Solutions.

5.3.1 Let p;r = P(M > r|X, = j). Then for j < r we have

PiT = PP(i—1)r T qP(j+1)r-

Solution of this equation takes form

Pjr = Ar + BT(Q/p)T

Since p;, — 0 as j — —oo we have A, = 0. Now p,, = 1 implies
B, = (p/q)". Plugging j = 0 we obtain the required formula.

5.4.1 Z, = Z].Z;Il X; where X; are iid having the same distribution

as Z;. It follows that
E(Z,|Zy-1=k)=kE(Z,) = kp and so E(Z,) = E(Zy,-1)u
Thus E(Z,) = p". A similar computation gives
E(Z2 Zy_y = k) = k*i* + ko® and so E(Z%) = E(Z*_ ) + "o
Iterating this formula we get
E(Z3) = B(Zp_y) i +pin10?+p" 0 = B(Zp_y)p®+p" o po®+u o = .
Iu2n—1 o Mn—l
:E(Zg>lu2n_'_(lunfl_i_lun_i_.___i_luanZ)O,Q:’u2n_'_ Iu_l 0_2'
Hence
2n—1 _ ,,n—1
V(z)=E—E 52
pw—1

Continuing in the same way we find

- 2 n—-m __ , m+n um+n—1 B /’Ln_l 2
E(Z,Zy) = E(Z:)u = p" o

w—1

Hence
m+n—1 _ , n—1

I
pw—1

=l Mnflaz ' <\/('u2m—1 — ) (1 — Mn—1)02> _ =1 (pm — 1)

A o2 and so

Cov(ZpZpy) =

p(m,n) = —_—.
(m, ) p—1 p—1 pmt (= 1)

5.4.2 The statement is incorrect. Indeed
anl
Zn=Y_X;
j=1

1
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where X; ~ Z;. Therefore

k
Zj:l J’?

PL=n—1Zy1=kXi=21... X = a3) = ==L
(Z?:lgcj)Q

so by the Law of Large numbers

P(L=n—1Z,=k) =

Taking the expectation we obtain

P(L=n—-1)= EE<(Zle))2E (an_l) (1+o(1)).

which is greater than the textbook answer

P(L:n—l):E(Zj_l).

The mistake is that while given that Z, ; = k it is true that for
randomly chosen individual has probability 1/k to have individual A
as an ancestor, the probability that the second individual would have
A as an ancestor given that A is the ancestor of the first individual

is greater 1/k since A is likely to have larger than average number of
children.

5.12.7 For j different from 0 we have the following recursive relation

. Pj —4pj—1
Pj = PPj+a + qpj-1 that is pj0 = %.
This recursion can be rewritten in the matrix form
Dj+2 % 0 %I Pj+1
Pj+1 1 0 0 pj
Pj 01 0 Dj—1
Iterating this system we obtain
Dj+2 i 0 _7q "
Pj+1 1 0 0 P1
Dj 01 0 Do

It follow that p; is a linear combination of the powers of eigenvalues of
the above matrix. The characteristic equation take form

A=p\ +¢q
with solutions A =1, A = A\; or A = Ay where

N vptsg—p Ve +39)+p

2p ’ 2p




Now consider three cases:
(I) p < 1/3. In this case X,, — —oo and since X, can not skip points
going left we have p; = 1 for j > 0. For j < 0 we have

p; = A+ BX +COX),
where A = 0 since p; — 0 as j — —oo. Conditions p; = py = 1 give
Solving this system we get
Ao — 1 A —1
Nl oMol
)\2 — )\1 >\1 - >\2
(IT) p = 1/3. In this case £X,, = 0 and so by Theorem 5.10.17 X, is
recurrent. Hence p; = 1. .
(III) p > 1/3. Then X,, — +oo. Thus for j > 0 we have p; = pj

since to go to j to 0 the particle should go from j to j — 1, from j — 1
toj—2 ... from 1 to 0. The only possibility satisfying p; > 0, p; — 0

B—

asj—>ooispj:)\{. For j < 0 we have
p; = A+ BX 4+ CN.
Condition p; < 1 implies B = 0 while conditions py = 1,p1 = A1 give
A+C=1, A+CI=)\.

