
Solutions.

5.3.1 Let pjr = P (M ≥ r|X0 = j). Then for j < r we have

pjr = pp(j−1)r + qp(j+1)r.

Solution of this equation takes form

pjr = Ar +Br(q/p)
r.

Since pjr → 0 as j → −∞ we have Ar = 0. Now prr = 1 implies
Br = (p/q)r. Plugging j = 0 we obtain the required formula.

5.4.1 Zn =
∑Zn−1

j=1 Xj where Xj are iid having the same distribution
as Z1. It follows that

E(Zn|Zn−1 = k) = kE(Z1) = kµ and so E(Zn) = E(Zn−1)µ

Thus E(Zn) = µn. A similar computation gives

E(Z2
n|Zn−1 = k) = k2µ2 + kσ2 and so E(Z2

n) = E(Z2
n−1)µ

2 + µn−1σ2.

Iterating this formula we get

E(Z2
n) = E(Z2

n−2)µ
4+µn−1σ

2+µnσ2 = E(Z2
n−3)µ

6+µn−1σ2+µσ2+µn+1σ2 = . . .

= E(Z2
0)µ2n +

(
µn−1 + µn + · · ·+ µ2n−2

)
σ2 = µ2n +

µ2n−1 − µn−1

µ− 1
σ2.

Hence

V (Zn) =
µ2n−1 − µn−1

µ− 1
σ2.

Continuing in the same way we find

E(ZnZm) = E(Z2
m)µn−m = µm+n +

µm+n−1 − µn−1

µ− 1
σ2.

Hence

Cov(ZnZm) =
µm+n−1 − µn−1

µ− 1
σ2 and so

ρ(m,n) =
µm+n−1 − µn−1

µ− 1
σ2 :

(√
(µ2m−1 − µm−1)(µ2n−1 − µn−1)

µ− 1
σ2

)
=

√
µn−1(µm − 1)

µm−1(µn − 1)
.

5.4.2 The statement is incorrect. Indeed

Zn =

Zn−1∑
j=1

Xj

1
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where Xj ∼ Z1. Therefore

P (L = n− 1|Zn−1 = k,X1 = x1 . . . Xk = xk) =

∑k
j=1 x

2
j

(
∑k

j=1 xj)2

so by the Law of Large numbers

P (L = n− 1|Zn−1 = k) =
E(Z2

1)

E(Z1)2

1

k
(1 + o(1)).

Taking the expectation we obtain

P (L = n− 1) =
E(Z2

1)

E(Z1)2
E

(
1

Zn−1

)
(1 + o(1)).

which is greater than the textbook answer

P (L = n− 1) = E

(
1

Zn−1

)
.

The mistake is that while given that Zn−1 = k it is true that for
randomly chosen individual has probability 1/k to have individual A
as an ancestor, the probability that the second individual would have
A as an ancestor given that A is the ancestor of the first individual
is greater 1/k since A is likely to have larger than average number of
children.

5.12.7 For j different from 0 we have the following recursive relation

pj = ppj+2 + qpj−1 that is pj+2 =
pj − qpj−1

p
.

This recursion can be rewritten in the matrix form pj+2

pj+1

pj

 1
p

0 −q
p

1 0 0
0 1 0

 pj+1

pj

pj−1

 .

Iterating this system we obtain pj+2

pj+1

pj

 1
p

0 −q
p

1 0 0
0 1 0

j p2

p1

p0

 .

It follow that pj is a linear combination of the powers of eigenvalues of
the above matrix. The characteristic equation take form

λ = pλ3 + q

with solutions λ = 1, λ = λ1 or λ = λ2 where

λ1 =

√
p(1 + 3q)− p

2p
, λ2 = −

√
p(1 + 3q) + p

2p
.
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Now consider three cases:
(I) p < 1/3. In this case Xn → −∞ and since Xn can not skip points

going left we have pj = 1 for j ≥ 0. For j < 0 we have

pj = A+Bλj
1 + Cλj

2,

where A = 0 since pj → 0 as j → −∞. Conditions p1 = p0 = 1 give

B + C = 1, Bλ1 + Cλ2 = 1.

Solving this system we get

B =
λ2 − 1

λ2 − λ1

, C =
λ1 − 1

λ1 − λ2

.

