ0 there exist δ0, δ1, θ, b0, C, C

′, C ′′, θ0, η > 0
and N ∈ N such that: for any x ∈ M , i ∈ {1, 2, 3}, there are three nested cone fields
Ci
θ ⊂ Ci

2θ ⊂ Ci
3θ of angles θ, 2θ, 3θ, respectively defined on Bδ0(x) by parallel transport from a

cone at x. Further, the Ci
3θ are uniformly transverse on Bδ0(x). These conefields satisfy the

following properties for words ω, where probabilities below are with respect to the Bernoulli
measure µ on Σ.

(1) (Positive probability of tangency to Ci
θ) For any point y ∈ Bδ0(x) and any i ∈ {1, 2, 3},

the probability that Dxf
n
ω is (C, λ, ϵ, Ci

θ)-tempered for all n ≥ N is at least b0 > 0.
(2) (Nearby points are also tempered) For any curve γ, if x ∈ γ is (C, λ, ϵ, Ci

θ)-tempered at time

n and y ∈ γ is a point with dγ(x, y) ≤ ∥Dxf
n
ω∥−(1+σ), then y is (C ′, λ′, ϵ′, Ci

2θ)-tempered
at time n and

(10.15) ∥Dyf
n
ω∥ ≥ ∥Dxf

n
ω∥1−σ.

(3) (Existence of fake stable manifolds) For any (C ′, λ′, ϵ′, Ci
2θ)-tempered point y ∈ Bδ0(x) at

time n ≥ N , the fake stable curve W s
n,δ1

(ω, y) exists, has length at least δ1, has C
2 norm

at most C ′′, and is tangent to Ci
3θ on Bδ0(x).

(4) (There exists a well configured neighborhood) For any C0, there exists δ ∈ (0, 1), a0, a1, D1, D2 >
0 and N1 ∈ N such that for all 0 < δ′ < δ, and any υ ≤ δ′τ , the following holds for any
(C0, δ

′, υ)-configuration (γ̂1, γ̂2). There exists x ∈M and i ∈ {1, 2, 3} such that γ1 and γ2
are uniformly θ0-transverse to Ci

3θ on Bδ0(x). We let B2ν(x) be a ball that demonstrates
that γ̂1, and γ̂2 are in a (C0, δ

′, υ)-configuration, i.e. it contains points of γ1 and γ2 that
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are distance at least υ from the boundary of those curves. We maintain this choice of x
and i in the following lettered items:
(a) (Fake stable manifolds tangent to Ci

3θ are transverse to pairs) If y ∈ B2υ(x) is as
in item (3) above, then W s

n,δ1
(ω, y) intersects both γ1 and γ2 and the points of in-

tersection are both θ0-transverse, i.e. both γ1 and γ2 make an angle at least θ0 with
W s

n,δ1
(ω, y).

(b) (Lower bound on derivative of the holonomy) For n ≥ N1, if B ⊆ γ1 ∩ B2ν(x) is a
subset of γ1 consisting of (C ′, λ′, ϵ′, Ci

2θ)-tempered points at time n, then Hs
n(B) ⊆ γ2

has length at least D1 len(B). Further, as long as γ̂1 and γ̂2 have equal mass and
are at most 4δ′-long, there are a pair of connected components of γ̂1 ∩ B2υ(x) and
γ̂2 ∩B2υ(x) each containing at least a1 proportion of the mass of γ̂1 and γ̂2 such that
if B is as above and lies in this set, then

a0(H
s
n)∗ρ

1|B ≤ ρ2|Hs
n(B).

(c) (Fluctuations in the holonomies) For any (C0, δ
′, υ)-configured pair (γ1, γ2), if z ∈

B2υ(x) is a (C ′, λ′, ϵ′, Ci
2θ) tempered point at times n, n− 1 ≥ N1 and y is any point

with dγ1(x, y) ≤ ∥Dxf
n
ω∥−(1+σ), then

(10.16) dγ2(H
s
n(y), H

s
n−1(y)) ≤ e−1.99 ln ∥Dxfn

ω ∥.

Further, for n ≥ N1 the rate of convergence of the Jacobians is exponentially fast

(10.17)
∣∣JacHs

n − JacHs
n−1

∣∣ ≤ e−ηn.

(d) (Log-α-Hölder control of Jacobian) If B ⊆ γ1 ∩ B2υ(x) is an open set comprised of
(C ′, λ′, ϵ′, Ci

θ)-tempered points at time n, then

(10.18) |log JacHs
n(x)− log JacHs

n(y)| ≤ D2dγ1(x, y)
α.

Proof. The main non-trivial input to this proposition is the definition of the cones. After they
are chosen correctly, the remaining statements follow in a straightforward manner from facts
about the fake stable manifolds proven elsewhere.

For any point x ∈ M , we let νx denote the distribution of the true stable directions Es at
the point x, which is a measure on RP1

x, the projectivization of TxM . As νx is non-atomic, we
can find three disjoint intervals I1, I2, I3 of width θ that are each separated by angle at least
4θ for some angle θ > 0 and such that νx(I1), νx(I2), νx(I3) are each positive. We then use
these intervals to define nested cones Ci

θ/2(x) ⊂ Ci
θ(x) ⊂ Ci

2θ(x) ⊂ Ci
3θ(x) at x for i ∈ {1, 2, 3}.

Due to the continuity of νx from Proposition B.4, we see that if we parallel translate I1, I2, I3
to form cone fields C1, C2, C3 over a ball B(x) around x, then we similarly have that νy(Ci

θ/2)

is uniformly positive for all y ∈ B(x). All these properties are uniform, so we can do this for
any x ∈M and obtain a neighborhood of uniform size, with uniform lower bound on νy(Ci

θ/2)

over all these neighborhoods.
We now verify item (1). There exist λ, ϵ > 0 such that for any y ∈M and almost every ω,

Dyf
n
ω is (C(ω), λ, ϵ)-tempered for some C(ω). Further, by Proposition 4.7 we have a uniform

estimate on the tail on C(ω) independent of the point y. Thus by choosing C1 sufficiently
large for any y ∈ B(x) and 1 ≤ i ≤ 3, with probability at least b0, Dyf

n
ω is (C1, λ, ϵ)-

subtempered and Es
n(ω, y) ∈ Ci

θ/2(y) for all n ≥ N . By Proposition 4.6, there exists N0 ∈ N

such that for any (C1, λ, ϵ)-subtempered trajectory of length n ≥ N0, then for all n ≥ N0,
∠(Es

n(ω, y), E
s) < θ/4 and so Es

n ∈ Ci
θ. This gives us the uniformly positive probability of at

least b0 > 0.
Item (2) is immediate from Proposition 10.3.
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Item (3), which states the existence of the fake stable manifolds for (C ′, λ′, ϵ′, Ci
2θ)-tempered

points, follows from Proposition B.10 (possibly after decreasing δ).
We now verify item (4), which has many subparts. The statement in the initial part follows

by making a judicious choice of x as well as the particular cone Ci
3θ on Bδ0(x) that the fake

stable manifolds will be tangent to. Because γ̂1 and γ̂2 are a (C0, δ
′, υ)-configuration then

there exists a pair of points x ∈ γ1 and y ∈ γ2 with d(x, y) < υ. We choose to work on
the neighborhood Bδ0(x). We then must show that we can pick one of the cones Ci

3θ that is
uniformly transverse to γ1 and γ2 on Bδ0(x). Let K1 be a small cone around γ′1(x) and K2

be a small cone around γ′2(y). We can extend both cones to the whole of Bδ0(x) by parallel
transport. Since there are three cones, we let i ∈ {1, 2, 3} be an index such that the cone Ci

3θ
is transverse to both K1 and K2. We let θ0 be a lower bound on the angle that γ1, γ2 make
with Ci

3θ and note that, as before, that θ0 is uniform as it only relies on knowing C0, δ
′. We

now proceed to checking the lettered items that follow.
Item (4a) says that the fake stable manifolds of (C ′, λ′, ϵ′, Ci

2θ)-tempered points are θ0-
transverse to γ1, γ2 and intersect them. This follows from Proposition B.10 because by choice
of our constants, for such a tempered point y, it follows that W s

n(ω, y) is tangent to Ci
3θ,

and the uniform transversality follows from our control on the C2 norm of W s
n(ω, y) and the

Hölder continuity of the most contracting subspace Es
n. Further, the fact that we only need

the curves to be at most υ = τδ′ apart from each other, with τ depending only on θ0, λ
′, λ

is clear from the uniform C2 bound on the norm of the fake stable manifolds W s
n(ω, y) from

item (3). Item (4a) follows because as long as δ is sufficiently small compared with C0, the
tangent direction to γi is close to constant on a segment of length δ.

The first part of item (4b) saying that there is a lower bound on the derivative of the
holonomies follows from Proposition B.13.

The next claim is that restricted to a segment in Bδ0 , γ1 and γ2 have a positive proportion
of their mass there. This follows due to the log-Hölder regularity of ρ1 and ρ2 as long as δ is
sufficiently small. Due to the boundedness of the Jacobian, the log-Hölderness of the densities
and them both having a positive amount of their mass on Bδ0(x), it additionally follows that
there exists such a uniform constant a0 as stated in item (4b).

Item (4c) is immediate from the statement of Proposition B.12.
Finally, item (4d), which concerns the fluctuations in the Jacobian of Hs

n, follows from
Proposition B.13. □

10.5. Proof of Inductive Local Coupling Lemma. We are now ready to prove the in-
ductive local coupling lemma.

First we prove a result that does not make any assertions about the quantity of points on
the curve γ1 that have a tempered splitting. It just shows that given an infinite trajectory
ω ∈ Σ, we may use this trajectory to define a fake coupling in the sense of Definition 10.1 at
all future times.

Lemma 10.13. (Inductive Coupling Lemma.) Let (f1, . . . , fm) be an expanding on average
tuple in Diff2

vol(M) for M a closed surface.
For any C0 > 0 let λ, λ′, ϵ0, τ, ϵ, ϵ

′, etc. be a valid choice of constants in the first paragraph of
Proposition 10.12 and δ, δ′, υ, etc., be a valid choice of constants in part (4) of that proposition.
Then there exist b1, η̂,Λ > 0 such that for any (C0, δ

′, υ)-configuration (γ̂1, γ̂2) the conclusions
of Proposition 10.12 apply and the following holds. If x ∈M and Bδ0(x) is the neighborhood
where the statements from Proposition 10.12(4) hold, then we can construct a (b1, η̂)-fake
couplings out of (γ̂1, γ̂2): For each ω ∈ Σ there exists a decreasing sequence of pairs of standard
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subfamilies P 1
n ⊆ γ̂1 and P 2

n ⊆ γ̂2 that are (b1, η̂)-fake coupled at each time n ≥ N1. Further,
for n ≥ N1 and i ∈ {1, 2} P i

n \ P i
n+1 are nΛ-good standard families.

These sequences of standard families are decreasing and converge to measures P 1
∞ and P 2

∞.
Further, for such a fake coupling we also have the true stable holonomies Hs

∞ and these satisfy
(Hs

∞)∗P
1
∞ = P 2

∞.

Proof of Lemma 10.13. We divide the proof into several steps. In Step 0, we introduce the
constants that will be used later in the proof; naturally we will also make use of many constants
from Proposition 10.12, which is essentially the setup for this lemma. Then in the following
steps we give an iterative procedure showing how one may construct a new fake coupled pair
out of an old one. By iterating that procedure, we then obtain the result.
Step 0: Introduction of constants. At this step we introduce some of constants that will
be used in the proof. Most of these constants will be chosen when they appear in the proof.

(1) First, we let λ, λ′, ϵ′, D1, etc., be the constants from the statement of Proposition 10.12.
For the given γ̂1 and γ̂2 we let Bδ0(x) be a neighborhood so that the conclusions of part 4 of
that proposition apply. We will simply write Cθ rather than Ci

θ below for the cones defined
on Bδ0(x) such that γ̂1 and γ̂2 have segments that are both uniformly θ0-transverse to Ci

3θ

on Bδ0(x). We let Λmax be sufficiently large so that ∥Dxfi∥ ≤ eΛmax for all x ∈ M and
1 ≤ i ≤ m.

(2) Further, in the application of Proposition 10.12 we will insist that δ is so small that for
any C0-good curve with density ρ on a ball of size δ, the log-Hölder condition on ρ implies
that 1/2 < ρ(y)/ρ(x) < 2 on this ball.

(3) Below, we have certain estimates that will only hold as long as n is sufficiently large. We
will have some cutoffs N1, N2 that we define in the course of the proof at the ends of steps
2 and 6, respectively. The cutoffs N1 and N2 only depend on the fixed constants from
(1) and (2) above. We then set N0 = max{N,N1, N2} in the conclusion of the theorem
where N is the cutoff for Proposition 10.12 to hold.

Step 1: Definition of I1
n. Let Γ1 be a connected component of Bδ0/2(x)∩γ1 within distance

υ of γ2. Let Gn
ω be the (C ′, λ′, ϵ′, C2θ)-tempered points at time n lying in Γ1 (See Definition

B.11). Note that Gn
ω ⊆ Gn−1

ω . We set

(10.19) ηn(x) =
1

4( max
1≤m≤n

{∥Dxf
m
ω ∥e(n−m)λ′/2})

,

and

(10.20) δn(x) = η(1+σ)
n (x).

We now construct I1
n. For each x ∈ Gn

ω, we say that x is padded if Bγ1
δn(x)

(x) ⊆ Gn
ω, where

the Bγ1
δn
(x) denotes a ball of radius δn about x in γ1 with respect to the arclength on γ1. We

let Hn
ω denote the set of all such padded points. Let Î1

n ⊂ γ1 be the set

(10.21) Î1
n =

⋃
x∈Hn

ω

Bγ1
δn(x)

(x).

Note that Î1
n is a finite union of intervals. Delete intervals of length K1e

−4Λmaxn from the
edges of each component where K1 > 0 is a fixed small constant that we choose below. Call
this trimmed collection of intervals I1

n.
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We next check that I1
n ⊆ I1

n−1. By the definition of δn, δn(x) ≤ e−λ′/2δn−1(x), thus as long
as K1 is sufficiently small,

(10.22) δn ≤ e−λ′/4δn−1 −K1e
−4(n−1)Λmax .

Thus from the definition of I1
n, it is immediate that I1

n ⊆ I1
n−1.

Step 2: Definition of I2
n. From the previous step, we know that any point in I1

n satisfies
the hypotheses of Proposition 10.12. Since γ̂1 and γ̂2 are uniformly θ0-transverse to C3θ, it
follows from Proposition 10.12(4a) that the fake stable manifoldW s

n,δ1
(y) of each point y ∈ I1

n

intersects γ2. Hence, there is a well defined holonomy Hs
n : I1

n → γ2 which satisfies all the
conclusions of Proposition 10.12. We define

(10.23) I2
n = Hs

n(I1
n).

Next we check that I2
n ⊆ I2

n−1. For this we will use the control on the fluctuations in the
size of the holonomies from Claim 10.14 below. As we vary n, the fluctuations in Hs

n(y) are
smaller than the width of the neighborhoods δn in (10.20), and the result will follow.

Suppose that x ∈ I1
n. We must show that Hs

n(x) ∈ I2
n−1. Note that while x might not be

in Hn
ω it is in Gn

ω. So, there exists some point y such that x ∈ Bγ1
δn(y)

(y) and hence also in

Bγ1
δn−1(y)

(y).

To show that Hs
n(x) ∈ I2

n−1, we estimate how far Hs
n(x) is from Hs

n−1(x) and then estimate
how farHs

n(x) is from the boundary ofHs
n−1(B

γ1
δn−1(y)

(y)). For the former, we use the following

claim.

Claim 10.14. There exists C1 > 0 such that if x ∈ Bγ1
δn(y)

(y) for some y ∈ I1
n then

dγ2(H
s
n(x), H

s
n−1(x)) ≤ C1η

1.99(1−σ)2

n (y).

Proof. First we show that there exists Ca such that

(10.24) ∥Dyf
n
ω∥ ≥ Caη

−(1−σ)
n (y).

Let N ≤ m ≤ n, be the number achieving the maximum in the definition of ηn, (10.19). From
(C ′, λ′, ϵ′) temperedness,

(10.25) ∥Dyf
n
ω∥ = ∥Dyf

m+(n−m)
ω ∥ ≥ e−C′

eλ
′(n−m)e−ϵ′m∥Dyf

m
ω ∥.

By the definition of ηn,

(10.26) η−(1−σ)
n ≤ 4(1−σ)e(n−m)(1−σ)λ′/2∥Dyf

m
ω ∥(1−σ).

But from (C ′, λ′, ϵ′)-temperedness, ∥Dyf
m
ω ∥ ≥ e−C′

eλ
′m. Hence as long as λ′σ > 2ϵ′, it follows

that there exists Cb such that for all n ≥ N we have Cb∥Dyf
m
ω ∥(1−σ) ≤ ∥Dyf

m
ω ∥e−2ϵ′m. Hence

there is some Cc such that

Ccη
−(1−σ)
n ≤ e(n−m)λ′/2∥Dyf

m
ω ∥e−2ϵ′m.

Comparing the above equation with (10.25) yields equation (10.24).
Next, as explained in Step 1 above, all points in I1

n satisfy the conclusions of Proposi-
tion 10.12(2). Thus,

∥Dxf
n
ω∥ ≥ ∥Dyf

n
ω∥(1−σ).

Combining this with (10.24) gives:

∥Dxf
n
ω∥ ≥ C(1−σ)

a η−(1−σ)2

n (y).

Then applying Proposition 10.12(4c) gives the conclusion. □
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We now continue with the proof that I2
n ⊆ I2

n−1. First, note that by the triangle inequality,

dγ1(x, ∂B
γ1
δn−1(y)−K1e−Λmax(n−1)(y)) ≥ δn−1(y)−K1e

−4(n−1)Λmax − δn(y).

We then apply Hs
n−1. By Proposition 10.12(4b) it follows that

dγ2(H
s
n−1(x), ∂H

s
n−1(B

γ1
δn−1(y)−K1e−4Λmax(n−1)(y)))(10.27)

≥D1(δn−1(y)−K1e
−4(n−1)Λmax − δn(y)).

But by Claim 10.14, dγ2(H
s
n−1(x), H

s
n(x)) ≤ C2η

1.99(1−σ)2

n (y). Hence by the triangle inequality

dγ2(H
s
n(x), ∂H

s
n−1(B

γ1
δn−1(y)−K1e−4Λmax(n−1)(y)))

≥ D1(δn−1(y)−K1e
−4(n−1)Λmax − δn(y))− C2η

−1.99(1−σ)2

n (y).

By (10.22) δn−1 −K1e
−(n−1)Λmax − δn ≥

(
1− e−λ/4

)
δn−1. Hence as η

1.99(1−σ)2

n is of a higher

order than δn, there exists some N1 such that for n ≥ N1,

(10.28) dγ2(H
s
n(x), ∂I2

n−1) ≥ 2−1D1

(
1− e−λ/4

)
δn−1(y) > 0.

This shows that Hs
n(I1

n) ⊂ I2
n−1 as desired.

Step 3. Lengths of curves in Ii
n \ Ii

n−1. This is needed to estimate the regularity of

P i
n \ P i

n+1.

First we consider the size of the trimmed segments when we pass from Î1
n to I1

n. Any

connected component of Î1
n has length at least δn(x) for some x. Note that this is bounded

below by an exponential e−Λmaxn. Then as we trim a remaining K1e
−4Λmaxn length off these

intervals when we pass from Î1
n to I1

n, we see that each interval we trim has length at least
K1e

−4Λmaxn.
There are two ways that x ∈ I1

n−1 may fail to be in I1
n. Write I1

n−1(x) for the connected

component of I1
n−1 containing x. Then either In−1(x) contains a point y that is in I1

n or
the entire component containing x is deleted. In the first case the connected component of
I1
n−1\I1

n containing x has length at least k1e
−4Λmaxn by the previous paragraph. In the second

case, the removed segment is at least e−Λmaxn long. Thus we have obtained an exponential
lower bound on the lengths of curves in I1

n−1 \ I1
n.