Solving this system we obtain

A:/\g—/\l7 :)\2—/\1'
A2 —1 A2 —1
6.1.2 (a) Yes.
5/6 ifj=i
pij{% ifj=i+1.
0 otherwise
(b) Yes.
5/6 ifj >i
Py = {6 if j =i
0 otherwise
(c) Yes.

O ols

otherwise

5/6 ifj=i+1
pij =X & ifj=0 )



(d) Yes.

otherwise p; ;1 = 1.
6.1.7
P(Yo=ynlYo1 =Yn1,Yn2=Yn2...Yo = %)
= P(h(Xn) = YW Xn-1) = Yn-1, M(Xn—2) = Yn—2... h(Y0) = %0)
=P X, =htyXn1=h 1 Xno=h " o...Xo=h y)
= P(Xp = b 'yl X1 = 7 1) = P(Y = ya|Yao1 = Yna)-

Condition that A is invertible is important. Let X, .1 = 2X,, if X,, >0
and X, 11 = X, if X,, < 0. Let Y,, = |X,,|. Suppose that Y,,_; = 6.
Then Y, = 12if Y, o =3 and Y, = 6 if ¥,,_o = 6 however without
knowing Y,,_5 we do not have enough information to determine Y,,.

6.1.8 Let X,,.1 =2X,,, Y, .1 =Y, Z, =X, +Y,. Then
Zn - Zn—l = Xn—l - 2Xn—2 - Zn—l - Zn—2~

Thus Z, = 27,1 — Z,_o however just knowing Z,_; does not give
enough information.

6.2.1
n—1
P( —]|Xo_Z

m=0

I
g
o Ll
i)
S
—~
S~—

Thus
Z me m)s™lj(n —m)s"™ = Py(s)L;;(s)

proving the first claim. Comparing this with Theorem 6.2.3 (b) proves
the second claim. An example of the chain satisfying this condition is
a simple random walk.

6.2.5 Let py = P(T; < T;|Xo = i), po = P(T; < Tj|Xo = j). Let V
be the number of visits to j before return to i. Then for n # 0

P(V =n)=pi(1—p)" 'pp =p*(1 —p)""

P(X,, =1|Xo=14)P(X,, =j and X} # i for m < k <n|X,, =



if py = po = p. The generating function takes form

p23 p2(1 —p)S p2
¢@):T17TTB§+G p) so ¢'(s) = A-(-ps)2 1-(1-ps

Thus ¢/(1) = (1 — p) + p = 1.

6.3.1 If there are infinitely many j such that a; > 0 then the chain
is irreducible since to get from k to m one can go £ — 0, 0 — 75 for
some j > m and j — m. Now from any nonzero state the particle can
only go down so it eventually reaches zero and hence zero is recurrent.
Since the chain is irreducible all states are recurrent. If a; = 0 for
J > Jo, aj, = 0 then states 0,1,...jo are recurrent and all other states
are transient. The equation for stationary distribution reads

T = agmo + (1 — p)my,
Mj_1=PTj-1+ (1 — p)ﬂ'j + a; 17, g > 2.
From the first equation
1 —
m™ = —( a0)7r0 .
I—p

From the second equation

a] 1m0 _ _Z aPlo _ o(1 — Zk oak> _ moP(Z = j)
L=p L=p

where Z takes value j Wlth probablhty a;. Using that

o VA
1:%:m:1_p2;P@2Mﬂ:1

- P

we get
1 EZ

Thus
1 1—p EZ

W= T PZ > e P(Z>))

6.3.4 Denote 7, = E(T,| Xy = u). Let S be a symmetry of the cube
such that Sv = v. Then

P(Xl = ul,XQ = UQXn = ’U,n|X0 = UO)

In particular

PXi#v,..Xp 1 Z0,X,=v|Xg=u)=P(X; #v,... X1 # v, X, =v|Xo = Su

),
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SO T, = Tsy. Let x be a vertex near v and y be a vertex near w.
Conditioning on X; we obtain

1 2
Ty = ZTx—I—ZTy-f-l,

! + 2 +1
—Tw Tz )
4 4

Ty = <Ty +

4

1 3
Tw = L—lTw—i—ZTy—I—l.