(II) p = 1/3. In this case EXn ≡ 0 and so by Theorem 5.10.17 Xn is
recurrent. Hence pj = 1.

(III) p > 1/3. Then Xn → +∞. Thus for j > 0 we have pj = pj
1

since to go to j to 0 the particle should go from j to j − 1, from j − 1
to j − 2 . . . from 1 to 0. The only possibility satisfying pj ≥ 0, pj → 0

as j →∞ is pj = λj
1. For j < 0 we have

pj = A+Bλj
1 + Cλj

2.

Condition pj ≤ 1 implies B = 0 while conditions p0 = 1, p1 = λ1 give

A+ C = 1, A+ Cλ = λ1.

Solving this system we obtain

A =
λ2 − λ1

λ2 − 1
, C =

λ2 − λ1

λ2 − 1
.

6.1.2 (a) Yes.

pij =


5/6 if j = i
1
6

if j = i+ 1

0 otherwise

.

(b) Yes.

pij =


5/6 if j > i
i
6

if j = i

0 otherwise

.

(c) Yes.

pij =


5/6 if j = i+ 1
i
6

if j = 0

0 otherwise

.
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(d) Yes.

p0j =

(
5

6

)j−1
1

6

otherwise pj,j−1 = 1.

6.1.7

P (Yn = yn|Yn−1 = yn−1, Yn−2 = yn−2 . . . Y0 = y0)

= P (h(Xn) = yn|h(Xn−1) = yn−1, h(Xn−2) = yn−2 . . . h(Y0) = y0)

= P (Xn = h−1yn|Xn−1 = h−1yn−1Xn−2 = h−1yn−2 . . . X0 = h−1y0)

= P (Xn = h−1yn|Xn−1 = h−1yn−1) = P (Yn = yn|Yn−1 = yn−1).

Condition that h is invertible is important. Let Xn+1 = 2Xn if Xn ≥ 0
and Xn+1 = Xn if Xn ≤ 0. Let Yn = |Xn|. Suppose that Yn−1 = 6.
Then Yn = 12 if Yn−2 = 3 and Yn = 6 if Yn−2 = 6 however without
knowing Yn−2 we do not have enough information to determine Yn.

6.1.8 Let Xn+1 = 2Xn, Yn+1 = Yn Zn = Xn + Yn. Then

Zn − Zn−1 = Xn−1 = 2Xn−2 = Zn−1 − Zn−2.

Thus Zn = 2Zn−1 − Zn−2 however just knowing Zn−1 does not give
enough information.

6.2.1

P (Xn = j|X0 = i) =
n−1∑
m=0

P (Xm = i|X0 = i)P (Xn = j and Xk 6= i for m < k < n|Xm = i)

=
n−1∑
m=0

pii(m)lij(n−m).

Thus

Pij(s) =
∑

n

∑
m

pii(m)smlij(n−m)sn−m = Pii(s)Lij(s)

proving the first claim. Comparing this with Theorem 6.2.3 (b) proves
the second claim. An example of the chain satisfying this condition is
a simple random walk.

6.2.5 Let p1 = P (Tj < Ti|X0 = i), p2 = P (Ti < Tj|X0 = j). Let V
be the number of visits to j before return to i. Then for n 6= 0

P (V = n) = p1(1− p2)
n−1p2 = p2(1− p)n−1
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if p1 = p2 = p. The generating function takes form

φ(s) =
p2s

1− (1− p)s
+(1−p) so φ′(s) =

p2(1− p)s

(1− (1− p)s)2
+

p2

1− (1− p)s
.

Thus φ′(1) = (1− p) + p = 1.

6.3.1 If there are infinitely many j such that aj > 0 then the chain
is irreducible since to get from k to m one can go k → 0, 0 → j for
some j > m and j → m. Now from any nonzero state the particle can
only go down so it eventually reaches zero and hence zero is recurrent.
Since the chain is irreducible all states are recurrent. If aj = 0 for
j > j0, aj0 = 0 then states 0, 1, . . . j0 are recurrent and all other states
are transient. The equation for stationary distribution reads

π0 = a0π0 + (1− p)π1,

πj−1 = pπj−1 + (1− p)πj + aj−1π0, j > 2.