As Hs
n(I1

n) = I2
n we can use the size of the gaps in I1

n to estimates the size of those in I2
n.

Note that from estimate (10.27), each segment in I2
n−1 \I2

n has width at least D1K1e
−4Λmaxn.

Step 4. Definition of the densities. So far we have defined the underlying curves I1
n, I2

n

that the standard families P 1
n , P

2
n will be defined on. We now define the densities on I1

n and
I2
n. To begin, we will define ρ1N and ρ2N where N is the first time we attempt to fake-couple.

From Proposition 10.12(4b) , there exists a0 > 0 such that for B ⊆ I1
n,

(10.29) a0(H
s
n)∗ρ

1|B ≤ ρ2|Hs
n−1(B).

We then take as our initial definition:

(10.30) ρ1N = a0ρ
1|I1

N
and ρ2N = (Hs

N )∗ρ
1
N .

This gives us ρ1N and ρ2N .
We now define ρ1n and ρ2n for n ≥ N . We set:

(10.31) ρ1n = ρ1n−1(1− e−nη̂)|I1
n
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where η̂ is chosen in equation (10.41) below. We then define

(10.32) ρ2n = (Hs
n)∗(ρ

1
n).

As we push forward ρ1n by the holonomy Hs
n, which carries I1

n to I2
n, ρ

2
n is a measure on I2

n.
This defines completely P 1

n and P 2
n .

The rest of the proof will be checking that the standard families P 1
n and P 2

n have the
required properties to be a fake coupling. Some are evident from the definition above, but it
remains to check:

(1) the regularity of ρ1n and ρ2n,
(2) that ρ2n is a decreasing sequence of measures, and
(3) the goodness of the standard families P i

n \ P i
n−1 for i ∈ {1, 2}.

Step 5: Regularity of ρ1n and ρ2n. In this step we study the log-Hölder constants of ρ1n
and ρ2n for n ≥ N . Note that ρ1n is ρ1N scaled by a constant that it has the same log-Hölder
constant as ρ1N .

Before proceeding to study the regularity of ρ2n, we introduce some notation related to the
Jacobian of the holonomies. Typically the Jacobian of an invertible, absolutely continuous
map ϕ : (X, ν) → (Y, µ) is the Radon-Nikodym derivative dϕ∗µ/dν. In our case, as we are
pushing forward the density ρ1n by Hs

n, the result is the same thing as pulling back ρ1n by
(Hs

n)
−1. To simplify notation, we will simply write Jn for the Jacobian of (Hs

n)
−1, which is a

function Jn : I2
n → R>0. Returning to ρ2n, this function satisfies for y ∈ I2

n that

(10.33) ρ2n(y) = Jn(y)ρ
1
n((H

s
n)

−1(y)).

As the assumptions on the holonomies are symmetric in γ1 and γ2, we know from Proposi-
tion 10.12(4b) that Hs

n is D1-bilipschitz. Thus by Proposition 10.12(4d), there exists D2 such
that Jn is log-α-Hölder with constant D2 for all n ≥ N . Next, since ρ1n is log-α-Hölder with
constant C0, ρ

1
n ◦ (Hs

n)
−1 is log-α-Hölder with constant Dα

1C0. As mentioned before, Jn is
log-α-Hölder with constant D2. The product of log-α-Hölder functions is log-α-Hölder with
constant equal to the sum of the constants. Thus by (10.33), we see that ρ2n is Dα

1C0 + D2

log-α-Hölder. Thus we have obtained uniform log-α-Hölder control for ρ1n and ρ2n.
We need one more estimate before we continue: an actual Hölder, rather than log-Hölder,

bound on ρ1n and ρ2n; we need this as at a certain point we will compare the difference of
these functions rather than their ratio. We obtain this bound by rescaling the functions by a
constant; however we need to be sure the constant is not too big.

From (10.29), it follows from the C0 log-α-Hölder constant of the density that there exists
D ≥ 1 such for any x ∈ γ̂1 and y ∈ γ̂2,

(10.34) D−1 ≤ ρ1(x)

ρ2(y)
≤ D.

Note that for a log-α-Hölder function ρ : K → (0,∞) on a set K of diameter at most 1 that
there exists D depending only on the log-Hölder constant of ρ such that

D−1 ≤ ρ/max ρ ≤ 1.

If we let M denote the larger of the maximum of ρ1n and the maximum of ρ2n, then we
may define for i ∈ {1, 2}, ρ̃in = ρi/M . Then as the maximums of ρ1 and ρ2 are uniformly
comparable, note that there exists D > 0 depending only on C0 such that for i ∈ {1, 2},

D−1 ≤ ρ̃i ≤ 1.
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In particular, as as exp is 1-Lipschitz on (−∞, 0], it follows that ρ̃1n, ρ̃
2
n are both uniformly

α-Hölder with the same constant as their log-Hölder constant. Below we will work with these
rescaled functions that have maximum 1 and just write ρ1n instead of ρ̃1n. Note that we have
not gained any extra regularity for free: to get the lower bound D depending only on the
log-Hölder constant on both at the same time used substantial input from our setup.

Step 6. Sign and regularity of ρ2n−1 − ρ2n. We now analyze ρ2n−1 − ρ2n. In particular, we

show that ρ2n is a decreasing sequence of densities. To begin, we will obtain a lower bound on
ρ2n−1 − ρ2n. Then we will use the various lemmas relating Hölder and log-Hölder functions to

conclude a bound on the regularity of ρ2n−1 − ρ2n. By definition:

ρ2n−1 − ρ2n =ρ1n−1((H
s
n−1)

−1y)Jn−1(y)− (1− e−nη̂)ρ1n−1((H
s
n)

−1y)Jn(y)

=[Jn−1(y)(ρ
1
n−1((H

s
n−1)

−1(y))− ρ1n−1((H
s
n)

−1(y)))]+

[ρ1n−1((H
s
n)

−1(y))(Jn−1(y)− Jn(y))] + [e−nη̂ρ1n−1((H
s
n)

−1y)Jn(y)]

=A+B + C.

We next estimate A,B, and C.
Term A. To estimate term A, we first pull the function back to γ1 by composing with

Hs
n. Let Qn = (Hs

n−1)
−1 ◦ Hs

n. For y ∈ I1
n, there exists y′ ∈ Gn

ω satisfying the hypotheses

of Claim 10.14 such that dγ2(H
s
n(y), H

s
n−1(y)) < C1ηn(y

′)−1.99(1−σ)2 . By Lipschitzness of the
holonomies from Proposition 10.12(4b), this implies that

(10.35) dγ1(Q(y), y) < D1C1ηn(y
′)1.99(1−σ)2 .

Precomposing again with (Hs
n)

−1 gives that for y ∈ I2
n,

(10.36) dγ1((H
s
n−1)

−1(y), (Hs
n)

−1(y)) ≤ D2
1C1ηn(y

′)1.99(1−σ)2 .

But this implies, using Lemma A.11 and (10.36) in the second line, that:

|A| =
∣∣Jn−1(y)(ρ

1
n−1((H

s
n−1)

−1(y))− ρ1n−1((H
s
n)

−1(y)))
∣∣(10.37)

≤ |Jn−1(y)| (D2
1C2ηn(y

′)1.99(1−σ)2)αρ1n−1((H
s
n)

−1y)(10.38)

≤ |Jn−1(y)|C3η
1.99(1−σ)2α
n ρ1n−1(H

s
n(y))(10.39)

≤ CAe
−1.99λ′(1−σ)2αnρ1n−1((H

s
n)

−1y).(10.40)

where we have used temperedness to pass to the last line. We now turn to the next term.
Term B. This term is simpler. We use (10.17) in the third step below:

|B| ≤
∣∣ρ1n−1((H

s
n)

−1(y))(Jn−1(y)− Jn(y))
∣∣ ≤ ∣∣ρ1n−1

∣∣ |Jn−1(y)− Jn(y)|

≤
∣∣ρ1n−1

∣∣ e−nη ≤ e−nηρ1n−1((H
s
n)

−1(y)).

Term C. The final term is straightforward

C = e−η̂nρ1n−1((H
s
n)

−1y)Jn(y) ≤ D2e
−η̂nρ1n−1((H

s
n)

−1(y)).

We can now conclude. Combining the estimates on A,B,C, we see that

ρ2n−1(y)− ρ2n(y) ≥ [D2e
−η̂n − e−ηn − CAe

−1.99λ′(1−σ)2αn]ρ1n−1((H
s
n)

−1y).

In particular, as long as

(10.41) 0 < η̂ < min{η/2,−1.99λ′(1− σ)2α/2},
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it follows that there exists N2 such that for n ≥ N2,

ρ2n−1 − ρ2n ≥ e−2η̂nρ2n−1.

Also because Jn, ρ
2
n, ρ

2
n−1 are uniformly bounded, there exists D3 such that

D3 ≥ ρ2n − ρ2n−1 ≥ e−2η̂nD−1
3 .

Thus we can apply Claim A.10 to the function (ρ2n − ρ2n−1) ≥ D−1
3 e−2η̂n. As ρ2n and ρ2n−1 are

uniformly α-Hölder from Step 5, we obtain that there exists D4 such that ρ2n−1 − ρ2n is uni-

formly D4e
2η̂n log-α-Hölder. This concludes the analysis of the Hölder regularity of ρ2n−1−ρ2n.

Step 7: Bookkeeping. In this step we verify that for each point y ∈ I1
n that a positive

proportion of the mass over y is retained during the fake coupling procedure. This is straight-
forward to see because at each step, we discard e−nη̂/2 proportion of the remaining mass in
ρ1n(y). Thus from the definition 10.30 of ρ1N the amount of mass is bounded below by

ρ1n(y) ≥ a0ρ
1(y)

∏
n≥N

(1− e−nη̂) > 0.

Thus we keep a positive proportion of the mass above each y ∈ In
ω for all n ≥ N .

Step 8: n = ∞ behavior As the sequences ρ1n and ρ2n are decreasing they converge to
some limiting measures ρ1∞ and ρ2∞. Further, by Proposition B.13, the true stable holonomies
Hs

∞ satisfy (Hs
∞)∗ρ

1
n = ρ2n as required.

Step 9: (C, λ, ϵ, Cθ)-tempered points are never dropped. Finally, we must show that
we actually keep the (C, λ, ϵ, Cθ) tempered points throughout the entire procedure, so that
part (3) of the requirements for a fake coupling are satisfied. Suppose that (ω, x) is such a
(C, λ, ϵ, Cθ)-tempered trajectory. It suffices to show that for each n that all points in Bδn(x)(x)

are (C ′, λ′, ϵ′, C2θ)-tempered, as from the procedure above this ensures that x ∈ I1
n for all n. By

Part (2) of Proposition 10.12, this follows as long as δn(x) ≤ ∥Dxf
n
ω∥−(1+σ). This inequality

holds because by the definition of ηn, (10.19), ηn(x) ≤ ∥Dxf
n
ω∥−1, and δn(x) = η

(1+σ)
n .

Thus we have verified all of the required claims in the definition of fake coupling as well as
the additional required claim about the goodness of the families P i

n−1 \ P i
n, we conclude the

proof. □

We now have everything ready to prove the local coupling lemma, Lemma 7.10.

Proof of Lemma 7.10. Almost everything in the statement of Lemma 7.10 is contained in the
statement of Lemma 10.13. We explain them in order.

Item 1 follows because the points we stop trying to couple at time n are precisely the points
in γ̂i that are in P i

n \ P i
n−1. As the standard family P i

n \ P i
n−1 is nΛ-good, the claim follows

with L = Λ.
Item 2 is the statement in the final paragraph of Lemma 10.13.
Item 3 is more complicated. There are two ways that a point x ∈ I1

n−1 fails to appear in

I1
n. The first is that x is not in any interval Bγ1

δn(y)
(y) for any y ∈ Hn

ω . The second is if x is

in an interval that gets trimmed off of Î1
n.

First we consider the former case. This means that some y such that x ∈ Bγ1
δn−1(y)

(y) failed

to be tempered at time n. In Σ× γ1, we consider the union of these intervals:

Un =
⋃

{{ω} ×Bγ1
δn−1(y)

(y) : y ∈ I1
n−1 \ I1

n for the word ω}.
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Note that as each of these sets Bγ1
δn−1(y)

(y) contains a point z that fails to be tempered at

time n that (ω, z) has cushion that is within Λmax of C ′, the cutoff for tempering to fail. By
Proposition 10.10, as all the points in Bγ1

δn−1(y)
(y) satisfy the hypotheses of that proposition

due to the size of δn−1(y) ≤ ∥Dyf
n
ω∥−(1+σ) and the tempering, this implies that all points in

Bγ1
δn−1(y)

(y) have cushion at most C ′ + Λmax + D. But by Proposition 4.10, the number of

points having cushion of this size is exponentially small. Thus µ⊗ ρ(Un) ≤ D1e
−nη for some

D1, η > 0, and we have an exponential tail for points experiencing the first type of failure.
In the case that a point fails to be included because it was trimmed off, it was observed

in Step 3 of the coupling construction, that every curve being trimmed has length at least
e−(1+σ)Λmaxn and the amount we cut off has length 2K1e

−4λmaxn. Thus as 1/2 ≤ ρ(x)/ρ(y) ≤ 2
for two points x, y along the curve we are coupling, the amount we trim has mass at most
4e−2Λmaxn times the mass of the curve. Thus summing over all curves we stop on at most
4e−2Λmaxn mass, which is exponentially small.

The last way that mass is lost during the local coupling procedure is when we rescale the
density by (1 − e−nη̂) in Step 4, which also gives at most an exponentially small amount of
mass is stopping at time n. This concludes the proof of the tail bound.

Item 4 follows from Proposition 10.12(1). □

11. Mixing theorems

11.1. Overview of the section. In this section we prove our main result, Theorem 1.1. The
proof will rely on coupling and expansion following the standard argument, see e.g. [CM06].

First, we show that coupling implies equidistribution of standard families by coupling a
given family to a family representing volume and using that volume is invariant by the dy-
namics. See Proposition 11.9 for details.

Next, we use the expansion and exponential equidistribution to obtain exponential mixing
using the following reasoning. Consider an R-good standard family γ̂ and let fnω (γ̂) be its
image after n iterations. We shall show that for almost all ω that fnω (γ̂) contains a subfamily
Pn with the following properties:

(1) Pn consists of ϵn-good standard pairs
(2) standard pairs in Pn contract backwards in time
(3) the forward image of pairs from Pn equidistribute at an exponential rate
(4) the complement of Pn has exponentially small measure.

Now given Hölder functions ϕ and ψ we obtain exponential decorrelation between ϕ ◦ fNω
with N = cn and ψ using that ψ is constant on the elements of Pn (up to exponentially small
error), ϕ ◦ fNω is equidistributed on the elements of Pn (up to exponentially small error), and
the complement of Pn is exponentially small.

The purpose of this section is to execute this argument precisely, using the results of
Sections 4, 8, and the appendices.

11.2. Preparatory lemmas. Below we will use Definition A.14 from §A.6 in the appendix.
Briefly, this definition concerns a (C, λ, ϵ, θ)-forward tempered point at time n for a vector
v ∈ TxM , which is a (C, λ, ϵ)-forward tempered time n such that Es

n makes angle at least θ
with v.

Proposition 11.1. Suppose that M is a closed surface and (f1, . . . , fm) is an expanding on
average tuple of diffeomorphisms in Diff2

vol(M). There exists λ > 0 such that for all sufficiently
small ϵ > 0 there exist C0, N ∈ N, and α > 0 such that for all n ≥ N , and any direction
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v ∈ T 1
xM ,

µ(ω : (ω, x) is not (ϵn+ C0, λ, ϵ, C0e
−ϵn)-forward tempered at time n relative to v) ≤ e−nα.

Proof. Proposition 4.8 says that there exist λ > 0 such that for arbitrarily small ϵ > 0, there
exists α > 0 such that the measure of the words ω that are not (C, λ, ϵ)-subtempered for all
n ≥ 0 is at most e−αC . From Proposition 4.14 there exists some C2, c, θ > 0 such that for all
sufficiently small ϵ′ as long as n ≥ c |ln(ϵ′)| = N0 , then for all n ≥ N0, the probability that
Es

n ∈ Bϵ′(v) is at most C2(ϵ
′)θ. Taking ϵ′ = e−ϵn, this gives that the probability that

Es
n ∈ Be−ϵn(v) for n ≥ N0 is at most C2e

−θϵn as long as ϵ is sufficiently small relative to c,
n ≥ cϵn. Combining these two estimates, we obtain the result. □

Below, we will typically assume that the standard family or standard pair we are considering
has unit mass. The statements below can be adapted to any amount of mass by multiplying
the right hand side of the bound by the mass of the family.

Definition 11.2. Given a standard pair γ̂ = (γ, ρ), for x ∈ γ we say that (ω, x) is (n, λ, ϵ)-
backwards good if

(1) fnω (x) is contained in a standard pair B(ω, x) ⊆ fnω (γ̂) that is ϵn-good, and

(2) Df−n
ω Bγ

e−14ϵn(x) has diameter at most e−(λ/2)n.

We define analogously the same notion for a standard family.

Proposition 11.3. (Annealed goodness) Suppose that M is a closed surface and (f1, . . . , fm)
is an expanding on average tuple in Diff2

vol(M). Then there exists λ > 0 such that for all
sufficiently small ϵ > 0, if we fix R > 0 there exists α,C > 0 such that for any R-good, unit
mass standard family γ̂ with associated measure ρ:

(11.1) (µ⊗ ρ)({(x, ω) : (x, ω) is not (n, λ, ϵ)-backwards good}) ≤ Ce−αn.

Proof. This is immediate from Propositions A.15 and 11.1. □

From Proposition 11.3, we can deduce a related quenched statement for almost every ω.

Lemma 11.4. (Quenched goodness) Under the hypotheses of Proposition 11.3, there exist
λ, α,D > 0 such that for all sufficiently small ϵ > 0 and a unit mass R-good standard family
γ̂, then for almost every ω, there exists Cω such that 1 − Cωe

−αn proportion of points in γ̂
are (n, λ, ϵ)-backwards good for ω. Further,

µ(ω : Cω > C) ≤ DC−1.

Proof. Let Aω
n be the set of points in γ̂ that are not (n, λ, ϵ)-backwards good for ω. Then

µ(ω : ∃n ρ(Aω
n) > Ce−(α/2)n) ≤

∑
n≥0

µ(ω : ρ(Aω
n) > Ce−(α/2)n) ≤

∑
n≥0

C−1C1e
−(α/2)n ≤ C−1D,

where the second inequality follows from (11.1) and the Markov inequality. The result follows.
□

We also need another proposition, that says that on the ϵn-good neighborhoods at time n
that we have rapid coupling, which will then imply that these neighborhoods rapidly equidis-
tribute. The following estimate is immediate from Proposition 7.7.
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Proposition 11.5. Suppose (f1, . . . , fm) is as in Proposition 11.3. Then there exists λ > 0
such that for any sufficiently small ϵ > 0 there exist C,α > 0 such that the following holds.
For any n ∈ N, suppose P 1 and P 2 are two unit mass standard families of ϵn-good curves.
Then there exists a coupling function Υ and stopping times T̂ 1, T̂ 2 as in Proposition 7.7 such
that for i ∈ {1, 2}:

(µ⊗ ρi)({(x, ω) : T̂ i(x, ω) > j}) ≤ Ceϵne−αj .

Remark 11.6. In the applications of Proposition 11.5 below we will assume unless it is explic-
itly stated otherwise that P 2 is the family representing the volume from Proposition 7.5. We
couple with a family representing volume because it implies that the statistics of an arbitrary
standard family P1 approach those of volume.

In what follows for a word ω at time i, we have subfamilies P 1
i,ω and P 2

i,ω of f iω(P
1). We

then apply Proposition 11.5 above, to find a pair of stopping times T̂ 1
i and T̂ 2

i defined on

f iω(P
1
i,ω) and f

i
ω(P

2
i,ω) respectively. Note that the the T̂ i are not defined on all of f iω(γ̂) because

not all points in this pair need be ϵn-good.

Then from Proposition 11.5 we obtain the following.