Solving this system we get
28 40

g, Ty = 12, Tw — ?
Next Tv = 37, 4+ 1 = 8. Thus the answer to (a) is 8 and the answer to
(b) is % (Another way to solve (a) is to observe that the stationary
distrlbutlon gives equal weight 1/8 to each vertex of the cube). The
answer to (c) is 1 due to problem 6.2.5.

Another way to solve (c) is the following. Denote o, the expected
number of visits to w before T, given that the chain starts at u. Con-
ditioning on X; gives

Ty =

2 1
Oy = Zay + Zax,
1

oy = Zax + Zaw + Zay’

_3 + = +1

Ow =70y + 70w+ 1.

Solving this system we get

4 10

Op = =,0y = 2,04 = —

Thus E( visits to w befroe return to v) = 37, = 1.

6.4.6 Write u ~ v if there is an edge from u to v. Then

dy
Zﬂ'upu'u: Zd 2# l=—=m,.

2
u~v u~v u~v n

6.4.7 Let Y, be the distance from X, to the origin. Then Y, is
a random walk on nonnegative integers with p = %, g = 1 soitis

3
nonrecurrent.
6.6.8 The charactersitic equation is
AN+ TA+1

N~ =0
12



Factorizing
1203 — (4N +7A+ 1) = (A= D(A2X2 + TA + 1)

we find the roots

1 2
AM=1, X=—=, A3=—-.
1 ) 2 92 ) 3 3
Solving the equation for the stationary distribution we get
1

Ty = Ty = T3 = —.

3

1 \" 2\"
pij(n) = § + CLZ'j <—§) + bij <_§) .

Initial conditions

Thus we have

pi;(0) =855, i (1) = pij
imply

§+aij+bij:5ij, g———

This gives

4
aij = 40;5 + 6pi; — 5

3, bij =1- 352] — 6]%;

6.8.4 The forward equation takes the following form
p,=—=Anp, + AX(n—1)p,_1.

Since this equation has unique solution it is enough to check that

( ?:i ) e (1 — e—At)"*I_

Differentiating the product we get —Anp,, from the first factor and

n—1 n _p\n—I—1
)\( 71 )e Mp—1)(1—e™)

from the second factor. Since

n—1 (n—1)! (n—1)!
(1_1)(71—1): (n—I)!(I—l)!(n_I): (n—1—1)(I—1)

(n—2)!
(n—1-1)I(I-1)!

the last expression contributes A(n — 1)p,_1 as claimed.

=(n—-1)



Next if G(¢,s) is the generating function for p,(¢) then the forward
equations imply

oG |, oG
o= A(s” — 3)%
Differentiating with respect to s we get
00G oG 9 0?°G

Plugging s = 1 we see that u(t) = E(X(t)) satisfies u/ = Au. Hence
u(t) = IeM. Taking another derivative we get

992G aG e e
L A 2N (2s — 1) — N (s = IE—
9t 052 95 T2 D 55 A —5) 55

Hence W (t) = 6;7(2;(15, 1) satisfies
W'(t) = 2 u(t) + 2AW (t).

Solving this equation with the boundary condition W(0) = I — I we
obtain

W (t) = (I* + I)e* — 2IeM,
Hence V' (t) = Var(X(t)) satisifies

V(1) =W(t) + p(t) — p*(t) = I(e* — ™).

6.9.1 (a) The forward equation gives
PL=—Ap1+ ppa.
Substituting p, = 1 — p; we get

p1=—(A+p)p + p.