From the first equation

π1 =
(1− a0)π0

1− p
.

From the second equation

πj = πj−1−
aj−1π0

1− p
= π1−

j−1∑
k=1

akpi0
1− p

=
π0(1−

∑j−1
k=0 ak)

1− p
=
π0P (Z ≥ j)

1− p

where Z takes value j with probability aj. Using that

1 =
∑

j

πj =
π0

1− p

∑
k

P (Z ≥ k) =
π0EZ

1− p

we get

µ0 =
1

π0

=
EZ

1− p
.

Thus

µj =
1

πj

=
1− p

P (Z ≥ j)π0

=
EZ

P (Z ≥ j)
.

6.3.4 Denote τu = E(Tv|X0 = u). Let S be a symmetry of the cube
such that Sv = v. Then

P (X1 = u1, X2 = u2 . . . Xn = un|X0 = u0)

= P (X1 = S(u1), X2 = S(u2) . . . Xn = S(un)|X0 = S(u0)).

In particular

P (X1 6= v, . . . Xn−1 6= v,Xn = v|X0 = u) = P (X1 6= v, . . . Xn−1 6= v,Xn = v|X0 = Su),
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so τu = τSu. Let x be a vertex near v and y be a vertex near w.
Conditioning on X1 we obtain

τx =
1

4
τx +

2

4
τy + 1,

τy =
1

4
τy +

1

4
τw +

2

4
τx + 1,

τw =
1

4
τw +

3

4
τy + 1.

Solving this system we get

τx =
28

3
, τy = 12, τw =

40

3
.

Next τv = 3
4
τx + 1 = 8. Thus the answer to (a) is 8 and the answer to

(b) is 40
3
. (Another way to solve (a) is to observe that the stationary

distribution gives equal weight 1/8 to each vertex of the cube). The
answer to (c) is 1 due to problem 6.2.5.

Another way to solve (c) is the following. Denote σu the expected
number of visits to w before Tv given that the chain starts at u. Con-
ditioning on X1 gives

σx =
2

4
σy +

1

4
σx,

σy =
2

4
σx +

1

4
σw +

1

4
σy,

σw =
3

4
σy +

1

4
σw + 1.

Solving this system we get

σx =
4

3
, σy = 2, σw =

10

3
.

Thus E( visits to w befroe return to v) = 3
4
τx = 1.

6.4.6 Write u ∼ v if there is an edge from u to v. Then∑
u∼v

πupuv =
∑
u∼v

πu

du

=
∑
u∼v

1

du

du

2µ
=

1

2η

∑
u∼v

1 =
dv

2η
= πv.

6.4.7 Let Yn be the distance from Xn to the origin. Then Yn is
a random walk on nonnegative integers with p = 2

3
, q = 1

3
so it is

nonrecurrent.

6.6.8 The charactersitic equation is

λ3 − 4λ2 + 7λ+ 1

12
= 0.
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Factorizing

12λ3 − (4λ2 + 7λ+ 1) = (λ− 1)(12λ2 + 7λ+ 1)

we find the roots

λ1 = 1, λ2 = −1

2
, λ3 = −2

3
.

Solving the equation for the stationary distribution we get

π1 = π2 = π3 =
1

3
.

Thus we have

pij(n) =
1

3
+ aij

(
−1

2

)n

+ bij

(
−2

3

)n

.

Initial conditions

pij(0) = δij, pij(1) = pij

imply
1

3
+ aij + bij = δij,

1

3
− aij

2
− 2bij

3
= pij.

This gives

aij = 4δij + 6pij −
4

3
, bij = 1− 3δij − 6pij.

6.8.4 The forward equation takes the following form

p′n = −λnpn + λ(n− 1)pn−1.

Since this equation has unique solution it is enough to check that(
n− 1
I − 1

)
e−nλt

(
1− e−λt

)n−I
.

Differentiating the product we get −λnpn from the first factor and

λ

(
n− 1
I − 1

)
e−nλt(n− I)

(
1− e−λt

)n−I−1

from the second factor. Since(
n− 1
I − 1

)
(n− I) =

(n− 1)!

(n− I)!(I − 1)!
(n− I) =

(n− 1)!

(n− I − 1)!(I − 1)!

= (n− 1)
(n− 2)!