Proposition 11.7. Let (f1, . . . , fm), γ̂, ρ, and λ, ϵ, α > 0 as be as in Proposition 11.3, then

there exists C such that if we let the T̂ 1
n be the stopping time defined as in Remark 11.6, for

all i, n ≥ 0 we have the bound:

(11.2) (µ⊗ ρ)((x, ω) : x ∈ P 1
i,ω and T̂ 1

i (x, ω) > i+ n) ≤ Ceϵie−nα.

From this, we easily deduce a statement about each ω.

Proposition 11.8. Let (f1, . . . , fm), λ, ϵ > 0 and γ̂, ρ be as in the setting of Proposition 11.3
and Remark 11.6, then there exists α,D1 > 0 such that

µ(ω : there exists i such that ρ(x : (x, ω) is (i, λ, ϵ)-backwards good) < 1− Ce−iα or(11.3)

there exist (i, n) such that ρ(x ∈ P 1
i,ω : T̂ 1

i (x, ω) ≥ i+ n) ≥ C2eϵie−nα) ≤ D1C
−1.(11.4)

Proof. To control the event in (11.4) let Bω
i,n = {x ∈ P 1

i,ω : T̂ 1
i (x, ω) > i+ n}. By (11.2) and

the Markov inequality, there is C1 > 0 such that

(11.5) µ({ω : ρ(Bω
i,n) > Ce2ϵie−(α/2)n}) ≤ C1C

−1e−ϵie−(α/2)n.

Then using (11.5), we find that

µ(ω : for some i, n ρ({x : T̂ 1
i (x, ω) ≥ i+ n}) ≥ C2eϵie−nα/2)

≤
∑
i≥0

∑
n≥0

µ({ω : ρ(Bω
i,n) ≥ C2eϵie−(α/2)n}) ≤

∑
i≥0

∑
n≥0

C1C
−1e−ϵie−(α/2)n ≤ C−1C2

for some C2 provided that ϵ is small enough. Combining this estimate with Proposition 11.3
to control the event in (11.3) allows us to conclude. □

11.3. Quenched equidistribution. Using the quenched coupling lemmas above, it is straight-
forward to deduce quenched equidistribution and correlation decay theorems. The ideas in
the proofs below are essentially standard, compare with [CM06, Ch. 7], however some modi-
fications are necessary because the quenched random dynamics is not stationary.

We start with quenched equidistribution.
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Proposition 11.9. (Quenched exponential equidistribution on subfamilies) Let (f1, . . . , fm)
be an expanding on average tuple in Diff2

vol(M), where M is a closed surface. There exists
λ > 0 such that for all sufficiently small ϵ > 0, fixed β ∈ (0, 1) and R, there exists D1 such
that for any R-good, unit mass standard family γ̂, there exists α, ν > 0 such that for almost
every ω, there exists Cω ≥ 1 such that, such that coupling as in Remark 11.6:

(1) There exists a subfamily Pi,ω of (f iω)∗γ̂ of eϵi-good standard pairs having total ρ–measure
(1− Cωe

−αi)

(2) The atoms of (f iω)
−1(Pi,ω) have diameter at most e−λ/2i.

(3) The atoms Ai,ω ∈ Pi,ω exponentially equidistribute, i.e., letting Ai,ω be the normalized
measure on Ai,ω,

(11.6)

∣∣∣∣∫ ϕ ◦ fnσiω dAi,ω −
∫
ϕd vol

∣∣∣∣ ≤ Cωe
ϵie−αn∥ϕ∥Cβ .

(4) We have a tail bound µ({ω : Cω > C}) ≤ D1C
−1.

Proof. From Lemma 11.4, the only thing that remains to be checked is that the individual
atoms of Ai,ω are exponentially equidistributing.

Let Pi,ω be the subfamily of f iω(γ̂) of curves that are iϵ-good. Let P
2 be a standard family

representing volume as in Remark 11.6. Then coupling with P 2, we have the stopping time
T̂i on Pi,ω as discussed in Proposition 11.7 and uniform α,Cω > 0 such that for all i, n ∈ N,

(11.7) ρ(x ∈ Pi,ω : T̂i(x, ω) > n+ i) ≤ Cωe
ϵie−nα.

We would like to know that most of the curves in Pi,ω have all but an exponentially small
amount of their points coupling quickly.

We claim that for a.e. ω there exists a subfamily Gi,ω of ϵi-good curves in Pi,ω of measure at

least 1−Cωe
−αi/3 such that for each A ∈ Gi,ω all but eiϵne−α/3n of the mass of the subfamily

has coupled to volume by time i + n, i.e. T̂i(x, ω) ≤ i + n. Suppose that ω satisfies (11.7)

and for the sake of contradiction, suppose that there is a subfamily Bi (of bad pairs) of P̂i,ω

having measure more than than e−αi/3 so that for some n all pairs in Bi have more than
eiϵe−nα/3 proportion of points not coupled at time n + i, i.e. T̂i > i + n. This implies that
ρ(x : T̂i(x, ω) > n+ i) ≥ Cωe

−2αn/3eiϵ, contradicting (11.7). Thus the claim about Gi,ω holds.
Suppose now that Ai,ω ∈ Gi,ω ⊆ Pi,ω is such a good atom where at time n+i all but at most

eiϵe−(α/3)n proportion of the mass of Ai,ω has coupled to volume. Let An
i,ω ⊆ Ai,ω be the set

of points that have coupled by time i+n. Let Υ be the measure preserving coupling function
and let V n = Υ(An

i,ω) be the corresponding set of points in the standard family representing

volume that have T̂i(x, ω) ≤ i+ n. Then we may write the integral in question as∣∣∣∣∫ ϕ ◦ fnσiω dAi,ω −
∫
ϕdPvol

∣∣∣∣
≤

∣∣∣∣∣
∫
A

n/2
i,ω

ϕ ◦ fnσiω dAi,ω −
∫
V n/2

ϕdPvol

∣∣∣∣∣+
∣∣∣∣∣
∫
Ai,ω\A

n/2
i,ω

ϕ ◦ fnσiω dAi,ω

∣∣∣∣∣+
∣∣∣∣∣
∫
(V n/2)c

ϕdPvol

∣∣∣∣∣
≤

∣∣∣∣∣
∫
Υ−1(V n/2)

ϕ ◦ fnσiω(Υ(x))− ϕ(x) dPvol

∣∣∣∣∣+ 2Cωe
iϵe−nα/6∥ϕ∥Cβ .

As the points Υ(x) and x both lie in a common (C0, λ, ϵ)-tempered local stable leaf of uniformly
bounded length at time i+ n/2, then we see that at time i+ n, that

d(fnσiωΥ(x), fnσiω(x)) ≤ C−1
0 e−λ/2n.
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Now the Hölder regularity of ϕ implies that

(11.8)

∣∣∣∣∫ ϕ ◦ fnσiω dAi,ω −
∫
ϕdPvol

∣∣∣∣ ≤ C−β
0 e−λβ/2n∥ϕ∥Cβ + 2Cωe

iϵe−nα/6∥ϕ∥Cβ ,

which is what what we wanted for the pair Ai,ω. The required tail bound on Cω follows from
Proposition 11.8 and (11.7) by taking D1 sufficiently large because the first term involving

Cβ
0 is uniformly bounded independent of Cω ≥ 1. □

Theorem 11.10. (Quenched, tempered equidistribution) Suppose that M is a closed surface,
(f1, . . . , fm) is an expanding on average tuple in Diff2

vol(M), and β ∈ (0, 1) is a Hölder reg-
ularity. For any ϵ > 0 there exists η > 0 such that for any R-good standard family γ̂ with
associated measure ρ, this family satisfies quenched, tempered equidistribution. Namely, for
a.e. ω ∈ Σ, there exists Cω such that for any ϕ ∈ Cβ(M), for all natural numbers k and n,∣∣∣∣∫ ϕ ◦ fnσk(ω) dρ−

∫
ϕd vol

∣∣∣∣ ≤ Cωe
kϵe−ηn∥ϕ∥Cβ .

The above theorem is an immediate consequence of Proposition 11.9, so we do not write a
separate proof of it. Next we turn to exponential mixing.

11.4. Exponential mixing. We are now ready to prove exponential mixing. In a subsequent
paper we plan to show that several classical statistical limit theorems are valid in our setting.

Proof of Theorem 1.1. As before, let Pvol be an R-good standard family representing volume.
We then apply Proposition 11.9 with γ̂ = Pvol, and obtain λ, ϵ, α > 0 such that the conclusions
of that proposition hold for these constants. Pick some ω ∈ Σ such that the conclusion of
Proposition 11.9 holds for ω, and let Cω be the associated constant. We will now show
that fnω is exponentially mixing. Let δ ∈ (0, 1) be some fixed number small enough that
ϵδ − (1− δ)α < 0.

Below, we will be implicitly rounding to nearest integers so that everything makes sense.
In particular, we will denote by Pδn the standard family P⌊δn⌋,ω from Proposition 11.9; as ω
is fixed we will omit it below.

We now record some useful properties of Pδn. First, Pδn comprises all but Cωe
−δαn of the

mass of f δnω (Pvol). Thus, by volume preservation:∫
ϕ · ψ ◦ fnω dPvol =

∫
ϕ ◦ (f δnω )−1 · ψ ◦ f (1−δ)n

σδn(ω)
d(f δnω )∗(Pvol)(11.9)

=
∑

A∈Pδn

∫
ϕ ◦ (f δnω )−1 · ψ ◦ f (1−δ)n

σδn(ω)
dA± Cωe

−δαn∥ϕ∥Cβ∥ψ∥Cβ .(11.10)

Now, by Proposition 11.9, the preimage of each curve A ∈ Pδn has length at most e−δλn/2.
By Hölder continuity of ϕ

(11.11)
∣∣∣maxϕ ◦ (f δnω )−1|A −minϕ ◦ (f δnω )−1|A

∣∣∣ < e−βδλn/2∥ϕ∥Cβ .

In particular, applying this observation to each summand in (11.10), we see that∑
A∈Pδn

∫
ϕ ◦ (f δnω )−1 · ψ ◦ f (1−δ)n

σδn(ω)
dA =

∑
A∈Pδn

∫
ϕ ◦ (f δnω )−1 dA

∫
ψ ◦ f (1−δ)n

σδn(ω)
dA

± e−nβδλ/2∥ϕ∥Cβ∥ψ∥Cβ ,(11.12)
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where A denotes the unit mass version of A. By the exponential equidistribution estimate
from Proposition 11.9,

(11.13)

∫
ψ ◦ f (1−δ)n

σδn(ω)
dA = ρ(A)

(∫
ψ d vol±Cωe

−((1−δ)α−δϵ)n∥ψ∥Cβ )

)
,

where ρ(A) is the mass of the pair A. Note by our choice of δ that the exponent appearing
in the above equation is negative.

Combining (11.10), (11.13), and (11.12), we find that∫
ϕ · ψ ◦ fnω dPvol =

∑
A∈Pδn

(∫
ϕ ◦ (f δnω )−1 dA

)(∫
ψ d vol

)
± Cω(e

−δαn + e−βδλn/2 + e−((1−δ)α−δϵ)n)∥ϕ∥Cβ∥ψ∥Cβ

But as Pδn comprises all but at most Cωe
−δαn of the mass of fnω (Pvol), it follows that:∫

ϕ · ψ ◦ fnω dPvol =

(∫
ϕdPvol ± Cω∥ϕ∥Cβe−δαn

)(∫
ψ d vol

)
± Cω(e

−δαn + e−βδλn/2 + e−((1−δ)α−δϵ)n)∥ϕ∥Cβ∥ψ∥Cβ

=

∫
ϕd vol

∫
ψ d vol±4Cω(e

−ηn∥ϕ∥Cβ∥ψ∥Cβ ),

where η = min{δα, βδλ/2, (1−δ)α−δϵ}. Since the tail bound on Cω is part of Proposition 11.9,
the proof is complete. □

We now give the proof of annealed exponential mixing, i.e. exponential mixing of the skew
product.

Proof of Corollary 1.2. Let Φ̄(ω) =
∫
M Φ(ω, x) d vol, Ψ̄(ω) =

∫
M Ψ(ω, x) d vol. Note that∫∫

Φ(Ψ ◦ Fn) dµd vol = Eω (Φ(ω, x)Ψ(σnω, fnωx) d vol) .

Splitting the right hand side into the regions where Cω≤eηn/2 and Cω>e
ηn/2 and using (1.2)

in the first region and (1.3) in the second region we obtain∫∫
Φ(Ψ ◦ Fn) dµ d vol =

∫
Φ̄(Ψ̄ ◦ σn)dµ+O

(
e−ηn/2∥Φ∥Cβ∥Ψ∥Cβ

)
.

Now the result follows from the exponential mixing for the shift, see [PP90, Chapter 2]. □

Appendix A. Finite time smoothing estimates

In the following two appendices we present finite time estimates for nonuniformly hyperbolic
systems. While such estimates should be familiar to experts in Pesin theory, it is difficult
to find precise references in the literature since most works concentrate on infinite orbits.
The finite time estimates play an important role in the paper because in the main coupling
algorithm we want to use the independence of the dynamics, hence we decide to stop at time
n based only on the dynamics on the time interval from zero to n.
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A.1. Finite time Lyapunov metrics. Typically one defines Lyapunov metrics for an infi-
nite sequence of diffeomorphisms. In our case have only a finite sequence, so we show that
these also have Lyapunov metrics. The most important point in Lemma A.1 below is item
(3), which tells us that at a reverse tempered point the Lyapunov metric will not be distorted.

The appearance of λ′ in Lemma A.1 reflects that we need to make a small sacrifice in the
rate of growth to obtain the uniform estimates. If we consider sequences that are (C, λ, ϵ)-
tempered, and construct the Lyapunov metrics that guarantee a growth rate of exactly eλ up
to a factor of ϵ, then as we let ϵ go to zero, the Lyapunov metrics get very distorted with
respect to the reference metrics. With the lemma below, as ϵ goes to zero the metrics do not
get any more distorted, however, they guarantee only expansion at some rate λ′ ≤ λ.

Lemma A.1. (Lyapunov Metric Estimates) Fix (C, λ). Then for any 0 < λ′ ≤ λ, and
any sequence of linear maps A1, . . . , An ∈ SL(2,R) that have a (C, λ, ϵ)-subtempered splitting,
Es

i ⊕Eu
i with respect to a sequence of uniformly bounded reference metrics ∥ · ∥i, there exists

a sequence of metrics ∥ · ∥′i such that

(1) ∥Ai|Es∥′i ≤ e−λ′

(2) ∥Ai|Eu∥′i ≥ eλ
′

(3) 1√
2
∥ξ∥i ≤ ∥ξ∥′i ≤ 4e2C+2ϵi

(
1− e2(λ

′−λ)
)−1/2

∥ξ∥i, for ξ ∈ R2.

The same holds for reverse tempered sequences of maps, mutatis mutandis.

The estimates below are similar to [LQ95, Lem. III.1.3]. The reverse version follows by just
taking inverses. This result holds because dropping terms from the definition of the Lyapunov
metric doesn’t stop them from satisfying the required estimates.

Proof. We begin by defining the new Lyapunov metric. Then we check the desired properties.

For ξ ∈ Es
i , let ∥ξ∥

′
i=

(
n−i∑
l=0

∥Al
iξ∥2i e2λ

′l

)1/2
and for ξ ∈ Eu

i , let ∥ξ∥
′
i=

(
i∑

l=0

e2λ
′l∥[Al

i−l]
−1ξ∥2i−l

)1/2
.

We then define ∥ · ∥′i on all of R2 by declaring Es
i and Eu

i to be orthogonal.
We now check the required estimate for the stable norm. Let ξ ∈ Es

i , then

(∥Aiξ∥′i+1)
2 =

n−i−1∑
l=0

∥Al
i+1Aiξ∥2e2λ

′l =
n−i−1∑
l=0

∥Al+1
i ξ∥2e2λ′l

= e−2λ′
n−i−1∑
l=0

∥Al+1
i ξ∥2e2λ′(l+1) ≤ e−2λ′

(∥ξ∥′i)2.

Note that the last inequality follows because the penultimate expression is missing the first
term in the sum that defines ∥ξ∥′i.

We now check the estimate on Eu
i . Suppose ξ ∈ Eu

i , i < n, then

(∥Aiξ∥′i+1)
2 =

i+1∑
l=0

e2λ
′l∥[Al

i+1−l]
−1Aiξ∥2i+1−l

= ∥Aiξ∥2i+1 + e2λ
′
i+1∑
l=1

e2λ
′(l−1)∥[Al−1

i−(l−1)]
−1ξ∥2i−(l−1)

= ∥Aiξ∥2i+1 + e2λ
′

i∑
l=0

e2λ
′l∥[Al

i−l]
−1ξ∥2i−l ≥ e2λ

′
(∥ξ∥′i)2.



72 JONATHAN DEWITT AND DMITRY DOLGOPYAT

This verifies the first two estimates in the lemma. Note that neither of the above required
any control on the angle between Es and Eu.

We now compare the two norms on Es
i and Eu

i . For ξ ∈ Es
i ,

∥ξ∥′2i =

n−i∑
l=0

∥Al
iξ∥2i e2λ

′ ≤
n−i∑
l=0

e2Ce−2λle2ϵi∥ξ∥2i e2λ
′l ≤ e2Ce2ϵi

1− e2(λ′−λ)
∥ξ∥2i .

Next for ξ ∈ Eu
i , we estimate

(∥ξ∥′i)2 =
i∑

l=0

e2λ
′l∥[Al

i−l]
−1ξ∥2i−l =

i∑
l=0

e2λ
′le2Ce2(i−l)ϵe−2λl∥ξ∥2i

≤ e2Ce2iϵ
i∑

l=0

e2(λ
′−λ)le−2ϵl∥ξ∥2i ≤

e2Cei2ϵ

1− e2(λ′−λ)
∥ξ∥2i .

We now check final estimate in the theorem. For the lower bound, note that by definition
∥ξs∥′i ≥ ∥ξs∥i and ∥ξu∥′i ≥ ∥ξu∥i, thus

(A.1) ∥ξ∥2i ≤ (∥ξs∥i + ∥ξu∥i)2 ≤ 2[(∥ξs∥′i)2 + (∥ξu∥′i)2] = 2(∥ξ∥′i)2.

For the upper bound, we have that

∥ξ∥′i ≤ ∥ξs∥′i + ∥ξu∥′i ≤
eC+ϵi√

1− e2(λ′−λ)
(∥ξs∥i + ∥ξu∥i).(A.2)

But we know from subtemperedness that the angle θ between Es
i and Eu

i is at least e−Ce−iϵ.
So by the Law of Sines we have that for ∗ ∈ {u, s} that ∥ξ∗∥i ≤ ∥ξ∥i/ sin θ ≤ 2∥ξ∥i/θ because

for 0 ≤ θ ≤ π/2, θ/2 ≤ sin(θ). Thus (A.2) gives ∥ξ∥′i ≤
4e2C+2ϵi√
1− e2(λ′−λ)

∥ξ∥i, which completes

the final estimate in the proof. □

A.2. Basic calculus facts. We now record some facts from calculus that will be needed
when we study estimates for the graph transform. In the following statements, as elsewhere,
we use ∥ϕ∥i to denote the supremum of norm of the ith partial derivatives of ϕ.

Lemma A.2. (Norms of functions in twisted charts) Suppose that ϕ : R2 → R2 is a C2

function. Then if we apply a linear change of coordinates L1, L2 to ϕ, then we see that

∥L2 ◦ ϕ ◦ L1∥1 ≤ ∥L1∥∥L2∥∥ϕ∥1.

Further, for the second derivatives of ϕ:

∥L2 ◦ ϕ ◦ L1∥2 ≤ ∥L2∥∥ϕ∥2∥L1∥2.

The next lemma studies how the C2 norm of a curve changes when we apply a linear map.

Lemma A.3. Suppose that γ is a C2 curve in R2 and that L : R2 → R2 is an invertible linear

map. Then ∥L ◦ γ∥C2 ≤ ∥L∥
(m(L))2

∥γ∥C2. Here ∥γ∥C2 refers to the C2 norm of γ as a curve

in R2 and m(L) is the conorm of the matrix, m(L) = min
v ̸=0

∥Lv∥/∥v∥.