Hence
__H H —(A+p)t
t) = —— 0) — —— wE,
()= 2 () - ) e
Likewise
A A
) = —— 0) — ——— | e~ Otmt,
plt) = 5+ (10 - 55 )
Hence
A ) Ot A (1 (Ot
P(t) — X“!‘Lll + ()H—M) € ( 'U‘) )\-HL (1 e ( l) )
L (1 — e~ Oty PN (ﬁ) o~ Okt

Mp +
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(b) A direct computation shows that G = —(\ + u)G. Hence G™ =

(—(\+ p))"'G and
—(A+ p)t)*
(Z( ( MM))) 1

thGF G
[+§ -
k=0

k! A u A+

which coincides with the answer obtained in part (a).
(¢) Equation for stationary distribution takes form —myu 4 meA = 0,
that is m = ﬁm. Thus

!
T+ —my =1 50 Mg = ——.
2 " 2 2 A
Likewise 1 = ﬁ which coincides with the limiting values obtained in

(a) and (b).

Another way to get the same result is the following. Let U, be the
lengths of consecutive visits to 1 and V,, be the lengths of consecutive
visits to 2. Then U, are iid Exp(u) random variables and V,, are iid
Exp(u) random variables. By law of large numbers

al N & N

Thus the ratio of the time spent at 1 to the time spent at 2 equals \/pu
explaining the result of (c).

6.9.9 Let T be the total time spent at site ¢ and let Z; be the first
time when the time spent in i equals t. Then for any v > ¢

P(T > u) = P(T > t)P(X will spend time (u—t) at i after Z;| Xz, = 1)
= P(T > t)P(T > (u—1).
Thus T is memoryless and so it is exponentially distributed.

6.11.3 The backward equation reads

Do = —(A 4+ w)pro + Ap2o + ppoo = —(A + p)p1o + Apao + mu.

Since A\, = n\y, pu, = npq, each individual either does or divides into
2 with the same intensities independently of others. Thus if divide
individuals into k groups each group would evolve independently. If
we start with &k individuals then the population die if offsprings of each
individual die which are independent evens. So that pyo = 7(¢)*. In
particular the forward equation takes form

n'=p— A+ p)n+ A

= 1+i [1— e O+mi]
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dn B
p— A+ p)n + An?
Decomposing the right hand side as

dt.

1 [ 1 1 ]
p—nll=-n 5§-n

and integrating we obtain

Thus
L0 y—t=ne _ A o
5= Iz

since n(0) = 0. Solving this equation we get

t - e(A_N)t _1
77( ) - Ae(A—M)t B 1
o
n(t)

P(X() = 01X () =0) = o5,

8.2.1 (b) P(X,=1)=P(Xo=0)po(n)+ P(Xo=1)pn(n).

Since the chain is irreducible pg;(n) — 7 and py1(n) — w, where 7 is
a stationary probability. Thus

lim P(XT = 1) = P(Xo = 0)7T1+7T1p11(n) = 7T1(P(X0 = 0)+P<X0 = 1)) = 7.
Thus also the average

1 n
—hHllP(XT =1) — m.

n r=
To find m; explicitly combine the stationarity equation

m = any + (1 — f)m with mg +m9 =1

to find m; = ozi—i-ﬁ If the process is strictly stationary we need P(X, = s)
not to depend on r that is
16} !
= , PX,=1)= .
a+p ( ) a+ 3
On the other hand if this condition holds then the process is strictly
stationary since

P(X, =0)

P(X’r = Sy Xr—i-l = Sp41--- Xr—l-m = 37"+m) = Tsp XPsrsri1 X " XPsyym18r4m-
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Coo(XpmXmin)  P(Xpe1Xpnyn = 1) = P(Xpuet) P(Xnsn = 1)

(@) p(m,m+n) =

VX Xin)  V/PXp = DP(X,, = 0)P(Xpim = 1)P(Xppym = 0)
P(Xpe1p11(n) = P(Xope1)P(Xoman = 1)
VP(X,, = 1)P(X,, = 0)P(Xnin = 1) P(Xy4n = 0)

where
P(X, =s) = P(Xo=0)pos(r) + P(Xo = 1)p1s(r).