(n− I − 1)!(I − 1)!

the last expression contributes λ(n− 1)pn−1 as claimed.
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Next if G(t, s) is the generating function for pn(t) then the forward
equations imply

∂G

∂t
= λ(s2 − s)

∂G

∂s
.

Differentiating with respect to s we get

∂

∂t

∂G

∂s
= λ (2s− 1)

∂G

∂s
+ λ

(
s2 − s

) ∂2G

∂s2
.

Plugging s = 1 we see that µ(t) = E(X(t)) satisfies µ′ = λµ. Hence
µ(t) = Ieλt. Taking another derivative we get

∂

∂t

∂2G

∂s2
= 2λ

∂G

∂s
+ 2λ (2s− 1)

∂2G

∂s2
+ λ

(
s2 − s

) ∂3G

∂s3
.

Hence W (t) = ∂2G
∂s2 (t, 1) satisfies

W ′(t) = 2λµ(t) + 2λW (t).

Solving this equation with the boundary condition W (0) = I2 − I we
obtain

W (t) = (I2 + I)e2λt − 2Ieλt.

Hence V (t) = Var(X(t)) satisifies

V (t) = W (t) + µ(t)− µ2(t) = I(e2λt − eλt).

6.9.1 (a) The forward equation gives

p′1 = −λp1 + µp2.

Substituting p2 = 1− p1 we get

p1 = −(λ+ µ)p1 + µ.

Hence

p1(t) =
µ

λ+ µ
+

(
p1(0)−

µ

λ+ µ

)
e−(λ+µ)t.

Likewise

p2(t) =
λ

λ+ µ
+

(
p2(0)−

λ

λ+ µ

)
e−(λ+µ)t.

Hence

P (t) =

 µ
λ+µ

+
(

λ
λ+µ

)
e−(λ+µ)t λ

λ+µ

(
1− e−(λ+µ)t

)
µ

λ+µ

(
1− e−(λ+µ)t

)
λ

λ+µ
+
(

µ
λ+µ

)
e−(λ+µ)t

 .
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(b) A direct computation shows that G2 = −(λ+ µ)G. Hence Gn =
(−(λ+ µ))n−1G and

I+
∑
k=1

tkGk

k!
= I− G

λ+ µ

[(
∞∑

k=0

(−(λ+ µ)t)k

k!

)
− 1

]
= I+

G

λ+ µ

[
1− e−(λ+µ)t

]
which coincides with the answer obtained in part (a).

(c) Equation for stationary distribution takes form −π1µ+ π2λ = 0,
that is π1 = λ

µ
π2. Thus

π2 +
λ

µ
π2 = 1 so π2 =

µ

µ+ λ
.

Likewise π1 = λ
µ+λ

which coincides with the limiting values obtained in

(a) and (b).
Another way to get the same result is the following. Let Un be the

lengths of consecutive visits to 1 and Vn be the lengths of consecutive
visits to 2. Then Un are iid Exp(µ) random variables and Vn are iid
Exp(µ) random variables. By law of large numbers

N∑
n=1

Un ≈
N

µ

N∑
n=1

Vn ≈
N

λ
.

Thus the ratio of the time spent at 1 to the time spent at 2 equals λ/µ
explaining the result of (c).

6.9.9 Let T be the total time spent at site i and let Zt be the first
time when the time spent in i equals t. Then for any u > t

P (T > u) = P (T > t)P (X will spend time (u−t) at i after Zt|XZt = i)

= P (T > t)P (T > (u− t).

Thus T is memoryless and so it is exponentially distributed.

6.11.3 The backward equation reads

p′10 = −(λ+ µ)p10 + λp20 + µp00 = −(λ+ µ)p10 + λp20 +mu.

Since λn = nλ1, µn = nµ1, each individual either does or divides into
2 with the same intensities independently of others. Thus if divide
individuals into k groups each group would evolve independently. If
we start with k individuals then the population die if offsprings of each
individual die which are independent evens. So that pk0 = η(t)k. In
particular the forward equation takes form

η′ = µ− (λ+ µ)η + λη2.
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dη

µ− (λ+ µ)η + λη2
= dt.

Decomposing the right hand side as

− 1

µ− η

[
1

1− η
− 1

µ
λ
− η

]
and integrating we obtain

C − (µ− λ)t = ln

(
1− η
µ
λ
− η

)
.

