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Notation

∇a the additive functional {a(N )
n+1 (X (N )

n+1 ) − a(N )
n (X (N )

n )} (a gradient)
B(S) the Borel σ-algebra of a separable complete metric spaceS
c−, c+ large deviations thresholds, see §7.4
Cc (R) the space of continuous ϕ : R→ R with compact support
Cmix the mixing constant from Proposition 2.13
Cov the covariance
CVar the circular variance, see §4.3.1
dn(ξ), d (N )

n (ξ) structure constants, see §2.3
DN (ξ) structure constants, see §2.3
δx point mass measure at x (Dirac’s measure)
δ(π) the contraction coefficient of a Markov operator π, see §2.2.2
δ(f) the graininess constant of f, see chapter 4
ε0 (usually) the uniform ellipticity constant, see §2.2.1
E, Ex the expectation operator. Ex := E(·|X1 = x)
ess sup the essential supremum, see chapter 2
f, g, h additive functionals
fn, f (N )

n an entry of an additive functional f of a Markov chain or array
FN (ξ) the normalized log-moment generating function, see chapter 7
Galg (X, f) the algebraic range, see chapter 4
Gess (X, f) the essential range, see chapter 4
Γ the balance (of a hexagon), see §2.3.1
H (X, f) the co-range, see chapter 4
Hex(N, n) the space of level N hexagons at position n, see §2.3.1
IN (η) the rate function, see chapter 7
kN (usually) the length of the N-th row of an array, minus one
log the natural logarithm (same as ln)
mHex ,m′Hex hexagon measures, see §2.3.1
µ(dx) a measure with its integration variable
Osc the oscillation, see §2.2.2
(Ω,F , µ,T ) a measurable map T : Ω→ Ω on a measure space (Ω,F , µ)
P(A), Px (A) the probability of the event A. Px (A) := P(A|X1 = x)
πn,n+1(x, dy) the n-th transition kernel of a Markov chain
pn(x, y) (usually) the density of πn,n+1(x, dy)
ΦN (x, ξ) characteristic functions, see §5.2.2
r+, r− positivity thresholds, see §7.4
SN

∑N
i=1 f i (Xi, Xi+1) (chains), or

∑kN
i=1 f (N )

i (X (N )
i , X (N )

i+1 ) (arrays)
Sn,S(N )

n the state space of Xn (chains) or of X (N )
n (arrays)

xi



xii Notation

un, u
(N )
n ,UN structure constants, see §2.3

Var the variance
VN the variance of SN

Xn, X (N )
n an entry of a Markov chain, or a Markov array

X a Markov chain or a Markov array
X(N ) the N-th row of a Markov array
zN (usually) a real number not too far from E(SN )

a.e.; a.s. almost everywhere; almost surely
CLT Central Limit Theorem
iid independent and identically distributed
LLT Local Limit Theorem
LHS, RHS left-hand-side, right-hand-side (of an equation)
TFAE the following are equivalent
s.t. such that
w.l.o.g. without loss of generality

∵, ∴ because, therefore
∧, ∨ x ∧ y := min{x, y}, x ∨ y := max{x, y}
1E the indicator function, equal to 1 on E and to 0 elsewhere
a ± ε a quantity inside [a − ε, a + ε]
e±εa a quantity in [e−εa, eεa]
∼ an ∼ bn ⇔ an/bn −−−−→

n→∞
1

� an � bn ⇔ 0 < lim inf(an/bn) ≤ lim sup(an/bn) < ∞
. an . bn ⇔ lim sup(an/bn) < ∞
� for measures: µ � ν means “ν(E) = 0⇒ µ(E) = 0 for all

measurble E"; For numbers: non-rigorous “much smaller than"
≈ non-rigorous shorthand for “approximately equal"
:= is defined to be equal to
!
=,

!
≤,

!
∼ an equality, inequality, or asymptotic that will be justified later

?
=,

?
≤,

?
∼ an equality, inequality, or asymptotic whose veracity is unknown

Xn

prob
−−−−→
n→∞

Y convergence in probability

Xn
dist
−−−−→
n→∞

Y convergence in distribution

Xn
Lp

−−−−→
n→∞

Y convergence in Lp

[SN > t] The event that the condition in brackets happens. For example,
if ϕ :S → R, then [ϕ(ω) > t] := {ω ∈ S : ϕ(ω) > t}

bxc, dxe bxc := max{n ∈ Z : n ≤ x}, dxe := min{n ∈ Z : n ≥ x}
{x}, 〈x〉 {x} := x − bxc; 〈x〉 = the number in [−π, π) s.t. x − 〈x〉 ∈ 2πZ
{x}tZ, [x]tZ the numbers s.t. x = [x]tZ + {x}tZ, [x]tZ ∈ tZ and {x}tZ ∈ [0, t)

The Fourier Transform of an L1-function φ : R→ R: φ̂(ξ) :=
∫
R

e−iξuφ(u)du.
The Legendre-Fenchel transform of a convex φ : R→ R: φ∗(η) := sup

ξ
[ξη − ϕ(ξ)].



Chapter 1
Overview

Abstract We give an overview of the main results of this work.

1.1 Setup and Aim

Our aim is to describe the asymptotic behavior of P[SN − zN ∈ (a, b)] as N → ∞, where SN =

N∑
n=1

fn(Xn, Xn+1),

Xn is a Markov chain, and zN are real numbers not too far from E(SN ). Such results are called local limit
theorems (LLT). For the history of the problem, see the end of the chapter. The novelty of this work is that we
allow the Markov chain to be inhomogeneous: The set of states of Xn, the transition probabilities, and fn may
all depend on n.

We will usually assume that fn are uniformly bounded real-valued functions, and that {Xn} is uniformly
elliptic, a technical condition which we will state in Chapter 2, and that implies uniform exponential mixing.
These assumptions place us in the Gaussian domain of attraction. The analogy with classical results for sums of
independent identically distributed (iid) random variables suggests that in the best of all situations, we should
expect the behavior below (in what follows VN := Var(SN ), AN ∼ BN ⇔ AN/BN −−−−−→

N→∞
1, and the question

marks are there to emphasize that at this point of the discussion, these are conjectures, not assertions):

(1) Local Deviations: If zN−E(SN )
√
VN

→ z, then

P[SN − zN ∈ (a, b)] ?
∼
|a − b|
√

2πVN

exp[−z2/2].

(2) Moderate Deviations: If zN−E(SN )
VN

→ 0, then

P[SN − zN ∈ (a, b)] ?
∼
|a − b|
√

2πVN

exp
[
−

1 + o(1)
2

( zN − E(SN )
√

VN

)2]
.

(3) Large Deviations: If ���
zN−E(SN )

VN

��� < c with c > 0 sufficiently small, then

P[SN − zN ∈ (a, b)] ?
∼
|a − b|
√

2πVN

exp
[
−VNIN

(
zN/VN

)]
×

× ρN

(
zN − E(SN )

VN

)
×

1
|a − b|

∫ b

a

e−tξN
( zN −E(SN )

VN

)
dt,

where IN (·) are the Legendre transforms of FN (ξ) := 1
VN

logE(eξSN ), and

• ρN (t) −−−→
t→0

1 uniformly in N , and ρn(·) are uniformly bounded away from zero and infinity on [−c, c];

• C−1 |η | ≤ |ξN (η) | ≤ C |η | for all |η | < c and N , with C independent of N ;

• c, ξN, ρN are independent of zN and (a, b).

(The asymptotic results in the large deviation regime are more precise than in the moderate deviation case, but
less universal. See Chapter 7 for more details.)

Although the asymptotic formulas (1)–(3) above are true in many cases, they sometimes fail — even when SN

is a sum of iid’s.

1



2 1 Overview

The aim of this work is to give general sufficient conditions for (1)–(3), and to provide the necessary asymptotic
corrections when some of these conditions fail. To do this we first identify all the obstructions to (1)–(3), and
then we analyze SN when these obstructions happen.

1.2 The Obstructions to the Local Limit Theorems

The algebraic range is the smallest closed additive subgroup G ≤ R for which there are αn ∈ R so that
fn(Xn, Xn+1) − αn ∈ G almost surely for all n. We show that the following list is a complete set of obstructions
to (1)–(3):

(I) Lattice Behavior: The algebraic range is tZ for some t > 0.

(II) Center-Tightness: There are centering constants mN such that {SN − mN } is tight. In Chapter 3 we will
see that in this case Var(SN ) must be bounded. We will also see that center-tightness is equivalent to
Var(SN ) 6→ ∞.

(III) Reducibility: fn = gn + cn where the algebraic range of {gn(Xn, Xn+1)} is strictly smaller than the

algebraic range of { fn(Xn, Xn+1)}, and where Sn(c) :=
N∑
n=1

cn(Xn, Xn+1) is center-tight (equivalently, its

variance does not tend to infinity as N → ∞).

One of our main results is that if these three obstructions do not occur, then the asymptotic expansions (1)–(3)
above hold.

1.3 How to Show that the Obstructions Do Not Occur

While it is usually easy to rule out the lattice obstruction (I), it is often not clear how to rule out (II) and (III).
What we need is a tool that determines from the data of fn and Xn whether { fn(Xn, Xn+1)} is center-tight or
reducible.

In Chapter 2, we introduce numerical constants dn(ξ) (n ≥ 3, ξ ∈ R), which are defined purely in terms of
the functions fn and the transition probabilities

πn,n+1(x, E) := P(Xn+1 ∈ E |Xn = x),

and which can be used to determine which obstructions occur and which do not:

• If
∑

d2
n(ξ) = ∞ for all ξ , 0, then the obstructions (I),(II),(III) do not occur, and the asymptotic expansions

(1)–(3) hold.

• If
∑

d2
n(ξ) < ∞ for all ξ , 0, then Var(SN ) is bounded (obstruction II).

• If
∑

d2
n(ξ) = ∞ for some but not all ξ , 0, then Var(SN ) → ∞ but we are either lattice or reducible: (II)

fails, but at least one of (I),(III) occurs.

We call dn(ξ) the structure constants of X = {Xn} and f = { fn}.
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1.4 What Happens When the Obstructions Do Occur

1.4.1 Lattice Case

The lattice obstruction (I) already happens for sums of iid random variables, and the classical approach how to
adjust (1)–(3) to this setup extends without much difficulty to the Markov case.

Suppose the algebraic range is tZ with t > 0, i.e. there are constants αn such that fn(Xn, Xn+1) − αn ∈ tZ
almost surely for all n. Assume further that tZ is the smallest group with this property. In this case SN ∈ γN + tZ
a.s. for all N , where γN =

∑N
i=1 αi mod tZ. Instead of analyzing P[SN − zN ∈ (a, b)], which may be equal to

zero, we study P[SN = zN ], with zN ∈ γN + tZ.
We show that in case (I), if the algebraic range is tZ, and obstructions (II) and (III) do not occur, then (as in

the case of iid’s):

(1’) If zN−E(SN )
√
VN

→ z and zN ∈ γN + tZ, then P[SN = zN ] ∼
t

√
2πVN

e−z
2/2.

(2’) If zN−E(SN )
VN

→ 0 and zN ∈ γN + tZ, then P[SN = zN ] ∼
t

√
2πVN

exp
[
−

1 + o(1)
2

( zN − E(SN )
√

VN

)2]
.

(3’) If ���
zN−E(SN )

VN

��� < c with c > 0 sufficiently small, and zN ∈ γN + tZ, then

P[SN = zN ] ∼
t

√
2πVN

exp
[
−VNIN (zN/VN )

]
× ρN

(
zN − E(SN )

VN

)
,

where IN and ρN have the properties listed in the non-lattice case (3).

The previous results hold for lattice valued, irreducible, non-center-tight additive functionals, that is, when
(I) holds and (II),(III) fail. Here is an equivalent condition in terms of the data of Xn and fn:

∃t > 0 such that
∑

d2
n(ξ) < ∞ exactly when ξ ∈

2π
t
Z.

Under this condition, (1’)–(3’) hold with the parameter t.

1.4.2 Center-Tight Case

We show that obstruction (II) happens iff fn(Xn, Xn+1) can be put in the form

fn(Xn, Xn+1) = an+1(Xn+1) − an(Xn) + hn(Xn, Xn+1) + cn (1.1)

where an(Xn) are uniformly bounded, cn are constants, hn(Xn, Xn+1) have mean zero, and∑
Var[hn(Xn, Xn+1)] < ∞.

The freedom in choosing an(Xn) is too great to allow general statements on the asymptotic behavior of
P[SN − zN ∈ (a, b)], see Example 3.1. But as we shall we see in Chapter 3, (1.1) does provide us with some
almost sure control. It implies that

SN = aN+1(XN+1) − a1(X1) +
N∑
n=1

hn(Xn, Xn+1) + γN,

where γN =
N∑
i=1

ci , and where
∞∑
n=1

hn(Xn, Xn+1) converges almost surely.
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This means that in the center-tight scenario, SN − E(SN ) can be decomposed into the sum of two terms: A
bounded term, possibly oscillatory, that depends only on XN+1, and a term which depends on the entire past
X1, . . . , XN+1, that converges almost surely.

1.4.3 Reducible Case

In the reducible case, we can decompose

fn(Xn, Xn+1) = gn(Xn, Xn+1) + cn(Xn, Xn+1) (1.2)

with center-tight c = {cn(Xn, Xn+1)}, and where the algebraic range of g = {gn(Xn, Xn+1)} is strictly smaller
than the algebraic range of f = { fn(Xn, Xn+1)}.

In principle, it is possible that g is reducible too, but in Chapter 6 we show that one can find an “optimal"
decomposition where g is irreducible, and cannot be decomposed further. The algebraic range of the “optimal"
g is the “infimum" of all possible reduced ranges:

Gess :=
⋂ {

G : G is the algebraic range of some g
which satisfies (1.2) with a center-tight c

}
.

We call Gess the essential range of f. It can be calculated explicitly from the data of f and the Markov chain X,
in terms of the structure constants, see Theorem 4.4.

It follows from the definitions that Gess is a proper closed subgroup of R, so Gess = {0} or tZ or R. In the
reducible case, Gess = {0} or tZ, because if Gess = R, then the algebraic range (which contains Gess) is also
equal to R.

If Gess = {0}, then the optimal g has algebraic range {0}, and gn(Xn, Xn+1) are a.s. constant. In this case f is
center-tight, and we are back to case (II).

If Gess = tZ with t > 0, then g is lattice, non-center-tight, and irreducible. Split

SN = SN (g) + SN (c), with SN (g) =
N∑
n=1

gn(Xn, Xn+1) , Sn(c) =
N∑
n=1

cn(Xn, Xn+1). (1.3)

Then Sn(g) satisfies the lattice LLT (1’)–(3’) with parameter t, and Var[SN (c)] = O(1). Trading constants
between g and c, we can also arrange E[SN (c)] = O(1).

Unfortunately, even though Var[Sn(f)] → ∞ and Var[SN (c)] = O(1), examples show that SN (c) is still
powerful enough to disrupt the local limit theorem for SN , lattice or non-lattice (Example 6.1). Heuristically,
what could happen is that the mass of SN (g) concentrates on cosets of tZ according to (1’)–(3’), but SN (c)
spreads this mass to the vicinity of the lattice in a non-universal but tight manner.

This suggests that (1)–(3) should be approximately true for intervals (a, b) of length |a − b| � t, but false for
intervals of length |a − b| � t. In Chapter 6 we prove results in this direction.

For intervals with size |a − b| > 2t, we show that for all zN ∈ R such that (zN − E(SN ))/
√

VN → z, for all
N large enough,

1
3

*
,

e−z2/2 |a − b|
√

2πVN

+
-
≤ P[SN − zN ∈ (a, b)] ≤ 3 *

,

e−z2/2 |a − b|
√

2πVN

+
-
.

If |a − b| > L > t, we can replace 3 by a constant C(L, t) such that C(L, t) −−−−−−→
L/t→∞

1.

For general intervals, possibly with length less than t, we show the following: There is a random variable
H = H(X1, X2, X3, . . .) and uniformly bounded random variables bN = bN (X1, XN+1) so that for every zN ∈ tZ
such that zN−E(SN )

√
VN

→ z, and for every φ : R→ R continuous with compact support,
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lim
N→∞

√
VNE[φ(SN − zN − bN (X1, XN+1))] =

te−z2/2
√

2π

∑
m∈Z

E[φ(mt + H)]. (1.4)

For φ ≈ 1[a,b] with |a − b| � t, the right-hand-side of (1.4) is approximately equal to 1√
2π
|a − b|e−z2/2, in

accordance with (1), see Lemma 6.10. But for |a − b| � t, (1.4) depends on the detailed structure of f through t,
bN (X1, XN+1) and H.

What are bN (XN, XN+1) and H? Recall that c on the right-hand-side of (1.3) is center-tight. As such,
it can be put in the form (1.1). Namely, cn(Xn, Xn+1) = an+1(Xn+1) − an(Xn) + hn(Xn, Xn+1) + c∗n, where
supn(ess sup |an |) < ∞, c∗n are constants, E(hn(Xn, Xn+1)) = 0, and

∑
hn converges almost surely. Let γN :=

N∑
n=1

c∗n = E(SN (c)) +O(1) = O(1). The proof of (1.4) shows that

• bN = aN+1(XN+1) − a1(X1) + {γN }tZ, where {x}tZ ∈ [0, t), {x}tZ = x mod tZ;

• H =

∞∑
n=1

hn(Xn, Xn+1). (It is possible to replace H by a different random variable F which is bounded, see

Chapter 6.)

This works as follows. Let z∗N := zN − [γN ]tZ, where [x]tZ := x − {x}tZ ∈ tZ. Then z∗N ∈ tZ, z∗N−E(SN )
VN

=
zN−E(SN )+O(1)

VN
→ z, and

SN − bN − zN = [SN (g) − z∗N ] + SN (h). (1.5)

By subtracting bN from SN , we are shifting the distribution of SN to the distribution of the sum of two terms:
The first, SN (g), is an irreducible tZ-valued additive functional; the second, SN (h), converges almost surely
to H.

Suppose for the sake of discussion that SN (g), SN (h) were independent. Then (1.5), the identity
H =

∑
n≥1

hn(Xn, Xn+1), and the lattice LLT for SN (g) say that

lim
N→∞

√
VNE[φ(SN − bN − zN )] =

∫
R
φ(x)m(dx), (1.6)

where m := e−z2/2
√

2π
mtZ∗mH, mH (E) := P[H ∈ E], mtZ := t·countingmeasure of tZ, and ∗ denotes the convolution.

(See §5.2.3.) Calculating, we find that
∫
R
φdm = right-hand-side of (1.4).

In general, SN (g) and SN (h) are not independent. But in Chapter 6 we show that (1.4) and (1.6) remain
valid. There we also discuss other consequences of (1.4), including the asymptotic distributional behavior of SN

modulo tZ.

1.5 Some Final Words on the Setup of this Work

We would like to comment on a choice we made when we wrote this work, specifically, our focus on additive
functionals of the form fn = fn(Xn, Xn+1).

This choice is somewhat unorthodox: The theory of Markov processes is mostly concerned with the case
fn = fn(Xn) (see e.g. [50, 149, 181]), and the theory of stochastic processes is mostly concerned with the case
fn = fn(Xn, Xn+1, . . .), under assumptions on the weak dependence of Xk and Xn when |k − n| � 1 (see e.g.
[103, 16]). We decided to study fn = fn(Xn, Xn+1) for the following reasons:

• The case fn = fn(Xn, Xn+1) is richer than the case fn = fn(Xn) because it contains gradients an+1(Xn+1) −
an(Xn). Two additive functionals which differ by a gradient with uniformly bounded ess sup |an | will have
the same CLT behavior, but they may have different LLT behavior, because their algebraic ranges can be
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different. This leads to an interesting reduction theory which we would have missed had we only considered
the case fn = fn(Xn).1

• The case fn(Xn, . . . , Xn+m) with m > 1 is similar to the case m = 2, and does not require new ideas, see
Example 2.3 and the discussion in §2.4. We decided to keep m = 1 and leave the (routine) extension to m > 1
to the reader.

• The case fn = fn(Xn, Xn+1, . . .) is of great interest, and we hope to address it in the future. At the moment,
our results do not cover it.

We hope to stimulate research into the local limit theorem of additive functionals of general non-stationary
stochastic processes with mixing conditions. Such work will have applications outside the theory of stochastic
processes, such as the theory of dynamical systems. Our work here is a step in this direction.

1.6 Prerequisites

We made an attempt to make this text self-contained and accessible to readers with standard background in
analysis and probability theory. A familiarity with the material of Rudin’s book Real and complex analysis [170,
Ch. 1-9] and Breiman’s book Probability [17, Ch. 1-8] should be sufficient. Appendices A-C supply additional
background material, not in these textbooks.

A few sections marked by (∗) contain topics which are slightly off the main path of the book. Some of these
sections require additional background, which we recall, but sometimes without proofs. The material in the
starred sections is not used in other parts of the book, and they can be skipped at first reading.

1.7 Notes and References

The local limit theorem has a very long history. To describe it, let us distinguish the following three lines of
development:

(1) LLT for identically distributed independent (iid) random variables,
(2) LLT for other stationary stochastic processes,
(3) LLT for non-stationary stochastic processes.

Local Limit Theorems for Sums of IID Random Variables. The first LLT dates to de Moivre’s 1738 book
[38], and provides approximations for P[a ≤ Sn ≤ b] when Sn = X1 + · · · + Xn, and Xi are iid, equal to zero or
one with equal probabilities. Laplace extended de Moivre’s results to the case when Xi are equal to zero or one
with non-equal probabilities [124, 125].

In 1921, Pólya extended these results to the vector valued iid which generate the simple random walk on Zd ,
and deduced his famous criterion for the recurrence of simple random walks [162].

The next historical landmark is Gnedenko’s 1948 work [78, 79] which initiated the study of the LLT for sums
of iid with general lattice distributions. He asked for the weakest possible assumptions on the distribution of
iid’s Xi which lead to LLT with Gaussian or stable limits. Khinchin popularized the problem by emphasizing its
importance to the foundations of quantum statistical physics [109], and it was studied intensively by the Russian
school, with important contributions by Linnik, Ibragimov, Prokhorov, Richter, Saulis, Petrov and others. We
will comment on some of these contributions in later chapters. For the moment, we refer the reader to the
excellent books by Gnendenko & Kolmogorov [80], Ibragimov & Linnik [103], Petrov [156], and to the many
references they contain.