To find the transition probabilities explicitly observe that the trace of
of the transition matrix equals 2 — (o + ) and so its eigenvalues are
1 and (1 — (o + ). Hence p;;(r) = ai; + bij(1 — (o + 5)". Using that
pl](()) = 5ij and hmrﬂoo = T; W€ find Q5 = Ty, bij = 5@']' — Tj. Fmally
arguing as in part (b) we find

2 _
lim p(m,m—|— n) _ 7T1p11(n) 1 _ P11 — ™

=(1—(a+p)"

8.4.3 Let M be the number of vehicle passing before the possibility
to crossing occurs. Then P(M = m) = p(1—p)™ where p = e~**. Thus

M
T:ZYj
j=1

where Y are exponential random variables conditioned to be less than
a. Thus Y has density

It follows that

a 1 1 et
EY = dy=——|[=— —ae M.
/Op(y)y 1_p<A o ae )

Therefore
—Aa
ET—BvEM = (2 1) () (Lo e
p 1—»p A A
1 ra * ak\E—1
—X(e —1—a)\):z X
k=2

(Observe that the answer given in the textbook (the summation starts
from k = 1) is not correct. For example if there are no cars A = 0 then
ET =0 not 1 as given in the text.)

Next
e = (1) (525) € - 1),
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Thus
E(T|M =m) = Ly A\ (e(a”\)a l)m
1—0p 0—\
Therefore
= I \"/ X2 \" m
0Ty _ _o\m (@—Na
P =S (75) (525) @)
- A\ m 60—\
— _ (6—Na _ 1 _
Zp(e-x) (c ) (0 — 2)\)ere — Aeba”

Finally, let f(\) = > 2, % In case (a) we need to cross the first

lane and then the second lane so

ET, = f()\) + f(:u)

In case (b) the union of cars form Poisson process with intensity A + p
SO

ET, = f(A+p).
Clearly ET, > ET, since the island can not hurt (we can always ignore
the island and cross both lane in one run). To see this analytically
observe that f is convex since f” > 0. Combining this with f(0) = 0
we get

A A
FO) < O+ R+ FO0) T = P+
Likewise
F) < FO+ )y

Adding these two equations we obtain

f(u) + fA) < fF(A+p)

as claimed.

8.5.3 Let W (t) = aWy(t) + bWs(t). Then W (t) is Gaussian since
Wi(t) and Wy(t) are independent Gaussians and for t; < ¢ < t3 < ty4
the increments W (t,) —W (t3) and W (ty) — W (t1) are independent since
the random variables

Wi(ts)—Wil(ts), Wi(te)—Wi(t1), Wal(ts)—Wa(ts), Walta)—Wa(t1)

are independent. Finally

E(W(t)) = aB(W1(t)+bE(W(t)) =0, V(W (t)) = a®V (Wi(t))+b*V (Wa(t)) = (a®+b%)t.
Hence W (t) is a standard Wiener process iff a* + b* = 1.
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9.7.2 Cov(Xo, X,) = Z g, Gy Cov(X g, Xp—ky) = Z ny Oy Oy py (ntky —ks)

b1,k2=1 k1,k2=1
:/ Z ak1a_]€20'}2,€i)\(n+k1—k2)fy(A)d)\
k1,ko=1
= / <Z ei/\klak1> (Z eiAkZG/kl)ei)‘an()\)d)\ = / ‘G(A)|20-12/ Y()\)ez)\nd)\
k1=1 ko=1

Since px(n) = Cov(Xy, X,,)/0% we get
2

) = XA IO,
X
In case r = 00 ar, = (1 — ) g

i I—p
G =D (L —pphe™ = - e
k

Hence

|G()\)|2 _ (1 _:u2) _ (1 — MQ) _ (1 _/L2>
|1 —per? (1 —pcosA\)2+ psin? A 1 —2ucos A+ p?