Thus
1− η
µ
λ
− η

= Ae−(µ−λ)t =
λ

µ
e(λ−µ)t

since η(0) = 0. Solving this equation we get

η(t) =
e(λ−µ)t − 1
λ
µ
e(λ−µ)t − 1

.

P (X(t) = 0|X(u) = 0) =
η(t)

η(u)
.

8.2.1 (b) P (Xr = 1) = P (X0 = 0)p01(n) + P (X0 = 1)p11(n).

Since the chain is irreducible p01(n) → π and p11(n) → π, where π1 is
a stationary probability. Thus

lim
r→∞

P (Xr = 1) = P (X0 = 0)π1+π1p11(n) = π1(P (X0 = 0)+P (X0 = 1)) = π1.

Thus also the average

1

n

n

lim
r=1

P (Xr = 1) → π1.

To find π1 explicitly combine the stationarity equation

π1 = απ0 + (1− β)π1 with π0 + π0 = 1

to find π1 = α
α+β

. If the process is strictly stationary we need P (Xr = s)

not to depend on r that is

P (Xr = 0) =
β

α+ β
, P (Xr = 1) =

α

α+ β
.

On the other hand if this condition holds then the process is strictly
stationary since

P (Xr = sr, Xr+1 = sr+1 . . . Xr+m = sr+m) = πsr×psrsr+1×· · ·×psr+m−1sr+m .
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(a) ρ(m,m+n) =
Cov(XmXm+n)√
V (XmXm+n)

=
P (Xm=1Xm+n = 1)− P (Xm=1)P (Xm+n = 1)√
P (Xm = 1)P (Xm = 0)P (Xm+n = 1)P (Xm+n = 0)

=
P (Xm=1p11(n)− P (Xm=1)P (Xm+n = 1)√

P (Xm = 1)P (Xm = 0)P (Xm+n = 1)P (Xm+n = 0)

where

P (Xr = s) = P (X0 = 0)p0s(r) + P (X0 = 1)p1s(r).

To find the transition probabilities explicitly observe that the trace of
of the transition matrix equals 2 − (α + β) and so its eigenvalues are
1 and (1 − (α + β). Hence pij(r) = aij + bij(1 − (α + β)r. Using that
pij(0) = δij and limr→∞ = πj we find aij = πj, bij = δij − πj. Finally
arguing as in part (b) we find

lim
m→∞

ρ(m,m+ n) =
π1p11(n)− π2

1

π1π0

=
p11 − π1

π0

= (1− (α+ β))n.

8.4.3 Let M be the number of vehicle passing before the possibility
to crossing occurs. Then P (M = m) = p(1−p)m where p = e−λa. Thus

T =
M∑

j=1

Yj

where Yj are exponential random variables conditioned to be less than
a. Thus Y has density

p(y) =
1

1− p
λe−λx10≤y≤a.

It follows that

EY =

∫ a

0

p(y)dy =
1

1− p

(
1

λ
− e−λa

λ
− ae−λa

)
.

Therefore

ET = EY EM =

(
1

p
− 1

)(
1

1− p

)(
1

λ
− e−λa

λ
− ae−λa

)
=

1

λ

(
eλa − 1− aλ

)
=

∞∑
k=2

akλk−1

k!
.

(Observe that the answer given in the textbook (the summation starts
from k = 1) is not correct. For example if there are no cars λ = 0 then
ET = 0 not 1 as given in the text.)

Next

E(eθY ) =

(
1

1− p

)(
λ

θ − λ

)(
e(θ−λ)a − 1

)
.
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Thus

E(eθT |M = m) =

(
1

1− p

)m(
λ

θ − λ

)m (
e(θ−λ)a − 1

)m
.

Therefore

E(eθT ) =
∞∑

m=0

p(1− p)m

(
1

1− p

)m(
λ

θ − λ

)m (
e(θ−λ)a − 1

)m
=

∞∑
m=0

p

(
λ

θ − λ

)m (
e(θ−λ)a − 1

)m
=

θ − λ

(θ − 2λ)eλa − λeθa
.

Finally, let f(λ) =
∑∞

k=2
akλk−1

k!
. In case (a) we need to cross the first

lane and then the second lane so

ETa = f(λ) + f(µ).