Proof. By definition, the C2 norm of a curve is the supremum of the second derivative of its
graph over each of its tangent spaces. So, without loss of generality suppose that γ passes
through the origin and that at this point γ is the curve t 7→ (t, λt2) (O(t3) terms do not
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change the computation below). Then we apply L =

[
a b
c d

]
to (t, λt2)T to get the curve

t

(
a
c

)
+ λt2

(
b
d

)
.

To study the C2 norm of L ◦ γ at 0, we must write it as a graph over its tangent space, i.e.
in the form tu+ t2λ̂u⊥, where u is a unit vector and λ̂ is to be determined. Let v = (a, c)T ,
u = v/∥v∥ and w = (b, d)T . Then we may reparametrize vt+λwt2 in the form ut+λ(w/∥v∥2)t2.
Decomposing w = pu+qu⊥ we obtain the parametrization us+(λq/∥v∥2)s2u⊥+O(s3) where

s = t+ pλ/∥v∥2t2. Thus λ̂ = qλ/∥v∥2. Since |q| ≤ ∥w∥, ∥w∥ ≤ ∥L∥, and 1/∥v∥ ≤ 1/m(L), the
result follows. □

We now estimate the C2 norm of a function in terms of its inverse.

Lemma A.4. Suppose that ϕ : R → R (or from one interval to another) is a C2 diffeomor-
phism. If |Dϕ| > λ, then

∣∣Dϕ−1
∣∣ ≤ λ−1 and ∥ϕ−1∥2 ≤ λ−3∥ϕ∥2.

Proof. At each point, we express the Taylor polynomial of ψ−1 in terms of the Taylor polyno-
mial of ψ. Suppose that ψ has Taylor polynomial νx+Ax2 at some point, with |ν| ≤ λ. Then
the Taylor polynomial of ψ−1 at the corresponding point is ν−1x+ Cx2, where C = −ν−3A.
The conclusion follows. □

For the future reference, we record a bound on compositions. An overview of estimates like
these is contained in [Hör76, App. A].

Lemma A.5. Suppose we are composing three functions f, g, h : Rn → Rn, then

∥f ◦ g∥2 ≤ ∥f∥2∥g∥21 + ∥f∥1∥g∥2.
and

∥f ◦ g ◦ h∥2 ≤ ∥f∥2∥g∥21∥h∥21 + ∥f∥1∥g∥2∥h∥21 + ∥f∥1∥g∥1∥h∥2.
When we study how fast the dynamics smooths curves, we will represent the curve as a

graph and then apply the graph transform to it. The following relates the C2 norm of an
embedded curve with the C2 norm of the curve represented as a graph. Recall that the C2

norm of an embedded curve is the same thing as the norm of the curve as a graph over its
tangent space at each point in an exponential chart.

Lemma A.6. Suppose γ is a C2 curve in R2 that is θ-transverse to the y-axis. Then if we
represent γ as the graph over the x-axis of a function γ̂, then

∥γ̂∥1 ≤ cot θ, and ∥γ̂∥2 ≤ (sin θ)−3∥γ∥C2 .

Proof. The first estimate is essentially the definition of tangent, so we will show the second.
Locally we may represent γ as a graph:

p+(sin θp, cos θp)t+ϕp(t)(−cos θp, sin θp)=p+(t sin θp−ϕp(t) cos θp, 0)+(0, t cos θp+ϕp(t) sin θp)

where ϕ′p(t) = 0. By definition of ∥γ∥C2 ,
∣∣ϕ′′p(0)∣∣ ≤ ∥γ∥C2 .

In order to estimate γ̂′′(0), we must write the graph in the form p + (t, ψ(t)) for some ψ
and estimate ψ′′(0). Accordingly, we make a change of variables s = t/ sin θp getting

(A.3) p+

(
s− ϕp

(
s

sin θp

)
cos θp, 0

)
+

(
0,

cos θp
sin θp

s+ ϕp

(
s

sin θp

)
sin θp

)
.

To estimate the second derivative of the graph at 0, we need a representation of the form

(u + O(u3), ψ(u) + O(u3)), so we make a further change of variables u = s − ϕp

(
s

sin θp

)
.
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Then s = u+
ϕ′′p(0)u

2 cos θp

2 sin2 θp
+o(u2). Plugging this into (A.3) and using that cos2 θp+sin2 θp = 1

we obtain the parametrization

p+

(
u,
u cos θp
sin θp

+
ϕ′′(0)u2

2 sin3 θp
+ o(u2)

)
and the result follows. □

The next lemma estimates how the density is distorted by diffeomorphisms.

Lemma A.7. Suppose that M is a closed Riemannian manifold. There exists C > 0 such
that if f : M → M is a C2 diffeomorphism, γ is a C2 curve in M and ρ is a log-α-Hölder
density along γ, then the density f∗ρ along f(γ) satisfies

(A.4) ∥ ln(f∗ρ)∥Cα ≤ (1/m(Df))1+α (∥ ln ρ∥Cα + C∥f∥C2(1 + ∥γ∥C2)) .

The same estimate holds for local diffeomorphisms, mutatis mutandis.

We leave the proof of the lemma to the readers, since we provide a similar estimate below
(see (A.25)).

Next we record an estimate comparing two inner products.

Lemma A.8. Suppose that we have two inner products ∥ · ∥1 and ∥ · ∥2 on a vector space V
and that

A∥ · ∥1 ≤ ∥ · ∥2 ≤ B∥ · ∥1.
Then for v, w ∈ V \ {0}

AB−1∠1(v, w) ≤ ∠2(v, w) ≤ A−1B∠1(v, w),

where ∠i denotes the angle with respect to the metric ∥ · ∥i.

Proof. We show the upper bound; the lower bound is a straightforward consequence. Let S1
i

denote the unit sphere with respect to the inner product i and v and w be two unit vectors
with respect to ∥ · ∥1. Let I be a curve between v and w such that len1(I) = ∠1(v, w).
Then len2(I) ≤ B len1(I). Let π2 : V \ {0} → S1

2 denote the radial projection onto S1
2 . Then

∠2(v, w) ≤ len2(π2(I)). Note that the norm of Dπ2|I is bounded above by 1/d2(0, I). Since
d2(0, I) ≥ A, we see that len2(π2(I)) ≤ A−1B len1(I), so we are done. □

We now record an estimate on how fast a C2 curve can get worse under the dynamics.
Note that one iteration can instantaneously make a line into an O(1) bad curve, hence the
estimate has the form below.

Lemma A.9. Fix D > 0 then there exists Λ > 0, such that if for 1 ≤ i ≤ n, fi ∈ Diff2(M)
is a sequence of diffeomorphisms of a closed Riemannian manifold M with ∥f∥C2 < D, γ is
a C2 curve in M , and γn = fn1 (γ), then

∥γn∥C2 ≤ max{eΛn∥γ∥C2 , eΛn}.

Proof. Recall that the C2 norm of γ is bounded by the maximum over all t ∈ γ of the second
derivative of γ in an exponential chart at t where γ is viewed as a graph over its tangent plane.
The result then follows because the second derivative of a sequence of maps with uniformly
bounded C2 norm grows at most exponentially fast. □
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A.3. Properties of Hölder functions. In this subsection, we record some additional claims
about Hölder and log-Hölder functions that will be used in the proof of the coupling lemma.

Claim A.10. Suppose that ρ : M → R is a (C,α)-Hölder function on a metric space M such
that ρ ≥ A−1, for some A > 0. Then ln ρ is AC-log-α-Hölder.

Proof. First, observe that on [A−1,∞), that ln is A-Lipschitz because its derivative 1/x is at
most A. Thus |ln(ρ(x))− ln(ρ(y))| ≤ A |ρ(x)− ρ(y)| ≤ AC |x− y|α , as desired. □

The next lemma relates two different ways of dealing with log-Hölder functions.

Lemma A.11. Suppose that ρ is an (A,α)-log Hölder function on a metric space of diameter
at most D. Then there exists CA,D such that

(A.5) |ρ(x)− ρ(y)| ≤ ρ(x)CA,D |x− y|α .

Proof. Suppose that ρ(y) ≥ ρ(x). Then log-α-Hölder gives that

ln(ρ(y)/ρ(x)) = |ln(ρ(y)/ρ(x))| ≤ A |x− y|α .
Thus taking ex, by boundedness of the metric space and the constant A, there exists CA,D

such that
ρ(y)

ρ(x)
≤ eA|x−y|α ≤ 1 + CA,D |x− y|α .

Thus
ρ(y)− ρ(x) ≤ ρ(x)CA,D |x− y|α .

The case when ρ(y) < ρ(x) is similar, so we are done. □

A.4. Graph transform with estimates on the second derivative. We now study the
graph transform and record how C2 norms of curves are affected by it. If one constructs the
stable manifolds by using the graph transform, then after one has checked that the stable
manifold is C1, one can check that the manifolds are Cr inductively by studying the action
of the graph transform on the jet of the stable manifold which is C1. See for instance the
construction in [Shu87], which proceeds along these lines.

Proposition A.12. (C2 estimates for the graph transform) Suppose λ > 1 and F : R2 → R2

is a C2 diffeomorphism of the form

(A.6) F = (σ1x+ f1(x, y), σ2y + f2(x, y)),

with min{σ1, σ−1
2 } ≥ λ. Suppose that γ is a C2 curve given as the graph of a function

ϕ : I1 → R. Assume that F (0, 0) = (0, 0) and that we have the following estimates:

∥f1∥C1 = ϵ1,(A.7)

∥f2∥C1 = ϵ2 < λ−1,(A.8)

λ− ϵ1 − ϵ1∥ϕ∥1 > 0.(A.9)

Then the following hold.

(1) The curve F ◦ γ is given as the graph of a function ϕ̃ : I2 → R and

(A.10) len(I2) ≥ (λ− ϵ1 − ϵ1∥ϕ∥1) len(I1).
(2) We have an estimate on how much F smooths ϕ,

∥ϕ̃∥C0 ≤ λ−1∥ϕ∥C0 + ϵ2,(A.11)

∥ϕ̃∥1 ≤ (λ−1∥ϕ∥1 + ϵ2 + ϵ2∥ϕ∥1)(λ− ϵ1 − ϵ1∥ϕ∥1)−1.(A.12)
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(3) There is ϵ0>0 such that under the additional assumption that ϵ1, ϵ2, ∥ϕ∥1<ϵ0
(A.13) ∥ϕ̃∥2 ≤ λ−1.99∥f∥2 + λ−2.99∥ϕ∥2.

(4) The graph transform smooths densities along curves. If ρ(x, ϕ(x)) is a log α-Hölder

density along γ with respect to the arclength, write ρ̃(x, ϕ̃(x)) for the density of the
pushforward of ρ along F (γ). For ϵ0 > 0 as in (3), if ϵ1, ϵ2, ∥ϕ∥1 < ϵ0, then

(A.14) ∥ ln ρ̃∥Cα ≤ λ−.9α(∥ ln ρ∥Cα + ∥f∥2 + ∥ϕ∥2).

Note that part (1) of the proposition implies that if I1 contains a neighborhood of 0 of size
δ, then then I2 contains a neighborhood of size (λ− ϵ1 − ϵ1∥ϕ∥1)δ.

Proof. We write down explicitly a formula for ϕ̃ and then estimate each term that appears
in the formula. It is tedious but straightforward. Throughout we will use π1 and π2 for the
projections onto the two factors in R2.

We estimate the C1 norm of ϕ as a graph over R×{0}. To this end we first study how much
the graph of ϕ is stretched horizontally, which will verify (1) above. To do this we consider a
natural map ψ−1 : I1 → R:
(A.15) ψ−1 : x 7→ (x, ϕ(x)) 7→ π1(F (x, ϕ(x))) = λx+ f1(x, ϕ(x)).

From the definition of ψ−1,

(A.16) ∥Dψ−1∥ ≥ λ− ϵ1 − ϵ1∥ϕ∥1,
thus by (A.9), ∥Dψ−1∥ is positive, so ψ−1 is monotone. Hence F (γ) is the graph of a function

ϕ̃, and we may write ψ−1 : I1 → I2. By (A.16), (λ − ϵ1 − ϵ1∥ϕ∥1) len(I1) ≤ len(I2). This
completes the proof of item (1).

We now prove item (2). First we give the C0 estimate and then the estimate on the first
derivative. By the assumption on f2, we see that the image of ϕ is at most λ−1∥ϕ∥C0 + ϵ2
from the x-axis. Thus

(A.17) ∥ϕ̃∥C0 ≤ λ−1∥ϕ∥C0 + ϵ2.

Now we estimate ∥ϕ̃∥1. From equation (A.16), we obtain that:

(A.18) ∥Dψ∥ ≤ (λ− ϵ1 − ϵ1∥ϕ∥1)−1.

This allows us to estimate the C1 norm of F ◦ γ as a graph over I2 × {0}. The curve F (γ) is
given by the graph of

(A.19) x 7→ π2F (ψ(x), ϕ(ψ(x))) = λ−1ϕ(ψ(x)) + f2(ψ(x), ϕ(ψ(x))) = ϕ̃.

Thus by the chain rule

∥ϕ̃∥1 ≤ λ−1∥ϕ∥1(λ− ϵ1 − ϵ1∥ϕ∥1)−1 + ϵ2(λ− ϵ1 − ϵ1∥ϕ∥1)−1 + ϵ2∥ϕ∥1(λ− ϵ1 − ϵ1∥ϕ∥1)−1.

Hence,

(A.20) ∥ϕ̃∥1 ≤ (λ−1∥ϕ∥1 + ϵ2 + ϵ2∥ϕ∥1)(λ− ϵ1 − ϵ1∥ϕ∥C1)−1,

which finishes the proof of item (2).
We now turn to the C2 estimates and check item (3). To begin we need to obtain a C2

estimate on the function ψ used above. By (A.15) and the chain rule,

∥ψ−1∥2 ≤ ∥f∥2 + 2∥f∥2∥ϕ∥1 + ∥f∥2∥ϕ∥21 + ∥f∥1∥ϕ∥2.
Thus by Lemma A.4,

∥ψ∥2 ≤ (λ− ϵ1 − ϵ1∥ϕ∥1)−3(∥f∥2 + 2∥f∥2∥ϕ∥1 + ∥f∥2∥ϕ∥21 + ∥f∥1∥ϕ∥2).
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We can now plug everything in to estimate the C2 norm of the image of ϕ. By definition

ϕ̃ is equal to λ−1ϕ(ψ(x)) + f2(ψ(x), ϕ(ψ(x))). For the first term, we have the estimate

∥λ−1ϕ ◦ ψ∥2 ≤ λ−1(∥ϕ∥2∥ψ∥21 + ∥ϕ∥1∥ψ∥2).
By the chain rule

∥f2(ψ(x), ϕ(ψ(x)))∥2 ≤ ∥f2∥2∥ψ∥21 + ∥f2∥2∥ϕ∥1∥ψ∥21 + ∥f2∥1∥ϕ∥1∥ψ∥2
+ (∥f2∥1∥ϕ∥1∥ψ∥2+∥f2∥1∥ϕ∥2∥ψ∥21+∥f2∥2∥ϕ∥21∥ψ∥21+∥f2∥2∥ϕ∥1∥ψ∥21).

Hence if ϵ1, ϵ2, ∥ϕ∥1 < ϵ0 and ϵ0 sufficiently small, then

∥ψ∥1 ≤ λ−.9999,(A.21)

∥ψ∥2 ≤ λ−2.999(ϵ0∥ϕ∥2 + ∥f∥2).(A.22)

In particular, as long as ϵ0 > 0 is sufficiently small, under the assumptions just listed applying
the estimates on ∥ϕ∥1 and ∥ϕ∥2 gives

∥λ−1ϕ ◦ ψ∥2 ≤ λ−2.999(ϵ0∥f∥2 + ∥ϕ∥2),(A.23)

∥f2(ψ(x), ϕ(ψ(x)))∥2 ≤ λ−1.999∥f∥2 + ϵ0λ
−1.8∥ϕ∥2.(A.24)

Combining these estimates, we see that as long as ϵ0 is sufficiently small,

∥ϕ̃∥2 ≤ λ−1.99∥f∥2 + λ−2.99∥ϕ∥2.
We next study how the Hölder norm of the log of the density ρ along γ changes when

we iterate the dynamics and prove item (4). From the change of variables formula, we must
estimate the following:

(A.25) ln[ρ(ψ(x), ϕ(ψ(x)))∥DF |(1,dϕ/dx)(ψ(x), ϕ(ψ(x)))∥−1] =

ln ρ(ψ(x), ϕ(ψ(x))) + ln ∥DF |(1,dϕ/dx)(ψ(x))∥−1 = I + II.

Term I. The estimate of the term I is straightforward:

∥ ln ρ(ψ(x), ϕ(ψ(x)))∥Cα ≤ ∥ψ∥α1 ∥ ln ρ∥Cα ≤ λ−.9α∥ ln ρ∥Cα

by equation (A.18) as we are assuming ∥f1∥1, ∥f2∥1, ∥ϕ∥1 are all small.
Term II. The second term is more complicated to estimate. Note that this term does not

actually involve ρ as it is just the Jacobian of the map between two curves. So, to control the
log-α-Hölder norm of this function we can estimate the derivative of the logarithm, which is
an upper bound on the log-α-Hölder constant for all α ≤ 1. To begin, we write

D ln ∥DF |(1,dϕ/dx)(ψ(x), ϕ(ψ(x)))∥−1 = 2−1D ln ∥DF |(1,dϕ/dx)∥2 − 2−1D ln ∥(1, dϕ/dx)∥2

= III + IV,

where III and IV are evaluated at the point (ψ(x), ϕ(ψ(x)).
Term III.We now bound term III. Because D ln f ◦ψ = ψ′D ln f , we see that the required

estimate will hold assuming that it holds without precomposing with ψ because |ψ′| ≤ 1 under
these assumptions. Thus we suppress the ψ below. From before we have an expression for
DF in terms of λ, f1, f2:

DF =

[
λ+ df1

dx
df1
dy

df2
dx λ−1 + df2

dy

]
.

Thus we are reduced to evaluating

(A.26) D ln

[(
λ+

df1
dx

+
df1
dy

dϕ

dx

)2

+

(
df2
dx

+ λ−1dϕ

dx
+
df2
dx

dϕ

dx

)2
]
,
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where the dfi terms are evaluated at (x, ϕ(x)). Then taking derivatives gives:

(A.27)
A+B(

λ+ df1
dx + df1

dy
dϕ
dx

)2
+
(
df2
dx + λ−1 dϕ

dx + df2
dx

dϕ
dx

)2 =
A

Q
+
B

Q
.

where A and B are the derivatives of the two parenthetical terms in equation (A.26) and Q is
the denominator of the left hand side of equation (A.27). Note that Q can be made arbitrarily
close to λ2 as long as df1/dx, df1/dy and dϕ/dx are sufficiently small.

Keeping in mind that the fi terms are evaluated at (x, ϕ(x)), we find that:

A = 2

(
λ+

df1
dx

+
df1
dy

dϕ

dx

)(
d2f1
dx2

+
d2f1
dxdy

dϕ

dx
+

(
d2f1
dxdy

+
d2f1
dy2

dϕ

dx

)
dϕ

dx
+
df1
dy

d2ϕ

dx2

)
and

B=2

(
df2
dx

+λ−1dϕ

dx
+
df2
dx

dϕ

dx

)(
d2f2
dx2

+ λ−1d
2ϕ

dx2
+

(
d2f2
dxdy

+
d2f2
dx2

+
d2f2
dxdy

dϕ

dx

)
dϕ

dx
+
df2
dx

d2ϕ

dx2

)
.

Pick a small number ϵ̄. Then as ∥f1∥1, ∥f2∥1 and ∥ϕ∥1 are sufficiently small it is easy to
see from the above expressions for A and B, that

(A.28) |III| ≤ λ+ ϵ̄

λ2 − ϵ̄
(∥f∥2 + ∥ϕ∥2).