1 We cannot reduce the case fn (Xn, Xn+1) to the case fn (Yn ) by working with the Markov chain Yn = (Xn, Xn+1) because {Yn }

will no longer satisfy some of our standing assumptions, specifically the uniform ellipticity condition (see Chapter 2).
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The early works on the local limit theorem all focused on the lattice case. The first result we are aware of
which could be considered to be a non-lattice local limit theorem is in [80]: Suppose that each of the iid’s Xi

have mean zero, finite variance σ2, and a probability density function p(x) ∈ Lr with 1 < r ≤ 2, then the

density function pn(x) of X1 + · · · + Xn satisfies σ
√

npn(σ
√

nx) −−−−→
n→∞

1
√

2π
e−x

2/2.

There could be non-lattice iid’s without density functions, for example the iid’s Xi equal to (−1), 0, or
√

2 with
equal probabilities (the algebraic range is R, because the group generated by (−1) and

√
2 is dense). Shepp [183]

was the first to consider non-lattice LLT in such cases. His approach was to provide asymptotic formulas for
P[a ≤ Sn − E(SN ) ≤ b] for arbitrary intervals [a, b], or for

√
2πVar(SN )E[φ(SN − E(SN ))] for all test functions

φ : R → R which are continuous with compact support. In this monograph, we use a slight modification of
Shepp’s formulation of the LLT. Instead of working with SN − E(SN ), we work with SN − zN subject to the
assumptions that zN is “not too far" from E(SN ), and that SN − zN ∈ algebraic range.

Stone proved non-lattice LLT in Shepp’s sense for sums of vector valued iid in [191], extending earlier work
of Rvačeva [174], who treated the lattice case. These works are important not only because of the intrinsic
interest in the vector valued case, but also because of technical innovations which became tools of the trade, see
e.g. §5.2.1 and [17].

Local Limit Theorems for Other Stationary Stochastic Processes. The earliest LLT for non-iid sequences
{Xi } is due to Kolmogorov [116]. He considered stationary homogeneous Markov chains {Xi } with a finite set of

statesS = {a1, . . . , an}, and proved a local limit theorem for the occupation times SN =

N∑
i=1

f(Xi), where f(x) =

(1a1 (x), . . . , 1an (x)).
Following further developments for finite state Markov chains by Sirazhdinov [185], Nagaev [149] proved

very general CLT and LLT for SN=

N∑
i=1

f (Xi) for a large class of stationary homogeneous countable Markov

chains {Xi }, and for a variety of unbounded functions f , both in the gaussian and in the stable case. See Chapter 8.
Nagaev’s paper introduced themethod of characteristic function operators (whichwe call in this work “Nagaev

perturbation operators"), and opened the way for proving LLT for other weakly dependent stationary stochastic
processes, and in particular to time series of probability preserving dynamical systems. Guivarc’h & Hardy

[88] proved gaussian LLT for Birkhoff sums SN =

N∑
n=1

f (Tnx) for Anosov diffeomorphisms T : X → X with

an invariant Gibbs measure, and Hölder continuous functions f . Rosseau-Egele [168] and Broise [20] proved
such theorems for piecewise expanding interval map possessing an absolutely continuous invariant measure,
X = [0, 1], and f ∈ BV . Aaronson & Denker [5] gave general LLT for stationary processes generated by
Gibbs-Markov maps both in the gaussian and in the non-gaussian domain of attraction.

These results have found many applications in infinite ergodic theory, dynamical systems and hyperbolic
geometry, see for example [2], [3], [6].

The influence of Nagaev’s method can also be recognized in other works on other asymptotic problems in
dynamics and geometry, see for example [93], [107], [123], [126], [127], [159], [160], [182].

For the connection between the LLT and the behavior of local times for stationary stochastic processes, see
[44, 61].

Kosloff and Volný showed that every ergodic and aperiodic probability preserving system has an observable
whose Birkhoff sums satisfy the lattice LLT [121].

Local Limit Theorems for Non-Stationary Stochastic Processes. The interest in limit theorems for sums of
non-identically distributed, independent, random variables goes back to the works of Chebyshev [196], Lyapunov
[136], and Lindeberg [132] who considered the central limit theorem for such sums.

The study of LLT for sums of independent non-identically distributed random variables started later, in the
works of Prokhorov [163] and Rozanov [169]. A common theme in these works is to assume an asymptotic
formula for P[a ≤ SN−AN

BN
≤ b] for suitable normalizing constants AN, BN , and then to ask what extra conditions

imply an asymptotic for P[a ≤ SN − AN ≤ b].
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An important counterexample by Gamkrelidze [76] pointed the way towards the following phenomenon:
The distribution of SN may lie close to a proper sub-group of its algebraic range without actually charging it,
and a variety of sufficient conditions which rule this out were developed over the years. We mention especially
the Prokhorov condition in the lattice case [169] (see §8.2), the Mineka-Silverman condition in the non-lattice
case [144], Statulevičius’s condition [190], and conditions motivated by additive number theory such as those
appearing in [146] and [147]. For a discussion of these conditions, see [148].

Dolgopyat proved a LLT for sums of non-identically distributed, independent random variables which also
applies to the reducible case [56].

Dobrushin proved a general central limit theorem for inhomogeneous Markov chains in [50] (see Chapter 3).
Local limit theorems for inhomogeneous Markov chains are considered in [189]. Merlevède, M. Peligrad and

C. Peligrad proved local limit theorems for sums
N∑
i=1

f i (Xi) where {Xi } is a ψ-mixing inhomogeneous Markov

chain, under the irreducibility condition of Mineka & Silverman [142]. Hafouta obtained local limit theorems for
a class of inhomogeneous Markov chains in [90]. In a different direction, central limit theorems for time-series
of inhomogeneous sequences of Anosov diffeomorphisms are proved in [12] and [30].

An important source of examples of inhomogeneousMarkov chains is aMarkov chain in random environment,
when considered for a specific (“quenched") realizations of the environment (see Chapter 9). Hafouta & Kifer
proved local limit theorems for non-conventional ergodic sums in [92], and local limit theorems for random
dynamical systems including Markov chains in random environment in [93]. Demers, Péne & Zhang [41] prove
a LLT for an integer valued observable for a random dynamical system.

Comparing the theory of inhomogeneous Markov chains to theory of Markov chains in random environment
studied in [93], we note the following differences (see Chapter 9 for more discussion of this subject):

(a) The theory of inhomogeneous Markov chains applies to fixed realizations of noise and not just to all
realizations in an unspecified set of full measure.

(b) In the random environment setup, a center–tight additive functional must be a coboundary plus a constant,
while in the general case it can also have a component with summable variances.

(c) In the non center-tight random environment setup, the variance grows linearly for a.e. realization of noise.
But for a general inhomogeneous Markov chain it can grow arbitrarily slowly.

The Contribution of This Work. The novelty of this work is in providing optimal sufficient conditions for the
classical asymptotic formulas for P[SN − zN ∈ (a, b)], and in the analysis of P[SN − zN ∈ (a, b)] when these
conditions fail.

In particular, we provide simple way to see when the obstructions to the LLT occur (based on structure
constants dn(ξ)), we derive a new asymptotic formula for P[SN − zN ∈ (a, b)] in the reducible case, when
Var(SN ) → ∞, and we prove a structure theorem for SN in case Var(SN ) 6→ ∞. Unlike previous works, our
analysis does not require any assumptions on the rate of growth of Var(SN ), beyond convergence to infinity.



Chapter 2
Markov Arrays, Additive Functionals, and Uniform Ellipticity

Abstract This chapter presents the main objects of our study. We define Markov arrays and additive functionals,
discuss the uniform ellipticity condition, and introduce the structure constants.

2.1 The Basic Setup

2.1.1 Inhomogeneous Markov Chains

A Markov chain is given by the following data:

• State Spaces:Borel spaces (Sn,B(Sn)) (n ≥ 1), whereSn is a complete separable metric space, andB(Sn)
is the Borel σ-algebra ofSn.Sn is the set of “the possible states of the Markov chain at time n."

• Transition Probabilities (or Transition Kernels): a family of Borel probability measures πn,n+1(x, dy) on
Sn+1 (x ∈ Sn, n ≥ 1), so that for every Borel E ⊂ Sn+1, the function x 7→ πn,n+1(x, E) is measurable. The
measure πn,n+1(x, E) is “the probability of the event E at time n + 1, given that the state at time n was x."

• Initial Distribution: π(dx), a Borel probability measure on S1. π(E) is “the probability that the state x at
time 1 belongs to E."

The Markov chain associated with this data is the Markov process X := {Xn}n≥1 such that Xn ∈ Sn for all
n, and so that for all Borel Ei ⊂ Si , P(X1 ∈ E1) = π(E1) , P(Xn+1 ∈ En+1 |Xn = xn) = πn,n+1(xn, En+1).

X is uniquely defined, and its joint distribution is given by

P(X1 ∈ E1, · · · , Xn ∈ En) :=
∫
E1

π(dx1)
∫
E2

π1,2(x1, dx2) · · ·
∫
En

πn−1,n(xn−1, dxn). (2.1)

Let P,E and Var denote the probability, expectation, and variance calculated using this joint distribution. If π
is the point mass at x, we write Px and Ex .

X satisfies the following important Markov property (see e.g. [17, Ch. 7]):

P(Xk+1 ∈ E |Xk, Xk−1, · · · , X1) = P(Xk+1 ∈ E |Xk ) = πk,k+1(Xk, E), (2.2)
P(Xn ∈ En, · · · , Xk+1 ∈ Ek+1 |Xk, · · · , X1)=P(Xn ∈ En,· · ·, Xk+1 ∈ Ek+1 |Xk ) (2.3)

=

∫
Ek+1

πk,k+1(Xk, dxk+1) · · ·
∫
En

πn−1,n(xn−1, dxn) for all n ≥ k + 1.

The proofs are a direct calculation. Let Fk,∞ denote the σ-algebra generated by Xi with i ≥ k. Then an
approximation argument shows that for each A ∈ Fk,∞,

P
(
(Xk+1, Xk+2, · · · ) ∈ A|Xk, · · · , X1

)
= P

(
(Xk+1, Xk+2, · · · ) ∈ A|Xk

)
. (2.4)

If the state spaces and the transition probabilities do not depend on n, that is, Sn = S and πn,n+1(x, dy) =
π(x, dy), then we call X a homogeneousMarkov chain. Otherwise, X is called an inhomogeneousMarkov chain.
In this work, we are mainly interested in the inhomogeneous case.

Example 2.1 (Markov Chains with Finite State Spaces) These are Markov chains X with state spaces Sn =

{1, . . . , dn} , B(Sn) = {all subsets ofSn}. In this case the transition probabilities are completely characterized
by the rectangular stochastic matrices with entries πnxy := πn,n+1(x, {y}) (x = 1, . . . , dn ; y = 1, . . . , dn+1). The
initial distribution is completely characterized by the probability vector πx := π({x}) (x = 1, . . . , dn).

9
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Then P(X1=x1, · · · , Xn = xn)=πx1π
1
x1x2

π2
x2x3
· · · πn−1

xn−1xn
. This leads to the following discrete version of (2.1):

P(X1 ∈ E1, · · · , Xn ∈ En) =
∑
x1∈E1

πx1

∑
x2∈E2

π1
x1x2
· · ·

∑
xn ∈En

πn−1
xn−1xn

.

Example 2.2 (Markov Chains in Random Environment) Let X denote a homogeneous Markov chain with
state space S, transition probability π(x, dy), and initial distribution concentrated at a point x1. It is possible
to view X as a model for the motion of a particle on S as follows. At time 1, the particle is located at x1,
and a particle at position x will jump after one time step to a random location y, distributed like π(x, dy):
P(y ∈ E) = π(x, E). With this interpretation, Xn = the position of the particle at time n. The homogeneity of
X is reflected in the fact that the law of motion which governs the jumps does not change in time.

Let us now refine the model, and add a dependence of the transition probabilities on an external parameter
ω, which we think of as “the environment." For example, ω could represent a external force field which affects
the likelihood of various movements, and which can be modified by God or some other experimentalist. The
transition probabilities become π(x, ω, dy).

Suppose the environment ω changes in time according to some deterministic rule. This is modeled by a
map T : Ω → Ω, where Ω is the collection of all possible states of the environment, and T is a deterministic
law of motion which says that an environment at state ω will evolve after one unit of time to the state T (ω).
Iterating we see that if the initial state of the environment at time zero was ω, then its state at time n will be
ωn = Tn(ω) = (T ◦ · · · ◦ T )(ω).

Returning to our particle, we see that if the initial condition of the environment at time zero is ω, then the
transition probabilities at time n are πωn,n+1(x, dy) = π(x,Tn(ω), dy).

Thus eachω ∈ Ω gives rise to an inhomogeneousMarkov chain Xω , which describes theMarkovian dynamics
of a particle, coupled to a changing environment.

If T (ω) = ω, the environment stays fixed, and the Markov chain is homogeneous, otherwise the Markov chain
is inhomogeneous. We will return to Markov chains in random environment in chapter 9.

Example 2.3 (Markov Chains with Finite Memory) We can weaken the Markov property (2.2) by specifying

that for somefixed k0 ≥ 1, for all E ∈ B(Sn+1),P(Xn+1 ∈ E |Xn, . . . , X1)=



P(Xn+1 ∈ E |Xn, . . . , Xn−k0+1) n>k0;
P(Xn+1 ∈ E |Xn, . . . , X1) n≤k0.

Stochastic processes like that are called “Markov chains with finite memory" (of length k0). Markov chains
with memory of length 1 are ordinary Markov chains. Markov chains with memory of length k0 > 1 can be
recast as ordinary Markov chains by considering the stochastic process X̃ = {(Xn, . . . , Xn+k0−1)}n≥1 with its
natural state spaces, initial distribution, and transition kernels.

Example 2.4 (A Non-Example) Every inhomogeneous Markov chain X can be presented as a homogeneous
Markov chain Y, but this is not very useful.

To obtain such a representation, recall that the state spaces of X are complete separable metric spacesSi . As
such, they are Borel isomorphic to R, or to Z, or to a finite set, or to a union of the above sets (see e.g. [187], §3).
In any case the state spaces can be embedded in a Borel way into R. Fix some Borel bi-measurable injections
ϕi :Si ↪→ R. Let Yn = (ϕn(Xn), n). This is a new presentation of X.

We claim that Y is a homogeneous Markov chain.
Let δξ denote the Dirac measure at ξ, defined by δξ (E) := 1 when E 3 ξ and δξ (E) := 0 otherwise. Let

Sn, πn,n+1 and π denote the states spaces, transition probabilities, and initial distribution of X. Let Z be the
homogeneousMarkov chain with state spaceS := R × N, initial distribution π̂ := (π ◦ ϕ−1

1 ) × δ1 (a measure on
S1 × {1}), and transition probabilities π̂

(
(x, n), A × B

)
= πn,n+1

(
ϕ−1
n (x), ϕ−1

n+1(A)
)
δn+1(B), for x ∈ ϕn(Sn). A

direct calculation shows that the joint distribution Z is equal to the joint distribution of Y = {(ϕn(Xn), n)}n≥1.
So Y is a homogeneous Markov chain.

Such presentations will not be useful to us, because they destroy useful structures which are essential for our
work on the local limit theorem. For example, they destroy the uniform ellipticity property, that we will discuss
in §2.2 below.
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2.1.2 Inhomogeneous Markov Arrays

For technical reasons that we will explain later, it is useful to consider a generalization of a Markov chain, called
aMarkov array. To define a Markov array, we need the following data:

• Row Lengths: kN + 1 where kN ≥ 1 and (kN )N ≥1 is strictly increasing.

• State Spaces: (S(N )
n ,B(S(N )

n )), (1 ≤ n ≤ kN + 1), where S(N )
n is a complete separable metric space, and

B(S(N )
n ) is its Borel σ-algebra.

• Transition Probabilities (or Transition Kernels): {π(N )
n,n+1(x, dy)}

x∈S(N )
n

(1 ≤ n ≤ kN ), where π(N )
n,n+1 are

Borel probability measures on S(N )
n+1 , so that for every Borel E ⊂ S(N )

n+1 , the function x 7→ π(N )
n,n+1(x, E) is

measurable.

• Initial Distributions: Borel probability measures π(N ) (dx) onS(N )
1 .

For each N ≥ 1, this data determines a finite Markov chain of length kN + 1: X(N ) = (X (N )
1 , X (N )

2 , . . . , X (N )
kN+1)

called the N -th row of the array. These rows can be arranged in a triangular array

X =




X (1)
1 , . . . , X (1)

k1+1
X (2)

1 , . . . , X (2)
k1+1, . . . , X (2)

k2+1
X (3)

1 , . . . , X (3)
k1+1, . . . , X (3)

k2+1, . . . , X (3)
k3+1

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Each row X(N ) comes equipped with a joint distribution, which depends on N . But no joint distribution on
elements of different rows is specified.

We will continue to denote the joint probability distribution, expectation, and variance of X(N ) by P,E, and
Var. These objects depend on N , but the index N can be suppressed, because it is always obvious from the
context. As always, in cases when we wish to condition on the initial state X (N )

1 = x, we will write Px and Ex .

Example 2.5 (Markov Chains as Markov Arrays) Every Markov chain {Xn} gives rise to a Markov array
with row lengths kN = N + 1 and rows X(N ) = (X1, . . . , XN+1). In this case S(N )

n = Sn, π(N )
n,n+1 = πn,n+1, and

π(N ) = π.
Conversely, any Markov array so thatS(N )

n = Sn, π(N )
n,n+1 = πn,n+1, and π(N ) = π determines a Markov chain

with state spacesSn, transition probabilities π(N )
n,n+1 = πn,n+1, and initial distributions π(N ) = π.

Example 2.6 (Change of Measure) Suppose {Xn}n≥1 is a Markov chain with data Sn, πn,n+1, π, and let
ϕ(N )
n (x, y) be a family of positive measurable functions onSn ×Sn+1 so that

∫
ϕ(N )
n (x, y)πn,n+1(x, dy) < ∞ for

all x, n and N . Let

π(N )
n (x, dy) :=

ϕ(N )
n (x, y)∫

ϕ(N )
n (x, y)πn,n+1(x, dy)

πn,n+1(x, dy).

Then the data kN = N + 1,S(N )
n := Sn, π(N ) := π and π(N )

n,n+1 determines a Markov array called the change of
measure of {Xn} with weights ϕ (N )

n .

Why study Markov arrays? There are several reasons, and the one most pertinent to this work is the following:
The theory of large deviations for Markov chains, relies on a change of measure which results in Markov
arrays. Thus, readers who are only interested in local limit theorems for Markov chains in the local regime
zN−E(SN )
√

Var(SN )
→ z, may ignore the theory of arrays and limit their attention to Markov chains. But those who are

also interested in the large deviations regime, where ���
zN−E(SN )

Var(SN )
��� is of order 1, will need the theory for Markov

arrays.
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2.1.3 Additive Functionals

An additive functional of a Markov chain with state spaces Sn is a sequence of measurable functions
fn :Sn ×Sn+1 → R. The pair X = {Xn}, f = { fn} determines a stochastic process

SN = f1(X1, X2) + f2(X2, X3) + · · · + fN (Xn, XN+1) (N ≥ 1).

We will often abuse terminology and call {SN }N ≥1 an “additive functional" of X.
An additive functional of a Markov array X with row lengths kN + 1 and state spacesS(N )

n is an array of
measurable functions f (N )

n :S(N )
n ×S

(N )
n+1 → R with row lengths kN :

f =




f (1)
1 , . . . , f (1)

k1

f (2)
1 , . . . , f (2)

k1
, . . . , f (2)

k2

f (3)
1 , . . . , f (3)

k1
, . . . , f (3)

k2
, . . . , f (3)

k3
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

This determines a sequence of random variables SN= f (N )
1 (X (N )

1 , X (N )
2 )+f (N )

2 (X (N )
2 , X (N )

3 )+· · ·+f (N )
kN

(X (N )
kN

, X (N )
kN+1,

N ≥ 1,which we also refer to as an “additive functional." But be careful! This is not a stochastic process, because
no joint distribution of S1, S2, . . . is specified.

Suppose f, g are two additive functionals on X. For Markov chains X, we define, f + g := { fn + gn},

cf := {c fn}, |f| := sup
n

(
sup
x,y
| fn(x, y) |

)
and ess sup |f| := sup

n

(
ess sup | fn(Xn, Xn+1) |

)
.

Similarly, if X is a Markov array with row lengths kN + 1, then we set

f + g := { f (N )
n + g(N )

n }, cf := {c f (N )
n }, |f| := sup

N
sup

1≤n≤kN

(
sup
x,y
| f (N )

n (x, y) |
)
,

and ess sup |f| := supN sup1≤n≤kN

(
ess sup | f (N )

n (X (N )
n , X (N )

n+1 ) |
)
.

The notation |f| ≤ K a.s. will mean that ess sup |f| ≤ K ( “a.s." stands for “almost surely"). An additive
functional is called uniformly bounded if there is a constant K such that |f| ≤ K , and uniformly bounded a.s.
if ∃K such that |f| ≤ K a.s.

2.2 Uniform Ellipticity

2.2.1 The Definition

A Markov chain X with state spacesSn and transition probabilities πn,n+1(x, dy) is called uniformly elliptic, if
there are Borel probability measures µn on Sn, Borel measurable functions pn : Sn ×Sn+1 → [0,∞), and an
ellipticity constant 0 < ε0 < 1 such that for all n ≥ 1,

(a) πn,n+1(x, dy) = pn(x, y)µn+1(dy);
(b) 0 ≤ pn ≤ 1/ε0;
(c)

∫
Sn+1

pn(x, y)pn+1(y, z)µn+1(dy) > ε0.

We call µn+1(dy) background measures. Corollary 2.9 below says that if X is uniformly elliptic with some
background measures, then it is uniformly elliptic with respect to the “natural" background measures µn(E) =
P(Xn ∈ E) (n ≥ 3).

The integral in (c) is the two-step transition probability P(Xn+2 = z |Xn = x), and we will sometime call (c) a
two-step ellipticity condition. For more general γ-step ellipticity conditions, see §2.4.
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Example 2.7 (Doeblin Chains) These are Markov chains X with state spaces Sn of bounded cardinality
|Sn | ≤ M < ∞, and with transition probabilities πnxy := πn,n+1(x, {y}) such that

(1) ∃ε ′0 > 0 s.t. for all n ≥ 1 and (x, y) ∈ Sn ×Sn+1, either πnxy = 0 or πnxy > ε ′0;
(2) for all n, for all (x, z) ∈ Sn ×Sn+2, there exists y ∈ Sn+1 such that πnxyπn+1

yz > 0.