In case (b) the union of cars form Poisson process with intensity λ+ µ
so

ETb = f(λ+ µ).

Clearly ETb ≥ ETa since the island can not hurt (we can always ignore
the island and cross both lane in one run). To see this analytically
observe that f is convex since f ′′ > 0. Combining this with f(0) = 0
we get

f(λ) < f(λ+ µ)
λ

λ+ µ
+ f(0)

µ

λ+ µ
= f(λ+ µ)

λ

λ+ µ
.

Likewise

f(µ) < f(λ+ µ)
µ

λ+ µ
.

Adding these two equations we obtain

f(µ) + f(λ) < f(λ+ µ)

as claimed.

8.5.3 Let W (t) = aW1(t) + bW2(t). Then W (t) is Gaussian since
W1(t) and W2(t) are independent Gaussians and for t1 ≤ t2 ≤ t3 ≤ t4
the increments W (t4)−W (t3) and W (t2)−W (t1) are independent since
the random variables

W1(t4)−W1(t3), W1(t2)−W1(t1), W2(t4)−W2(t3), W2(t2)−W2(t1)

are independent. Finally

E(W (t)) = aE(W1(t))+bE(W2(t)) = 0, V (W (t)) = a2V (W1(t))+b
2V (W2(t)) = (a2+b2)t.

Hence W (t) is a standard Wiener process iff a2 + b2 = 1.
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9.7.2 Cov(X0, Xn) =
r∑

k1,k2=1

ak1ak2Cov(X−k1Xn−k2) =
r∑

k1,k2=1

ak1ak2σ
2
Y ρY (n+k1−k2)

=

∫ r∑
k1,k2=1

ak1ak2σ
2
Y e

iλ(n+k1−k2)fY (λ)dλ

=

∫ ( r∑
k1=1

eiλk1ak1

)(
r∑

k2=1

eiλk2ak1

)
eiλnfY (λ)dλ =

∫
|G(λ)|2σ2

Y fY (λ)eiλndλ.

Since ρX(n) = Cov(X0, Xn)/σ2
X we get

fX(λ) =
σ2

Y

σ2
X

fY (λ)|G(λ)|2.

In case r = ∞ ak = (1− µ)µk

G(λ) =
∑

k

(1− µ)µkeikλ =
1− µ

1− µeiλ
.

Hence

|G(λ)|2 =
(1− µ2)

|1− µeiλ|2
=

(1− µ2)

(1− µ cosλ)2 + µ sin2 λ
=

(1− µ2)

1− 2µ cosλ+ µ2
.

9.7.3 We have that Cov(Xk, Xn+1− aXn− bXn−1) = 0 for all k ≤ n.
In particular taking k = 0 we get

(1) ρ(n+ 1) = aρ(n) + bρ(n− 1)

Conversely if (1) holds then ρ(n+ 1− k) = aρ(n− k) + bρ(n− 1− k)
and hence Cov(Xk, Xn+1 − aXn − bXn−1) = 0 for all k ≤ n. To solve
(1) rewrite it(

ρ(n+ 1)
ρ(n)

)
=

(
a b
1 0

)(
ρ(n)

ρ(n− 1)

)
=

(
a b
1 0

)n(
ρ(1)
ρ(0)

)
.

Therefore ρ(n) = c1λ
n
1 + c2λ

n
2 where λ1 and λ2 are the eigenvalues of

the above matrix. It follows that

ρ(x) =
1

2π

(
1 +

∑
k=1

[
c1λ

k
1e

ikx + c2λ
k
2e

ikx
]
+
∑
k=1

[
c1λk

1e
ikx + c2λk

2e
ikx
])

=
1

2π

(
1 +

c12<λ̂1(x)

(1−<(λ̂1(x)))2 + (=λ̂1(x))2
+

c22<λ̂2(x)

(1−<(λ̂2(x)))2 + (=λ̂2(x))2

)
where λ̂j(x) = λje

ix. Here c1 and c2 can be find from the equations

ρ(0) = 1, ρ(1) = aρ(0) + bρ(1)
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that is
c1 + c2 = 1, c1λ1 + c2λ2 = a+ b(c1λ1 + c2λ2).

