Text Richard Brualdi Introductory Combinatorics
Section | Problems | Due |
2.1 Basic counting principals | 2.7.4 | Feb. 18 |
2.2-2.3 Permutations and Combinations | 2.7.2, 2.7.10, 2.7.17, 2.7.31 | Feb. 18 |
2.4 Permutations of multisets | 2.7.33 | Feb. 18 |
2.5 Combinations of multisets | 2.7.38, 2.7. 39 , 2.7. 45 | Feb. 18 |
3.1 Pigeonhole principle | 3.4.4, 3.4.9, 3.4.15 | Mar. 2 |
3.2 Strong pigeonhole principle | 3.4.14, 3.4.29 | Mar. 2 |
3.3 Ramsey Theorem | 3.4.23 | Mar. 2 |
5.1-5.3 Binomial coefficients | 9, 12, 18, 20, 22 | Mar. 25 |
5.4 Multinomial theorem | 29, 37, 39 | Mar. 25 |
5.5 Newton's binomial theorem | 46 | Mar. 25 |
9.1, 9.2 Systems of distinct representatives | 1, 2, 7, 9 | Apr. 1 |
9.3 Stable marriages | 19, 20, 22 | Apr. 1 |
11.1 Basic properties of graphs | 3, 5, 10, 11 | Apr. 13 |
11.2 Eulerian trails | 38 | Apr. 13 |
11.3 Hamiltonian cycles | 39 | Apr. 13 |
11. 4 Bipartite graphs | 47, 48 | Apr. 20 |
11.5 Trees | 53, 55, 57 | Apr. 20 |
11.7 Tree algorithms | 80, 82, 84 | Apr. 20 |
13.1 Digraphs | 3, 22 | Apr 29 |
13.2 Networks | 24 | Apr 29 |
13.3 Matchings | 29 | Apr 29 |
6.1-6.4 Inclusion exclusion formula | 3, 5, 9, 15, 24 | May 11 |