Doeblin chains are uniformly elliptic: Take µn to be the uniform measure on Sn and pn(x, y) := πnxy/|Sn+1 |.
Then (a) is clear, (b) holds with any ε0 < 1/M , and (c) holds with ε0 := (ε ′0/M)2. Doeblin chains are named
after W. Doeblin, who studied homogeneous countable Markov chains satisfying similar conditions.

Here is the formulation of the uniform ellipticity conditions for Markov arrays. A Markov array X with state
spacesS(N )

n , transition probabilities π(N )
n,n+1(x, dy), and row lengths kN + 1 is called uniformly elliptic, if there

exist Borel probability measures µ(N )
n onS(N )

n , Borel measurable functions p(N )
n : S(N )

n ×S
(N )
n+1 → [0,∞), and

a constant 0 < ε0 < 1 as follows: For all N ≥ 1 and 1 ≤ n ≤ kN ,
(a) π(N )

n,n+1(x, dy) = p(N )
n (x, y)µ(N )

n+1(dy); (b) 0 ≤ p(N )
n ≤ 1/ε0; (c)

∫
Sn+1

p(N )
n (x, y)p(N )

n+1 (y, z)µ(N )
n+1(dy) > ε0.

Proposition 2.8 If a Markov array X is uniformly elliptic with background measures µ(N )
n and ellipticity constant

ε0, then for every 3 ≤ n ≤ kN + 1 < ∞,

ε0 ≤
P(X (N )

n ∈ E)

µ(N )
n (E)

≤ ε−1
0 (E ∈ B(S(N )

N )).

Proof Wefix a row N , and drop the superscripts (N ) . Define a probabilitymeasure onSn by Pn(E) = P(Xn ∈ E),
then for every 1 ≤ n < kN , for every bounded measurable ϕ :Sn+2 → R,∫

ϕ dPn+2 = E(ϕ(Xn+2)) = E
[
E
(
E
(
ϕ(Xn+2)��Xn+1, Xn

) ����Xn

)]
= E

[
E
(
E
(
ϕ(Xn+2)��Xn+1

) ��Xn
)]

(∵ Markov property)

=

$
ϕ(z) πn+1,n+2(y, dz) πn,n+1(x, dy)Pn(dx).

So
∫

ϕdPn+2 =

∫
ϕ(z)

[∫ (∫
pn+1(y, z)pn(x, y)µn+1(dy)

)
Pn(dx)

]
µn+2(dz). The quantity in the square

brackets is bounded below by ε0 and bounded above by ε−1
0 . So the measures Pn+2, µn+2 are equivalent, and

ε0 ≤
dPn+2
dµn+2

≤ ε−1
0 . �

Corollary 2.9 If a Markov array X is uniformly elliptic, then there are ε0 > 0 and p(N )
n (x, y) so that the uniform

ellipticity conditions (a),(b) and (c) hold with the background measures µ(N )
n (E) := P[X (N )

n ∈ E] for n ≥ 3.

Proof If X is uniformly elliptic with background measures µ(N )
n , then it is also uniformly elliptic with any other

choice of background measures µ̂(N )
n so that C−1 ≤ dµ̂(N )

n /dµ(N )
n ≤ C, with C positive and independent of n

and N . The corollary follows from the previous proposition. �

Corollary 2.10 Let X be a uniformly elliptic Markov chain with ellipticity constant ε0, and suppose Y is a
Markov array obtained from X by the change of measure construction described in Example 2.6. If the weights
satisfy C−1 ≤ ϕ(N )

n (x, y) ≤ C for all n and N , then Y is uniformly elliptic with ellipticity constant ε0/C4, and
∃M = M (ε0,C) > 1 such that for all N and 3 ≤ n ≤ N ,

M−1 ≤
P[Y (N )

n ∈ E]
P[Xn ∈ E]

≤ M . (2.5)

Proof Let πn,n+1(x, dy) be the transition probabilities of X. By assumption, πn,n+1(x, dy) = pn(x, y)µn+1(dy)
where pn(x, y) satisfies the uniform ellipticity conditions. Then the transition probabilities of Y are given by
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q(N )
n (x, y)µn+1(dy), where q(N )

n (x, y) :=
pn(x, y)ϕ(N )

n (x, y)∫
ϕ(N )
n (x, z)πn,n+1(x, dz)

. (2.6)

Since q(N )
n (x, y) = C±2pn(x, y), Y is uniformly elliptic with ellipticity constant ε0/C4. (2.5) follows from (2.6)

and Proposition 2.8. �

Caution! The Radon-Nikodym derivative of the joint distributions of (X3, . . . , XN ) and (Y (N )
3 , . . . ,Y (N )

N ) need
not be uniformly bounded as N → ∞.

2.2.2 Contraction Estimates and Exponential Mixing

Suppose X,Y are complete and separable metric spaces.
A transition kernel from X to Y is a family {π(x, dy)}x∈X of Borel probability measures on Y so that

x 7→ π(x, E) is measurable for all E⊂ Y Borel. A transition kernel {π(x, dy)}x∈X determines two Markov
operators, one acting on measures and the other acting on functions. The action on measures takes a probability

measure µ on X and maps it to a probability measure on Y via π(µ)(E) :=
∫
X

π(x, E)µ(dx). The action

on functions takes a bounded Borel function u : Y → R and maps it to a bounded Borel function on X via

π(u)(x) =
∫
Y

u(y)π(x, dy).We have a duality:

∫
u(y) π(µ)(dy) =

∫
π(u)(x) µ(dx). (2.7)

Define the oscillation of a function u : Y→ R to be

Osc(u) := sup
y1,y2∈Y

|u(y1) − u(y2) |. (2.8)

The contraction coefficient of {π(x, dy)}x∈X is

δ(π) := sup{|π(x1, E) − π(x2, E) | : x1, x2 ∈ X, E ∈ B(Y)}.

The total variation distance between two probability measures µ1, µ2 on X is

‖µ1 − µ2‖Var:=sup{|µ1(A) − µ2(A) | : A ⊂ X is measurable}≡
1
2

sup
{∫

w(x)(µ1 − µ2)(dx)��w : X → [−1, 1] is measurable
}
.

Caution! ‖µ1 − µ2‖Var is actually one-half of the total variation of µ1 − µ2, because it is equal to (µ1 − µ2)+(X)
and to (µ1 − µ2)−(X), but not to

|µ|(X) = (µ1 − µ2)+(X) + (µ1 − µ2)−(X).

Lemma 2.11 (Contraction Lemma) SupposeX,Yare complete and separable metric spaces, and {π(x, dy)}x∈X
is a transition kernel from X to Y. Then:

(a) 0 ≤ δ(π) ≤ 1.
(b) δ(π) = sup{Osc[π(u)] | u : Y→ R measurable, and Osc(u) ≤ 1}.
(c) If Z is a complete separable metric space, π1 is a transition kernel from X to Y, and π2 is a transition kernel

from Y to Z, then δ(π1 ◦ π2) ≤ δ(π1)δ(π2).
(d) Osc[π(u)] ≤ δ(π) Osc(u) for every u : Y→ R bounded and measurable.
(e) ‖π(µ1) − π(µ2)‖Var ≤ δ(π)‖µ1 − µ2‖Var for all Borel probability measures µ1, µ2 on X.
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(f) Suppose λ is a probability measure on X × Y with marginals µX , µY, and transition kernel {π(x, dy)}, i.e.
λ(E × Y) = µX (E), λ(X × E) = µY(E), and λ(dx, dy) = π(x, dy)µX (dx). Let f ∈ L2(µX), g ∈ L2(µY) be

two elements with zero integral. Then
�����

∫
X×Y

f (x)g(y)λ(dx, dy)
�����
≤

√
δ(π)‖ f ‖L2 (µX ) ‖g‖L2 (µY) .

(g) Let λ, µX, µY and π be as in (f), and suppose g ∈ L2(µY) has integral zero, then π(g) ∈ L2(µX) has integral
zero, and ‖π(g)‖L2 (µX ) ≤

√
δ(π)‖g‖L2 (µY) .

Proof (a) is trivial. The inequality ≤ in (b) is because for every E ∈ B(Y), u := 1E satisfies Osc(u)≤1. To see ≥,
fix some u : Y→ R measurable such that Osc(u) ≤ 1. Suppose first that u is a “simple function:" a measurable

function with finitely many values. Then we can write u = c +
m∑
i=1

αi1Ai where c ∈ R, |αi | ≤
1
2 Osc(u), and Ai

measurable and pairwise disjoint. For every pair of points x1, x2 ∈ X,

|π(u)(x1) − π(u)(x2) | =
������

m∑
i=1

αi[π(x1, Ai) − π(x2, Ai)]
������

≤
����

∑
π (x1,Ai )>π (x2,Ai )

αi[π(x1, Ai) − π(x2, Ai)]
���� +

����
∑

π (x1,Ai )<π (x2,Ai )

αi[π(x1, Ai) − π(x2, Ai)]
����

!
≤

1
2

Osc(u)δ(π) +
1
2

Osc(u)δ(π) = δ(π) Osc(u) ≤ δ(π) (∵ Ai are disjoint).

So Osc[π(u)] ≤ δ(π) for all simple functions u with Osc(u) ≤ 1.
It follows that Osc[π(u)] ≤ δ(π) for all measurable u s.t. Osc(u) ≤ 1. This proves (b).
Clearly, (b) ⇒ (d) ⇒ (c). To see (e), we restrict to the non-trivial case µ1 , µ2. Let µ := µ1 − µ2, and

decompose µ = µ+ − µ− where µ± are singular positive measures (this is the Jordan decomposition). Since
µ(X) = 0, µ+ and µ− have equal total mass, and µ±(X) = 1

2 (µ+(X) + µ−(X)) = 1
2 |µ|(X) ≡ ‖µ1 − µ2‖Var. Let

µ̂1 := µ+/‖µ1 − µ2‖Var , µ̂2 := µ−/‖µ1 − µ2‖Var , µ̂ := µ̂1 − µ̂2 =
µ1 − µ2

‖µ1 − µ2‖Var
.

Note that µ̂1 and µ̂2 are probability measures.
For every non-constant measurable function w : Y→ [−1, 1],

1
2

∫
Y
w(y)π(µ)(dy)

‖µ1 − µ2‖Var
=

1
2

∫
Y

w(y1)π( µ̂1)(dy1) −
∫
Y

w(y2)π( µ̂2)(dy2)

=
1
2

∫
X

π(w)(x1) µ̂1(dx1) −
∫
X

π(w)(x2) µ̂2(dx2), see (2.7)

=
1
2

∫
X

∫
X

[π(w)(x1) − π(w)(x2)]µ̂1(dx1) µ̂2(dx2), because µ̂i (X) = 1,

≤
1
2
δ(π) Osc(w) ≤ δ(π), by (b) and because Osc(w) ≤ 2‖w‖∞ ≤ 2.

Passing to the supremum over all w(y) gives part (e).
Part (f) is the content of Lemma 4.1 in [181]. We reproduce the proof given there.
Consider the σ-algebra G := {X × E : E ⊂ Y is measurable}, then G represents the information on the

Y–coordinate of (x, y) ∈ X × Y.
Let π̃y be a measurable family of conditional probabilities given G , i.e. π̃y is a probability measure on X×{y},

y 7→
∫

f dπ̃y is Borel for every Borel function f : X × Y→ [0, 1], λ =
∫
X×Y

π̃ydλ, and for every λ–absolutely

integrable f (x, y), Eλ( f (x, y) |G )(y) =
∫
X

f dπ̃y λ-a.e.

Wemay identify π̃y with a probabilitymeasure π̂(y, dx) onX defined by π̂(y, E) = π̃y (E×{y}) (E ⊂ X Borel).
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It is useful to think of π̂(y, dx) as the transition kernel “which goes the opposite way" to π(x, dy). Indeed, if
π(x, dy) is the transition probability of a Markov chain {Xn} from n to n + 1, and λ is the joint distribution of
(Xn, Xn+1), then π̂(y, dx) is the transition probability from n + 1 to n, i.e. π̂(y, E) = P(Xn ∈ E |Xn+1 = y).

The operators π : L2(µY) → L2(µX) and π̂ : L2(µX) → L2(µY) are dual to one another, because∫
X

f (x)π(g)(x)dµX (x) and
∫
Y
π̂( f )(y)g(y)dµY(y) are both equal to

!
f (x)g(y)λ(dx, dy).

Claim: Q := π◦ π̂ : L2(µX) → L2(µX) is self-adjoint,Q preserves the linear subspace L2
0(µX) := { f ∈ L2(µX) :∫

f dµX = 0}, and the spectral radius of Q : L2
0 → L2

0 is at most δ(Q).

Proof of the Claim: Q is self adjoint, because Q∗ = (ππ̂)∗ = π̂∗π∗ = ππ̂ = Q.
It is useful to notice that Q is given by (Q f )(x) =

∫
X

f (x ′)Q(x, dx ′) where Q(x, E) is the probability
measure on X given by Q(x, E) =

∫
π̂(y, E)π(x, dy). Q(x, dx ′) is a transition probability from X to X. Notice

that Q(µX) = µX:

(QµX)(E) =
∫
X

Q(x, E)µX (dx) =
∫
X

∫
Y

µX (dx)π(x, dy)π̃y (E × {y})

=

∫
X×Y

π̃y (E × {y})λ(dx, dy) =
∫
X×Y

π̃y (E × Y)dλ = λ(E × Y) = µX (E).

Thus, for all f ∈ L2(µX),
∫

Q f dµX =
∫

f d(QµX) =
∫

f dµX . It follows thatQ : L2(µX) → L2(µX) preserves
the linear space L2

0.

For every ϕ ∈ L2
0 ∩ L∞, ‖ϕ‖∞ ≤ Osc(ϕ). Since Q preserves L2

0 ∩ L∞, for every f in this space, we have by
parts (c) and (d) that

‖Qn f ‖2 ≤ ‖Qn f ‖∞ ≤ Osc(Qn f ) ≤ δ(Q)n Osc( f ). (2.9)

This implies that the spectral radius of Q : L2
0 → L2

0 is less than or equal to δ(Q). Otherwise there
is an L2

0-function, part of whose spectral decomposition corresponds to the part of the spectrum outside
{λ ∈ R : |λ | ≤ δ(Q) + ε } (self-adjoint operators have real spectrum). Any sufficiently close L2

0 ∩ L∞–function
would have components with similar properties; but the existence of such components is inconsistent with (2.9).
The proof of the claim is complete.

Q : L2
0 → L2

0 is a self-adjoint, with spectral radius at most δ(Q), so for all f ∈ L2
0(µX), 〈Q( f ), f 〉L2

0
≤

δ(Q)‖ f ‖2
L2

0
, and

‖π̂( f )‖2
L2

0 (µY)
= 〈π̂( f ), π̂( f )〉L2

0 (µY) = 〈Q( f ), f 〉L2
0 (µX ) ≤ δ(Q)‖ f ‖2

L2
0 (µX )

.

We can now prove (f). Fix f ∈ L2
0(µX), g ∈ L2

0(µY), then

�����

∫
X×Y

f (x)g(y)λ(dx, dy)
�����
=

�����

∫
Y

µY(dy)
∫
X

π̂(y, dx) f (x)g(y)
�����
= 〈π̂( f ), g〉L2 (µY)

≤ ‖π̂( f )‖2‖g‖2 ≤
√
δ(Q)‖ f ‖2‖g‖2, as stated in (f).

If g ∈ L2
0(µY), then

∫
π(g)dµX =

"
g(y)µX (dx)π(x, dy) =

"
g(y)λ(dx, dy) =

∫
g(y)µY(dy) = 0.

Substituting f := π(g) in (f) and noting that
∫

π(g)(x)g(y)λ(dx, dy) =
∫

(π(g))2(x)dµX (dx) = ‖π(g)‖22,

we obtain (g). �

We now return to the setup of Markov arrays and consider the following two-step transition probabilities

π(N )
n,n+2(x, E) :=

∫
π(N )
n+1,n+2(y, E) π(N )

n,n+1(x, dy),
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defined for 1 ≤ n ≤ kN − 1, x ∈ S(N )
n , and E ∈ B(S(N )

n+2 ). The uniform ellipticity condition gives the following
uniform bound for δ(π(N )

n,n+2):

Lemma 2.12 LetX be a uniformly ellipticMarkov arraywith ellipticity coefficient ε0. Then sup
N

sup
1≤n<kN

δ(π(N )
n,n+2) ≤

1 − ε0. Similarly for Markov chains.

Proof We fix N and drop the superscripts (N ) .
Uniform ellipticity implies that πn,n+2(x, dy) � µn+2(dy) and that the Radon-Nikodym density is bounded

from below by ε0. This allows us to find a transition kernel π̂n,n+1(x, dy) such that

πn,n+2(x, dy) = ε0µn+2(dy) + (1 − ε0)π̂n,n+2(x, dy). (2.10)

Note that the first term does not depend on x.
Let u :Sn+2 → R be a measurable function with Osc(u) ≤ 1, then we can write u(·) = c + w(·), where c is a

constant and ‖w‖∞ ≤ 1
2 . A direct calculation shows that

�����

∫
Sn

u(z)πn,n+2(x1, dz) −
∫
Sn

u(z)πn,n+2(x2, dz)
�����
=

�����

∫
Sn

w(z)πn,n+2(x1, dz) −
∫
Sn

w(z)πn,n+2(x2, dz)
�����
=

(1−ε0)
�����

∫
Sn

w(z)π̂n,n+2(x1, dz)−
∫
Sn

w(z)π̂n,n+2(x2, dz)
�����
≤ (1−ε0)‖w‖∞

[
πn,n+2(x1,Sn+2)+πn,n+2(x2,Sn+2)

]
≤1−ε0.�

Proposition 2.13 Let X be a uniformly elliptic Markov array with row lengths kN +1. Then there exist θ ∈ (0, 1)
and Cmix > 0, which only depend on the ellipticity constant ε0, as follows. Suppose h(N )

n (x, y) are measurable
functions onS(N )

n ×S
(N )
n+1 , and let h(N )

n := h(N )
n (X (N )

n , X (N )
n+1 ), then:

(1) If h(N )
n is bounded and E(h(N )

n ) = 0, then for all 1 ≤ m < n ≤ kN ,

‖E
(
h(N )
n |X (N )

m

)
‖∞ ≤ Cmixθ

n−m‖h(N )
n ‖∞. (2.11)

(2) If Var(h(N )
n ),Var(h(N )

m ) < ∞ and E(h(N )
n ),E(h(N )

m ) = 0, then for all 1 ≤ m < n ≤ kN ,

‖E(h(N )
n |X (N )

m )‖2 ≤ Cmixθ
n−m‖h(N )

n ‖2; (2.12)

|E(h(N )
m h(N )

n ) | ≤ Cmixθ
n−m‖h(N )

m ‖2‖h(N )
n ‖2. (2.13)

The analogous statements hold for Markov chains.

Proof We fix N and drop the superscripts (N ) . Let wn,k (Xk ) := E(hn |Xk ) (k < n). Then πk−1,k (wn,k ) = wn,k−1,
because

πk−1,k (wn,k )(Xk−1) =
∫

wn,k (y)πk−1,k (Xk−1, dy) = E[wn,k (Xk ) |Xk−1] = E[E(hn |Xk ) |Xk−1]

!
= E[E(hn |Xk, Xk−1, . . . , X1) |Xk−1],= E(hn |Xk−1) = wn,k−1(Xk−1) (! follows by the Markov property)

Hence wn,m(Xm) = (πm,m+1 ◦ · · · ◦ πn−1,n)(wn,n)(Xm).
By the previous lemmas, Osc[wn,m] ≤ (1 − ε0) b

n−m
2 c Osc[wn,n]. Notice that for every bounded measurable

function v, ‖v‖∞ ≤ |E(v) | + Osc(v). Since by assumption E(wn,m(Xm)) = E(hn) = 0,

‖E(hn |Xm)‖∞ = ‖wn,m(Xm)‖∞ ≤ (1 − ε0) b
n−m

2 c Osc[wn,n].

Since Osc[wn,n] ≤ 2‖wn,n‖∞ ≤ 2‖hn‖∞, (2.11) follows.
(2.12) can be proved in the same way, using Lemma 2.11(g).
By the Markov property, E(hmhn)=E[E(hmhn |Xm, Xm+1)]=E[hmE(hn |Xm+1)]. So

|E(hmhn) | ≤ ‖hm‖2‖E(hn |Xm+1)‖2, and (2.12)⇒(2.13), perhaps with a bigger Cmix . �
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Lemma 2.14 Suppose f is a uniformly bounded additive functional of a uniformly elliptic Markov array X. There
is a constantC which only depends on the ellipticity constant of X such that∀{`N }, if h(N )

`N
are uniformly bounded

measurable functions onS(N )
`N
×S

(N )
`N+1

, and ess sup |h(N )
`N
| ≤ L, then

Cov
(
SN, h

(N )
`N

(X (N )
`N

, X (N )
`N+1

)
)
≤ CL ess sup |f|.

Proof Write Cov(SN, h
(N )
`N

) =
kN∑
n=1

Cov( f (N )
n , h(N )

`N
) and use (2.13). �

2.2.3 Bridge Probabilities

We would like to define “the distribution of X (N )
n given X (N )

n−1 = x and X (N )
n+1 = z" for every (not just almost

every) x, z.
Suppose X is uniformly elliptic, and write π(N )

n,n+1(x, dy) = p(N )
n (x, y)µ(N )

n+1(dy), with p(N )
n and µ(N )

n as in the
definition of uniform ellipticity.

Then Z (N )
n (x, z) :=

∫
S

(N )
n+1

p(N )
n (x, y)p(N )

n+1 (y, z)µ(N )
n+1(dy) > ε0 > 0, and we can define a measure onS(N )

n+1 by

P
(

E
����
X (N )
n = x

X (N )
n+2 = z

)
:=

1
Z (N )
n (x, z)

∫
E

p(N )
n (x, y)p(N )

n+1 (y, z)µ(N )
n+1(dy). (2.14)

Lemma 2.15 Let ψE (x, z) denote the right-hand-side of (2.14), then

ψE (X (N )
n , X (N )

n+2 ) = P
(
X (N )
n+1 ∈ E��X (N )

n , X (N )
n+2

)
P-almost everywhere.

Proof We fix N and drop the superscripts (N ) .
Clearly ψE (Xn, Xn+2) is measurable with respect to the σ-algebra generated by Xn, Xn+2. To prove the

lemma, we need to check that for every bounded measurable function ϕ onSn ×Sn+2, E[(ϕψE )(Xn, Xn+2)] =
E[ϕ(Xn, Xn+2)1E (Xn+1)].