Term IV. We now bound Term IV. For this term we have

2−1D ln ∥(1, dϕ/dx)∥2 = 2−1D ln

(
1 +

(
dϕ

dx

)2
)

=
dϕ
dx

d2ϕ
dx2

1 +
(
dϕ
dx

)2 .
Since we are assuming ∥ϕ∥1 is small, we see that |IV | ≤ ϵ̄∥ϕ∥2.

Conclusion of estimates on |D ln ρ̃|. From the above discussion,

∥ ln ρ̃(x, ϕ̃(x))∥Cα ≤ |I|+ |III|+ |IV |

≤ λ−.9α∥ ln ρ∥Cα +

[
λ+ ϵ̄

λ2 − ϵ̄
+ ϵ̄

]
(∥f∥2 + ∥ϕ∥2) ≤ λ−.9α(∥ ln ρ∥Cα + ∥f∥2 + ∥ϕ∥2).

where the last inequality holds since the expression in square brackets is less than 1 provided
that ϵ̄ is sufficiently small. This concludes the proof of the proposition. □

A.5. Finite time smoothing estimate. Now that we control the amount of smoothing
due to a single iteration of the graph transform, we study a reverse subtempered point for
a sequence of diffeomorphisms. An important feature of the estimate below is that it covers
curves that are extremely close to the contracting direction. This complicates the estimates
compared to the case that one only considers curves lying in a cone near the expanding
direction.

Proposition A.13. Fix constants C, λ, ϵ,D1 > 0 with ϵ < λ/30. Suppose that fi : R2 → R2,
1 ≤ i ≤ n, is a sequence of diffeomorphisms such that fi(0) = 0, the sequence D0fi has a
(C, λ, ϵ)-reverse tempered splitting Es

i , E
u
i in the sense of Definition 4.2, ∥fi∥C2 < D1, and

∥Df−1
i ∥ ≥ D−1

1 . Then there exist constants ϵ0, ℓmax, D2, D3, D4, D5, D6, D7, D8, C0 depending
only on (C, λ, ϵ) and D1 such that the following holds. Let γ be a C2 curve in R2 passing
through 0 not tangent to Es

0 at 0, containing an R-good neighborhood of 0. Let fn = fn◦· · ·◦f1.
Let θ = ∠(γ̇(0), Es

0), and γ0 be a segment of γ containing 0 of length at least

(A.29) len(γ0) = D2min{e−Rθ, e−.9λn}.
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There is an associated auxiliary quantity

(A.30) l0 = D3θe
−2ϵnmin{e−Rθ, e−.9λn},

and a subcurve γn of fn(γ0) containing 0 such that the following hold:

(1) The curve γn has length at least

ℓout = min{l0e.9λn, ℓmax}.

(2) If the minimum in item (1) is realized by ℓmax, then the preimage of γn in γ has length

at most D4e
−.9λn, and this occurs as long as

n ≥ D5 +
max{R, 0} − 2 ln(θ)

.99λ
.

Further, in this case, the preimage of γn in f i(γ) has length at most D4e
−.9λ(n−i). In

fact if I ⊆ f i(γ) is a curve of length at least D4e
−.85λ(n−i) containing a point f i(x), then

fn−i(I) contains a C0-good neighborhood of fn(x).
(3) On γn, we have the estimate:

(A.31) ∥γn∥C2 < D6e
−2.9λneD7 ln θ max{∥γ∥C2 , 1}+D8.

(4) Finally, for any arbitrarily large D9 > 0 and fixed α, there exist D10, D11 such that the
following holds. Suppose that ρ is a density along γ that is log-α-Hölder. Then for the
same collection of n, the density of ρn = (fn)∗(ρ) along γn with respect to arclength
parametrization of γn satisfies the following estimate, as long as ∥γn∥2 < D9,

(A.32) ∥ ln ρn|γn∥Cα ≤ D10e
−.9αλneD7 ln θ(1 + ∥ ln ρ∥Cα + ∥γ∥C2) +D11.

The analogous statement holds for sequences of local diffeomorphisms fi defined on a sequence
of neighborhoods of 0 in R2 or of a closed manifold.

Proof. We begin by fixing some notation and constants that we will use throughout the
argument. Let λ′ = .999λ. Then from Lemma A.1 we obtain finite time Lyapunov metrics
∥ · ∥′i, 0 ≤ i ≤ n, associated to this splitting that satisfy for all ξ ∈ R2:

(A.33)
1√
2
∥ξ∥i ≤ ∥ξ∥′i ≤ 4e2C+2ϵ(n−i)

(
1− e2(λ

′−λ)
)−1/2

∥ξ∥i.

Note that because the sequence is reverse tempered ∥ · ∥′n is uniformly comparable to the
original metric independent of n. As is standard, the metrics ∥ · ∥′i give new linear coordinates

Li : R2 → R2 that satisfy that (Li)
∗∥ · ∥i = ∥ · ∥′i. We let f̂i = Li+1 ◦ fi ◦ L−1

i . Thus from

properties of the Lyapunov metric, D0f̂i is a uniformly hyperbolic sequence satisfying

(A.34) D0f̂i|Eu
i
≥ e.999λ, D0f̂i|Es

i
≤ e−.999λ.

We write:

(A.35) f̂i(x, y) = (σ1,ix+ f̂i,1(x, y), σ2,iy + f̂i,2(x, y)),

where D0f̂i = diag(σ1,i, σ2,i) and σi,1, σ
−1
i,2 ≥ e.999λ.

We now record estimates on C2 norms in these charts. By (A.33), there is C1 such that:

(A.36) max{∥Li∥, ∥L−1
i ∥} ≤ C1e

2C+2ϵ(n−i).

Thus by Lemma A.2, for 1 ≤ i ≤ n,

(A.37) ∥f̂i∥C2 ≤ D1e
6Ce6(n−i)ϵ.
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For 0 ≤ i ≤ n, let

(A.38) ri = C2min{θ∥γ∥−1
2 e.9λi, e−.9λ(n−i)},

where 0 < C2 < 1 is a small number that we will choose later. We then restrict to studying
the segment of γ inside the cube Bi centered at 0 ∈ R2 of side length ri with respect to the
∥ · ∥′i metric. Let γi be the connected component of 0 in f i(γ) ∩ Bi. We write γ̂i for the
function giving γi as a graph over the x-axis and let li be the length of the projection of γ̂i to
the x-axis in R2 measured with respect to ∥ · ∥′i.

We begin working with the ambient metric. By the mean value theorem, there exists C3

such that for a C2 curve γ in R2 in an arclength parametrization,

∠(γ̇(t), γ̇(s)) ≤ C3∥γ∥C2 |t− s| ,
because γ̇(t) is orthogonal to γ̈. In particular, as our curve γ satisfies ∠(γ̇(0), Es

0) > θ restricted

to a segment of γ of length C−1
3 ∥γ∥−1

C2θ/2 around γ(0), that on this segment ∠(Es
0, γ̇(t)) > θ/2.

Then from Lemma A.8 in the Lyapunov chart we have that, letting ∠′ denote angle with
respect to the Lyapunov metric, there exists C4 such that:

(A.39) C−1
4 θe−2ϵn ≤ ∠′(Es

0, γ̇(t)) ≤ C4θe
2ϵn.

From the construction of the Lyapunov metric, 1√
2
∥ · ∥i ≤ ∥ · ∥′i, thus the length of γ in the

Lyapunov chart is at least e−R/2. We now restrict to a segment of γ̂, which we call γ̂0, with
length with respect to the Lyapunov metric:

(A.40) len′(γ̂0) = min{C−1
3 e−Rθ/2, r0}.

From (A.33), as the ratio of ∥ · ∥n to ∥ · ∥′n does not depend on n, we obtain the restriction
(A.40) on the length of the initial segment γ̂0 gives the condition (A.29) appearing in the
theorem.

Note that (A.40) implies that: ∠′(Es
0, γ̇) ≥ C−1

4 θe−2ϵn/2. So the length of the projection
of γ̂0 to the Eu

0 axis, which we call l0, has length (with respect to the Lyapunov metric) of at

least len′(γ0) sin(C
−1
4 θe−2ϵn/2). Thus

(A.41) l0 ≥ len′(γ0) sin(C
−1
4 θe−2ϵn/2) ≥ C5θe

−2ϵnmin{e−Rθ, e−.9λn}
Also by Lemma A.6

∥γ̂0∥1 ≤ cot(C−1
4 θe−2ϵn) ≤ 2C4θ

−1e2ϵn.

We apply Proposition A.12(3), and get an ϵ0 < 1/
√
3, which is the cutoff for the one step

C2 smoothing estimate (A.13) to hold.
In keeping with the previous proposition, denote

ϵ1,i = ∥f̂i,1|Bi∥1 and ϵ2,i = ∥f̂2,i|Bi∥1.

Because f̂i = D0f̂i + (f̂1, f̂2), we see from the C2 bound on f̂i that on Bi,

(A.42) max{ϵ1,i, ϵ2,i} ≤ ri∥f̂i∥2 ≤ C2e
−.9λ(n−i)e6(n−i)ϵ = C2e

−(.9λ−ϵ)(n−i).

We now proceed to the main part of the proof.
Step 1. We begin by checking that if we inductively define: f̂iγ̂i|Bi = γ̂i+1, and, as before, li
is the length of the projection of γ̂i to E

u
i measured with respect to ∥ · ∥′i, then the sequence

γ̂i satisfies the following estimates:

li ≥ min{ri, e.99λil0},(A.43)

∥γ̂i∥1 ≤ max{2θ−1e−iλ, ϵ0}.(A.44)
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(1) (li): By Proposition A.12(1)

li+1 ≥ min{(e.999λ − ϵ1,i − ϵ1,i∥γ̂i∥1)li, ri}.

Hence to verify (A.43), it suffices to show that

(e.999λ − ϵ1,i − ϵ1,i∥γ̂i∥1)li ≥ e.99λli.

which follows by (A.42) and the inductive hypothesis (A.44) if C2 is chosen sufficiently small.
(2) We now check the estimate on ∥γ̂i+1∥1 assuming it holds for i.
To begin, from Proposition A.12(2),

(A.45) ∥γ̂i+1∥1 ≤ (e−.999λ∥γ̂i∥1 + ϵ2,i + ϵ2,i∥γ̂i∥1)(e.999λ − ϵ1,i − ϵ1,i∥γ̂i∥1)−1.

There are two cases depending on whether ∥γ̂i∥1 ≥ ϵ0 or not. If ∥γ̂i∥1 ≥ ϵ0, then as long as
C2 is chosen sufficiently small, then the second parenthetical term in the above equation is at
most e−.9λ by (A.42). Hence

∥γ̂i+1∥1 ≤ e−.9λ(e−.999λ∥γ̂i∥1 + ϵ2,i + ϵ2,i∥γ̂i∥1) ≤ e−.9λ∥γ̂i∥1(e−.999λ + ϵ2,iϵ
−1
0 + ϵ2,i).

Because ϵ0 > 0 is independent of C2, if C2 is sufficiently small then (A.42) gives ∥γ̂i+1∥1 ≤
e−3λ/2∥γ̂i∥1, which concludes the proof since ∥γ̂i∥1 ≤ 2θ−1e−iλ.

We now consider the case ∥γ̂i∥1 ≤ ϵ0. In this case it suffices to show that ∥γ̂i+1∥1 ≤ ϵ0. The
argument in this case is similar and follows because, as in the previous case, we may ensure
that ϵ1,i, ϵ2,i are small relative to ϵ0 through our initial choice of C2.

Thus we have shown that both estimates hold inductively proving (A.43) and (A.44).
We now conclude item (1). Since the Lyapunov metric ∥ · ∥′n is uniformly comparable to

the ambient metric ∥ · ∥n due to (A.33), it is enough to prove the lower bound on len′(γn).
Thus the length of γ0 is at least min{rn, e.9λnl0}. Note that

e.9λnl0 ≥ C5e
−Rθ2e−2ϵn.

Hence if the minimum of min{rn, e.9λnl0} is realized by rn, then rn = C2 because the first
term in the definition of rn (see (A.38)) is bigger than e.9λnℓ0. This shows that len′(γn) ≥
min(ℓ0e

.9λn, C2), completing the proof of part (1).

We now check the claim about the length of the preimage of f̂nγ̂0 in part (2). This is
immediate from our choice of len′(γ̂0) in (A.40). Because the preimage of γn is contained
in a segment of length at most e−.9λn with respect to the Lyapunov metric, and because
∥ · ∥0 ≤

√
2∥ · ∥′0, this implies that the length of the initial segment we consider with respect

to the ambient metric is at most
√
2e−.9λn. Similar considerations give the claim about the

length of the preimage of γn in f i(γ) at the end of item (2). Note that the final curve γn
promised by the lemma is not unique: for instance, it need not be centered at fn(x). The
final claim in item (2) follows because any such curve is long enough that it fills the entire
segment of f i(γ) we are considering by our choice of ri.

To finish the proof of item (2), we must see how large n must be in order too ensure that

rn = ℓmax. For this to occur n must satisfy e.99λnl0 ≥ ℓmax. That is, n ≥ ln(ℓmax)− ln(l0)

.99λ
.

Now the definition of l0 (see (A.41)) gives

n ≥ ln(ℓmax)− ln(C5θe
−2ϵnmin{e−Rθ, e−.9λn})
.99λ

.

Now the needed conclusion in item (2) follows by considering the two cases depending on
which term realizes the minimum and using that ϵ < λ/30.
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Step 2. We now obtain item (3), the C2 estimate on γ̂i. Should it happen that there is an
index i such that ∥γ̂i∥1 ≤ ϵ0, we call this index N0. We proceed under the assumption that
there is some such N0. After concluding in this case, we explain how the same estimate holds
otherwise. Observe that if ∥γ̂i∥1 ≤ ϵ0, then for all j ≥ i, ∥γ̂j∥1 ≤ ϵ0 as well. Keeping in mind
the strength of hyperbolicity from (A.34), for all indices i ≥ N0, we have from (A.13), that

(A.46) ∥γ̂i+1∥2 ≤ e−1.99λ·.999∥f̂i∥2 + e−2.99λ·.999∥γ̂i∥2.

By applying the above equation iteratively, we can obtain an estimate on ∥γ̂n∥2 in terms
of ∥γ̂N0∥2. This gives the required estimate because the homogeneous part of (A.46) has
multipliers smaller than 1.

By (A.37), ∥f̂i∥2 ≤ D1e
6Ce6(n−i)ϵ. Let M = n−N0. Applying iteratively (A.46), we get

(A.47) ∥γ̂n∥2 ≤ ∥γ̂N0∥2e−2.99λ·.999M +

M∑
i=1

D1e
6Ce6(n−i)ϵe−1.99λ·.999e−2.99λ·.999(M−i−1).

Note that the second term is bounded by a constant C6 depending only on C, λ and ϵ.
To conclude, we also need a bound for ∥γ̂N0∥2. By Lemma A.9, there exists Λ depending

only on the C2 norm of the maps fi, which is uniformly bounded by D1, such that

(A.48) ∥f iγ∥C2 ≤ eΛimax{∥γ∥C2 , 1}.

Hence ∥γN0∥ ≤ eΛN0 max{∥γ∥C2 , 1}. We then need an estimate on γ̂N0 . Note that in the

Lyapunov coordinates that γ̂N0 , which as a graph over Eu
0 has slope at most ϵ0 < 1/

√
3. Thus

by Lemma A.6 ,

∥γ̂N0∥2 ≤ sin(arccot(ϵ0))
−3eN0Λmax{∥γ∥C2 , 1} ≤ 2eΛN0 max{∥γ∥C2 , 1},

because ϵ0 < 1/
√
3 = tan(π/6) = cot(π/3). Combining this with (A.47),

(A.49) ∥γ̂n∥2 ≤ 2eΛN0e−2.99λ·.999M max{∥γ∥C2 , 1}+ C6.

But we also have a straightforward estimate for the cutoff N0. From equation (A.44), we
know that N0 ≤ (ln(2) − ln(θ))/λ. Hence because N0 ≈ − ln(θ), it is straightforward to see
that there exist C7, C8 such that

(A.50) ∥γ̂n∥2 < C6 + C7e
−2.9λneC8 ln θ max{∥γ∥C2 , 1}.

In the case that there is no index i such that ∥γ̂i∥1 ≤ ϵ0, we may conclude similarly as
equation (A.44) implies that n ≤ (ln(2) − ln(θ))/λ. Thus we have finished with Step 2 and
conclude item (3).

Before going to Step 3, we record an additional more precise estimate on the rate that ∥γ̂i∥2
improves. Similar to above, we find:

∥γ̂N0+i∥2 ≤ ∥γ̂N0∥2e−2.99λ·.999i +
i∑

j=1

D1e
6Ce6(n−N0−j)ϵe−1.99λ·.999e−2.99λ·.999(i−j−1),

≤ ∥γ̂N0∥2e−2.99λ·.999i + e6(n−N0)ϵe−1.99λ·.999e−6iϵD1e
6C

i∑
k=1

e−(2.99λ·.999−6ϵ)(k−1),

≤ 2eΛN0e−2.99λ·.999imax{∥γ∥C2 , 1}+ C9e
6ϵ(n−N0−i),(A.51)

for some C9 > 0.
Step 3. We now show item (4), i.e. we obtain estimates for smoothing a density along γ. We
let ρ̂i be the function giving the density ρ on γ̂i in the Lyapunov coordinates.
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We now apply the smoothing estimate. As in Step 2, supposing it exists, let N0 be the
first index such that ∥γ̂i∥1 ≤ ϵ0. If such an index N0 does not exist, then we may conclude
similarly to in Step 2. Then for any i ≥ N0, by (A.14),

(A.52) ∥ ln ρ̂i+1∥Cα ≤ λ−.9α(∥ ln ρ̂i∥Cα + ∥f̂i∥2 + ∥γ̂i∥2).
As before, let M = n−N0. By a bookkeeping similar to Step 2, we find that

∥ ln ρ̂n∥1 ≤ e−.9·.999λαM∥ ln ρ̂N0∥Cα +
M∑
i=1

e−.9·.999λα(M−i)(∥f̂N0+i∥C2 + ∥γ̂N0+i∥C2).

By (A.51) and (A.37), we see that there exists C11 such that

∥ ln ρ̂n∥Cα ≤ e−.9·.999λαM∥ ln ρ̂N0∥Cα + 2eΛN0∥γ∥C2e−.9λ·.999M + C11.(A.53)

We now estimate ∥ ln ρ̂N0∥. We first obtain an estimate without the use of the Lyapunov
charts. By Lemma A.9 because of the uniform C2 bound D1, there exist C12,Λ > 0 such that

∥ ln(fN0)∗ρ∥Cα ≤ C12(e
ΛN0 + eΛN0∥ ln ρ∥Cα).

Next, we push forward γN0 and ρN0 by LN0 to obtain a density in the Lyapunov coordinates.
Because max{∥LN0∥, ∥LN0∥−1} ≤ C1e

2Ce2ϵn, Lemma A.7 gives that there exists C13 such that

∥ ln(LN0) ∗ (f
N0
1 )∗ρ∥Cα ≤ C13e

(2+2α)ϵn
(
eΛN0 + eΛN0∥ ln ρ∥Cα + e2ϵn(1 + ∥γN0∥C2)

)
.

For the application we are then interested in the regularity of (LfN0
1 )∗ρ as a function parametrized

by Eu
0 . As at time N0, γN0 is uniformly transverse to Es

0, this projection has uniformly
bounded norm. From before, we have the C2 bound on γN0 following (A.48), which gives that
there exists C14 such that:

(A.54) ∥ ln ρ̂N0∥Cα ≤ C14e
7ϵneΛN0(1 + ∥ ln ρ∥Cα + ∥γ∥C2).

Combining this with (A.53), we find

∥ ln ρ̂n∥ ≤ e−.9·.999λαM (C14e
7ϵneΛN0(1 + ∥ ln ρ∥Cα + ∥γ∥C2)) + 2eΛN0∥γ∥C2e−.9λ·.999M + C11.