9.7.15 Consider a transformation S of [0, 1) given by S(x) = {x+α}
where {. . . } denotes a fractional part. Then S preserves length since
it is piecewise translation. We claim that S is ergodic. Indeed if A is
an S invariant set. Consider the Fourier series

1A(x) =
∑

k

cke
2πikx.

Then
1A(Sx) =

∑
k

cke
2πik(x+α) =

∑
k

(cke
2πiα)e2πikx.

By uniqueness of Fourier series we have

ck = cke
2πikα that is ck = 0 or e2πkα = 1.

The last alternative means kα ∈ Z. Since α is irrational k = 0. Thus
1A = c0 which means 1A = 0 or 1A = 1 and so S is ergodic. Thus for
almost every x

1

n
g(x+ jα) =

1

n
g({x+ jα}) →

∫ 1

0

g(u)du

where the first equality follows since g is 1-periodic. This proves the
result.

One can in fact obtain a stronger conclusion by representing

g(x) =
N∑

k=−N

cke
2πikx + g̃(x)

where |g̃(x)| ≤ ε. Then using that
∫ 1

0
g(u)du = c0 we obtain

1

n

∑
j=1

g(x+ jα)−
∫ 1

0

g(u)du

=
1

n

∑
0<|k|≤N

cke
2πikx(e2πikα − e2πi(n+1)α)

1− e2πikα
+

1

n

n∑
j=1

g̃(x+ jα).

Here the first sum tends to 0 as n → ∞ and the second sum is less
than ε in absolute value. Thus for all x

1

n

∑
j=1

g(x+ jα)−
∫ 1

0

g(u)du

can be made as small as we wish by choosing ε small and n large. In
other words the converges takes place for all x not merely almost all x.
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11.8.1. Let n be the total number of people in the office (including
the ones being served).

The invariant distribution satisfies Gπ = 0.
For one server this reduces to

λπn − (µ+ λ)πn+1 + µπn+2 = 0 n > 0.

The general solution of this recurrence is

πn = Aξn
1 +Bξn

2

where ξj satisfy µξ2
j − (λ + µ)ξj + λ = 0. Thus xi1 = 1, ξ2 = λ/µ.

Denote ξ = λ/µ. The boundary condition is

−λπ0 + µπ1 = 0 that isπ1 = ξπ0.

Hence A = .0 The condition
N∑

n=0

πn = 1 gives B =
1− ξ

1− ξN+1
.

Therefore

πn =
(1− ξ)ξn

1− ξN+1
.

For two servers the equation becames

λπn − (2µ+ λ)πn+1 + 2µπn+2 = 0 n > 0.

The general solution is

πn = A+B

(
ξ

2

)n

.

The boundary condition still reads

π1 = ξπ0

(since if there is only 1 person in the office only 1 server is busy). This
gives

A =
ξ

2(1− ξ)
B.

The condition
N∑

n=0

πn = 1 gives B =
2(1− ξ)

(N + 1)ξ + 2
(
(1−

(
ξ
2

)N+1
) .

Therefore

πn =
2(1− ξ)

(
ξ
2

)n
+ ξ

(N + 1)ξ + 2
(
(1−

(
ξ
2

)N+1
) .
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11.8.6 Queue length generating function equals

G(s) = (1− ρ)(s− 1)
MS(λ(s− 1))

s−MS(λ(s− 1))
.

Denote

φ(s) =
s−MS(λ(s− 1))

s− 1
.

Using the Taylor series of the numerator we find that

φ(1) = (s−MS(λ(s− 1)))′|s=1 = (1− ρ),

φ(1)′ =
1

2
(s−MS(λ(s− 1)))′′|s=1 =

λ2

2
E(S2).

Now using

G(s) = (1− ρ)
MS(λ(s− 1))

φ(s)

we obtain the following expression for mean queue length

E(Q) = G′(1) = (1− ρ)
λM ′

S(0)φ(1)−MS(0)φ′(1)

φ2(1)

= (1− ρ)
ρ(1− ρ)− λ2E(S2)/2

(1− ρ)2
= ρ− λ2E(S2)

1− ρ
.

Next waiting time moment generating function takes form

MW (s) =
(1− ρ)s

λ+ s− λMS(s)
.