Let Pn denote the measure Pn(E ′) = P(Xn ∈ E ′), then

E[(ϕψE )(Xn, Xn+2)]=
$

ϕ(x, z)

∫
pn(x, y′)pn(y′, z)1E (y′)µn+1(dy′)

Zn(x, z)
pn(x, y)pn+1(y, z)Pn(dx)µn+1(dy)µn+2(dz).

After integrating out y, we are leftwith the triple integral
$

ϕ(x, z)1E (y′)p(x, y′)pn(y′, z)Pn(dx)µn+1(dy′)µn+2(dz),

which equals E[ϕ(Xn, Xn+2)1E (Xn+1)]. �

The lemma does not “prove" (2.14): Conditional probabilities are only defined almost everywhere; but the
point of (2.14) is that it makes sense for all x, z.

Motivated by Lemma 2.15, we call (2.14) the bridge distribution of X (N )
n+1 given that X (N )

n = x and X (N )
n+2 = z.

The “bridge" x → E → z in (2.14) has length 2. It is easy to extend the definition to bridges of length m ≥ 3.
Suppose 1 ≤ n ≤ n + m ≤ kN + 1, and let

S
(N )
n,m :=S(N )

n × · · · ×S
(N )
n+m, (2.15)

µ(N )
n,m := µ(N )

n × · · · × µ(N )
n+m, (2.16)
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p(N )
n,m (xn, . . . , xn+m) :=

m−1∏
i=0

p(N )
n+i (xn+i, xn+i+1), (2.17)

p(N )
n (xn → xn+m) :=

∫
S

(N )
n+1,m−2

p(N )
n,m (xn, ξn+1, . . . , ξn+m−1, xn+m)dµ(N )

n+1,m−2 , (2.18)

where the integration is over (ξn+1, . . . , ξn+m−1).
Note that p(N )

n (xn→ xn+m) is the density of P[X (N )
n+m = dxn+m |X

(N )
n = xn] with respect to µ(N )

n+m. By uniform
ellipticity, p(N )

n (xn → xn+m) ≤ ε−m0 , and

p(N )
n (xn→ xn+m) =

∫
S

(N )
n+1,m−2

dµ(N )
n+1,m−3

[
p(N )
n,m−2(xn, ξn+1, . . . , ξn+m−2)×

×

∫
S

(N )
n+m−1

p(ξn+m−2, ξn+m−1)p(ξn+m−1, xn+m)µ(N )
n+m−1(dξn+m−1)


≥ ε0. (2.19)

Since p(N )
n (xn → xn+m) , 0, we can define the bridge distribution of X (N )

n+1 given that X (N )
n = xn and

X (N )
n+m = zn+m to be the measure onS(N )

n+1,m−2, given by

P

(
E

����
X (N )
n = xn

X (N )
n+m = zn+m

)
:=

1
p(N )
n (xn → zn+m)

∫
E

p(N )
n,m (xn, ξn+1, . . . , ξn+m−1, zn+m)dµ(N )

n+1,m−2, (2.20)

where the integration is over (ξn+1, . . . ξn+m−1).
Again, this agrees a.s. with E(1E |X (N )

n , X (N )
n+m)(xn, zn+m). But unlike the conditional expectation, (2.20)

makes sense globally, and pointwise, and is not just an L1-equivalence class.

2.3 Structure Constants

Throughout this section we assume that f is an additive functional on a uniformly elliptic Markov array X with
row lengths kN + 1, state spacesS(N )

n , and transition probabilities π(N )
n,n+1(x, dy) = p(N )

n (x, y)µ(N )
n+1(dy), as in the

ellipticity condition. By Corollary 2.9, we may assume that µ(N )
n (E) = Pn(E) := P(X (N )

n ∈ E) for n ≥ 3.

2.3.1 Hexagons

A Level N hexagon at position 3 ≤ n ≤ kN is 6-tuple
(
xn−2; xn−1

yn−1
; xn
yn

; yn+1

)
where xi, yi ∈ S

(N )
i . A hexagon

is admissible if

p(N )
n−2 (xn−2, xn−1)p(N )

n−1 (xn−1, xn)p(N )
n (xn, yn+1) , 0, p(N )

n−2 (xn−2, yn−1)p(N )
n−1 (yn−1, yn)p(N )

n (yn, yn+1) , 0.

Admissible hexagons exist because of uniform ellipticity. The hexagon spaces are the spaces of level N
admissible hexagons at position n. We denote them by Hex(N, n) or, in the case of Markov chains, by Hex(n).

The hexagon measure mHex = mN,n
Hex is the probability measure on Hex(N, n) arising from the following

sampling procedure for
(
xn−2; xn−1

yn−1
; xn
yn

; yn+1

)
:

• Let {X (N )
n } and {Y (N )

n } be two independent copies of X;
• (xn−2, xn−1) is sampled from the distribution of (X (N )

n−2, X (N )
n−1 );
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• (yn, yn+1) is sampled from the distribution of (Y (N )
n ,Y (N )

n+1 ) (so it is independent of (xn, xn+1));
• xn and yn−1 are conditionally independent given the previous choices, and are sampled using the bridge

distributions

P(xn ∈ E |xn−1, yn+1) = P
(
X (N )
n ∈ E��X (N )

n−1 = xn−1, X (N )
n+1 = yn+1

)
P(yn−1 ∈ E |xn−2, yn) = P

(
Y (N )
n−1 ∈ E��Y (N )

n−2 = xn−2Y (N )
n = yn

)
.

To write this explicitly in coordinates, we let P =
(
xn−2; xn−1

yn−1
; xn
yn

; yn+1

)
, and set:

mProd(dP) = mN,n
Prod(dP) := Pn−2(dxn−2)

n∏
i=n−1

µ(N )
i (dxi)

n+1∏
i=n−1

µ(N )
i (dyi)

ϕ+(P) = ϕ+N,n(P) := p(N )
n−2 (xn−2, xn−1)p(N )

n−1 (xn−1, xn)p(N )
n (xn, yn+1) (2.21)

ϕ−(P) = ϕ−N,n(P) := p(N )
n−2 (xn−2, yn−1)p(N )

n−1 (yn−1, yn)p(N )
n (yn, yn+1)

Z+(P) = Z+N,n(P) :=
∫

p(N )
n−1 (xn−1, ξ)p(N )

n (ξ, yn+1)µ(N )
n (dξ)

Z−(P) = Z−N,n(P) :=
∫

p(N )
n−2 (xn−2, ξ)p(N )

n−1 (ξ, yn)µ(N )
n−1(dξ).

We will drop the indices N, n when they are clear from the context. It is not difficult to see that the following
identity holds:

mHex (dP) =
ϕ+(P)ϕ−(P)
Z+(P)Z−(P)

mProd(dP). (2.22)

The hexagon measure is asymmetric in the following sense: mHex ◦ ı , mHex , where ı is the involution

ı :
(
xn−2; xn−1

yn−1
; xn
yn

; yn+1

)
7→

(
xn−2; yn−1

xn−1
; ynxn

; yn+1

)
. There is another natural measure on Hex (N, n) which

is invariant under ı.
This measure, which we will denote by m′Hex , is the result of the following sampling procedure for P :=(

xn−2; xn−1
yn−1

; xn
yn

; yn+1

)
:

• Let {X (N )
n } and {Y (N )

n } be two independent copies of X;
• xn−2 is sampled from the distribution of X (N )

n−2 ;
• yn+1 is sampled from the distribution of Y (N )

n+1 (so it is independent of xn);
• conditioned on xn−2, xn+1, the pairs (xn−1, xn) and (yn−1, yn) are independent, and identically distributed like

the bridge distribution of (X (N )
n−1, X (N )

n ) given X (N )
n−2 = xn−2, X (N )

n+1 = xn+1.

Equivalently, if Z (P) = ZN,n(P) = p(N )
n (xn−2 → yn+1) (see (2.18)), then

m′Hex (dP) =
ϕ+(P)ϕ−(P)

Z (P)2 mProd(dP). (2.23)

Recall that Z±(P) ∈ [ε0, ε
−1
0 ] and Z (P) ∈ [ε0, ε

−3
0 ], see (2.18) and (2.19). Therefore:

ε4
0 ≤

dm′Hex
dmHex

≤ ε−8
0 . (2.24)

Because of (2.24), we could have chosen either mHex or m′Hex as the basis for our work. The reason we prefer
the asymmetric mHex to the symmetric m′Hex will become apparent in §2.3.3. There we will see that {mN,n

Hex } can
be coupled in a natural way.
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2.3.2 Balance and Structure Constants

The balance of a hexagon P :=
(
xn−2; xn−1

yn−1
; xn
yn

; yn+1

)
∈ Hex (N, n) is

Γ(P) := f (N )
n−2 (xn−2, xn−1) + f (N )

n−1 (xn−1, xn) + f (N )
n (xn, yn+1) − f (N )

n−2 (xn−2, yn−1) − f (N )
n−1 (yn−1, yn) − f (N )

n (yn, yn+1).
(2.25)

The structure constants of f = { f (N )
n } are

u(N )
n := u(N )

n (f) := EmN ,n
Hex

(
Γ(P)2)1/2, d (N )

n (ξ) := d (N )
n (ξ, f) := EmN ,n

Hex
(|eiξΓ(P) − 1|2)1/2,

UN := UN (f) :=
kN∑
n=3

(u(N )
n )2 , DN (ξ) :=

kN∑
n=3

d (N )
n (ξ)2,

(2.26)

where the expectation is over random P∈Hex (N, n). IfX is aMarkov chain, wewrite un=u(N )
n and dn(ξ)=d (N )

n (ξ).
The significance of these quantities was mentioned briefly in §1.3, and will be explained in later chapters.

At this point we can only say that the behavior of UN determines if Var(SN ) → ∞, and the behavior of DN (ξ)
determines “how close" f is to an additive functional whose values all belong to a coset of the lattice (2π/ξ)Z.

Lemma 2.16 Suppose f, g are two additive functionals of on a uniformly elliptic Markov array X, and let ξ, η be
real numbers, then

(a) d (N )
n (ξ + η, f)2 ≤ 8(d (N )

n (ξ, f)2 + d (N )
n (η, f)2);

(b) d (N )
n (ξ, f + g)2 ≤ 8(d (N )

n (ξ, f)2 + d (N )
n (ξ, g)2);

(c) d (N )
n (ξ, f) ≤ |ξ |u(N )

n (f);
(d) u(N )

n (f + g)2 ≤ 2[u(N )
n (f)2 + u(N )

n (g)2].

Proof For any z,w ∈ C such that |z |, |w | ≤ 2, we have 1 |zw + z + w |2 ≤ 8(|z |2 + |w |2). So if P ∈ Hex (N, n)
and ξP := ξΓ(P), ηP := ηΓ(P), then

|ei(ξP+ηP ) − 1|2 = |(eiξP − 1)(eiηP − 1) + (eiξP − 1) + (eiηP − 1) |2 ≤ 8
(
|eiξP − 1|2 + |eiηP − 1|2

)
. (2.27)

Part (a) follows by integrating over all P ∈ Hex(n, N ). Part (b) has a similar proof which we omit. Part
(c) is follows from the inequality |eiθ − 1|2 = 4 sin2 θ

2 ≤ |θ |
2. Part (d) follows from the general inequality

(a + b)2 ≤ 2(a2 + b2). �

Lemma 2.17 Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic Markov chain X.
Fix x ∈ S1, and let dn(ξ, x) denote the structure constants of f on X conditioned on X1 = x. Then there exists
0 < θ < 1 such that |d2

n(ξ, x) − d2
n(ξ) | = O(θn) for all ξ ∈ R.

The proof is given in §2.3.3.

Example 2.18 (Vanishing Structure Constants) Suppose fn(x, y) = an+1(y) − an(x) + cn for all n, then the
balance of each hexagon is zero and un, dn(ξ) are all zero. For more on this, see §3.2.1.

Suppose fn(x, y) = an+1(y)− an(x)+ cn mod 2π
ξ Z for all n. Then eiξΓ(P) = 1 for all hexagons P, and dn(ξ)

are all zero. For more on this, see §4.3.1.

Example 2.19 (Sums of Independent Random Variables) Let SN = X1 + · · ·+ XN . where Xi are independent
real valued random variables with non-zero variance. Let us see what un measures in this case.

Proposition 2.20 u2
n = 2

(
Var(Xn−1) + Var(Xn)

)
and UN :=

∑N
n=3 u2

n � Var(SN ) (i.e ∃N0 such that the ratio of
the two sides is uniformly bounded for N ≥ N0).

1 (zw+z+w)2 = z2w2+z2+w2+2(z2w+zw2+zw), and |z2w2 | ≤ 4 |zw | ≤ 2 |z |2+2 |w |2, |z2w | ≤ 2 |z |2, 2 |zw | ≤ |z |2+ |w |2,
|zw2 | ≤ 2 |w |2.
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Proof Let {Yn} be an independent copy of {Xn}, and let X∗i := Xi − Yi (the symmetrization of Xi). A simple
calculation shows that the balance of a position n hexagon is equal in distribution to X∗

n−1+X∗n . ClearlyE[X∗i ] = 0
and E[(X∗i )2] = 2Var(Xi). Consequently,

u2
n(ξ) = E[(X∗n−1)2 + (X∗n)2] = 2Var(Xn−1) + 2Var(Xn).

Summing over n we obtain
∑N

n=3 u2
n � Var(SN ). �

We remark that the proposition also holds for Markov arrays satisfying the one-step ellipticity condition (see
§2.4 and §3.1).

Now we describe the meaning of dn(ξ) for sums of independent random variables, and relate it to the distance
of Xn−1 and Xn from cosets of 2π

ξ Z.
Given a real-valued random variable X , let

D(X, ξ) := min
θ∈R

E

[
dist2

(
X, θ +

2π
ξ
Z

)]1/2
. (2.28)

The minimum exists because the quantity we are minimizing is a periodic and continuous function of θ.

Proposition 2.21 For every ξ , 0, dn(ξ) = 0 iff there are constants θi such that Xi ∈ θi +
2π
ξ Z a.s. (i = n−1, n).

In addition, there exists C(ξ) > 1 such that if dn(ξ) and D(Xn−1, ξ)2 +D(Xn, ξ)2 are not both zero, then

C(ξ)−1 ≤
d2
n(ξ)

D(Xn−1, ξ)2 +D(Xn, ξ)2 ≤ C(ξ).

Proof Choose θi ∈ [0, 2π
ξ ] such that D(Xi, ξ) = E[dist2(Xi, θi +

2π
ξ Z)]1/2. There is no loss of generality in

assuming that θi = 0, because the structure constants of f i (x) = x and gi (x) = x − θi are the same. Henceforth
we assume that

D(Xi, ξ) = E
[
dist2

(
Xi,

2π
ξ
Z

)]1/2
. (2.29)

As in the proof of the previous proposition, the balance of a position n hexagon is equal in distribution to
X∗
n−1 + X∗n, where X∗i := Xi − Yi and {Yi } is an independent copy of {Xi }. So d2

n(ξ) = E( |ei(X∗
n−1+X

∗
n ) − 1|2).

We need the following elementary facts:

|ei(x+y) − 1|2 = 4 sin2 x+y
2 = 4(sin x

2 cos y
2 + sin y

2 cos x
2 )2 (x, y ∈ R) (2.30)

4
π2 dist2(t, πZ) ≤ sin2 t ≤ dist2(t, πZ) (t ∈ R) (2.31)

P[X∗i ∈ (− π
2ξ ,

π
2ξ ) + 2π

ξ Z] ≥ 1
16 (i ≥ 1) (2.32)

(2.30) is trivial; (2.31) is because of the inequality2 2t/π ≤ sin t ≤ t on [0, π2 ]. To see (2.32), we decompose
R =

⊎3
k=0

(
[0, π2ξ ) + kπ

2ξ +
2π
ξ Z

)
, and note that there must be some k ∈ {0, 1, 2, 3} such that P[Xi ∈ [0, π2ξ )+ kπ

2ξ +
2π
ξ Z] ≥ 1

4 . Since Yi is an independent copy of Xi , P[Xi,Yi ∈ [0, π2ξ ) + kπ
2ξ +

2π
ξ Z] ≥ 1

16 . This event is a subset of
the event

[
X∗i ∈ (− π

2ξ ,
π
2ξ ) + 2π

ξ Z
]
, and (2.32) follows.

Returning to the identity d2
n(ξ) = E( |ei(X∗

n−1+X
∗
n ) − 1|2), we see that by (2.30)

d2
n(ξ) = E( |eiξ (X∗

n−1+X
∗
n ) − 1|2) = 4E

(
sin2 ξX∗

n−1
2 cos2 ξX∗n

2 + sin2 ξX∗n
2 cos2 ξX∗

n−1
2 + 1

2 sin(ξX∗n−1) sin(ξX∗n)
)
.

Since X∗i is symmetric, E[sin(ξX∗i )] = 0, and so

d2
n(ξ) = 4E

(
sin2 ξX∗

n−1
2

)
E

(
cos2 ξX∗n

2

)
+ 4E

(
sin2 ξX∗n

2

)
E

(
cos2 ξX∗

n−1
2

)
. (2.33)

2 sin t ≥ t/(π/2) by convexity. The inequality sin t ≤ t follows by integrating the inequality cos s ≤ 1 between 0 and t .
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By (2.32), E
(
cos2 ξX∗i

2

)
≥ cos2( π4 )P[X∗i ∈ (− π

2ξ ,
π
2ξ ) + 2π

ξ Z] ≥ 1
32 . Therefore,

d2
n(ξ) = Cn(ξ)

[
E

(
sin2 ξX∗

n−1
2

)
+ E

(
sin2 ξX∗n

2

)]
with Cn(ξ) ∈ [ 1

8, 4]. (2.34)

It remains to boundE
(
sin2( ξX

∗
i

2 )
)
in terms ofD(Xi, ξ)2. By (2.30),E

(
sin2 ξX∗i

2

)
=E

[(
sin ξXi

2 cos ξYi
2 −sin

ξYi
2 cos ξXi

2

)2]
;

So E
(
sin2 ξX∗i

2

)
= 2E

(
sin2 ξXi

2

)
E

(
cos2 ξXi

2

)
− 1

2E (sin(ξXi))2 ≤ 2E
(
sin2 ξXi

2

)
≤ 2E

(
dist2

(
ξXi

2 , πZ
))
≡

ξ2

2 E
(
dist2

(
Xi,

2π
ξ Z

))
=

ξ2

2 D(Xi, ξ)2, see (2.29), (2.31).

Next by (2.31) and the definition of D(Xi, ξ),

E
(
sin2 ξX∗i

2

)
≥ 4

π2E
(
dist2( ξX

∗
i

2 , πZ)
)
=
ξ2

π2E

(
dist2(Xi − Yi,

2π
ξ
Z)

)
=
ξ2

π2E

[
E

(
dist2(Xi,Yi +

2π
ξ
Z)

����Yi
)]
≥
ξ2

π2E
[
D(Xi, ξ)2

]
=
ξ2

π2D(Xi, ξ)2.

The proposition follows from (2.34). �

2.3.3 The Ladder Process

Lemma 2.22 Let X be a uniformly elliptic Markov array with row lengths kN + 1. Then there exists a uniformly
elliptic Markov array L with the following structure:

(a) Each row has entries L(N )
n = (Z (N )

n−2,Y
(N )
n−1 , X (N )

n ) (3 ≤ n ≤ kN + 1).
(b) {Z (N )

i } and {X (N )
i } are independent copies of X.

(c) Y (N )
n−1 ∈ S

(N )
n−1 are independent given {X

(N )
i }.{Z (N )

i }, and P
*..
,
Y (N )
n−1 ∈ E

�����

{X (N )
i } = {xi }

{Z (N )
i } = {zi }

+//
-
= P

*..
,

X (N )
n−1 ∈ E

�����

X (N )
n−2 = zn−2

X (N )
n = xn

+//
-
.

(d) The hexagon
(
Z (N )
n−2,

Z (N )
n−1

Y (N )
n−1

Y (N )
n

X (N )
n

, X (N )
n+1

)
is distributed like a random hexagon in

(
Hex (N, n),mN,n

Hex

)
.

Proof We denote the state spaces of X by S(N )
n , and its transition probabilities by p(N )

n (x, y)µn+1(dy), and
assume that p(N )

n and µ(N )
n satisfy the uniform ellipticity condition with ellipticity constant ε0. We also assume

without loss of generality that for every n ≥ 3, µ(N )
n = P(N )

n , where Pn(E) = P[X (N )
n ∈ E] (see Corollary 2.9).

Let P
(
dyn

����
X

(N )
n−1 = zn−1

X
(N )
n+1 = xn+1

)
denote the bridge measure onS(N )

n . Define the Markov array L with

• State spacesS(N )
n :=S(N )

n−2 ×S
(N )
n−1 ×S

(N )
n .

• Rows L(N )
n = (zn−2, yn−1, xn) (3 ≤ n ≤ kN + 1, N ≥ 1).

• Initial distribution π(N ) (dz1, dy2, dx3) =
∫

S
(N )
1 ×S

(N )
3

P(N )
1 (dz)P(N )

3 (dx)P
(
dy

����
X

(N )
1 = z

X
(N )
3 = x

)
.

• Transition probabilities π(N )
n ((zn−2, yn−1, xn), En−1 × En × En+1) =

=

∫
En−1×En×En+1

p(N )
n−2 (zn−2, zn−1)p(N )

n (xn, xn+1)P(dyn
����
X

(N )
n−1 = zn−1

X
(N )
n+1 = xn+1

)µ(N )
n−1(dzn−1)µ(N )

n+1(dxn+1).

The definition of the transition probabilities encodes the following sampling procedure: We evolve zn−2 →

zn−1 and xn → xn+1 independently according to π(N )
n−2 (zn−2, dz), π(N )

n (xn, dx), and then we sample yn using
the relevant bridge distribution. Properties (a)–(c) are immediate consequences, and property (d) follows from
(a)–(c) and the definition of the hexagon measure mN,n

N .
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Fig. 2.1 The ladder process (in the case of Markov chains): {Zi }, {Xi } are independent copies of X, and Yn are conditionally
independent given {Xi }, {Zi }. The marginal distribution of the position n hexagon

(
Zn−2; Zn−1

Yn−1
; Yn

Xn
; Xn+1

)
is mn

Hex .