Then as before, because N0 is order ln(θ) and M = n−N0,

(A.55) ∥ ln ρ̂n∥ ≤ C15e
−.9λαneC16 ln(θ)(1 + ∥ ln ρ∥Cα + ∥γ∥C2).

As ∥γn∥C2 < D9 for some fixed D9 by assumption, then (A.55) gives the corresponding
estimate on ρ with respect to the arclength parameters on γn, and we conclude item (4). □

A.6. Loss of regularity. In this subsection, we prove some additional estimates that will be
used later in the proof of mixing but not the proof of the coupling lemma. These estimates say
that for all but an exponentially small amount of the curve γ, typically the images of points
in fnω (γ) are in a neighborhood that is at least nϵ-good. First we introduce in Definition A.14,
a notion of a forward tempered point relative to a curve. Then, in Proposition A.15, we show
that the image of a curve at a forward tempered time will be 18ϵn good.

We begin by stating the main definition of this section. Note that it is similar to definitions
we also considered for backwards good points (Definition 8.1).

Definition A.14. For a standard pair γ̂ = (γ, ρ) and a word ω ∈ Σ, we say that n is a
(C, λ, ϵ, θ)-forward tempered time for x ∈ γ if the sequence of maps (Dxf

i
ω)1≤i≤n is (C, λ, ϵ)-

subtempered and the most contracted direction of Dxf
n
ω exists and is at least θ-transverse to

γ. Similarly, we speak of a trajectory being forward tempered relative to a vector v ∈ TxM .

The following lemma gives a quantitative estimate on the length of an image of a curve
experiencing a forward tempered time.
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Proposition A.15. Suppose that M is a closed surface and that (f1, . . . , fm) is a tuple in
Diff2

vol(M). Then for any λ > 0 and C1 > 0 there exist D0, D1 > 0 and N ∈ N, such that for
all θ > 0 and λ/30 > ϵ > 0, if γ̂ = (γ, ρ) is a C1-good standard pair, ω ∈ Σ and x ∈ γ has a
(C, λ, ϵ, θ) forward tempered time at time

(A.56) n ≥ N +D0 ln θ

then
(1) The pushforward fnω (γ) contains a neighborhood of fnω (x), B(x), such that denoting by

B̂(x) the restriction of the standard pair fnω (γ̂) to B(x), then B̂(x) is an (18ϵn+18max{C, 0}+
D1)-good standard pair.

(2) The preimage of B̂(x), (fnω )
−1(B̂(x)), has length at most e−(λ/2)n.

Proof. As before, we will use the deterministic smoothing lemmas. We begin by first picking
a choice of Lyapunov metrics to use. Applying Lemma A.1 with λ′ = .999λ we get, since the
trajectory is forward tempered, that

(A.57)
1√
2
∥ξ∥i ≤ ∥ξ∥′i ≤ 4e2C+2ϵi

(
1− e2(λ

′−λ)
)−1/2

∥ξ∥i.

As in the proof of Proposition A.13, using the Lyapunov metric, we obtain new dynamics
f̂i in the Lyapunov coordinates, which are given by composing with a sequence of maps Li.
Crucially, these dynamics satisfy that D0f̂i|Es

i
≤ e−.999λ and D0f̂i|Eu

i
≥ e.999λ. Moreover, we

can write:

f̂i(x, y) = (σ1,ix+ f̂i,1(x, y), σ2,iy + f̂i,2(x, y)).

Further there exists C2 such that

(A.58) max{∥Li∥, ∥Li∥−1} ≤ C2e
2C+2ϵi.

Proceeding as in (A.37), there exists D such that:

(A.59) ∥f̂i∥C2 ≤ De6C+6iϵ.

From here, we set up the constants in a manner similar to before. Things are slightly simpler
because by assumption the standard pair is C1-good and hence uniformly long and good. We
will take some small C3 > 0 that we will choose later. Set

ri = C3e
−10ϵn−6C min{θ−1, e−.9λ(n−i)}.

As before, we let Bi be the square of side length ri centered at 0 with respect to the ∥ · ∥′i
metric. As in the previous argument, we let γ̂i denote the portion of f i−1(γ̂) lying in Bi

and we let ρ̂n denote the density along γ̂n. Let ϵ0 > 0 be the cutoff so that (A.13) holds in
Proposition A.12

As above, we denote ϵ1,i = ∥f̂i,1|Bi∥1 and ϵ2,i = ∥f̂2,i|Bi∥1. Because f̂i = D0f̂i +(f̂1, f̂2), we

see that from the C2 bound on f̂i that on Bi,

(A.60) max{ϵ1,i, ϵ2,i} ≤ ri∥f̂i∥2 ≤ C3e
−10ϵn−6Ce−.9λ(n−i)e6Ce6(n−i)ϵ ≤ C3e

−.9λ(n−i).

In particular, note that by choosing C3 sufficiently small in a manner that only depends on
λ, we may ensure that for all i that max{ϵ1,i, ϵ2,i} < ϵ0.

We then carry out an inductive argument to determine the regularity of γ̂n. In order, we
obtain estimates on the length, the C2 norm, and then ∥ ln fn(ρ)∥Cα .
Step 1. (Length of the curve) As in the proof of Proposition A.13, we see that from the
choice of constants γ̂n is uniformly transverse to Es

n and the projection of its graph to the Eu
n

axis fills Eu
n ∩ Bn. Thus there exists C4, depending only on C3 such that γ̂n has length at
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least C4e
−ϵn in the Lyapunov charts. By equation (A.58), this implies that, in the ambient

metric, fnω (x) lies in a neighborhood of length at least

(A.61) C−1
2 C4e

−2C−3ϵn.

Step 2. (C2 norm of the curve) We now turn to an estimate on the C2 norm of γ̂n. This
is perhaps the most complicated part of the argument along with the estimate on smoothing
the density. We apply the estimate (A.13) from Proposition A.12. Let N0 be the first iterate
such that ∥γ̂N0∥1 < ϵ0. From our choice of the size of the neighborhood and the comment
on the size of C3 immediately after (A.60), we have that for all i ≥ N0, the estimate (A.13)
holds, i.e. the C2 smoothing estimate is valid. Thus we find that:

(A.62) ∥γ̂i+1∥2 ≤ λ−1.99∥f̂i∥2 + λ−2.99∥γ̂i∥2.

From (A.59), it follows inductively that:

(A.63) ∥γ̂n∥2 ≤ e−2.99λ(n−N0)∥γ̂N0∥2 +De6Ce6ϵn
n−N0−1∑

j=0

e−1.99λje6ϵj .

We then need to estimate N0. As in the proof of Proposition A.13, we get N0=Oλ(− ln(θ)).
Thus there exists C4, C5 > 0, such that

∥γ̂n∥2 ≤ e−2.99nλe−C4 ln θ∥γ̂N0∥2 + C5e
6Ce6ϵn.

As in the proof of Proposition A.13, after (A.48), we see that there exists Λ > 0 such that
∥f iγ∥C2 , with respect to the ambient metric is at most eΛi. Using (A.56) and the fact that
the angle between γ and Es

N0
is uniformly large, we see that there exists C6 such that with

respect to the Lyapunov metric,

∥γ̂N0∥2 ≤ e−C6 ln θ.

Thus for some C7,

(A.64) ∥γ̂n∥2 ≤ e−2.99nλe−C7 ln θ + C5e
6Ce6ϵn.

We now record an intermediate estimate that will be useful later. By possibly increasing the
constants, for each N0 ≤ i ≤ n, we find:

(A.65) ∥γ̂i∥2 ≤ e−2.99iλe−C7 ln θ + C5e
6Ce6ϵi.

Equation (A.64) is an estimate in the Lyapunov chart, but we need the estimate with
respect to the original metric. The C2 norm of γ̂n as a curve is uniformly comparable to
∥γ̂n∥2 because γ̂n is uniformly transverse to Es

n. By Lemma A.3 there exists C7, such that,
letting γn be the segment of γ lying in Bn, we get the following bound in the ambient metric

∥γn∥C2 ≤ (e−2.99nλe−C7 ln θ + C5e
6Ce6ϵn)C3

2e
6C+6ϵn.

This is the bound required by the proposition. Indeed for D0 sufficiently large we have:

(A.66) ∥γn∥C2 ≤ C8e
12max{C,0}+12ϵn.

Step 3. (Regularity of the density) Finally, we turn to estimating the Hölder norm of the
pushed density. At the same iterate N0 from Step 2, we have that ϵN0,1, ϵN0,2, ∥γ̂N0∥1 ≤ ϵ0
and that these estimates hold for all future iterates. Consequently, estimate (A.14) applies,
hence for N0 ≤ i ≤ n− 1,

∥ ln ρ̃i+1∥Cα ≤ e−.9αλ(∥ ln ρ̃i∥Cα + ∥f̂i∥2 + ∥γ̂i∥2).



86 JONATHAN DEWITT AND DMITRY DOLGOPYAT

This leads inductively to the estimate that

(A.67) ∥ ln ρ̃n∥Cα ≤ e−.9αλ(n−N0)∥ ln ρ̃N0∥Cα +
n−1∑
i=N0

e−.9λα(n−i)(∥f̂i∥2 + ∥γ̂i∥2).

We then need some further estimates in order to simplify this.
We start with an estimate on ∥ ln ρ̃N0∥Cα . A similar argument to that giving (A.54) yields

that ∥ ln ρ̃N0∥Cα ≤ eΛN0 , where Λ > 0 only depends on the C2 norm of the diffeomorphisms
and the initial regularity of γ. Hence as long as D0 is large enough, it follows that the first
term is uniformly bounded.

For the other terms, we already have estimates for ∥f̂i∥2 and ∥γ̂i∥2, (A.59) and (A.65).
These yield a bound on the sum in (A.67):

n−1∑
i=N0

e−.9λα(n−i)(∥f̂i∥2 + ∥γ̂i∥2)

≤
n−N0−1∑

j=0

e−.9λαj
(
De6Ce6ϵ(n−j)+e−2.99λ(n−j)e−C7 ln(θ)+C5e

6Ce6ϵ(n−j)
)
.

The sum of the first and third terms inside the parentheses is straightforward to evaluate.
There is a constant C9 such that each is bounded by C9e

6Ce6ϵn. The terms involving the ln(θ)
are only slightly more complicated as either j or n − j is large, hence the terms involving λ
dominate the e−C7 ln θ term as long as D0 is large enough. Thus by the above estimates, it
follows that as long as D0 is sufficiently large that there exists C10 such that

∥ ln ρ̃n∥Cα ≤ C10e
6max{C,0}e6ϵn.

This is the form of the estimate in the Lyapunov charts. We then need to pass back to the
original metric. Applying Lemma A.7 we see that letting C ′ denote the constant from that
lemma and using (A.58) and (A.66)) we get,

∥ ln ρn∥Cα ≤ e(1+α)(2C+2ϵn)
(
C10e

6max{C,0}+6ϵn + C ′e2C+ϵn(1 + C8e
12max{C,0}+12ϵn)

)
≤ C11e

18max{C,0}e18ϵn.

This is the needed conclusion, so we are done. □

Appendix B. Finite time Pesin theory and fake stable manifolds

B.1. Fake stable manifolds. In the proof of the coupling lemma, we will use the holonomies
of some “fake” stable manifolds W s

n(ω, x). These manifolds behave for finite a time like a true
stable manifold insofar as they contract. We then prove some lemmas about fake stable curves.
Some of the results below are variants on standard facts in Pesin theory, however, some of the
proofs are a little different due to us only using a finite portion of an orbit. For other facts
that look standard we needed to supply our own proofs because we could not find a similar
enough statement in the literature.

For a given word ω and n ∈ N the fake stable manifolds are curves that have analogous
properties to the stable manifolds up until time n. So, unlike true stable manifolds, they are
not canonically defined.

Before we begin we recall some notation. Throughout this section we will write Λω
n(C, λ, ϵ)

for the set of (C, λ, ϵ)-tempered points x ∈M at time n for the word ω ∈ Σ. This is essentially
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the finite time version of a Pesin block. For many of the results there is a lower bound on n,
which is required to ensure that the orbit is actual experiencing hyperbolicity.

Below we will make a number of arguments concerning these fake stable manifolds. The
main properties we need concern the holonomies between two transversals to the W s

n lamina-
tion. We need to know that the W s

n holonomies have a uniformly Hölder continuous Jacobian
independent of n. In addition we would like to know that as n→ ∞ that the holonomies are
converging exponentially quickly to the true stable holonomy.

Before proceeding to the proof, we remark that there are other approaches to fake stable
manifolds that are adapted to different sorts of dynamical problems and may differ from each
other substantially. For example, Burns and Wilkinson [BW10], which originated the term
fake manifold, use fake center and stable manifolds where a potentially different fake foliation
is defined at every point in the manifold. A different approach in Dolgopyat, Kanigowski,
Rodriguez-Hertz [DKRH24] uses a fake foliation that is globally defined but does not cover
the entire Pesin regular set. Note that, in contrast with our setting, [BW10] and [DKRH24]
allow systems with some zero exponents, and so the invariant manifolds need not be unique
in their settings. One benefit of the construction described below is that it applies to every
point in a Pesin block and further gives a single fake stable lamination defined on the manifold
rather than a collection of different overlapping laminations. While this makes the fake stable
lamination simple to think about, it requires more work to show that it exists.

B.2. Preliminaries. Here we present some background that will be used in the next subsec-
tion to study the regularity of Es

n.
We start with a useful fact for showing that the limit of a sequence of functions is Hölder

continuous. This fact is completely standard. Note that the statement is false if the diameter
of M2 is unbounded. Also, recall that in our setup, the Hölder constant only applies to
estimates on the distance between g(x) and g(y) for points with d(x, y) ≤ 1.

Lemma B.1. Suppose that M2 is a metric space with bounded diameter. Fix η, λ, δ, β > 0.
Then there exists 0 < α < β and D(η, λ, δ, β, α) such that for any metric space M1 the
following holds. Let gn : M1 → M2, 1 ≤ n ≤ N be a finite or infinite sequence of β-Hölder
continuous functions such that:
(1) For 1 ≤ n < N , dC0(gn, gn+1) ≤ C1e

−δn.
(2) The function gn is C3e

ηn β-Hölder continuous at scale e−C2e−λn, i.e., if d(x, y) ≤ e−C2e−λn

then d(gn(x), gn(y)) ≤ C3e
ηnd(x, y)β.

Then the functions g1, . . . , gN in the sequence, as well as the possible limiting value of the
sequence are all uniformly α-Hölder with constant at most

max
{
DeC2α, 2C1(1− e−δ)−1eβC2Dβ + C3e

−C2(β−α)
}
.

Proof. We will assume throughout the proof that gN is fixed and obtain an estimate for gN
that is independent of N . As the resulting estimate is independent of N , the conclusion holds
for infinite sequences as well.

To begin we pick some constants. First, for fixed η > 0 and any 0 < α1 < β there exists
γ ≥ λ such that

(B.1) η − γβ ≤ −α1γ and η < γα1.

Note that γ only depends on η, α1, λ, β, but not on C1, C2, C3.
Next given δ, let 0 < α2 < β be sufficiently small that we have

(B.2) δ ≥ α2γ.
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Due the first assumption, we have a uniform estimate independent of N :

|gN − gn| ≤
N−1∑
i=n

C1e
−iδ ≤ C1e

−nδ

1− e−δ
.

Having picked those constants, now consider a pair of points x, y ∈M1. We consider three
cases depending on how far apart x and y are. We proceed from closest to furthest away.

(1) First suppose that d(x, y) < min{e−C2e−γN , 1}. Then

d(gN (x), gN (y)) ≤ C3e
ηNd(x, y)β ≤ C3e

ηNd(x, y)α1d(x, y)β−α1

≤ C3e
ηNe−C2α1e−γα1Nd(x, y)β−α1 ≤ C3e

−C2α1d(x, y)β−α1 ,

where we have used (B.1).
(2) Next, we consider the case where e−C2e−γe−γn ≤ d(x, y) ≤ min{1, e−C2e−γn} for some

1 ≤ n < N . By the choice of constants α1, α2 and γ in the first part of the proof we find:

d(gN (x), gN (y)) ≤ d(gN (x), gn(x)) + d(gn(x), gn(y)) + d(gn(y), gN (y))

≤ C1e
−nδ(1− e−δ)−1 + C1e

ηnd(x, y)β + C1e
−nδ(1− e−δ)−1

≤ 2C1e
−nγα2(1− e−δ)−1 + C3e

ηne−nγα1e−C2α1d(x, y)β−α1 .

Then due to the lower bound on d(x, y) and η < γα1 from (B.1):

d(gN (x), gN (y)) ≤ 2C1(1− e−δ)−1eα2C2eα2γd(x, y)α2 + C3e
−C2α1d(x, y)β−α1

≤
(
2C1(1− e−δ)−1eα2C2eα2γ + C3e

−C2α1

)
d(x, y)min{α2,β−α1}.

(3) Finally we consider the case where e−C2e−γ < d(x, y). Then we use a trivial bound

d(gN (x), gN (y)) ≤ diam (M2) ≤
(

diam (M2)

(e−C2e−γ)β−α1

)
d(x, y)β−α1 .

Now using all three cases above, we may conclude. Note that the (β−α1)-Hölder constant
obtained in the second item above is at least as big as the constant obtained in the first item
in the list. Thus the function gN (x) is uniformly (β − α1)-Hölder with constant at most

max
{
(diamM2)e

(C2+γ)(β−α1), 2C1(1− e−δ)−1eα2C2eα2γ + C3e
−C2α1

}
.

As the choice of constants α1, α2, γ depend only on δ, η we obtain the needed conclusion. □

We will apply Lemma B.1 to obtain regularity of Es
n after we obtain small scale Hölder

continuity of Es
n.

Next we present a perturbation result on the singular subspaces of linear transformations
called Wedin’s theorem. This theorem gives a bound on the change in the angle between
the singular directions. We state a specialized version of this theorem adapted from the
presentation in [Ste91, Thm. 4]. First we describe the theorem in some generality, but below we
give a precise statement for SL(2,R) independent of the discussion and definitions mentioned

below. If A and Ã are two n×nmatrices then we may list their singular values as σ1 ≥ · · · ≥ σn
and σ̃1 ≥ · · · σ̃n. Write ∥E∥F for the Frobenius norm of the matrix E, i.e. the L2 norm of its
entries viewed as a vector. Fix some index k such that σk ≥ σ̃k+1. If |σk − σ̃k+1| ≥ δ, and
σ̃k ≥ δ, then Wedin’s theorem implies that:

∥ sinΦ∥F ≤
√
2∥E∥F
δ

,
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where ∥ sinΦ∥F denotes the Frobenius norm of the matrix that defines the canonical angles
between the right singular subspace associated to σ1, . . . , σk and σ̃1, . . . , σ̃k. (The matrix sinΦ
is defined by taking the inner products between an orthonormal basis of the right singular

subspaces of A and Ã.) Note that the statement in [Ste91, Thm. 4] is in terms of certain
residuals, but by the comment before the theorem, these are bounded by ∥E∥F . Below we will
use that the Frobenius norm of a 2 by 2 matrix satisfies the bound ∥E∥F ≤

√
2∥E∥, where

∥E∥ is the usual operator norm of the matrix [HJ13, 5.6.P23].
Although the statement from the above paragraph is somewhat technical, when both the

matrix A and its perturbation A + E are in SL(2,R), as is the case for us, the statement
simplifies considerably. This is because for such a matrix σ1 = σ−1

2 and the top singular value
of a matrix in SL(2,R) can change by at most ∥E∥ when we perturb by E. If ∥A∥ ≥ 2 and
E is a perturbation with ∥E∥ ≤ ∥A∥/2, then

∥A+ E∥ ≥ 1

2
∥A∥,

∥A∥ − (∥A+ E∥)−1 ≥ ∥A∥ − 2

∥A∥
≥ 1

2
∥A∥,

as long as ∥A∥ ≥ 2. So, we may apply Wedin’s theorem with δ = ∥A∥/2. In this case, the
matrix of canonical angles described above consists of a single number: the angle between
the original most expanded singular direction and the new one. Thus we obtain the following
proposition.