Letting

ψ(s) =
λ+ s− λMS(s)

s
we obtain

ψ(0) = (λ+ s− λMS(s))′|s=0 = (1− ρ),

φ(0)′ =
1

2
(λ+ s− λMS(s))′′|s=0 = −λ

2
E(S2).

Therefore

E(W ) = (1− ρ)
d

ds
|s=0

(
1

ψ(s)

)
=
−(1− ρ)ψ′(0)

ψ2(0)
=

λE(S2)

2(1− ρ)
.

Since E(S2) = (ES)2+Var(S) the waiting time is minimized if Var(S) =
0 that is if the service is deterministic.

11.8.8 The associated random walk Sn moves to −2 or 1 with prob-
ability 1/2. Mn = θSn is a martingale provided that

E(θSn+1|Sn) = Mn

(
θ + θ−2

2

)
= Mn
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that is θ3 + 1 = 2θ. Since

θ3 − 2θ + 1 = (θ − 1)(θ2 + θ − 1)

the possible values of θ are 1,
√

5−1
2

and
√

5+1
2
. Choose θ =

√
5+1
2
. Let

τN be the first time when either Sn = 1 or Sn ≤ −N and let pN =
P (SτN

) = 1. By optimal sampling theorem

pN

√
5 + 1

2
+ o(1) = 1,

so

lim
N→∞

pN =
2√

5 + 1
=

√
5− 1

2
.

In other words

P (Sn visits 1) =

√
5− 1

2
.

By translational symmetry

P (Sn visits k) =

(√
5− 1

2

)k

and so

P (maxSn = k) =

(√
5− 1

2

)k

−

(√
5− 1

2

)k+1

=

(√
5− 1

2

)k
3−

√
5

2
.

Hence the limiting waiting time distribution is

P (W = k) =

(√
5− 1

2

)k
3−

√
5

2
.

12.5.7 We have

E(Mn+1|Fn) =
n∑

r=0

Sr + E(Sn+1|Fn)− 1

3
E(Sn+1|Fn).

The second term here equals Sn while

E(S3
n+1|Fn) = E((S3

n + 3S2
nXn+1 + 3SnX

2
n +X3

n)|Fn) = S3
n + 3Sn.

Therefore Mn is a martingale.
Next, observe that there exists a constant c such that for any x, n

P (T ≥ n+K|Sn = x) < (1− c).

Iterating we obtain

P (T ≥ n) ≤ (1− c)[n/K].
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Since |MT | ≤ TK + K3 MT satisfies the conditions of the optimal
sampling theorem. Therefore

E(M0) = a− a3

3
= E(MT ) = E

(
T∑

n=0

Sn

)
− E(S3

T )

3
.

Next P (ST = K) = a
K

so

E

(
T∑

n=0

Sn

)
= a+

E(S3
T )

3
− a3

3
= a+

a

K

K3

3
− a3

3
= a+

aK2 − a3

3
.

12.5.8 The proof that Sn − n and T satisfy the conditions of the
optimal sampling theorem is the same as the proof for Mn in problems
12.5.7.

13.12.3 We have

∆U = −βhe−βthW + e−βt∆W +O(h2).

Taking expectaition we obtain

E(∆U |Ft) = −βhe−βthW (t) +O(h2) = −βhU(t)

that is a(u) = −βu. Next using that e2β(t+h) − e2βt = 2βhe2βt + O(h2)
we get

E((∆U)2|Ft) = e−2βtE((∆W )2)+O(h2) = e−2βt2βhe2βt+O(h2) = 2βh+O(h2)

that is b(u) = 2β.

13.12.4 Problem 13.12.3 gives

U(t) = e−βtW (e2βt − 1)

where σ2
U = 2βσ2

W . Thus σ2
W = σ2

2β
. Writing

U(t) = e−βtU(0) + e−βt∆W

where

e−βt∆W ∼ N

(
0,
σ2(e2βt − 1)

2e2βtβ

)
we obtain the first claim. As t → ∞ the last fraction converges to
σ2/(2β) establisihing the second claim. Next if U(0) ∼ N(0, σ2/(2β))
then U(t) is normal with zero mean and variance

e−2βt σ
2

2β
+
σ2(1− e−2βt)

2β
=
σ2

2β

proving stationarity.