Note that for n ≥ 5, µ(N )
k
= P(N )

k
for k = n − 2, n, and the marginal distribution of L(N )

n is the measure
m(N )

n (dL(N )
n ) given by:

p(N )
n−2 (zn−2, yn−1)p(N )

n−1 (yn−1, xn)∫
S

(N )
n−1

p(N )
n−2 (zn−2, η)p(N )

n−1 (η, xn)µ(N )
n−1(dη)

µ(N )
n−2(dzn−2)µ(N )

n−1(dyn−1)µ(N )
n (dxn).

We claim that L is uniformly elliptic with background measures m(N )
n . In what follows we fix N , suppose

xi, yi, zi ∈ Si , and write p(N )
n = p whenever the subscript is clear from the variables. Let P(Ln, Ln+1) :=

p(zn−2, zn−1)p(xn, xn+1). Then π(N )
n (Ln, dLn+1) = P(Ln, Ln+1)mn+1(dLn+1),

By the ellipticity assumption on X, P(Ln, Ln+1) ≤ ε−2
0 . In addition,∫

P(Ln, Ln+1)P(Ln+1, Ln+2)mn+1(dLn+1)

=

$
p(zn−2, zn−1)p(xn, xn+1)p(zn−1, zn)p(xn+1, xn+2)×

×
p(zn−1, yn)p(yn, xn+1)∫

p(zn−1, η)p(η, xn+1)µn(dη)
µn−1(dzn−1)µn(dyn)µn+1(dxn+1)

=

"
p(zn−2, zn−1)p(xn, xn+1)p(zn−1, zn)p(xn+1, xn+2)µn−1(dzn−1)µn+1(dxn+1)

=

∫
p(zn−2, zn−1)p(zn−1, zn)µn−1(dzn−1)

∫
p(xn, xn+1)p(xn+1, xn+2)µn+1(dxn+1).

The last expression is bounded below by ε2
0. So the ladder process is uniformly elliptic with ellipticity constant

ε2
0. �



2.4 γ-Step Ellipticity Conditions 25

We can now prove Lemma 2.17: Suppose f is an a.s. uniformly bounded additive functional on a uniformly
elliptic Markov chain X. Fix some x in the state space of X1, and let d2

n(ξ, x) denote the structure constants of f
on X, conditioned on X1 = x. We are asked to show that |d2

n(ξ) − dn(ξ, x) | decays exponentially in n.
Let L denote the ladder process. By Lemma 2.22 (d), there exists an additive functional Γ on L so that

d2
n(ξ) = E(|eiξΓ(Ln,Ln+1) − 1|2). By the uniform ellipticity of the ladder process and (2.11), there are constants

C > 0, θ ∈ (0, 1) such that

ess sup
(z′,y′,x′)

����E
(
|eiξΓ(Ln,Ln+1) − 1|2

����L1 = (z′, y′, x ′)
)
− d2

n(ξ)
���� < Cθn.

To complete the proof, we construct a probability measure λ such that

d2
n(ξ, x) =

$
E
(
��eiξΓ(Ln,Ln+1) − 1��2

����L1 = (z′, y′, x ′)
)
λ(dx ′, dy′, dz′),

and integrate both sides of the previous inequality. The measure λ(dx ′, dy′, dz′) is the measure such that x ′ is
equal to x, z′ is sampled from the distribution of X3 conditioned on X1 = x, and y′ conditioned on x ′, z′ has the
bridge distribution. �

2.4 γ-Step Ellipticity Conditions

In this section, we discuss some useful variants of the uniform ellipticity condition. Suppose X is a Markov array
with row lengths kN + 1 and transition probabilities π(N )

n,n+1(x, dy) = p(N )
n (x, y)µ(N )

n+1(dy).
The one-step ellipticity condition is that for some ε0 > 0, for all N ≥ 1 and 1 ≤ n ≤ kN , and for every

x ∈ S(N )
n and y ∈ S(N+1)

n+1 , ε0 < p(N )
n (x, y) ≤ ε−1

0 .
The γ-step ellipticity condition (γ = 2, 3, . . .) is that for some ε0 > 0, for all N ≥ 1 and n ≤ kN ,

0 ≤ p(N )
n ≤ 1/ε0; And for all n ≤ kN − γ + 1 and every x ∈ S(N )

n and z ∈ S(N )
n+γ , the iterated integral

∫
S

(N )
n+1

· · ·

∫
S

(N )
n+γ−1

p(N )
n (x, y1)

γ−2∏
i=1

p(N )
n+i (yi, yi+1)p(N )

n+γ−1(yγ−1, z) µn+1(dy1) · · · µn+γ−1(dyγ−1)

is bigger than ε0 (with the convention that
0∏
i=1

:= 1).

The ellipticity condition we use in this work corresponds to γ = 2. This is weaker than the one-step condition,
but stronger than the γ-step condition for γ ≥ 3.

The results of this work could in principle be proved assuming only a γ-step condition with γ ≥ 2. To do

this, one needs to replace the space of hexagons by the space of 2(γ + 1)-gons
(
xn−γ; xn−γ+1

yn−γ+1
· · ·

xn
yn

; yn+1

)
with

its associated structure constants, and its associated γ-ladder process L(N )
n = (Z (N )

n−γ,Y
(N )
n−γ+1, . . . ,Y

(N )
n−1 , X (N )

n ).
Since no new ideas are needed, and since our notation is already heavy enough as it is, we will only treat the
case γ = 2.

∗2.5 Uniform Ellipticity and Strong Mixing Conditions

Suppose (Ω,F , P) is a probability space, and let A ,B be two sub σ-algebras of F . There are several standard
measures of dependence between A and B:
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α(A ,B) := sup{|P(A ∩ B) − P(A)P(B) | : A ∈ A , B ∈ B};

ρ(A ,B) := sup
{
|E( f g) − E( f )E(g) | : f ∈ L2(A ), g ∈ L2(B);

‖ f − E( f )‖2 = 1, ‖g − E(g)‖2 = 1

}
;

φ(A ,B) := sup
{��P(B |A) − P(B)�� : A ∈ A , B ∈ B, P(A) , 0

}
;

ψ(A ,B) := sup
{�����
P(A ∩ B)
P(A)P(B)

− 1
�����
: A ∈ A , B ∈ B with non-zero probabilities

}
.

If one of these quantities vanishes then they all vanish, and this happens iff P(A ∩ B) = P(A)P(B) for all
A ∈ A , B ∈ B. In this case we say that A ,B are independent. In the dependent case, α, ρ, φ, ψ can be used to
bound the covariance between (certain) A -measurable and B-measurable random variables:

Theorem 2.23 Suppose X is A -measurable and Y is B-measurable, then

(1) |Cov(X,Y ) | ≤ 8α(A ,B)1− 1
p −

1
q ‖X ‖p ‖Y ‖q whenever p ∈ (1,∞], q ∈ (1,∞],

1
p +

1
q < 1, X ∈ Lp , Y ∈ Lq .

(2) |Cov(X,Y ) | ≤ ρ(A ,B)‖X − EY ‖2‖Y − EY ‖2 whenever X,Y ∈ L2.
(3) |Cov(X,Y ) | ≤ 2φ(A ,B)‖X ‖1‖Y ‖∞ whenever X ∈ L1,Y ∈ L∞.
(4) |Cov(X,Y ) | ≤ ψ(A ,B)‖X ‖1‖Y ‖1 whenever X ∈ L1,Y ∈ L1.

See [16, vol 1, ch. 3]. Here are some useful inequalities [16, vol 1, Prop. 3.11]):

Theorem 2.24 If (Ω,F , P) is a probability space, and A ,B are sub-σ-algebras of F , then α := α(A ,B),
ρ := ρ(A ,B), φ := φ(A ,B), ψ := ψ(A ,B) satisfy

2α ≤ φ ≤
1
2
ψ , 4α ≤ ρ ≤ 2

√
φ. (2.35)

We can use the measures of dependence to define variousmixing conditions. Let X := {Xn}n≥1 be a general
stochastic process, not necessarily stationary or Markov.

Let F n
1 denote the σ-algebra generated by X1, . . . , Xn, and let F∞

m denote the σ-algebra generated by Xk for
k ≥ m.

(1) X is called α-mixing, if α(n) := supk≥1 α(F k
1 ,F

∞
k+n

) −−−−→
n→∞

0.

(2) X is called ρ-mixing, if ρ(n) := supk≥1 ρ(F k
1 ,F

∞
k+n

) −−−−→
n→∞

0.

(3) X is called φ-mixing, if φ(n) := supk≥1 φ(F k
1 ,F

∞
k+n

) −−−−→
n→∞

0.

(4) X is called ψ-mixing, if ψ(n) := supk≥1 ψ(F k
1 ,F

∞
k+n

) −−−−→
n→∞

0.
By (2.35), ψ-mixing⇒φ-mixing⇒ ρ-mixing⇒α-mixing. These implications are strict, see [16, vol 1, §5.23].

Let us see what is the relation between uniform ellipticity and these conditions. First we will show that
uniform ellipticity implies exponential ψ-mixing, and then we will give a weak converse of this statement for
finite state Markov chains.

Proposition 2.25 Let X be a uniformly elliptic Markov chain, then for every x ∈ S1, X conditioned on X1 = x is
ψ-mixing. Moreover, α(n), ρ(n), φ(n), ψ(n) −−−−→

n→∞
0 exponentially fast, uniformly in x.

Proof We need the following fact:

Claim. There exists a constant K which only depends on the ellipticity constant ofX, as follows. For every x ∈ S1,
k ≥ 2, and for every bounded measurable function hk :Sk → R, we have the inequality ‖Ex (hk (Xk ) |Xk−2)‖∞ ≤
KEx (|hk (Xk ) |).

Proof of theClaim.By the uniform ellipticity ofX, the transition kernels ofX can be put in the form πn,n+1(x, dy) =
pn(x, y)µn+1(dy), where 0 ≤ pn ≤ ε−1

0 and
∫

pn(x, y)pn+1(y, z)µn+1(dy) > ε0. In addition, Prop. 2.8, applied
to X with the initial distribution π(dx) = point mass at x, tells us that the Radon-Nikodym derivative of µn+1
with respect to the measure Px (Xn+1 ∈ E) is a.e. in [ε0, ε

−1
0 ].
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It follows that for all ξ,

|Ex (hk+2(Xk+2) |Xk = ξ) | ≤
"

pk (ξ, y)pk+1(y, z) |hk+2(z) |µk+1(dy)µk+2(dz)

≤ ε−2
0

∫
|hk+2(z) |µk+2(dz) ≤ ε−3

0 Ex ( |hk+2(Xk+2) |).

We now prove the proposition. Fix x ∈ S1, and let ψx denote the ψ measure of dependence for X conditioned
on X1 = x. Let Fk denote the σ-algebra generated by Xk . Using the Markov property, it is not difficult to see
that ψx (n) = sup

k≥1
ψx (Fk,Fk+n), see [16, vol 1, pp. 206–7].

Suppose now that n > 2, and fix some x ∈ S1, and A ∈ Fk, B ∈ Fk+n with positive Px-measure. Let
hk := 1A(Xk ) and hk+n := 1B (Xk+n) − Px (B). Then

|Px (A ∩ B) − Px (A)Px (B) | = |Ex (hkhk+n) | = |Ex (Ex (hkhk+n |Fk )) |
= |Ex (hkEx (hk+n |Xk )) | ≤ Ex (|hk |)‖Ex (hk+n |Xk )‖∞ = Px (A)‖Ex (Ex (hk+n |Xk+n−2, . . . , X1) |Xk )‖∞
= Px (A)‖Ex (Ex (hk+n |Xk+n−2) |Xk )‖∞, by the Markov property

≤ Px (A) · Cmixθ
n−2‖Ex (hk+n |Xk+n−2)‖∞, by uniform ellipticity and (2.11).

The constants Cmix and θ are independent of x, because the Markov chains X|X1 = x all have the same transition
probabilities, and therefore the same ellipticity constant.

Invoking the claim, we find that

|Px (A ∩ B) − Px (A)Px (B) | ≤ Px (A) · Cmixθ
n−2 · KEx (|hk+n |) ≤ 2KCmixθ

n−2Px (A)Px (B).

Dividing by Px (A)Px (B) and passing to the supremum over A ∈ Fk, B ∈ Fk+n, gives ψx (n) ≤ 2KCmixθ
n−2. So

ψx (n) → 0 exponentially fast, uniformly in x. By (2.35), αx (n), ρx (n), φx (n) → 0 exponentially fast, uniformly
in x. �

Proposition 2.26 Let X be a Markov chain with the following properties:
(1) ∃κ > 0 such that P(Xn = x) > κ for every n ≥ 1 and x ∈ Sn (so |Sn | < 1/κ); (2) φ(n) −−−−→

n→∞
0.

Then X satisfies the γ-step ellipticity condition for all γ large enough.

Proof By (1), all state spaces are finite. Define a measure on Sn by µn(E) = P(Xn∈E), and let pn(x, y) :=
P(Xn+1 = y |Xn = x)

P(Xn+1 = y)
. This is well-defined by (1), and

(a) By construction, πn,n+1(x, dy) = pn(x, y)µn+1(dy).
(b) By (1), pn(x, y) ≤ 1/P(Xn+1 = y) ≤ κ−1.
(c) By (2), for all γ large enough, φ(γ) < 1

2 κ. For such γ,∫
Sn+1

· · ·

∫
Sn+γ−1

pn(x, y1)
γ−2∏
i=1

pn+i (yi, yi+1)pn+γ−1(yγ−1, z) µn+1(dy1) · · · µn+γ (dyn+γ−1)

= P(Xn+γ = z |Xn = x) ≥ P(Xn+γ = z) − φ(Fn,Fn+γ) ≥ κ − φ(γ) >
1
2
κ.

We obtain the γ-ellipticity condition with ellipticity constant 1
2 κ. �
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2.6 Reduction to Point Mass Initial Distributions

In this section we explain how to reduce limit theorems for general Markov arrays to the special case when the
initial distributions are Dirac measures.

Lemma 2.27 Suppose f is an a.s. uniformly bounded additive functional on a uniformly elliptic Markov array X.
Then there is an a.s. uniformly bounded additive functional g on a uniformly elliptic Markov array Y such that:

1. The initial distributions of Y are point mass measures;
2. SN (f) and SN (g) are equal in distribution, for all N;
3. u(N ) (g) = u(N ) (f) and d (N )

n (ξ, f) = d (N )
n (ξ, g) for all ξ ∈ R, and 5 ≤ n ≤ kN .

Proof Suppose X has row lengths kN + 1, state spaces S(N )
n , initial distributions π(N ) (dx), and transition

probabilities π(N )
n,n+1(x, dy) = p(N )

n (x, y)µ(N )
n+1(dy), where p(N )

n and µ(N )
n satisfy the uniform ellipticity conditions,

with constant ε0.
Construct a Markov array Y, with the following data:

• Row Lengths: kN + 1.
• State Spaces: S̃(N )

1 = {x0} (a single point), S̃(N )
2 :=S(N )

1 ×S
(N )
2 , and S̃(N )

n :=S(N )
n for 3 ≤ n ≤ kN + 1.

• Initial Distributions: π̃(N ) := point mass measure at x0.
• Transition Probabilities: π̃(N )

n,n+1(x, dy) := p̃(N )
n (x, y) µ̃(N )

n+1(dy), where

– p̃(N )
1 ≡ 1 and µ̃(N )

2 (dx1, dx2) := p(N )
1 (x1, x2)π(N ) (dx1)µ(N )

2 (dx2);

– p̃(N )
2 ((x1, x2), x3) := p(N )

2 (x2, x3) and µ̃(N )
3 := µ(N )

3 ;

– p̃(N )
n := p(N )

n and µ̃(N )
n+1 := µ(N )

n+1 for 3 ≤ n ≤ kN .

Note that (Y (N )
1 , . . . ,Y (N )

kN+1) and (x0, (X (N )
1 , X (N )

2 ), X (N )
3 , . . . , X (N )

kN+1) have the same joint distribution, and
the initial distributions of Y are point mass measures.

Next construct an additive functional g on Y: g(N )
1 (x0, (x1, x2)) := f (N )

1 (x1, x2), g(N )
2 ((x1, x2), x3) :=

f (N )
2 (x2, x3), and g(N )

n ≡ f (N )
n for 3 ≤ n ≤ kN .

Clearly ess sup |g| < ∞, and SN (f) and SN (g) are equal in distribution, for all N .
We check that Y is uniformly elliptic. Clearly, 0 ≤ p̃(N )

i ≤ ε−1
0 for all i. Next,∫

p̃(N )
1 (x0, (x1, x2)) p̃(N )

2 ((x1, x2), x3) µ̃(N )
2 (dx1, dx2) =

"
p(N )

2 (x2, x3)p(N )
1 (x1, x2)µ(N )

2 (dx2)π(N ) (dx1) ≥ ε0,

and
∫

p̃(N )
2 ((x1, x2), x3) p̃(N )

3 (x3, x4) µ̃(N )
3 (dx3) =

∫
p(N )

2 (x2, x3)p(N )
3 (x3, x4)µ(N )

3 (dx3) ≥ ε0.

For i ≥ 3,
∫

p̃(N )
i (xi, xi+1) p̃(N )

i+1 (xi+1, xi+2) µ̃(N )
i+1 (dxi+1) ≥ ε0 is obvious. �

2.7 Notes and References

For a comprehensive treatment of Markov chains on general state spaces, see Doob’s book [62]. For a compre-
hensive account of mixing conditions, see [16].

Uniform ellipticity is one of a plethora of contraction conditions for Markov operators, that were developed
over the years as sufficient conditions for mixing results such as Proposition 2.13. We mention in particular the
works of Markov [137], Doeblin [51, 52], Hajnal [94], Doob [62], and Dobrushin [50] (see also Seneta [179]
and Sethuraman & Varadhan [181]).

We note that in analysis literature the notion of ellipticity has a different meaning. A second order differential
operator D on a d dimensional manifold M is called elliptic if it can be written in local coordinates as



2.7 Notes and References 29

Dφ =
1
2

d∑
i, j=1

ai j (z)
∂2φ

∂zi∂z j
+

d∑
j=1

bj (z)
∂φ

∂z j

where matrix (ai j ) is positive definite.
If {Xt } is a diffusion process on a compactmanifold then considering our process at integer times we obtain the

process which satisfies one step ellipticity condition in our sense. In fact, a weaker condition called hypoellipticity
introduced in [101] is sufficient for this purpose.

However, if the phase space is not compact, then the analytic and probabilistic notions of ellipticity are
different. For example, the Brownian Motion considered in §3.3 is elliptic in the analytic sense but not in the
probabilistic sense. In fact, the Brownian Motion is null recurrent and the theory of this book does not apply to
it. We refer the reader to [195] and [102] for more information about elliptic and hypoelliptic operators.

Proposition 2.8 is similar in spirit to Doeblin’s estimates for the stationary probability vector of a Markov
chain satisfying Doeblin’s condition [51, 52].

The contraction coefficients in section 2.2.2 are also called “ergodicity coefficients." They play a major role in
Dobrushin’s proof of the CLT for inhomogeneous Markov chains [50]. Our treatment of contraction coefficients
follows [181] closely. Lemma 2.11 and its proof are taken from there.

The construction we call “change of measure" is crucial for the analysis of large deviations, see §7.3.1.
The quantitiesD(X, ξ) were first used by Mukhin in [148]. They play a central role in the local limit theorem

for sums of independent random variables. For details and additional references, see §§8.2, 8.7.
The balance of hexagon is related to classical constructions in dynamical systems, which we would like to

explain. Consider invertible maps Tn : Ωn → Ωn+1 between metric spaces (Ωn, dn). Given a0 ∈ Ω0, let

an :=



(Tn−1 ◦ · · · ◦ T0)(a0) n > 0,
(T−1 ◦ · · · ◦ T−n)−1(a0) n < 0.

This has the merit that for all n > m in Z, (Tn ◦ Tn−1 ◦ · · · Tm)(am) = an.

• We say that a0, b0 ∈ Ω0 are in the same stable manifold, and write a0 ∼s b0, if dn(an, bn) → 0 exponentially
as n → +∞.

• We say that a0, b0 ∈ Ω0 are in the same unstablemanifold, andwrite a0 ∼u b0, if dn(an, bn) → 0 exponentially
as n → −∞.

(In the classical dynamical setup the equivalence classes are indeed submanifolds, but this is not the case in the
general setup we consider.)

Given a sequence of uniformly Hölder functions fn : Ωn → R, and points a0, b0, c0, d0 ∈ Ω0 such that
a0 ∼s b0, c0 ∼s d0, a0 ∼u d0, b0 ∼u c0 we define the periodic cycle functional

∆(a, b, c, d)=
∑
n∈Z

[ fn(an) − fn(bn) + fn(cn) − fn(dn)].

To see that the series converges, use the decomposition ∆ =
∑
n≥0

[ fn(an) − fn(bn)] +
∑
n≥0

[ fn(cn) − fn(dn)] +∑
n<0

[ fn(an) − fn(dn)] +
∑
n<0

[ fn(cn) − fn(bn)].

To relate this expression to our setting we assume that our Markov chain is defined for all n ∈ Z (if it is not
the case we can extend it to negative n in an arbitrary way so that the ellipticity conditions are satisfied). Let
Ωn be the space of sequences {Xk } with Xk ∈ Sn+k and put dn({Xk }, {Zk }) = 2−max(`:Xj=Z j for | j |<`) .We regard
fn(Xn, Xn+1) as a functions on Ωn which depend only on coordinates 0 and 1 of a sequence {Xk } from Ωn.

Let Tn be the shift. Given {Xk }, {Zk } ∈ Ω0, Yn−1,Yn let

a0 = c0 = {. . . Zn−3, Zn−2, Zn−1,Yn, Xn+1, Xn+2, . . . },
b0 = d0 = {. . . Zn−3, Zn−2,Yn−1, Xn, Xn+1, Xn+2, . . . }.

A direct computation shows that ∆(a0, b0, c0, d0) = 2Γ
(
Zn−2,

Zn−1
Yn−1

Yn
Xn
, Xn+1

)
.
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In the case where (Ωn,Tn) = (Ω,T ) do not depend on n, ∆(·) appears in several problems associated to
dynamics of T (see [19, 106]). The relevance to mixing properties is noted in [25], (cf. (6.5) in the present text.)

The application to cancellation properties of twisted transfer operators (called in Chapters 5 and 6 “perturba-
tion operators") appear in [54]. Some of ideas of [54] are employed in Chapter 5, see in particular, Lemma 5.6.
One can also define cycles of length greater than four. Such cycles could often be studied by breaking them into
shorter cycles, cf. the discussion after (9.16).