Proposition B.2. Suppose that A is a matrix in SL(2,R) with ∥A∥ ≥ 2. Consider a per-
turbation A + E ∈ SL(2,R) with ∥E∥ ≤ ∥A∥/2. Denote by vA and vA+E the most expanded
singular vectors of A and A+ E. Then

|sin∠(vA, vA+E)| ≤
2
√
2∥E∥
∥A∥

.

B.3. Regularity of the most contracting direction. We now estimate the regularity of
Es

n(x), the most contracted direction of Dxf
n
ω , on the set of (C, λ, ϵ)-tempered points at time

n in terms of C. The approach to studying Hölder regularity here may be contrasted with
the approach in Shub [Shu87, Thm. 5.18(c)]. That approach establishes Hölder regularity for
an invariant section of a bundle automorphism under an appropriate bunching condition by
comparing the contraction in the fiber with the strength of hyperbolicity in the base. In some
sense the approach is similar: it uses the dynamics to study the Hölder regularity at different
scales. One can compare equation (***) there with our Lemma B.1.

Proposition B.3. Suppose that (f1, . . . , fm) is a tuple of diffeomorphisms in Diff2
vol(M) of

a closed surface M . Fix λ > 0 then there exists ϵ0, β > 0 such that for any 0 ≤ ϵ ≤ ϵ0 there
exists D1 such that if for C ≥ 0, Λn

ω(C) denotes the (C, λ, ϵ) tempered points at time n for
ω ∈ Σ, and n ≥ N0(C) = ⌈(C + ln(2))/λ⌉, then restricted to Λn

ω(C), E
s
n is β-Hölder with

constant eD1C .

Proof. We may always study the dynamics in an atlas of uniformly smooth volume preserving
charts on M . So, in what follows we will implicitly be working with such charts.

The first claim is an immediate analog of [BP07, Lem. 5.3.4]. There exists Λ > 0 such that
for n ∈ N, if x, y ∈M with d(x, y) ≤ e−Λn, then (as viewed in charts),

(B.3) ∥Dxf
n
ω −Dyf

n
ω∥ ≤ eΛnd(x, y).
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Our plan is to apply Lemma B.1, so we need to estimate the regularity of Es
n. The first

thing we need is a lower bound on n for the subspace Es
n to necessarily exist. From the

definition of (C, λ, ϵ) tempered, we see that as long as

(B.4) n ≥
⌈
C + ln 2

λ

⌉
= N0(C),

then ∥Dxf
n
ω∥ ≥ 2 and hence there is a well defined most contracted subspace.

Next we estimate the Hölder regularity of Es
n on ΛN

ω for N ≥ n ≥ N0. If x ∈ Λn
ω and

d(x, y) ≤ e−Λn/2, then it follows from (B.3) that

∥Dxf
n
ω −Dyf

n
ω∥ ≤ eΛnd(x, y) ≤ 1/2.

Thus, from Proposition B.2, as ∥Dxf
n∥ ≥ 2, it follows that for d(x, y) ≤ e−Λn/2 that

(B.5) d(Es
n(x), E

s
n(y)) <

√
2eΛnd(x, y),

which is the small scale Hölder estimate we were seeking.
Next, we study how fast Es

n fluctuates as we increase n. By assumption the sequence of
points is (C, λ, ϵ)-tempered. Hence by Proposition 4.6, there exists D8 depending only on λ, ϵ
such that for n greater than or equal to our same N0 it follows that on Λω

n(C, λ, ϵ)

(B.6) ∠(Es
n(x), E

s
n+1(x)) ≤ e4C+D8e−2(λ−ϵ)n.

We can now apply Lemma B.1 to the sequence of distributions Es
n, for N0 ≤ n ≤ N by

combining estimates (B.5) and (B.6). Thus there exists 0 < β < 1 and C3 such that the Es
n

are β-Hölder with constant

max{C3e
ΛN0 , 2e4C+D8(1− e−2(λ−ϵ))−1eΛN0C3 + C3e

−ΛN0}
But by our choice of N0 ≈ C/λ and absorbing some constants into each other, we find that

there is some C4 such that the β-Hölder constant of Es
n is at most C4e

((Λ/λ)+4)C , which gives
the needed conclusion. □

The above lemma will give us a Hölder estimate on the regularity of Dfn(Es
n) as well, which

will allow us to define the fake stable manifolds. Before proceeding, we use the above results
to record another useful fact about the continuity of the distribution of the stable directions.

Proposition B.4. Suppose that (f1, . . . , fm) is an expanding on average tuple of diffeomor-
phisms on a surface M in Diff2

vol(M). Let νsx be the distribution of stable subspaces through
x, which is a probability measure on PTxM , the projectivization of TxM . Then if we identify
nearby fibres by parallel transport, the map x 7→ νsx is continuous in the weak* topology.

Proof. Let νsx(C, λ, ϵ, n) denote the distribution of Es
n(ω) for words ω that are (c, λ, ϵ)-tempered

for some c in [C,C + 1). Then by Proposition B.3, the distribution Es
n for such words ω is

uniformly Hölder continuous in n for fixed C. So, if νsx(C, λ, ϵ) denotes the distribution of
Es

ω(x) for (C, λ, ϵ)-tempered ω, we see that the measures νsx(C, λ, ϵ) vary weak* continuously.
Almost every word ω is (C, λ, ϵ)-tempered for some C. Thus we see that

νsx =

∞∑
C=0

νsx(C, λ, ϵ).

Note that each partial sum of this series varies weak* continuously and that the mass is
uniformly absolutely summable pointwise. Thus the limiting family νsx is seen to vary weak*
continuously. □
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B.4. Construction of fake stable manifolds. As mentioned above, we will define the fake
stable manifolds by taking curves tangent to a smooth approximation to the distribution Vn,
which is defined to equal Dfnω (E

s
n) as above. First, we note that Lemma B.3 above will be

applicable to studying the regularity of Vn due to the following.

Lemma B.5. Suppose that A1, . . . , An is a sequence of linear transformations that are (C, λ, ϵ)-
tempered. Then the sequence A−1

n , . . . , A−1
1 is (C + ϵn, λ, ϵ)-tempered, and the correspond-

ing splitting is the splitting with the stable and unstable subspaces from the original splitting
swapped.

Using Lemmata B.3 and B.5 we can estimate the regularity of Vn.

Lemma B.6. Suppose that (f1, . . . , fm) is a tuple in Diff2
vol(M) whereM is a compact surface.

Fix C, λ > 0, then there exist β, η > 0 such that for any sufficiently small ϵ > 0 there exists
D1, N ∈ N, such that if Λn

ω is the set of points that are (C, λ, ϵ)-tempered at some time n ≥ N ,
then the distribution Vn defined on fnω (Λ

n
ω) by Dxf

n
ω (E

s
n(x)), is β-Hölder with constant D1e

ηϵn.

Proof. Apply Proposition B.3 with λ as above to the diffeomorphisms (f−1
1 , . . . , f−1

m ). Then
there exist β and ϵ0 such that restricted to the set of (C, λ, ϵ)-tempered points at time n ≥
Oλ(C), E

s
n is β-Hölder with constant at most eD1C . From Lemma B.5, we see that for the

backwards dynamics (fσn−i(ω))
−1, the points in fnω (Λ

n
ω) are (C+ϵn, λ, ϵ)-tempered. Note that

Vn is equal to the distribution of the most expanded direction for (fnω )
−1 and that V ⊥

n is the
most contracted direction of (fnω )

−1. As the set fnω (Λ
n
ω) is (C + ϵn, λ, ϵ)-tempered for the

backwards dynamics, it follows that as long as ϵ is sufficiently small and N0 is sufficiently
large, for all n ≥ N0, V

⊥
n is eD1(C+ϵn) β-Hölder. The statement of the lemma now follows. □

Next we take a smooth approximation Ṽn to the distribution Vn that will be defined in an
open neighborhood of fnω (Λ

n
ω). First we extend the domain of Vn, and then we smooth the

extension. If we do not extend the domain, then we won’t be able to integrate the distribution.
If we do not do this smoothing, then we will have little control over the norm of the integral
curves to Vn rather than tempered growth in n.

Lemma B.7. Suppose that M is a smooth closed surface. There exist D1, D2 such that if
K ⊆M is a subset and E is a distribution defined over K that is (C,α)-Hölder then E admits

a (D1C,α)-Hölder extension to a neighborhood of K of size δ = D2min{1, C−1/α}.

Proof. We first prove the result with vector fields instead of distributions. CoverM by finitely
many charts. In each chart the vector field X is represented as a map ϕ0 : K → S1 ⊂ R2. The
McShane extension theorem [McS34, Cor. 1] says that a (C,α)-Hölder function defined from
a subset X of an arbitrary metric space to R admits a (C,α)-extension to all of X. Then
we glue the maps from different charts using a partition of unity. This proves the result for
vector fields. Note that the resulting vector field is defined on the whole manifold. To obtain
the result for distributions, we take a unit vector field on K in the direction of E, extend
it to a vectorfield X̃ as above and note that the resulting extension is nonzero inside the δ
neighborhood of K, so we can take Ẽ to be the direction of X̃. □

The content of the following lemma is item (2), the C2 estimate on Ṽn. While Vn could
be seen to be C2, we have little ability to control its norm; thus we need to produce a more
regular approximation to this distribution.

Lemma B.8. Let (f1, . . . , fm) be a tuple of diffeomorphisms in Diff2
vol(M), for M a closed

surface. Fix λ > 0. Then there exists ϵ1 > 0, ν1, ν2 > 0 and N ∈ N, D1, D2, D3, such that if
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for ϵ < ϵ1 Λω
n denotes the set of (C, λ, ϵ)-tempered points, then there exists a distribution Ṽn

such that

(1) The domain of Ṽn contains all points within distance D1e
−ϵν1n of the domain of Vn.

(2) Ṽn is C2 with ∥Ṽn∥C2 ≤ D2e
ϵν1n.

(3) At each x in the domain of Vn, d(Ṽn(x), Vn(x)) < D3e
−ϵν2n.

Proof. First, from Lemma B.6, given ϵ > 0 we may choose ϵ1 sufficiently small that Vn is
β-Hölder with constant D1e

ηϵn. Let V̂n be an extension of Vn obtained from Lemma B.7, then
from the Hölder estimate on Vn, V̂n is defined in a neighborhood of Dfnω (Λ

n
ω) of size at least

D
−1/β
1 e−ηϵn/β.

We now take a smooth approximation to V̂n. For this we can represent V̂n in charts as
a function ϕ : U → S1 ⊂ R2, then mollify ϕ. From [FKS13, Eq. (11)], we have estimates
for convolution fϵ = f ∗ ψϵ of a standard mollifier ψϵ with a compactly supported function
f : R2 → R:

(B.7) ∥fϵ∥2 ≤ ϵα−4∥f∥α and ∥f − fϵ∥0 ≤ ϵα∥f∥α.

As domain of V̂n has size at leastD
−1/β
1 e−ηϵn/β, we can mollify with any ϵ′ < D

−1/β
1 e−ηϵn/β/100

and obtain a function that is well defined at all points at least distance D
−1/β
1 e−ηϵn/β/100

from the boundary of the domain of V̂n. Let Ṽn denote the mollified function restricted to

the points in the domain of V̂n of distance at most D
−1/β
1 e−ηϵn/β/100 from the domain of Vn.

Then taking ϵ′ = e−νϵ for some large ν, mollifying with ψϵ′ , and applying the estimates in
(B.7) gives that there exist constants D2, D3, D4, D5 such that

∥Ṽn∥2 ≤ D2e
−D3ϵn and d(Ṽn, Vn) < D4e

−D5ϵn.

This gives the needed conclusion. □

The use of the distributions Ṽn is that they are integrable and their C2 norm is well
controlled. This implies that if we take a holonomy along the distribution, then we will have
good control of the norm of the Jacobian.

Definition B.9. Fix λ > 0 and sufficiently small ϵ > 0. Then take ϵ1 < ϵ/max{ν1, ν2} where
ν1, ν2 are as in Proposition B.8. We consider a collection of (C, λ, ϵ1)-tempered points. Let

W̃n be the foliation defined by the integral curves to Ṽn. The fake stable leaf through x ∈ Λn
ω

is then defined to be W s
n(ω, x) = (fnω )

−1(W̃n(f
n
ω (x))).

We will now state basic facts about the fake stable manifolds. In particular, we show that
the fake stable manifolds of sufficiently small size enjoy uniform contraction.

Proposition B.10. Suppose that (f1, . . . , fm) is an expanding on average tuple of diffeomor-
phisms in Diff2(M), where M is a closed surface. Fix λ > 0. Then there exists λ′, ϵ0 > 0
such that for any 0 ≤ ϵ ≤ ϵ0 and any C, there exist N0, δ0, C0, α > 0 such that if Λω

n ⊂ M is
any collection of (C, λ, ϵ)-tempered points at time n ≥ N0 lying in some ball Bδ0 ⊂M . Then

(1)For N0≤i≤n the fake stable manifolds W s
i,δ0

(ω, x) exist and have C2 norm at most C0.

(2) d(TxW
s
i , E

s
i (x)) ≤ e−λi/2.

(3) The fake stable direction Es
i is (C0, α)-Hölder continuous on Λω

n.
(4) The fake stable leaves W s

i,δ0
(ω, x) vary Hölder continuously in the C1 topology, and

the Hölder constants are independent of N0 ≤ i ≤ n.
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(5) The fake stable leaves W s
i,δ0

(ω, x) are contracting, i.e. for y, z ∈ W s
i,δ0

(ω, x), for each

0 ≤ k ≤ i, dW s
i,δ0

(x)(f
k
ω(y), f

k
ω(z)) ≤ C0e

−λ′k.

Proof Sketch. The claim about the existence and regularity of the fake stable manifolds in
(1) essentially follows from the construction of the stable manifolds described in Section 5 or

Proposition A.13, depending on taste. An integral curve to the Ṽn distribution has C2 norm
that is order eO(ϵ), and is almost tangent to the most expanded direction of (Dfnω )

−1 allowing
us to apply those lemmas. Similarly, the final item in the lemma says that the dynamics on the
fake stable manifolds is contracting. This also follows from the graph transform argument.
Specifically one can produce this statement by a generalization of Step 1 in the proof of
Proposition A.13, which studies the growth in length of curves in the Lyapunov charts.

The statement (2) saying that TxW
s
i is near to Es

i is immediate because ∥Dfnω∥≥Ceλn

by assumption. Since DfnωE
s
i and Ṽn are exponentially close, they will attract further under

(Dfnω )
−1.

The statements about Hölder-ness are standard facts; it follows from the same argument
as in [BP07, Sec. 5.3] applied for only finitely many iterations. Alternatively, Lemma 10.2
contains an explicit computation showing that nearby points inherit a nearby splitting. The
proof of that lemma does not rely on any of the claims from this section. We will not use
(4) as everything we need for the main result of this paper follows from (1), (2), and (3).
So will will omit detailed proof. The claim essentially follows Hölder continuity of the stable
distribution, Hölder continuity of the holonomies, which will be obtained in Proposition B.13,
and Lemma B.1. Compare for example, with [BP07, Sec. 8.1.5], which describes a similar
argument. □

B.5. Rate of convergence of fake stable manifolds. Proposition B.12, proven in this
section, is one of the key estimates in this paper playing an important role in the local
coupling procedure.

The main crucial feature that the fake stable leaves exhibit is that the fluctuations inW s
i as

we increase i decay exponentially fast. In fact, we have a quantitative estimate that directly
relates the speed of convergence of W s

i (ω, x) with the hyperbolicty of Dxf
i
ω.

In the following proposition, we will use an additional refinement of (C, λ, ϵ)-tempered
points that also requires that the stable direction points in a particular direction. The def-
inition below is structured so that it is hopefully straightforward to think about. When a
point is (C, λ, ϵ)-tempered, there is a definite rate at which Es

n converges to Es. Thus if Es
n

happens to lie sufficiently far from the boundary of a cone C at a sufficiently large time n1,
then Es

i ∈ C for all i ≥ n1.

Definition B.11. Suppose x ∈ M and C ⊂ TxM is a cone. We say that a word ω is
(C, λ, ϵ, C, n1, n2)-tempered if for all n1 ≤ i ≤ n2, E

s
i is defined and lies in C. We may also

speak of being (C, λ, ϵ, C)-tempered at a time n, in which case we mean n1 = n2 = n in the
previous sentence.

We now estimate how much the fake stable leaves fluctuate. The requirements on the cone
are, strictly speaking, not necessary in order to state the theorem below: as long as N is
chosen sufficiently large, one can use Es

N (x) to define the cone C in the following proposition
and obtain the same result.

Proposition B.12. (Fluctuations in fake-stable leaves) Let (f1,. . ., fm) be a tuple in Diff2
vol(M)

for a closed surface M . Fix λ,C1, θ0 > 0, then there exists ϵ0 > 0 such that for all 0 ≤ ϵ < ϵ0
and C > 0 there exist D1, N, δ0 > 0 such that for any δ ≤ δ0 the following holds. Given
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x ∈ M and a cone C ⊂ TxM , extend C by parallel transport to a conefield C defined over
B2δ(x). Suppose that γ is a C-good curve with distance d(x, γ) < δ and γ is θ0 transverse to
C. If ω is a (C1, λ, ϵ, C, n, n+ 1)-tempered with n ≥ N , then

(B.8) dγ(W
s
n(x) ∩ γ,W s

n+1(x) ∩ γ) ≤ e−1.99 ln ∥Dxfn
ω ∥,

where W s
n(x),W

s
n+1(x) are the fake stable manifolds from Definition B.9.

The reason the proposition follows is evident in the case of a linear map. Consider the action
of the map L = diag(σ, σ−1) on RP1 where σ > 1. Note that the map L has an attracting
fixed point of multiplier σ−2, which suggests the asymptotic in the theorem. Consider what
happens if we apply L to two curves tangent at (0, 0) to the expanded direction of L: the
distance between them will contract by a factor of σ−2. The result for a sequence of maps will
follow because the temperedness assures a uniform Es, Eu splitting. When we work with this
splitting, the full strength of the hyperbolicity will be available allowing us to recover almost
e−2 ln ∥Dxfn

ω ∥ contraction as in the theorem.
The formal proof will rely on the study of the graph transform. The argument for this

proposition is simpler than the argument in the recovery lemma since the curves we consider
in this lemma are (by assumption) well positioned with respect to the stable and unstable
splitting.

There are three steps in the proof. We have two curves at fnω (x), one corresponding to the
time n fake stable manifolds and one corresponding to the time n+ 1 fake stable manifolds.
In the first step, we iterate the graph transform until these curves look uniformly Lipschitz
in the Lyapunov charts. In the second step, we iterate the graph transform to see that these
two curves approach each other at the appropriate exponential rate. In the third step, we do
some bookkeeping to conclude.

Proof. Recall that, by definition, the fake stable manifoldW s
n(x) is given by taking a curve γn

tangent to the distribution Ṽn from Lemma B.8 and lettingW s
n(x) equal (f

n
ω )

−1(γn) restricted
to a segment of length δ0 about x where δ0 is chosen as in Proposition B.10. Note that we need
not take the δ0 in this proposition to be the same as the one in Proposition B.10. Indeed, at
certain points in the analysis below it may be convenient to decrease δ0 in a way that depends
only on the parameters of the proposition.

The proposition is comparing (fnω )
−1(γn) and (fn+1

ω )−1(γn+1). As in previous sections, we
will view both of these curves as graphs of functions from Eu to Es in the Lyapunov charts. In
this proof we will work with the splitting into stable and unstable subspaces for the subspaces
defined by the associated splitting for Dfnω rather than Dfn+1

ω . Recall that Es
n denotes the

most contracted subspace for Dfnω and Es
n+1 denotes the most contracted subspace for Dfn+1

ω .

In the Lyapunov charts at f jω(x), we write (fn−j
σj(ω)

)−1(γn) as the graph of the function ϕ1j

and we write (fn−j+1
σj(ω)

)−1(γn+1) as the graph of ϕ2j (x). Let eΛ be an upper bound on ∥Dfi∥,
1 ≤ i ≤ m, with Λ > 100.