9.7.3 We have that Cov(Xy, X,,11 —aX, —bX, 1) =0 for all k£ < n.
In particular taking k£ = 0 we get
(1) p(n+1) = ap(n) +bp(n — 1)

Conversely if (1) holds then p(n+1—k) =ap(n — k) +bp(n — 1 — k)
and hence Cov(Xy, X,11 — aX,, — bX,,_1) = 0 for all & < n. To solve
(1) rewrite it

(") = (5 8) Gy )= (1 0) (o) )

Therefore p(n) = 1A} + oAy where \; and Ay are the eigenvalues of
the above matrix. It follows that

p(z) = % (1 + Z [l AJe™ + coNse™ ] + Z [c1 \beike + CQAgeikx}>
k=1 k=1
_ L (1 n A012§R5\1(I) ] N ACQ2§R5\2($) ] )
2m (1 =R (2))? + (Shu(2))? (1= R(A(2)))? + (SAe(x))?

where S\J(x) = \;je'". Here ¢; and ¢y can be find from the equations

p(0) =1, p(1) =ap(0) + bp(1)
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that is
c1+cy = ]_, Cl>\1 + CQ/\Q =a+ b(Cl/\l + CQ/\Q).

9.7.15 Consider a transformation S of [0, 1) given by S(z) = {z+a}
where {...} denotes a fractional part. Then S preserves length since
it is piecewise translation. We claim that S is ergodic. Indeed if A is
an S invariant set. Consider the Fourier series

— § Ck€2mkm.
k
— § :Ck62mk(x+a) — § (Cke27ma>€2ﬂ'zkx.
k

k

Then

By uniqueness of Fourier series we have
cr = e?™ that is ¢, = 0 or 2™ = 1.

The last alternative means ko € Z. Since « is irrational k& = 0. Thus
14 = ¢g which means 14, =0 or 14, = 1 and so S is ergodic. Thus for
almost every x

1 , 1 . !
—g(z + jo) = —g({z + ja}) — / g(u)du
n n 0

where the first equality follows since ¢ is 1-periodic. This proves the
result.
One can in fact obtain a stronger conclusion by representing

N
9= 3
where |g(x)| < e. Then using that fo u)du = ¢y we obtain

LS gte o)~ [ gt

e2mike <€2ﬂ'ika 27rz(n+1

— 1
Z o 1 — e2mika EZ: 27-|—j06

0<|k|<N

S|

Here the first sum tends to 0 as n — oo and the second sum is less
than e in absolute value. Thus for all =

Y atatjo) = [ gy

can be made as small as we wish by choosing ¢ small and n large. In
other words the converges takes place for all  not merely almost all x.
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11.8.1. Let n be the total number of people in the office (including
the ones being served).
The invariant distribution satisfies Gr = 0.
For one server this reduces to
M — (0 + N Tpg1 + e =0 n >0,
The general solution of this recurrence is
T, = AL + BEY
where &; satisfy ,uff — A+ & + A =0. Thus zi; = 1, & = A/ p.
Denote £ = A/p. The boundary condition is
— AT + pmp = 0 that ism = &mg.
Hence A = .0 The condition
N
. 1-¢
Zﬂ'n =1 glves B = 1_—£J\f—|—1
n=0
Therefore

_(d=9¢"

"= EN+L )
For two servers the equation becames

A, — (20 + N1 + 2ump0 =0 n > 0.

Wn:A+B(g)n.

The boundary condition still reads

The general solution is

m = &M

(since if there is only 1 person in the office only 1 server is busy). This
gives

~2(1-¢)
The condition
2(1-¢) |
(Vg2 (- (9"

N
an =1 gives B =
n=0

Therefore

-9+
(V+1g+2 (- ()"
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11.8.6 Queue length generating function equals

G(s) = (L =p)(s = 1) ﬁ/[ﬁ:((i(; i)i))'

Denote Vel )
(b(S)IS_ z(_(ls_ ))

Using the Taylor series of the numerator we find that
¢(1) = (s = Ms(A(s = 1)))'[s=1 = (1 = p),