We end with a warning. It is tempting to speak loosely of the hexagon measure mHex as “the distribution of
pairs of independent paths (xn−1, ∗, ∗, xn+1) with the same beginning and end," but this is misleading.

Specifically, if the state spaces of X are discrete (or more generally if the measures µ(N )
n are all atomic),

then there is a well-defined measure m′′Hex on Hex (N, n) obtained by taking two independent copies

{X (N )
n }, {Y (N )

n } of X, and looking at the distribution of
*..
,

X (N )
n−2

X (N )
n−1

Y (N )
n−1

X (N )
n

Y (N )
n

Y (N )
n+1

+//
-
conditioned on the event

{X (N )
n−2 = Y (N )

n−2 , X (N )
n+1 = Y (N )

n+1 } (this event has positive measure by discreteness and uniform ellipticity). The
measures mHex and m′′Hex are quite different, and the Radon-Nikodym derivative dm′′Hex

dmHex
does not even have to be

uniformly bounded away from zero and infinity in N . The reader is invited to compare the two measures in the
special case when Xn are independent. (We thank E. Solan for this observation.)



Chapter 3
Variance Growth, Center-Tightness, and the Central Limit
Theorem

Abstract We analyze the variance of SN = f1(X1, X2) + · · · + fN (XN, XN+1), and characterize the additive
functionals for which Var(SN ) 6→ ∞. Then we prove Dobrushin’s theorem: If Var(SN ) → ∞, then SN satisfies
the central limit theorem.

3.1 Main Results

Let f be an additive functional on a Markov array X with row lengths kN + 1. We let SN =

kN∑
i=1

f (N )
i (X (N )

i , X (N )
i+1 ).

For Markov chains, kN = N , and SN =

N∑
i=1

f i (Xi, Xi+1).

3.1.1 Center-Tightness and Variance Growth

We say that f is center-tight if there are constants mN such that for every ε > 0, there exists M for which
P[|SN − mN | > M] < ε for all N .

We shall see in Theorem 3.8 below that f is center-tight iff Var(SN ) 6→ ∞. Obviously, in such a situation the
right hand side in P[SN − zN ∈ (a, b)] ?

∼
e−z2/2 |a−b |
√

2πVN
can be made larger than one by choosing |a − b| sufficiently

big, and the asymptotic relation in the “standard" LLT fails. One could hope for a different universal asymptotic
behavior, but this is hopeless:

Example 3.1 (Non-Universality in the LLT for Center-Tight Functionals) Let Xn be identically distributed
independent random variables with uniform distribution on [0, 1]. Choose an arbitrary sequence of random
variables {Zn}n≥1 taking values in [0, 1]. By the isomorphism theorem for Lebesgue spaces, there are measur-
able functions gn : [0, 1] → [0, 1] such that g0 ≡ 0, and gn(Xn) = Zn in distribution. Let fn(Xn, Xn+1) :=
gn+1(Xn+1) − gn(Xn). Then SN = ZN+1 in distribution, f is center-tight, and P(SN ∈ (a, b)) = P(ZN+1 ∈ (a, b))
is completely arbitrary.

Every Markov array admits center-tight additive functionals. Here are three constructions which lead to such
examples (in the uniformly bounded, uniformly elliptic case, all center-tight additive functionals arise this way,
see Theorem 3.8 below):

Example 3.2 (Gradients) A gradient f on a Markov chain X is an additive functional of the form fn(x, y) :=
an+1(y) − an(x), where an : Sn → R are measurable, and ess sup |a| < ∞. Similarly, gradients for Markov
arrays are defined by f (N )

n (x, y) = a(N )
n+1 (y) − a(N )

n (x), where a(N )
n : S(N )

n → R are measurable and uniformly
essentially bounded. We write

f = ∇a,

and say that f is the gradient of a and a is the potential of f.1
If f = ∇a, then SN (f) is telescopic, and |SN (f) | ≤ 2ess sup |a|. So f is center-tight (take mN := 0 and

M := 3ess sup |a|).

1 In the ergodic theoretic literature, f is called a coboundary and a is called a transfer function.
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Example 3.3 (Summable Variance) An additive functional f has summable variance, if it is a.s. uniformly
bounded, and V∞ < ∞, where

V∞ :=




∞∑
n=1

Var[ fn(Xn, Xn+1)] X is a Markov chain

sup
N

kN∑
n=1

Var[ f (N )
n (X (N )

n , X (N )
n+1 )]

X is a Markov array with
row lengths kN + 1.

If X is uniformly elliptic and |f| ≤ K a.s., then summable variance implies center-tightness. This follows from
Chebyshev’s inequality and the following lemma:

Lemma 3.4 Let f be a uniformly bounded functional on a uniformly elliptic Markov array. Then Var(SN ) ≤

V N

(
1 + 2Cmix

1−θ

)
where V N :=

kN∑
n=1

Var( f (N )
n (X (N )

n , X (N )
n+1 )), and Cmix and 0 < θ < 1 are as in Prop. 2.13.

Proof We give the proof for Markov chains (the proof for arrays is identical). Recall (2.13)

Var (SN ) =
N∑
n=1

Var( fn) + 2
N−1∑
n=1

N∑
m=n+1

Cov( fn, fm) ≤ V N + 2Cmix

N−1∑
n=1

N∑
m=n+1

θm−n
√

Var( fn)Var( fm),

≤ V N + 2Cmix

N−1∑
j=1

θ j
N−j∑
n=1

√
Var( fn)Var( fn+j )

!
< V N +

2CmixV N

1 − θ
(

!
< uses that ab ≤ (a2 + b2)/2). �

Example 3.5 Suppose X is uniformly elliptic. Then every additive functional of the form f = g + h, where g is a
gradient and h has summable variance, is center-tight. The proof is a simple union bound, and we omit it.

Henceforth, we assume the following conditions:

(E) X = {X (N )
n } is a uniformly elliptic inhomogeneous Markov array with row lengths kN + 1, and ellipticity

constant ε0. We denote the state spaces by S(N )
n , the initial distributions by π(N ) , and the transition

probabilities by π(N )
n,n+1(x, dy) = p(N )

n (x, y)µ(N )
n+1(dy), where p(N )

n are as in the definition of uniform ellipticity.

(B) f = { f (N )
n } is an a.s. uniformly bounded additive functional on X, satisfying the bound |f| ≤ K almost

surely.

Let VN := Var(SN ) and UN :=
kN∑
n=3

(u(N )
n )2, where u(N )

n are as in (2.26).

Theorem 3.6 (Variance Growth) There are constants C1,C2 > 0 which only depend on ε0, K such that for all
N ,

C−1
1 UN − C2 ≤ Var(SN ) ≤ C1UN + C2.

Corollary 3.7 Suppose X is a Markov chain. Either Var(SN ) → ∞ or Var(SN ) is bounded. Moreover, Var(SN )�
N∑
n=3

u2
n, with the un from (2.26).

(The the first part of the corollary is clearly false for arrays.) We return to arrays:

Theorem 3.8 Var(SN ) is bounded iff f is center-tight iff f = ∇a + h where a is a uniformly bounded potential,
and h has summable variance.

Corollary 3.9 f is center-tight iff supN ≥1 UN < ∞.
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Theorem 3.6 is a statement on the localization of cancellations. In general, if the variance of an additive
functional of a stochastic process does not tend to infinity, then there must be some strong cancellations in SN .
A priori, these cancellations may involve summands which are far from each other. Theorem 3.6 says that strong
cancellations must already occur among three consecutive terms f (N )

n−2 + f (N )
n−1 + f (N )

n : this is what u(N )
N measures.

If f depends only on one variable (i.e. f (N )
n (x, y) = f (N )

n (x)), and if we have the one-step ellipticity condition
ε0 ≤ p(N )

n (x, y) ≤ ε−1
0 , then one can show that there are constants Ĉ1, Ĉ2 such that

Ĉ−1
1

∑
n

Var( fn(Xn)) − Ĉ2 ≤ VN ≤ Ĉ1 *
,

∑
n

Var( fn(Xn))+
-
+ Ĉ2 (3.1)

(see [50, 181] for an even more general statement). See the end of §3.2.2.
The estimate (3.1) does not hold when f (N )

n depends on two variables. For example, if f (N )
n is a gradient with

bounded potential, then VN is bounded, but
N∑
n=1

Var( f (N )
n (Xn, Xn+1)) could be arbitrarily large.

3.1.2 The Central Limit Theorem and the Two-Series Theorem

Theorem 3.10 (Dobrushin) Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic
Markov array X. If Var(SN ) → ∞, then for every interval,

P

[
SN − E(SN )
√

Var(SN )
∈ (a, b)

]
−−−−−→
N→∞

1
√

2π

∫ b

a

e−t
2/2dt .

The proof we give (due to Sethuraman & Varadhan) is based on McLeish’s martingale central limit theorem.
This is recalled in §3.2.3.

Suppose X is a Markov chain, and E(SN ) = 0 for all N . Dobrushin’s Theorem compares SN to the Gaussian
distribution with variance VN . In §3.3 we will state and prove the almost sure invariance principle, which
compares (SN, SN+1, . . .) to a path of Brownian motion, at times VN,VN+1, . . .. One consequence is the law of
the iterated logarithm

lim sup
N→∞

SN
√

2VN ln ln VN

= 1, lim inf
N→∞

SN
√

2VN ln ln VN

= −1.

See §3.3 for precise statements and proofs.
Dobrushin’s CLT implies that if VN → ∞, then for any bounded continuous function φ : R→ R we have

lim
N→∞

E

[
φ

(
SN − E(SN )
√

VN

)]
=

1
√

2π

∫ ∞

−∞

φ(z)e−z
2/2dz.

We will now discuss the (unbounded) case φ(x) = xr (r ∈ N):

Theorem 3.11 (Lifshits) Let f be a bounded additive functional of a uniformly elliptic Markov chain such that
E(SN ) = 0 for all N . If Var(SN ) → ∞, then

lim
N→∞

E[Sr
N ]

V r/2
N

=



0 r is odd,
(r − 1)!! := (r − 1)(r − 3) · · · 3 · 1 r is even.

(3.2)

Recall that the r th-moment of an Lr random variable X is the number E[Xr ]. The right-hand-side of (3.2) is
well-known to be the r-th moment of the standard normal distribution. Therefore (3.2) is simply the statement
that the moments of SN/

√
VN converge to the moments of the standard Gaussian distribution.
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The next result, which describes the case when Var(SN ) 6→ ∞, is a version of the “two-series theorem" of
Khintchin and Kolmogorov (originally proved for iid’s):

Theorem 3.12 Let f be an a.e. uniformly bounded additive functional of a uniformly elliptic inhomogeneous
Markov chain X.

(1) If
∞∑
n=1

Var[ fn(Xn, Xn+1)] < ∞, then lim
n→∞

(
SN − E(SN )

)
exists a.s., and is finite.

(2) Var(SN ) 6→ ∞ iff there exist measurable functions an : Sn → R such that ess sup |a| < ∞, and lim
n→∞

(SN −

aN+1(XN+1) − E(SN )) exists a.s., and is finite.

The theorem makes no sense for Markov arrays. For arrays, SN live on different uncoupled probability spaces,
and they cannot be evaluated at the same point.

Example 3.13 (Optimality of Theorem 3.12) Let Xn be a sequence of iid random variables taking values ±1
with probability 1/2.

Let an(x) = σnx, and f := ∇a, then SN = aN+1(XN+1) − a1(X1), and the a.s. convergence of SN − E(SN )
reduces to the a.s. convergence of aN (XN ).

• If σ2
n := 1/n, then |aN | ≤ 1/

√
N and so aN → 0 a.e. Thus lim(SN − E(SN )) exists a.s., even though∑

Var[ fn] = ∞. This shows that part 1 of Theorem 3.12 cannot be strengthened to an iff statement.

• If σ2
n := 1, then aN (XN ) = XN , which oscillates a.s. without converging. So lim(SN − E(SN )) does not

exist, even though Var(SN ) is bounded. However, SN − aN+1(XN+1) − E(SN ) converges a.s. (to −a1(X1)).
This shows that sometimes, the term aN+1(XN+1) in part 2 of Theorem 3.12 is really necessary.

3.2 Proofs

3.2.1 The Gradient Lemma

Lemma 3.14 (Gradient Lemma) Suppose f is an additive functional on a uniformly elliptic Markov array X
with state spacesS(N )

n , and assume ess sup |f| ≤ K . Then

f = f̃ + ∇a + c,

where f̃, a, c are additive functionals on X with the following properties:

(a) |a| ≤ 2K and a(N )
n (x) are measurable functions onS(N )

n .
(b) |c| ≤ K and c(N )

n are constant functions.
(c) |̃f| ≤ 6K and f̃ (N )

n (x, y) satisfy ‖ f̃ (N )
n ‖2 ≤ u(N )

n for all 3 ≤ n ≤ kN + 1.

If X is a Markov chain, we can choose f (N )
n = fn, a(N )

n = an, c(N )
n = cn.

Proof for Doeblin Chains: Before proving the lemma in full generality, we consider the simple but important
special case of Doeblin chains (Example 2.7).

Recall that a Doeblin chain is a Markov chain X with finite state spacesSn of uniformly bounded cardinality,
whose transition matrices πnxy := πn,n+1(x, {y}) satisfy the following properties:

(E1) ∃ε ′0 > 0 s.t. for all n ≥ 1 and (x, y) ∈ Sn ×Sn+1, either πnxy = 0 or πnxy > ε ′0;
(E2) for all n, for all (x, z) ∈ Sn ×Sn+2, ∃y ∈ Sn+1 such that πnxyπn+1

yz > 0.
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We re-label the states inSn so thatSn = {1, . . . , dn} where dn ≤ d, and in such a way that πn11 > 0 for all n.
Assumption (E2) guarantees that for every n ≥ 3 and every x ∈ Sn there exists a state ξn−1(x) ∈ Sn−1 s.t.
πn−2

1,ξn−1 (x)π
n−1
ξn−1 (x),x > 0. Let

a1 ≡ 0, a2 ≡ 0, and an(x) := fn−2(1, ξn−1(x)) + fn−1(ξn−1(x), x) for n ≥ 3
c1 := 0, c2 := 0, and cn := fn−2(1, 1) for n ≥ 3

f̃ := f − ∇a − c.

We claim that f̃, a, c satisfy our requirements.
To explain why and to motivate the construction, consider the special case un = 0. In this ‖̃f‖2 = 0 and the

lemma reduces to constructing functions bn : Sn → R s.t. f = ∇b + c. We first try to solve f = ∇b with c = 0.
Any solution must satisfy

fn(x, y) = bn+1(y) − bn(x). (3.3)

Keeping x fixed and solving for bn+1(y) we find that

bn(y) = b2(x2) + f2(x2, x3) + · · · + fn−2(xn−2, xn−1) + fn−1(xn−1, y)

for all paths (x2, . . . , xn−1, y) with positive probability. The path x2 = · · · = xn−2 = 1, xn−1 = ξn−1(y) suggests
defining

b2 ≡ 0 , bn(y) :=
n−3∑
k=2

fk (1, 1) + fn−2(1, ξn−1(y)) + fn−1(ξn−1(y), y).

This works: for every n ≥ 3, if πnxy > 0 then

bn+1(y)−bn(x)=[ fn−2(1, 1)+fn−1(1, ξn(y))+fn(ξn(y), y)−fn−2(1, ξn−1(x))−fn−1(ξn−1(x), x)−fn(x, y)]+fn(x, y)

∴ bn+1(y) − bn(x) = Γn

(
1 1
ξn−1(x)

ξn(y)
x y

)
+ fn(x, y) !

= fn(x, y). (3.4)

Here is the justification of !
=. In the setup we consider, the natural measure on the level n hexagons is atomic, and

every admissible hexagon has positive mass. So un = 0 implies that Γn(P) = 0 for every admissible hexagon,
and !
= follows.
We proved (3.3), but we are not yet done because it is not clear that ess sup |b| < ∞.

To fix this decompose bn(y) = an(y) +
n−3∑
k=2

fk (1, 1). Then |a| ≤ 2K , and a direct calculation shows that

fn(x, y) = an+1(y) − an(x) + fn−2(1, 1), whence f = ∇a + c with a essentially bounded. This proves the lemma
in case un = 0.

The general case un ≥ 0 is done the same way: (3.4) implies that f̃ := f − ∇a − c ≡ f − ∇b is given by

f̃n(x, y) = fn(x, y) − (an+1(y) − an(x)) − cn = −Γn

(
1 1
ξn−1(x)

ξn(y)
x y

)
.

If |f| ≤ K , then |Γn | ≤ 6K , whence |̃f| ≤ 6K . Next,

‖ f̃n‖22 ≤ E

Γn

(
1 1
ξn−1(Xn)

ξn(Xn+1)
Xn

Xn+1

)2
.

In the scenario we consider the space of admissible hexagons has a finite number of elements, and each has
probability uniformly bounded below. So there is a global constant C which only depends on sup |Sn | and on ε ′0
in (E2) such that
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E

Γn

(
1 1
ξn−1(Xn)

ξn(Xn+1)
Xn

Xn+1

)2
≤ CE[Γ(P)2],

where P is a random hexagon in (Hex (n),mHex ). So ‖̃f‖2 ≤
√

C · u2
n.

(The gradient lemma says that we can choose a and c so that C = 1. The argument we gave does not quite
give this, but the value of the constant is not important for the applications we have in mind.)

The Proof of the Gradient Lemma in the General Case: Recall the ladder process L = {L(N )
n }, L(N )

n =

(Z (N )
n−2,Y

(N )
n−1 , X (N )

n ) from §2.3.3. In what follows we omit the superscripts (N ) on the right hand side of identities.
Define F (N )

n (L(N )
n ) := Fn(Ln) := fn−2(Zn−2,Yn−1) + fn−1(Yn−1, Xn) and

Γ
(N )
n (L(N )

n , L(N )
n+1) := Γn(Ln, Ln+1) := Γ

(
Zn−2

Zn−1
Yn−1

Yn
Xn

Xn+1

)
, see (2.25).

Then we have the following identity:

f (N )
n (X (N )

n , X (N )
n+1 ) = Fn+1(Ln+1) − Fn(Ln) + fn−2(Zn−2, Zn−1) − Γn(Ln, Ln+1). (3.5)

Next define a(N )
n :S(N )

n → R and c(N )
n ∈ R by

a(N )
n (ξ) := E(Fn(Ln) |Xn = ξ

)
(3 ≤ n ≤ kN ), (3.6)

c(N )
n := E[ fn−2(Zn−2, Zn−1)]. (3.7)

By assumption, |f| ≤ K , so |a| ≤ 2K and |c| ≤ K .
Let f̃ := f − ∇a − c. To prove the lemma, we need to bound f̃ in L∞, and in L2.

Claim: For every (ξ, η) ∈ Sn ×Sn+1,

c(N )
n = E

[
E
(

fn−2(Zn−2, Zn−1)
����
Xn+1 = η
Xn = ξ

)]
,

a(N )
n (ξ) = E

(
Fn(Ln)

����
Xn+1 = η
Xn = ξ

)
and a(N )

n+1 (η) = E
(
Fn+1(Ln+1)

����
Xn+1 = η
Xn = ξ

)
.

Proof of the Claim. We use Lemma 2.22. The identity for c(N )
n is because {Zn} is independent from {Xn}. The

identity for a(N )
n is because conditioned on Xn, Ln is independent of Xn+1. The identity for a(N )

n+1 is because
conditioned on Xn+1, Ln+1 is independent of Xn.

With the claim proved, we can proceed to bound f̃. Taking the conditional expectation E( · |X (N )
n+1 = η , X (N )

n =

ξ) on both sides of (3.5), we find that

f (N )
n (ξ, η) = an+1(η) − an(ξ) + cn − E

(
Γn(Ln, Ln+1)

����
Xn+1 = η
Xn = ξ

)
,

whence f̃n(ξ, η) := −E
(
Γn(Ln, Ln+1)

����
Xn+1 = η
Xn = ξ

)
.

Clearly |̃f| ≤ 6K . To bound the L2 norm we recall that the marginal distribution of {Xn} with respect to the
distribution of the ladder process is precisely the distribution of our original array. Therefore,

‖ f̃ (N )
n ‖22 = E

[
E
(
Γn(Ln, Ln+1)��Xn+1, Xn

)2] !
≤ E

[
Γn(Ln, Ln+1)2],

where
!
≤ is because conditional expectations contract L2-norms. By Lemma 2.22(d), Γ(N )

n (Ln, Ln+1) is equal in
distribution to the balance of a random level N hexagon at position n, whence ‖ f̃ (N )

n ‖22 ≤ E(Γ2
n) = (u(N )

n )2. �
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3.2.2 The Estimate of Var(SN )

We prove Theorem 3.6. Let X and f be as in assumptions (E) and (B), in particular |f| ≤ K a.s., and the row
lengths are kN + 1. Our aim is to bound Var(SN ) above and below by affine functions of the structure constants
UN . Henceforth, we fix N , and drop the superscripts (N ) . So X (N )

n = Xn, f (N )
n = fn, u(N )

n = un etc.

Preparatory Estimate. LetΦt := f t (Xt, Xt+1)+ f t+1(Xt+1, Xt+2)+ f t+2(Xt+2, Xt+3). There is a positive constant
C0 independent of N such that for every 1 ≤ t ≤ kN − 1,

E
[
Var

(
Φt

��Xt, Xt+3
)]
≥ C0u2

t+2. (3.8)

Proof.By uniform ellipticity, πn,n+1(xn, dy) = pn(xn, xn+1)µn+1(dxn+1), with pn(·, ·) as in the uniform ellipticity
condition, with ellipticity constant ε0.

By Corollary 2.9, we may take µn = Pn for n ≥ 3, where Pn(E) := P(Xn ∈ E). Henceforth integration
variables ranging over subsets ofSk will be denoted by xk or x ′

k
, and we will use the following short-hand for

integrals and densities:

p(xk, . . . , xk+` ) :=
k+`−1∏
j=k

pj (x j, x j+1),
∫

ϕ(xk )dxk :=



∫
Sk
ϕ(xk )µk (dxk ) k > t∫

St
ϕ(xt )Pt (dxt ) k = t .