With respect to the Lyapunov metrics, we use the similar choices as in previous arguments,
specifically Proposition A.15, and thereby obtain essentially identical intermediate estimates.

View the sequence of maps f jω as being reversed tempered starting at fn+1
ω (x) and ending at

x. So, set λ′ = .9999λ and take the finite time Lyapunov metrics as in Lemma A.1 for this
sequence. In particular, note that from the construction of the Lyapunov metrics, the eO(ϵn)

bound on the C2 norm of the curves γn from Lemma B.8 and the angle Ṽn makes with Vn of

O
(
eO(−ϵn)

)
combine to show that there exist C2, ν > 0 such that ∥ϕ1n∥1, ∥ϕ2n∥1 ≤ C2e

νϵn. We

now proceed with the proof.
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Step 1. (Lipschitzness) In this step, we will identify Nl ≈ (1−O(ϵ))n such that for j ≤ Nl,
ϕ1j and ϕ2j are C0 close.

To begin we estimate how far apart Dfnω (E
s
n) and Dfnω (E

s
n+1) are. We claim that there

exists N0 such that for n ≥ N0, then ∠(Dfnω (E
s
n), Df

n
ω (E

s
n+1)) ≤ 1/4. Note that if N0 is suffi-

ciently large that both ∥Dfnω∥ and ∥Dfn+1
ω ∥ are at least e10Λ and ∠(Es

n, E
s
n+1) < 1/100 both of

which follow from the (C1, λ, ϵ)-temperedness (The latter claim is part of Proposition 4.6). As
in previous computations, it follows that if ∠(DfnωE

s
n, Df

n
ωE

s
n+1)>1/4, then ∥Dfnω (Es

n+1)∥ > 2

because Dfnω expands Eu
n and contracts Es

n. Consequently, ∥Dfn+1
ω (Es

n+1)∥ > 2e−Λ. But this

is not less than e−10Λ, so it is impossible that ∠(Dfnω (E
s
n), Df

n
ω (E

s
n+1)) > 1/4.

Note that in Proposition A.13, we considered smoothing estimates for a reverse tempered
point. In the case of this theorem, we may consider x as a reverse tempered point for the

sequence of maps (f j
σn−j(ω)

)−1 beginning at fnω (x). Consequently, we may read off the inter-

mediate estimates from the proof of that theorem. In particular, as in equation (A.44) by
possibly restricting the domain of ϕ1j and ϕ2j as in that proposition, it follows that there exists

C3 such that for i ∈ {1, 2} that

∥ϕin−j∥1 ≤ C3e
νϵne−jλ.

In particular this shows that if we let Nl = ⌊n−νϵ/λn⌋, then because both curves pass through
0 and our choice ofNl, we see that there exists C4 such that for i ∈ {1, 2}, ∥ϕij∥1 ≤ C4. Because
both pass through 0, the following estimate holds for all N0 ≤ j ≤ Nl:

(B.9)
∣∣ϕ1j (x)− ϕ2j (x)

∣∣ ≤ 2C4 |x| ,

which is the desired estimate for this step in the proof.
Step 2. (Contraction) In this step, we study how fast the curves ϕ1j and ϕ

2
j attract as we apply

the dynamics (fσj(ω))
−1. Our goal is to show that the C0 distance between these functions is

rapidly decreasing, which is the content of (B.14).
First, in the Lyapunov chart we have

(B.10) f̂−1
σj(ω)

= (eσ
1
j x+ f̂j,1(x, y), e

σ2
j y + f̂j,2(x, y)),

where min{σ1j ,−σ2j } ≥ .999λ. Then in the Lyapunov charts, the differential is

(B.11) Df̂−1
σj(ω)

=

[
eσj,1 + ∂xf̂j,1 ∂yf̂j,1

∂xf̂j,2 eσj,2 + ∂yf̂j,2

]
.

In addition, write

(B.12) Λj =

Nl∑
i=j

σj,1 − σj,2.

As in Proposition A.13, we have a C2 estimate in the Lyapunov charts. There exists C5 > 0
such that

(B.13) ∥(f̂σi(ω))
−1∥C2 ≤ C5e

6C1e6iϵ.

We will now verify inductively that a strengthening of (B.9) holds for N0 < j < Nl. We
now show that by possibly increasing N0, which is fixed and does not depend on n, that for
all |x| < e−(λ/2)j , and N0 ≤ j < Nl,

(B.14)
∣∣ϕ1j (x)− ϕ2j (x)

∣∣ ≤ C4e
−1.999Λj |x| .
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To show (B.14), we measure the distance between ϕ1j and ϕ2j using a piece of the vertical

curve V (t) parallel to Es between ϕ1j+1(x) and ϕ2j+1(x). We then apply (fσj(ω))
−1 to the

curve and estimate its length. We then use the Lipschitzness of ϕ1j and ϕ2j to obtain (B.14).

Let V (t) be a vertical curve (parallel to Es) defined on [−1, 1] taking values in the Lyapunov
charts such that V (−1) ∈ ϕ1j+1 and V (1) ∈ ϕ2j+1 passing through the point (x, 0). Then from

the inductive hypothesis, we see that len(V ) ≤ C4e
−1.999Λj |x|.

By applying the differential to V , we see by (B.11), (f̂σj(ω))
−1(V ) is tangent to a vector of

the form

(B.15) ∂t((f̂σj(ω))
−1V (t)) =

[
∂yf̂j,1

eσj,2 + ∂yf̂j,2

]
.

In particular, for C5 as before if we are restricted to a ball of radius C−1
5 e−(λ/2)j , then as the

C2 norm of (f̂σj(ω))
−1 is O(e6jϵ), it follows that

(B.16)
∣∣∣∂yf̂j,i∣∣∣ < e−(λ/4)j

for i ∈ {1, 2}. Let πu be the projection onto the Eu direction in the Lyapunov coordinates
and let πs be the projection onto the Es direction in the Lyapunov coordinates. We see that
there exists C6 such that:

(B.17)
∣∣∣πs((f̂σj(ω))

−1V (−1))− πs((f̂σj(ω))
−1V (1)))

∣∣∣ ≤ C4e
−1.999Λje(1−ϵj)σj,2 |x|

where |ϵj | ≤ C6e
−λ/4j .

We now use (B.17) to estimate the C0 norm of ϕ1j and ϕ2j , rather than just the distance

between two points along these curves. The endpoints of (f̂σj(ω))
−1V (t) lie in ϕ1j and ϕ2j .

Note that when (f̂σj(ω))
−1V is viewed as a graph over the vertical line parallel to Es through

πu(f̂σjω)
−1(x, 0), that (f̂σj(ω))

−1V is distance at most e−λ/4j len(V ) from a vertical line by

(B.15) and (B.16). Thus as ϕ1j and ϕ2j are both C4 Lipschitz for N0 ≤ j ≤ Nl, we see that∣∣∣ϕ1j (π1(f̂σjω)
−1(x, 0))− ϕ2j (π1(f̂σjω)

−1(x, 0))
∣∣∣ < C4e

−1.999Λje(1−ϵj)σj,2 |x|+ C4e
−λ/4j len(V )

≤ (e(1−ϵj)σj,2 + C4e
−λ/4j)e−1.999Λj |x| .(B.18)

As long as N0 is sufficiently large, for j ≥ N0,

(B.19) |x| ≤ e−(1−ϵj)σj,1

∣∣∣π1(f̂σj(ω))
−1(x, 0))

∣∣∣ .
Note that if j is larger than some fixed N0 and ϵj is sufficiently small relative to λ, then

(B.20) (e(1−ϵj)σj,2 + C4e
−λ/4j)e−(1−ϵj)σj,1 ≤ e1.999(σj,2−σj,1).

Combining (B.18), (B.19), and (B.20), we get
∣∣ϕ1j (x)− ϕ2j (x)

∣∣ ≤ C4e
−1.999Λj−1 , as required.

Step 3. (Bookkeeping and Conclusion) So far, we have obtained that for some N0 and C4

depending only on the constants in the theorem∣∣ϕ1N0
(x)− ϕ2N0

(x)
∣∣ ≤ C4e

−1.999ΛN0

Thus as ϕ10 and ϕ20 are related to ϕ1N0
and ϕ2N0

by applying only the fixed number N0 more
maps, we see that there exists C7 and δ2 > 0 such that on a ball of radius δ2 in the Lyapunov
charts at x: ∣∣ϕ10(x)− ϕ20(x)

∣∣ ≤ C7e
−1.999ΛN0 .
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Consider a nearby C-good curve γ that is θ0-transverse to C and hence to Es, ϕ10, and ϕ
2
0.

It then follows easily from transversality, that as ϕ10 is nearly tangent to Es by Proposition
B.10(2) and ϕ10, ϕ

2
0 are uniformly Lipschitz, there exists C8 such that

dγ(ϕ
1
0 ∩ γ, ϕ20 ∩ γ) ≤ C8e

−1.999ΛN0 .

The only remaining thing we need is to know that ΛN0 is within a factor of .001Λ of
ln ∥Dfnω∥. This will follow as long as we take ϵ sufficiently small relative to λ, ν1, ν2 and the
maximum of the norm of the differentials of f1, . . . , fm. We omit the computation of exactly
how small ϵ must be. Such sufficiently small ϵ exists because when we look in the Lyapunov
charts, we obtain the straightforward bound that there exists C9 such that

ln ∥Dfnω∥ ≤ C9 + 4ϵn+
∑

σj,1.

But ΛN0 includes only the hyperbolicity for the iterates N0 ≤ j ≤ Nl. From volume preser-
vation of the fi, it similarly follows that ln ∥Dfn∥ ≤ C10 + 4ϵn −

∑
σj,2 for some C10. As

Nl = (1 − O(ϵ))n and N0 is a fixed independent of n, it follows that for sufficiently small ϵ

and sufficiently large n that e1.99 ln ∥Dfn∥ ≤ e1.999ΛN0 , which is the needed conclusion. □

B.6. Jacobian of the fake stable holonomies. Now that we have defined the fake stable
manifolds and have an estimate for the rate at which their holonomies converge, we study
the Jacobian of their holonomies, whose properties are crucial in the coupling argument. The
next quantity of interest is the fluctuations in the Jacobian of the holonomies for the fake
stable manifolds.

Proposition B.13. Suppose that (f1, . . . , fm) is a tuple of diffeomorphisms in Diff2
vol(M) for

a closed surface M . For λ > 0 there exists ϵ0 > 0 such that for all 0 ≤ ϵ ≤ ϵ0 and C > 0,
there exists N ∈ N and δ, η, α > 0 such that for any n ≥ N , and any ω ∈ Σ, if Λω

n is the set
of (C, λ, ϵ)-tempered points up to time n then for any ball Bδ ⊆ M of radius δ, the following
holds for x ∈ Λω

n ∩Bδ.
For any two uniform transversals T1 and T2 to the W s

N laminations of Bδ(x), T1 and T2
will be uniform transversals to the W s

i lamination for N ≤ i ≤ n. Where defined, consider
the holonomies Hs

i between T1 and T2 and moreover the Jacobian JacHs
i , which is defined on

a subset of T1. Then we have the following for all N ≤ i ≤ n:
(1) The Jacobians of the holonomies between uniform transversals are uniformly α-Hölder

and bounded away from zero. In particular, this implies that these Jacobians are uniformly log-
α-Hölder between uniform transversals. Specifically, for fixed (C1, δ1), there exist D1, D2, D3

such that if γ1 and γ2 are a (C1, δ1)-configuration in the sense of Definition 7.8 with γ1 and
γ2 uniformly transverse to the Es

N (x) extended by parallel transport in a small neighborhood,
and I ⊆ Λω

n is a subset of γ1 then, for x, y ∈ I,

(B.21) |log JacHs
n(x)− log JacHs

n(y)| ≤ D1dγ1(x, y)
α.

(2) The Jacobians from item (1) converge exponentially quickly, i.e.

(B.22)
∣∣JacHs

i−1 − JacHs
i

∣∣ ≤ D2e
−ηi,

and

(B.23)

∣∣∣∣ JacHs
i

JacHs
i−1

− 1

∣∣∣∣ ≤ D3e
−ηi.

(3) The true stable holonomy restricted to Λω
∞ ∩ T1 is absolutely continuous. The Jacobian

of the fake stable holonomies converges to the Jacobian of the true stable holonomies restricted
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to the set Λω
∞ ∩ T1. Namely, for almost every point of this intersection, JacHs

n → JacHs,
this convergence is uniform, and the limit is uniformly Hölder and bounded away from zero.

Proof. Part 1. (Formula for Jacobian) We begin by exhibiting a formula for the Jacobian of
the stable holonomies. This may be compared with [BP07, Sec. 8.6.4], which uses a similar
formula though analyzes it differently. Suppose that T1 and T2 are the two transversals we
are considering as in the statement of the proposition. Then write Πs

i for the holonomy

along f iω(W
s
i ) = W̃ s

i , the smooth integral curves to Ṽi we used when defining the fake stable
foliation. Then we have the following formula for the Jacobian of Hs

i :

(B.24) Jac(Hs
i )(y) =

i−1∏
k=0

Jac(D(fσkω)
−1|Tfk

ωH
s
i (y)

fkω(T
2))

Jac(D(fσkω)
−1|Tfk

ω(y)
fkω(T

1))
Jac(Πs

i (y)).

For finite time this formula is evident because all of the foliations we are considering are
smooth: it is just the change of variables formula.
Part 2. (Exponential convergence) Applying Lemma B.1 we will obtain Hölder continuity
for the Jacobians once we know that Jac(Hs

i ) is converging exponentially fast.
To see that (B.24) converges exponentially quickly, two estimates are needed.
(1) The first is showing that for some η > 0

(B.25) |Jac(Πs
n)− 1| ≤ C1e

−nδ1 .

This is the Jacobian of the foliation holonomy of W̃ s
n. The foliation holonomy is between

two transversals that are distance e−(λ/2)n apart. By working in Lyapunov charts, it is

straightforward to see that the fnω (T1) and fnω (T2) make angle at least Ce−ϵn with W̃ s
n. As

W̃ s
n itself has C2 norm at most eO(ϵn) from Lemma B.8, it is easy to see that there exists some

C1, δ1 > 0 such that (B.25) holds.
(2) Next we estimate the rate of convergence of:

(B.26)
i−1∏
k=0

Jac(D(fσkω)
−1|Tfk

ωH
s
i (y)

fkω(T
2))

Jac(D(fσkω)
−1|Tfk

ω(y)
fkω(T

1))
= exp

(
i−1∑
k=0

P (k, i)

)
,

where P (k, i) is the logarithm of the kth term of the product.
We claim that there exist C2, δ2, N2, such that for i ≥ N2 and k ≥ 0,

(B.27)

∣∣∣∣∣Jac(D(fσkω)
−1|Tfk

ωH
s
i (y)

fkω(T
2))

Jac(D(fσkω)
−1|Tfk

ω(y)
fkω(T

1))
− 1

∣∣∣∣∣ ≤ C2e
−δ2k.

We will not give a detailed proof of this estimate because it standard. The key claim is that if
V1 and V2 are the tangent vectors to γ1 and γ2 at y and Hs

i (y), respectively, then there exists
a uniform constant C ′

2 and ϖ > 0 such that when we identify DfkωV1 and DfkωV2 by parallel
transport along the distance minimizing geodesic between their basepoints, then

(B.28) d(DfkωV1, Df
k
ωV2) ≤ C ′

2e
−kϖ.

One can deduce this in a very similar way to the argument for [Mn87, Lem. III.3.7], which
inductively checks that as one applies more iterates of the dynamics that these two vectors
attract exponentially quickly by using that the basepoints of the vectors do as well; this
argument is similar to the proof of our Proposition 10.3. Once (B.28) is known, then it
is straightforward to conclude (B.27) because the Jacobian of a diffeomorphism f : M→M
restricted to a curve γ⊂M depends Hölder continuously on the direction of γ̇.
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(B.27) shows that the product (B.26) is uniformly bounded. It then suffices to estimate:

i−1∑
k=0

P (k, i)−
i∑

k=0

P (k, i+ 1).

We will pick some 0 < θ < 1, and split this sum as follows:

θi∑
k=0

(P (k, i)− P (k, i+ 1)) +

 i∑
k≥θi

P (k, i)−
i∑

k≥θi

P (k, i+ 1)

 = I + II.

For any such θ, it follows from (B.27) that there exists C3, δ3 > 0 such that |II| ≤ C3e
−δ3i.

Thus to conclude we need only bound term I. From Proposition B.12 and the temperedness,
we know that there exists C4, δ4 such that

(B.29) dT2(H
s
i (y), H

s
i+1(y)) ≤ C4e

−δ4i.

It is straightforward to see that there exists β, β1 > 0 such that the function

Jac(D(fσkω)
−1|Tfk

ωH
s
i (y)

fkω(T
2))

Jac(D(fσkω)
−1|Tfk

ω(y)
fkω(T

1))

viewed as a function of Hs
i (y) is β-Hölder with the Hölder constant at most eβ1k for all k ≤ i.

Thus by combining (B.29) with the Hölder continuity, we see that |P (k, i)− P (k, i+ 1)| ≤
eβke−δi. Thus as long as θ > β/δ, we see that there exists C5, δ5, such that

|I| ≤ C5e
−δ5i.

Combining the estimates on I and II implies that there exists C6, δ6 so that (B.26) is con-
verging exponentially fast, as desired.

Thus we see that the Jacobian of the holonomies converges exponentially fast pointwise
and is uniformly positive. Thus we have concluded (2) of the statement of the proposition.
Part 3. (Uniform Hölderness) We now apply Lemma B.1. We have just shown that the Jaco-
bian of the holonomies is converging exponentially fast, and certainly the Hölder norm of the
terms is growing at most exponentially fast as well as it is the composition of diffeomorphisms
along with a holonomy, whose Hölder norm is also growing at most exponentially fast. Thus
we conclude (1) above.
Part 4. The final claim (3) about the holonomies is fairly standard. The following lemma
implies the conclusion:

Lemma B.14. Let γ1 and γ2 be two curves with finite Lebesgue measure and for n ∈ N let
Ωn ⊆ γ1 be a decreasing sequence of subsets, each of which is a union of intervals. Suppose

that K :=
⋂
n≥N

Ωn is compact. Let ϕn : Ωn → γ2 be a sequence of absolutely continuous maps

with uniformly continuous, equicontinuous Jacobians Jn. If (ϕn) converges uniformly to an
injective map ϕ : K → γ2, and Jn|k converges uniformly to an integrable function J : K → R,
then ϕ is absolutely continuous with Jacobian J .

We will not include a proof of the above lemma since it is a variant of a lemma in Mañé
[Mn87, Thm. 3.3] and the proof of [Mn87] can be modified to obtain a proof of this lemma. □
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(1991), no. 1, 73–169. MR 1087346
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[Sin72] Ja. G. Sinăı, Gibbs measures in ergodic theory, Uspehi Mat. Nauk 27 (1972), no. 4(166), 21–64.
MR 399421

[Ste91] Gilbert W. Stewart, Perturbation theory for the singular value decomposition, SVD and signal pro-
cessing, II: algorithms, analysis, and applications (Richard J. Vaccaro, ed.), Elsevier, Amsterdam,
1991.

[Ste97] J. Michael Steele, Probability theory and combinatorial optimization, CBMS-NSF Regional Con-
ference Series in Applied Mathematics, vol. 69, Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA, 1997. MR 1422018

[Tsu01] Masato Tsujii, Fat solenoidal attractors, Nonlinearity 14 (2001), no. 5, 1011–1027. MR 1862809
[TZ23] Masato Tsujii and Zhiyuan Zhang, Smooth mixing Anosov flows in dimension three are exponen-

tially mixing, Ann. of Math. (2) 197 (2023), no. 1, 65–158. MR 4513143
[Via98] Marcelo Viana, Dynamics: a probabilistic and geometric perspective, Proceedings of the Interna-

tional Congress of Mathematicians, Vol. I (Berlin, 1998), 1998, pp. 557–578. MR 1648047
[Via99] , Lecture notes on attractors and physical measures, Monograf́ıas del Instituto de Matemática
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