61 = 5(s = Ms(M(s — 1)"lucs = 5 B(S?).
Now using
G(s) = (1 - p YA 2 1)

¢(s)

we obtain the following expression for mean queue length

EQ) =G (1)=(1-p) AMg(0)p(1) — Ms(0)¢'(1)

¢*(1)
p(1—p)—N2E(S?)/2 N2 E(S?
(U R - REE2 S
(1-p) 1—p
Next waiting time moment generating function takes form
(1—p)s
M, = :
wls) = S TN ()
Letting
A+ s — AMg(s
p(s) = 2E2 AU
we obtain
¥(0) = (A +s = AMs(s))'|s=0 = (1 = p),
1 A
¢(0), = 50\ + s — )\MS(S))//|S:0 = —EE(SQ).
Therefore

d 1 —(L—p)¥'(0) _ AE(S?)
EW)=(1-p)Z|.- - - .

W) =0l () =t = 3T
Since F(S?) = (ES)*+Var(S) the waiting time is minimized if Var(S) =
0 that is if the service is deterministic.

11.8.8 The associated random walk S,, moves to —2 or 1 with prob-
ability 1/2. M,, = 65~ is a martingale provided that

2
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that is 8% + 1 = 26. Since
0 —20+1=(0-1)0*+60-1)

the possible values of 6 are 1, @ and @ Choose 0 = @ Let
7y be the first time when either S, = 1 or S,, < —N and let py =

P(S;,) = 1. By optimal sampling theorem
5+1
SO
i 2 V5 —1
im = = :
In other words
5—1
P(S,, visits 1) = \/_2 .

By translational symmetry

2

P(S,, visits k) = <\/5_ 1)

and so

P(maXSn:k):<\/g_1) —(ﬁ_l) :<\/5_1> 3_\/3.

2 2 2 2

Hence the limiting waiting time distribution is

P(W=k) = (ﬁ; 1) ; _2\/5.

12.5.7 We have

- 1
E(Mn+1|Fn) = Z S?" + E(Sn+1|Fn) - §E(Sn+1|Fn)'
r=0

The second term here equals S,, while
E(S3 1 |F,) = B((S2 +352X,11 + 35S, X2 + X2)|F,) = S2 + 385,,.

Therefore M, is a martingale.
Next, observe that there exists a constant ¢ such that for any z,n

P(T>n+ K|S, =1z) <(1—c¢).
[terating we obtain

P(T >n) < (1 — )KL
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Since |Mr| < TK + K3 My satisfies the conditions of the optimal
sampling theorem. Therefore

E(M,) =a— i = E(My)=E <isn> _ B

e
3

Next P(Spr = K) = & so
T
E(S%) @ a K3 a aK? —a?
E(S s, | zagp 20 _©_ e o o ma
(nzg ) a+ 3 3 a+K3 3 a + 3

12.5.8 The proof that S, — n and T satisfy the conditions of the
optimal sampling theorem is the same as the proof for M,, in problems
12.5.7.

13.12.3 We have
AU = —Bhe ™ P'hW + e P'AW + O(h?).
Taking expectaition we obtain
E(AU|F,) = —Bhe ™ AW (t) + O(h?) = —phU (1)

that is a(u) = —Bu. Next using that e2#(t+h) — 20t — 23he?0t 1 O(h?)
we get
E((AU)?|F) = e ' E((AW)*)+0(h?) = e 2"23he*' +O(h?) = 28h+0(h?)
that is b(u) = 2.

13.12.4 Problem 13.12.3 gives

U(t) = e W (e — 1)

where o = 280%,. Thus o, = % Writing

U(t) = e P'U(0) + e PP AW

20,26t
6t N o*(e 1)
e PAW ~ N (0, ey

we obtain the first claim. As ¢t — oo the last fraction converges to
02 /(2/3) establisihing the second claim. Next if U(0) ~ N(0,0%/(203))
then U(t) is normal with zero mean and variance

_opt o2 02<1 _ G—Qﬂt) B o2

23 23 28

where

proving stationarity.