The joint distribution of (Xt, . . . , Xt+3) is p(xt, . . . , xt+3)dxt · · · dxt+3. Therefore:

E
[
Var

(
Φt

��Xt, Xt+3
)]
=

&
Var

(
Φt

����
Xt = xt

Xt+3 = xt+3

)
p(xt, . . . , xt+3)dxt · · · dxt+3

=

"
dxtdxt+3

[
Var

(
Φt

��Xt = xt, Xt+3 = xt+3
) ∫

p(xt, xt+1)
(∫

p(xt+1, xt+2)p(xt+2, xt+3)dxt+2

)
dxt+1

]

≥ ε0

"
dxtdxt+3

[
Var

(
Φt

��Xt = xt, Xt+3 = xt+3
)]
, by uniform ellipticity.

To continue, we need the following two facts. Firstly, the distribution of (Xt, Xt+1, Xt+2, Xt+3) conditioned on
Xt = xt, Xt+3 = xt+3 is

νxt,xt+3 := δxt ×
p(xt, xt+1, xt+2, xt+3)dxt+1dxt+2

pt (xt → xt+3)
× δxt+3

(see (2.18)). Secondly, for any two identically distributed independent random variables W,W ′, Var(W ) =
1
2E[(W −W ′)2]. It follows that

E
[
Var

(
Φt

��Xt, Xt+3
)]

≥ ε0

"
dxtdxt+3

& p(xt, xt+1, xt+2, xt+3)p(xt, x ′
t+1, x ′

t+2, xt+3)

pt (xt → xt+3)2 ×

×
1
2

[
f t (xt, xt+1) + f t+1(xt+1, xt+2) + f t+2(xt+2, xt+3)
− f t (xt, x ′

t+1) − f t+1(x ′
t+1, x ′

t+2) − f t+2(x ′
t+2, xt+3)

]2
dxt+1dx ′t+1dxt+2dx ′t+2.

• pt (xt → xt+3) are bounded above by ε−3
0 , see (2.18) and recall that p(x, y) ≤ ε−1

0 .

• The expression in the square brackets is the balance Γ
(
xt

xt+1
x ′
t+1

xt+2
x ′
t+2

xt+3

)
.

• The density in front of the square brackets is the density of dm′Hex from (2.23).
• ε8

0 ≤
dm′Hex
dmHex

≤ ε−8
0 , by (2.24).

Thus
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E
[
Var

(
Φt

��Xt, Xt+3
)]
≥

1
2
ε9

0

∫
Hex (N,t+2)

Γ
2dmHex =

1
2
ε9

0u2
t+2.

Lower Bound for the Variance. Let us split UN =
∑kN

n=3 u2
n into three sums:

UN =
∑

γ=0,1,2
UN (γ), where UN (γ) :=

kN∑
n=3

u2
n1[n=γ mod 3](n).

For every N there is at least one γN ∈ {0, 1, 2} such that UN (γN ) ≥ 1
3UN . Let αN := γN + 1, and define βN

and MN by
kN − βN + 1 = max{n ≤ kN : n = αN mod 3} = 3MN + αN .

With these choices, αN, βN ∈ {1, 2, 3}, and Mn ∈ N ∪ {0}.

We begin by bounding the variance of S′N :=
kN−βN∑
k=αN

f j (X j, X j+1) from below. Observe that S′N = F0 + · · · +

FMN−1, where

Fk (ξ1, ξ2, ξ3, ξ4) := f3k+αN (ξ1, ξ2) + f3k+αN+1(ξ2, ξ3) + f3k+αN+2(ξ3, ξ4).

S′N is a function of the following variables:

XαN , XαN+1, XαN+2, XαN+3 , XαN+4, XαN+5, · · · , XkN−βN+1 ,

where we have boxed the terms with indices congruent to αN mod 3. Let FN denote the σ-algebra generated
by the boxed random variables. Conditioned on FN , Fk are independent. Therefore,

Var(S′N |FN ) =
MN−1∑
k=0

Var(Fk |FN ) =
MN−1∑
k=0

Var(Fk |X3k+αN , X3(k+1)+αN ).

By Jensen’s inequality, Var(S′N ) ≥ E(Var(S′N |FN )). It follows that

Var(S′N ) ≥
MN−1∑
k=0

E
(
Var(Fk |X3k+αN , X3(k+1)+αN )

)
≡

MN−1∑
k=0

E
(
Var(Φ3k+αN |X3k+αN , X3(k+1)+αN )

)
(3.8)
≥ C0

MN−1∑
k=0

u2
3k+αN+2 = C0

MN−1∑
k=0

u2
3(k+1)+γN (∵ αN = γN + 1)

≥ C0

kN∑
n=3

u2
n1[n=γn mod 3](n)−4C0 sup{u2

j } ≥ C0UN (γN )−4C0 · (6K )2 ≥
1
3

C0UN − 200C0K2, by the choice of γN .

Now we claim that Var(SN ) ≥ Var(S′N ) − const. Let AN := { j ∈ N : 1 ≤ j < αN or kN − βN < j ≤ kN }.

SN = S′N +
∑

j∈AN
f j , therefore Var(SN ) = Var(S′N ) + Var

( ∑
j∈AN

f j
)
+ 2

∑
j∈AN

Cov(S′N, f j ).

Since |AN | ≤ 6, Var(
∑

j∈AN
f j ) is uniformly bounded by a constant only depending on K . By Lemma 2.14,∑

j∈AN
Cov(S′N, f j ) is also uniformly bounded by a constant depending only on K and ε0.

It follows that Var(SN ) ≥ Var(S′N ) − const. ≥ const.UN − const., where the constants depends only on K and
the ellipticity constant ε0.

Upper Bound for the Variance.Write f = f̃+∇a+c as in the gradient lemma. In particular, Var( f̃n(Xn−1, Xn)) ≤

u2
n. Then Var *.

,

kN∑
n=1

fn
+/
-
= Var *.

,

kN∑
n=1

f̃n
+/
-
+Var

(
akN+1 − a1

)
+ 2Cov *.

,

kN∑
n=1

f̃n, akN+1 − a1
+/
-
. The first term is smaller
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than const.UN + const. due to the gradient lemma and Lemma 3.4. The second term is bounded since |a| ≤ 2K .
The third term is smaller than a constant, due to Lemma 2.14. Moreover, looking at these lemmas, we see that
the constants only depend on K and ε0. �

The Case of One-Step Ellipticity. To prove that the one-step ellipticity condition implies (3.1), we use

quadrilaterals Q(N )
n =

(
X (N )
n−1

X (N )
n

Y (N )
n

Y (N )
n+1

)
instead of hexagons. The corresponding structure constants can then

be shown to satisfy

(u(N )
n )2 �

"
| f (N )

n (y1) − f (N )
n (y2) |2µ(N )

n (dy1)µ(N )
n (dy2) = 2Var( f (N )

n ). (3.9)

Then one proceeds as in the proof of Theorem 3.6 above.

3.2.3 McLeish’s Martingale Central Limit Theorem

A martingale difference array with row lengths kN is a (possibly non-Markov) array ∆ of random variables
∆ = {∆

(N )
j : N ≥ 1, 1 ≤ j ≤ kN } together with an array of σ-algebras {F (N )

j : N ≥ 1, 1 ≤ j ≤ kN }, so that:

(1) For each N , ∆(N )
1 , . . . ,∆(N )

kN
are random variables on the same probability space (SN,FN, µN ).

(2) F (N )
1 ⊂ F (N )

2 ⊂ F (N )
3 ⊂ · · · ⊂ F (N )

kN
are sub σ-algebras of FN .

(3) ∆(N )
j is F (N )

j –measurable, E( |∆(N )
j |) < ∞, and E(∆(N )

j+1 |F
(N )
j ) = 0.

We say that ∆ has finite variance, if every ∆(N )
j has finite variance. Notice that E(∆(N )

j ) = 0 for all
j = 2, . . . , kN+1. If in addition E(∆(N )

1 ) = 0 for all N , then we say that ∆ has mean zero.
A martingale difference sequence is a martingale difference array such that ∆(N )

i = ∆i and F (N )
i = Fi for

all N .

Example 3.15 Suppose {Sn} is a martingale relative to {Fn}, then ∆1 := S1, ∆j := Sj − Sj−1 is a martingale
difference sequence.

The following observation is the key to many of the properties of martingale difference arrays:

Lemma 3.16 Suppose ∆ is a martingale difference array with finite variance, then for each N , ∆(N )
1 , . . . ,∆(N )

kN

are uncorrelated, and if ∆ has mean zero, then Var *.
,

kN∑
n=1

∆
(N )
n

+/
-
=

kN∑
n=1

E
[
(∆(N )

n )2
]
.

Proof Fix N and write ∆(N )
j = ∆j , F (N )

j = Fj . If i < j, then

E(∆j∆i) = E[E(∆j∆i |Fj−1)] = E[E(∆iE(∆j |Fj−1))] = E(∆i · 0) = 0.

The identity for the variance immediately follows. �

Theorem 3.17 (McLeish’s Martingale Central Limit Theorem) Let ∆ = {∆(N )
j } be a martingale difference

array with row lengths kN , zero mean, and finite variance, and let VN :=
∑kN

j=1 E[(∆(N )
j )2]. Suppose:

(1) max
1≤ j≤kN

|∆
(N )
j |
√
VN

has uniformly bounded L2 norm;

(2) max
1≤ j≤kN

|∆
(N )
j |
√
VN
−−−−−→
N→∞

0 in probability; and
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(3)
1

VN

kN∑
n=1

(∆(N )
n )2 −−−−−→

N→∞
1 in probability.

Then for all intervals (a, b), P


1
√

VN

kN∑
j=1

∆
(N )
j ∈ (a, b)


−−−−−→
N→∞

1
√

2π

∫ b

a

e−t
2/2dt .

We make some preparations for the proof.
A sequence of random variables {Yn} on (Ω,F , µ) is called uniformly integrable if for every ε , ∃K such that

E(|Yn |1[ |Yn |>K]) < ε for all n. This is strictly stronger than tightness (there are tight sequences of non-integrable
random variables).

Example 3.18 (Bounded Moments and Uniform Integrability) If sup ‖Yn‖p < ∞ for some p > 1, then {Yn}
is uniformly integrable. To see this, let Mp := sup ‖Yn‖p , and suppose 1

p +
1
q = 1. By Markov’s inequality,

µ[|Yn | > K] ≤
1

K p
Mp

p ,

and by Hölder’s inequality, E(|Yn |1[ |Yn |>K]) ≤ Mpµ[|Yn | > K]1/q = O(K−p/q).

Lemma 3.19 Suppose Yn,Y ∈ L1(Ω,F , µ), then Yn
L1

−−−−→
n→∞

Y iff {Yn} are uniformly integrable, and Yn −−−−→
n→∞

Y
in probability. In this case, E(Yn) −−−−→

n→∞
E(Y ).

Proof The proof is standard, but we include it for completeness.
Proof of (⇒): Suppose ‖Yn − Y ‖1 → 0, then it is easy to see that E(Yn) → E(Y ), and that Yn → Y in

probability. It remains to check uniform integrability.
Since Y ∈ L1, lim

K→∞
E(|Y |1[ |Y | ≥K]) = 0. Given ε take K so that E( |Y |1[ |Y | ≥K]) < ε. Next choose δ > 0 so

small that
Kδ + E( |Y |1[ |Y | ≥K]) < ε.

For this δ, E(|Y |1F ) < ε for all measurable sets F such that µ(F) < δ.
By Markov’s inequality, P[|Yn | > L] ≤ L−1 sup ‖Yn‖1 = O(L−1), so there exists L > K such that P[|Yn | >

L] < δ for all n. By the choice of δ,∫
[ |Yn |>L]

|Yn | dµ ≤
∫

[ |Yn |>L]
|Y | dµ +

∫
[ |Yn |>L]

|Yn − Y | dµ < ε + ‖Yn − Y ‖1.

Since ‖Yn − Y ‖1 → 0, there exists an N so that E(|Yn |1[ |Yn |>L]) < ε for all n ≥ N .
SinceYn ∈ L1, for some M > L big enough,E( |Yn |1[ |Yn |>M]) < ε for all 1 ≤ n ≤ N−1. SoE(|Yn |1[ |Yn |>M]) <

ε for all n.

Proof of (⇐): Given a random variable Z , let ZK := Z1[ |Z | ≤K]. Since {Yn} is uniformly integrable, for every
ε there is a K > 1 such that ‖YK

n − Yn‖1 < ε for all n. By the dominated convergence theorem, ‖YK − Y ‖1 < ε
for all K large enough. Thus for all K large enough, for all n,

‖Yn − Y ‖1 ≤ ‖YK
n − YK ‖1 + 2ε ≤ ε µ[|YK

n − YK | ≤ ε] + 2K µ[|YK
n − YK | > ε] + 2ε

≤ 3ε + 2K
(
µ[|Yn − Y | > ε] + µ[|Yn | > K] + µ[|Y | > K]

)
≤ 3ε + 2K µ[|Yn − Y | > ε] + 2E( |Yn |1[ |Yn |>K]) + 2E( |Y |1 |Y |>K ).

Using the assumption that Yn → Y in probability, we obtain

lim sup
n→∞

‖Yn − Y ‖1 ≤ 3ε + 2 sup
n
E(|Yn |1[ |Yn |>K]) + 2E(|Y |1 |Y |>K )

!
< 7ε,
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where the last inequality follows from the choice of K . Now take ε → 0. �

Lemma 3.20 (McLeish) Let {W (N )
j : 1 ≤ j ≤ kN, N ≥ 1} be a triangular array of random variables,2 where

W (N )
1 , . . . ,W (N )

kN
are defined on the same probability space. Fix t ∈ R and letTN (t) :=

kN∏
j=1

(
1 + itW (N )

j

)
. Suppose

(1) {TN (t)} is uniformly integrable and E(TN ) −−−−−→
N→∞

1;

(2)
kN∑
j=1

(W (N )
j )2 −−−−−→

N→∞
1 in probability;

(3) max
1≤ j≤kN

|W (N )
j | −−−−−→

N→∞
0 in probability.

Then E
(
eit (W (N )

1 +· · ·+W (N )
kN

))
−−−−−→
N→∞

e−
1
2 t

2
.

Proof Define a function r (x) on [−1, 1] by the identity eix = (1+ ix)e− 1
2 x

2+r (x) . Equivalently, r (x) = − log(1+
ix) + ix + 1

2 x2 = O(|x |3). Fix C such that |r (x) | ≤ C |x |3 for |x | < 1.
Substituting SN := W (N )

1 + · · · + W (N )
kN

in eix = (1 + ix)e− 1
2 x

2+r (x) gives (in what follows we drop the
superscripts (N ) and abbreviate Tn := Tn(t)):

E(eitSN ) = E
( kN∏
j=1

eitWj

)
= E(TNe−

1
2
∑kN

j=1 t2W 2
j +r (tWj )) = E(TNUN ), where

UN := exp
[
−

t2

2

kN∑
j=1

(
W (N )

j

)2
+ r (tW (N )

j )
]
.

TN and UN have the following properties:

(a) E(TN ) −−−−−→
N→∞

1, by assumption.

(b) {TN } is uniformly integrable by assumption, and |TNUN | = |eitSN | = 1.

(c) UN −−−−−→
N→∞

e−
1
2 t

2
in probability, because

kN∑
j=1

(
W (N )

j

)2
−−−−−→
N→∞

1 in probability, and by the assumptions of the

lemma, with asymptotic probability one,
������

kN∑
i=1

r (tW (N )
j )

������
≤ C |t |3

(
max

1≤ j≤kN

���W
(N )
j

���

) kN∑
j=1

(
W (N )

j

)2 prob
−−−−−→
N→∞

0. �

Let L := e− 1
2 t

2 , then

|E(eitSN ) − L | = |E(TNUN ) − L | ≤ |E(TN (UN − L)) | +L |E(TN ) − 1|
= |E(TN (UN − L)) | + o(1), by (a). (3.10)

Next, P[|TN (UN − L) | > ε] ≤ P[|TN | > K] + P[|UN − L | > ε/K], for all K and ε. Therefore by (b) and (c),
TN (UN − L) −−−−−→

N→∞
0 in probability. Finally, by (b), |TN (UN − L) | ≤ 1 + L |TN |, and TN (UN − L) is uniformly

integrable. By Lemma 3.19, E(TN (UN − L)) → 0, and by (3.10), E(eitSN ) → e− 1
2 t

2 . �

Proof of the Martingale CLT ([140]): Let ∆ = {∆(N )
j } be a martingale difference array with row lengths kN ,

which satisfies the assumptions of Theorem 3.17, and let

2 Not necessarily a martingale difference array or a Markov array.
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SN :=
kN∑
j=1

∆
(N )
j and VN := Var(SN ) ≡

kN∑
j=1

E
[
(∆(N )

j )2
]

(see Lemma 3.16).

It is tempting to apply McLeish’s lemma to the normalized array ∆(N )
j /
√

VN , but to do this we need to check
the uniform integrability of

∏n
j=1(1 + it∆(N )

j /
√

VN ) and this is difficult. It is easier to work with the following
array of truncations:

W (N )
1 := 1√

VN
∆

(N )
1 , W (N )

n := 1√
VN
∆

(N )
n 1[

∑n−1
k=1 (∆(N )

k
)2≤2VN ].

It is easy to check that {W (N )
n } is a martingale difference array relative to F (N )

n , and that {W (N )
n } has zero mean,

and finite variance. In addition, S∗N :=
kN∑
n=1

W (N )
n are close to SN/

√
VN in probability:

P
[
S∗N ,

SN√
VN

]
≤ P


∃1 ≤ j ≤ kN s.t.

j−1∑
k=1

(∆(N )
k

)2 > 2VN



≤ P
[ kN∑
j=1

(∆(N )
k

)2 > 2VN

]
−−−−−→
N→∞

0, ∵
1

VN

kN∑
j=1

(
∆

(N )
j

)2 prob
−−−−−→
N→∞

1 by assumption.

Thus to prove the theorem, it is enough to show that S∗N converges in distribution to the standard Gaussian
distribution. To do this, we check that {W (N )

n } satisfies the conditions of McLeish’s lemma.

Fix t ∈ R, and let TN = TN (t) :=
kN∏
j=1

(1 + itW (N )
j ), and JN := max{2 ≤ j ≤ kN :

j−1∑
k=1

(∆(N )
n )2 ≤ 2VN }. (or

JN = 1 if the maximum is over the empty set). Writing Wj = W (N )
j and ∆j = ∆

(N )
j , we obtain

|TN | =

kN∏
j=1

(1 + t2W2
j )1/2 =

JN∏
j=1

(
1 +

t2∆2
j

VN

)1/2
. Thus

|TN | =
*.
,

JN−1∏
j=1

(
1 +

t2∆2
j

VN

)+/
-

1/2

·

(
1 +

t2∆2
JN

VN

)1/2
≤ exp

( t2

2VN

JN−1∑
j=0

∆
2
j

) (
1 +

t2∆2
JN

VN

)1/2
≤ et

2
(
1 + |t | max

1≤ j≤kN

����
∆

(N )
j
√

VN

����

)
.

So ‖TN (t)‖22 ≤ e2t2
E



(
1 + |t | max

1≤ j≤kN

���∆
(N )
j /

√
VN

���

)2
.

By the first assumption of the theorem, sup
N ∈N
‖TN (t)‖2 < ∞ for each t. Thus {TN (t)}N ≥1 is uniformly integrable

for each t (see Example 3.18). Next, successive conditioning shows that E(TN ) = 1 + itE
(
∆

(N )
1

)
= 1. The first

condition of McLeish’s lemma is verified.

Next,P


kN∑
n=1

(W (N )
n )2 ,

kN∑
n=1

( ∆
(N )
n√
VN

)2

≤ P

[
∃1 ≤ n ≤ kN s.t.

n∑
j=1

(∆(N )
j )2 > 2VN

]
≤ P



kN∑
n=1

(∆(N )
n )2 > 2VN


−−−−−→
N→∞

0, because
1

Vn

kN∑
j=1

(∆(N )
n )2 → 1 in probability.

The second condition ofMcLeish’s lemma now follows from assumption 3 of the theorem. The third condition
of McLeish’s lemma follows for similar reasons.

So McLeish’s lemma applies to {W (N )
n }, and E(eitS∗N ) → e− 1

2 t
2 for all t ∈ R. By Lévy’s continuity theorem,

S∗N converges in distribution to the standard Gaussian distribution. As explained above, this implies that SN√
VN

converges in distribution to the standard Gaussian distribution. �
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3.2.4 Proof of the Central Limit Theorem

We prove Theorem 3.10.
Let X = {X (N )

n } be a uniformly elliptic Markov array with row lengths kN + 1, and let f = { f (N )
n } be an a.s.

uniformly bounded additive functional on X such that VN := Var(SN ) → ∞.
Without loss of generality, E[ f (N )

n (X (N )
n , X (N )

n+1 )] = 0 and | f (N )
n | ≤ K for all n, N . Let F (N )

n denote the
σ-algebra generated by X (N )

1 , . . . , X (N )
n+1 , and let F (N )

0 denote the trivial σ-algebra.
Fix N and write fk = f (N )

k
(X (N )

k
, X (N )

k+1 ) and Fk = F (N )
k

, then E( fk |Fk ) = fk , E( fk |F0) = E( fk ) = 0, and
therefore

SN =

kN∑
k=1

fk =
kN∑
k=1

(
E( fk |Fk ) − E( fk |F0)

)
=

kN∑
k=1

k∑
n=1

(
E( fk |Fn) − E( fk |Fn−1)

)
.

So SN =
∑kN

n=1
∑kN

k=n

(
E( fk |Fn) − E( fk |Fn−1)

)
=

∑kN
n=1 ∆

(N )
n , where

∆
(N )
n :=

kN∑
k=n

(
E( f (N )

k
|F (N )

n ) − E( f (N )
k
|F (N )

n−1 )
)
.

The array {∆(N )
n : 1 ≤ n ≤ kN ; N ≥ 1} is a martingale difference array relative to the filtrations F (N )

n , with
zero mean and finite variance. To prove the theorem, it suffices to check that {∆(N )

n } satisfies the conditions of
the martingale CLT.

Step 1: max
1≤ j≤kN

|∆
(N )
j |
√
VN

has uniformly bounded L2 norm, and max
1≤ j≤kN

|∆
(N )
j |
√
VN

prob
−−−−−→
N→∞

0.

Proof. The proof is based on the exponential mixing of uniformly elliptic Markov arrays (Proposition 2.13): Let
K := ess sup |f|, then there are constants Cmix > 1 and 0 < θ < 1 such that for all k ≥ n, ‖E( f (N )

k
|F (N )

n )‖∞ ≤
CmixKθk−n−1.

It follows that |∆(N )
j | < 2CmixK

∞∑
`=−1

θ` =
2CmixKθ−1

1 − θ
. The step follows, since VN → ∞, by the assumptions

of the theorem.

Step 2:
1

VN

kN∑
n=1

(
∆

(N )
n

)2
−−−−−→
N→∞

1 in probability.

Proof.We follow [181] closely. Let Y (N )
i := (∆(N )

i )2/VN . We will show that 



∑kN

i=1 Y (N )
i − 1




2

2
−−−−−→
N→∞

0, and use

the general fact that L2-convergence implies convergence in probability (by Chebyshev’s inequality).

Notice that E
( kN∑
i=1

Y (N )
i

)
= 1, because by Lemma 3.16, this expectation equals 1

VN
× Var

(∑kN
n=1 ∆

(N )
n

)
=

1
VN

Var(SN ) = 1. So









kN∑
i=1

Y (N )
i − 1









2

2

= E



*.
,

kN∑
i=1

Y (N )
i

+/
-

2
− 2E

[ kN∑
i=1

Y (N )
i

]
+ 1 = E

[ kN∑
i=1

(
Y (N )
i

)2
]
+ 2E

[∑
i< j

Y (N )
i Y (N )

j

]
− 2 + 1

= O
(

max
1≤`≤kN

‖Y (N )
`
‖∞

)
· E

[ kN∑
`=1

Y (N )
i

]
+ 2E

[∑
i< j

Y (N )
i Y (N )

j

]
− 1.

We saw in the proof of Step 1 that ‖∆(N )
j ‖∞ are uniformly bounded. Thus

max
1≤`≤kN

‖Y (N )
`
‖∞ = O(1/VN ). (3.11)
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So






kN∑
i=1

Y (N )
i − 1






2

2
= 2E

[∑
i< j

Y (N )
i Y (N )

j

]
− 1 + o(1). It remains to show that

2E
[∑
i< j

Y (N )
i Y (N )

j

]
−−−−−→
N→∞

1. (3.12)

Define the oscillation of an L1-element ϕ to be the infimum of the oscillations of all its a.e. versions, see
(2.8). The proof of (3.12) is based on the following claim:

Osc(N ) := max
1≤i≤kN

Osc *.
,
E
( kN∑
j=i+1

Y (N )
j

����F
(N )
i

)+/
-
−−−−−→
N→∞

0. (3.13)

Before proving this, we explain why (3.13) implies (3.12).
Henceforth we fix N and drop some of the superscripts (N ) . We start from

2E
[∑
i< j

Y (N )
i Y (N )

j

]
= 2E

[ kN∑
i=1

Yi
kN∑

j=i+1
Yj

]
= 2E

[ kN∑
i=1

YiE
( kN∑
j=i+1

Yj ��Fi

)]
.

Call the conditional expectation ϕ, then ϕ = E(ϕ) ±Osc(N ) a.e., where x = y ± ε means that y − ε ≤ x ≤ y + ε .
Therefore,

2E
[∑
i< j

Y (N )
i Y (N )

j

]
= 2E

[ kN∑
i=1

YiE
( kN∑
j=i+1

Yj
)]
± 2E

[ kN∑
i=1

Yi
]
Osc(N ) = 2

kN∑
i=1

E(Yi)
kN∑

j=i+1
E(Yj ) ± 2Osc(N ) (∵

kN∑
i=1

E(Yi) = 1)

=

( kN∑
i=1

E(Yi)
)2
−

kN∑
i=1

E(Yi)2 ± 2Osc(N ) = 1 +O
(

max
1≤i≤kN

‖Yi ‖∞
)
± 2Osc(N ), ∵

∑
E(Yi)2 ≤

∑
E(Yi)︸    ︷︷    ︸
=1

max ‖Yi ‖∞

= 1 +O(V−1
N ) +O(Osc(N )), see (3.11).

So (3.13) implies (3.12), and with it the step. We turn to the proof of (3.13). First we note that a routine
modification of the proof of Lemma 3.16 shows that for all j, k > i, E(∆j∆k |Fi) = 0. It follows that

E
( kN∑
j=i+1

Yj
����Fi

)
≡

1
VN

E
( kN∑
j=i+1

∆
2
j

����Fi

)
=

1
VN

E
(( kN∑

n=i+1
∆n

)2����Fi

)
=

1
VN

E
[( kN∑

n=i+1

kN∑
k=n

[
E( fk |Fn) − E( fk |Fn−1)

] )2����Fi

]

=
1

VN
E

[( kN∑
k=i+1

k∑
n=i+1

E( fk |Fn) − E( fk |Fn−1)
)2����Fi

]
=

1
VN

E
[( kN∑

k=i+1

[
fk − E( fk |Fi)

] )2����Fi

]

=
1

VN

kN∑
k,`=i+1

E
[(

fk − E( fk |Fi)
) (

f` − E( f` |Fi)
) ����Fi

]

=
1

VN

kN∑
k,`=i+1

E
[

fk f` + E( fk |Fi)E( f` |Fi) − fkE( f` |Fi) − f`E( fk |Fi)
����Fi

]
.

=
1

VN

kN∑
k,`=i+1

[
E
(

fk f` |Fi
)
− E( f` |Fi)E( fk |Fi)

]
. (3.14)
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Proposition 2.13(1) applied to {X (N )
n }i+1≤n≤kN+1, shows that there exists C0 > 0 and 0 < θ < 1 which only

depend on ε0 such that for all k > i + 1, and for every bounded measurable function u :S(N )
k
×S

(N )
k+1 → R,

Osc
[
E
(
u(X (N )

k
, X (N )

k+1 )��F (N )
i

)]
≤ C0θ

k−iOsc(u).

This, (2.11), and the inequalities | f j | ≤ K , Osc(u) ≤ 2‖u‖∞ and

Osc(uv) ≤ ‖u‖∞Osc(v) + ‖v‖∞Osc(u)

imply the existence of constants C1 > 0 and 0 < θ < 1 such that for every N ≥ 1 and i + 2 ≤ k ≤ ` ≤ kN ,

Osc
(
E( f` |Fi)E( fk |Fi)

)
≤ Osc(E( f` |Fi))‖E( fk |Fi)‖∞ + ‖E( f` |Fi)‖∞Osc(E( fk |Fi))≤C1θ

k−iθ`−i, and

Osc
(
E
[

fk f` |Fi
] )
= Osc

(
E
[

fkE( f` |Fk ) |Fi
] )
≤ C0θ

k−iOsc( fkE( f` |Fk ))

≤ C0θ
k−i[K · Osc(E( f` |Fk )) + Osc( fk )‖E( f` |Fk )‖∞] ≤ C1θ

k−iθ`−k .

We have stated these bounds for k, ` ≥ i+ 2, but in fact they remain valid for k = i+ 1 or ` = i+ 1, if we increase
C1 to guarantee that C1θ

2 > 2K2.
Substituting these bounds in (3.14), we find that

Osc(N ) ≤ max
1≤i≤kN

1
VN

∞∑
k,`=i+1

C1θ
k−iθ |`−k | + C1θ

k−iθ`−i = O(V−1
N ) −−−−−→

N→∞
0.

This proves (3.13), and Step 2.

Steps 1 and 2 verify the conditions of themartingaleCLT. So 1√
VN

SN ≡
1√
VN

kN∑
n=1

∆
(N )
n converges in distribution

to the standard normal distribution. �

3.2.5 Convergence of Moments

We prove Theorem 3.11. It is sufficient to prove the following lemma:

Lemma 3.21 Let f be a centered bounded additive functional of a uniformly elliptic Markov chain such that
VN → ∞. Then for each r ∈ N there is a constant Cr such that for all N ,

���E
[
Sr
N

] ��� ≤ CrV br/2cN .

Proof of Theorem 3.11 Assuming Lemma 3.21: Suppose r is even. We have already remarked that by Dobrushin’s
CLT, for any bounded continuous function φ : R→ R,

lim
N→∞

E

[
φ

(
SN − E(SN )
√

VN

)]
=

1
√

2π

∫ ∞

−∞

φ(z)e−z
2/2dz. (3.15)

Let N be a Gaussian random variable with mean zero and variance one. Applying (3.15) to the bounded
continuous function φM (x) = xr ∧ M , we obtain

lim
N→∞

E
[(

SN−E(SN )
√
VN

)r
∧ M

]
= E

(
Nr ∧ M

)
.

By the dominated convergence theorem and the assumption that r is even,

lim
M→∞

lim
N→∞

E
[(

SN−E(SN )
√
VN

)r
∧ M

]
= lim

M→∞
E

(
Nr ∧ M

)
= E(Nr ) = (r − 1)!!.
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It remains to see that

lim
M→∞

lim
N→∞

E
[(

SN−E(SN )
√
VN

)r
∧ M

]
= lim

N→∞
E

[(
SN−E(SN )
√
VN

)r ]
. (3.16)

By Lemma 3.21,







(
SN − E(SN )
√

VN

)r






2

2
≤ C2r for all N . Therefore ( SN−E(SN )

√
VN

)r are uniformly integrable. It is

not difficult to see that this implies (3.16). This proves the theorem for even r . The proof when r is odd is similar,
except that one has to use φM (x) = (xr ∧ M) ∨ (−M), and the identity E(Nr ) = 0. �

The rest of the section is a proof of Lemma 3.21. By the gradient lemma (and the Cauchy-Schwarz inequality),
it is sufficient to prove Lemma 3.21 under the additional assumption that there is some constantC > 0 as follows:

N∑
n=3

ũ2
n ≤ CVN, where ũn := ‖ fn‖L2 .

Let fn := fn(Xn, Xn+1). The proof proceeds by expanding Sr
N into a sum of r-tuples fn1 · · · fnr (n1 ≤ · · · ≤

nr ), and by estimating the expectation of each tuple. Consider an r-tuple fn1 · · · fnr where n1 ≤ n2 ≤ · · · ≤ nr .
Segments of the form [n j, n j+1] will be called edges. A marking is a non-empty collection of edges satisfying
the following two conditions. Firstly, each vertex n j belongs to at most one edge. The vertices belonging to an
edge are called bound, the other vertices are called free. Secondly, we require that for every free vertex nl , either

(i) there exists a minimal f (l) > l such that n f (l) is bound, and for all l ≤ i < f (l), ni+1 − ni ≤ n f (l)+1 − n f (l);
or

(ii) there exists a maximal p(l) < l such that np(l) is bound, and for all p(l) < i ≤ l, ni − ni−1 ≤ np(l) − np(l)−1.

If (i) holds we will say that nl is associated to the edge [n f (l), n f (l)+1] otherwise it is associated to [np(l)−1, np(l)].

Lemma 3.22 There are constants L = L(r) > 0 and 0 < θ < 1 such that

������
E

[ r∏
i=1

fni
] ������
≤ L

∑
markings

∏
[n j,n j+1] is an edge

(
θ (n j+1−n j ) ũn j ũn j+1

)
.

Proof If r = 1 then the result holds since E[ fn] = 0 (in this case there are no markings, and we let the empty
sum be equal to zero).

If r = 2 then the lemma says that ��E
[

fn1 fn2

] �� ≤ const.θn2−n1 ‖ fn1 ‖L2 ‖ fn2 ‖L2 . This is a consequence of
uniform ellipticity, see Proposition 2.25.

For r ≥ 3 we use induction. Take j such that n j+1 − n j is the largest. Then

E


r∏
i=1

fni

= E



j∏
i=1

fni

E



r∏
i=j+1

fni


+O *.

,
θ (n j+1−n j )









j∏
i=1

fni






2










r∏
i=j+1

fni








2

+/
-
.

Let K := ess sup |f|, then the second term is less than Cmixθ
(n j+1−n j )ũn j ũn j+1 Kr−2. Thus this term is controlled

by the marking with only one marked edge [n j, n j+1]. Applying the inductive assumption to each factor in the
first term gives the result. �

Lemma 3.23 ∃Cr > 0 such that for every set C of r-tuples 1 ≤ n1 ≤ · · · ≤ nr ≤ N ,

ΓC :=
∑

(n1,...,nr )∈C

������
E

[ r∏
i=1

fni
] ������
≤ CrV br/2cN .

Lemma 3.23 implies Lemma 3.21 since E(Sr
N ) is a linear combination of expectations of products along

r-tuples, with combinatorial coefficients which only depend on r . Therefore it suffices to prove Lemma 3.23.
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Proof By Lemma 3.22, ΓC ≤ L
∑

(n1,...,nr )∈C

∑
markings (e1, . . . , es )

of (n1, . . . , nr )

s∏
j=1

(
ũe−j ũe+j θ

(e+j −e
−
j )
)
where the marked edges are

e j = [e−j , e
+
j ], j = 1, . . . , s.

Collecting all terms with a fixed set of marked edges (e1, . . . , es), we obtain

ΓC ≤ C(r)
∑
s

∑
(e1,...,es )

s∏
j=1

(
ũe−j ũe+j θ

(e+j −e
−
j ) (e+j − e−j )r−2

)
(3.17)

where C(r)
∏
j

(e+j − e−j )r−2 accounts for all tuples which admit a marking (e1, . . . es). Indeed, for every edge

e = [e−, e+] there are at most 0 ≤ j ≤ r − 2 vertices which may be associated to e, and these vertices are inside[
e− − (r − 2)(e+ − e−), e−

)
∪

(
e+, e+ + (r − 2)(e+ − e−)

]
.

Thus there are at most 2(r − 2)(e+ − e−) choices to place each vertex associated to a given edge. This gives
the following bound for the number of possibilities for tuples with marking (e1, . . . , es):

∏
e

*.
,

r−2∑
j=0

[
2(r − 2)(e+ − e−)

] j+/
-
≤ C(r)

∏
e

(e+ − e−)r−2.

The sum over (e1, . . . es) in (3.17) is estimated by *
,

N−1∑
n=1

N−n∑
m=1

ũnũn+mθmmr−2+
-

s

. For each m,
∑
n

ũnũn+m =

O(VN ) due to the Cauchy-Schwartz inequality and because
N∑
n=1

ũ 2
n ≤ CVN by assumption. Summing over m

gives ΓC ≤ const.
∑
2s≤r

V s
N where the condition 2s ≤ r appears because each edge involves two distinct vertices,

and no vertex belongs to more than one edge. The result follows. �

3.2.6 Characterization of Center-Tight Additive Functionals

We prove Theorem 3.8. Suppose f is an a.s. uniformly bounded functional on a uniformly elliptic array X. We
will show that the following conditions are equivalent:

(a) Var(SN ) = O(1);
(b) f is the sum of a gradient and an additive functional with summable variance;
(c) f is center-tight.

(a)⇒(b): By the gradient lemma f = ∇a+ (̃f+c), where a is a.s. uniformly bounded, c(N )
n are uniformly bounded

constants, and ‖ f̃n‖2 ≤ u(N )
n . By Theorem 3.6, sup

N

kN∑
n=3

(u(N )
n )2<∞, so f̃ + c has summable variance, proving (b).

(b)⇒(c):We already saw that gradients and functionals with summable variance are center-tight. Since the sum
of center-tight functionals is center-tight, (c) is proved.

(c)⇒(a):Assume by way of contradiction that ∃Ni ↑ ∞ such thatVNi := Var(SNi ) → ∞. By Dobrushin’s central
limit theorem, SNi

−E(SNi
)

√
VNi

converges in distribution to a standard Gaussian distribution, so | exp(itSNi/
√

VNi ) | →
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e−t2/2. But center-tightness implies that there are constants mN such that SNi
−mNi√
VNi

converges in distribution to

zero, so | exp(itSNi/
√

VNi ) | → 1, a contradiction. �

3.2.7 Proof of the Two-Series Theorem

We prove Theorem 3.12.

Part (1). We suppose that f has summable variance, and prove that SN − E(SN ) converges a.e. to a finite limit.
Let f ∗0 := 0, f ∗n := fn(Xn, Xn+1) − E[ fn(Xn, Xn+1)], let F0 denote the trivial σ-algebra, and let Fn denote

the σ-algebra generated by X1, . . . , Xn. Then f ∗
k
is Fk+1-measurable, so f ∗k = E( f ∗k |Fk+1) − E( f ∗k |F0) =

k∑
n=0

E( f ∗k |Fn+1) − E( f ∗k |Fn). Therefore,

N∑
k=1

f ∗k =
N∑
k=1

k∑
n=0

[
E( f ∗k |Fn+1) − E( f ∗k |Fn)

]
=

N∑
n=0

N∑
k=n

[
E( f ∗k |Fn+1) − E( f ∗k |Fn)

]

!
=

N∑
n=0

∞∑
k=n

(
E( f ∗k |Fn+1) − E( f ∗k |Fn)

)
−

N∑
n=0

∞∑
k=N+1

(
E( f ∗k |Fn+1) − E( f ∗k |Fn)

)
!
=

N∑
n=0

∞∑
k=n

(
E( f ∗k |Fn+1) − E( f ∗k |Fn)

)
−

∞∑
k=N+1

N∑
n=0

(
E( f ∗k |Fn+1) − E( f ∗k |Fn)

)
=

N∑
n=0

∞∑
k=n

(
E( f ∗k |Fn+1) − E( f ∗k |Fn)

)
−

∞∑
k=N+1

E( f ∗k |FN+1). (3.18)

To justify the marked equalities, we need to show that the infinite sums converge absolutely in L2. By (2.12),

‖E( f ∗
k
|Fn+1)‖2+‖E( f ∗

k
|Fn)‖2 ≤ 2Cmix

√
Var( fk )θk−n−1. Since

∞∑
n=1

Var( fn)<∞,
N∑
n=0

∞∑
k=n




E( f ∗k |Fn+1)−E( f ∗k |Fn)


2
<

∞.

Let ∆n :=
∞∑
k=n

(
E( f ∗k |Fn+1) − E( f ∗k |Fn)

)
and ZN :=

∞∑
k=N+1

E( f ∗k |FN+1). (3.19)

Equation (3.18) leads to the following martingale-coboundary decomposition:3

SN − E(SN ) =
N∑
n=0

∆n − ZN . (3.20)

To finish the proof, we show that
∑∞

n=0 ∆n and lim
N→∞

ZN exist a.s.

Claim 1. MN :=
N−1∑
n=0

∆n is a martingale relative to {FN }, and sup ‖MN ‖2 < ∞. Consequently, lim MN exists

and is finite almost surely.
Proof of the Claim. The martingale property is because MN+1 − MN = ∆N , and

3 Indeed, we will soon see that
N∑
n=0

∆n is a martingale (Claim 1); and ZN≡ZN − Z−1=
N∑
n=0

(Zn − Zn−1), a sum of “coboundaries"

Zn − Zn−1 which tend to zero. (See Footnote 1 on page 31.)
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E(∆N |FN ) !
=

∞∑
k=N

E
(
E( f ∗k |FN+1) |FN

)
− E

(
E( f ∗k |FN ) |FN

)
= 0.

To justify !
=, we note that the series ∆N =

∞∑
k=N

[
E( f ∗k |Fn+1) − E( f ∗k |Fn)

]
converges in L2, because

‖E( f ∗
k
|Fn+1) − E( fk |Fn)‖∞ = O(θk−n). Therefore, the conditional expectation can be calculated term-by-

term.
Next we show that ‖MN ‖2 is uniformly bounded.

‖MN+1‖2 ≤






N∑
n=0

∞∑
k=n

(
E( f ∗k |Fn+1) − E( f ∗k |Fn)

)



2
≤







∞∑
k=0

k∧N∑
n=0

(
E( f ∗k |Fn+1) − E( f ∗k |Fn)

)



2

=






∞∑
k=0

E( f ∗k |F(k∧N )+1)




2
≤







N∑
k=0

f ∗k




2
+







∞∑
k=N+1

E( f ∗k |FN+1)




2

≤

√√√
N∑
k=0
‖ f ∗

k
‖22 + 2

∑
0≤k<`≤N

Cov( f ∗
k
, f ∗
`

) +
∞∑

k=N+1
‖E( f ∗k |FN+1)‖∞

≤

√√
∞∑
k=0
‖ f ∗

k
‖22 + 2Cmix

∑
0≤k<`≤∞

θ`−k ‖ f ∗
k
‖2‖ f ∗

`
‖2 + Cmix

∞∑
k=N+1

‖ f ∗k ‖∞θ
k−(N+1) .

The last expression is uniformly bounded, because
∑
‖ f ∗

k
‖22 =

∑
Var( fk ) < ∞, and

∑
0≤k<`<∞

θ`−k ‖ f ∗k ‖2‖ f ∗` ‖2 ≤

∞∑
r=1

θr
∞∑
k=0
‖ f ∗k ‖2‖ f ∗k+r ‖2

!
≤

1
1 − θ

∞∑
k=0
‖ f ∗k ‖

2
2 , by the inequality |ab| ≤ 1

2 (a2 + b2).

Claim 2. ZN −−−−−→
N→∞

0 a.s.

Proof of the Claim. In fact we will show that
∑

Z2
N < ∞ almost surely.

1
2
E *

,

∞∑
N=1

Z2
N

+
-
≤

∞∑
N=1

∑
k2≥k1>N

E
[
E( f ∗k1

|FN+1)E( f ∗k2
|FN+1)

]
=

∞∑
N=1

∑
k2≥k1>N

E
[

f ∗k2
E( f ∗k1

|FN+1)
]

(2.13)
≤ Cmix

∞∑
N=1

∑
k2≥k1>N

θk2−(N+1) ‖ f ∗k2
‖2‖E( f ∗k1

|FN+1)‖2
(2.12)
≤ C2

mix

∞∑
N=1

∑
k2≥k1>N

θk2−(N+1) ‖ f ∗k2
‖2 · θ

k1−(N+1) ‖ f ∗k1
‖2

= C2
mixθ

−2
∑
j≥0

θ j
∑
k>0

θ2k
∞∑

N=1
‖ f ∗k+N+j ‖2‖ f ∗k+N ‖2,where j = k2 − k1, k = k1 − N .

Since ab ≤ a2+b2

2 , the innermost sum is less than
∑
‖ f ∗n‖

2
2 , which is finite by the assumption that f has summable

variance. So E(
∑

Z2
n) < ∞, proving the claim.

By Claims 1 and 2 and equation (3.20), lim(SN − E(SN )) exists almost surely, and the first part of Theorem
3.12 is proved. �

Part (2). Suppose first that Var(SN ) 6→ ∞. By Corollary 3.7 (a direct consequence of Theorem 3.6), Var(SN ) is
bounded, and therefore f is center-tight. By Theorem 3.8, f = ∇a + h where h has summable variance.

Trading constants between h and a, we may arrange that E[an(Xn)] = 0 for all n. Then E(SN ) = E[SN (h)],
and since SN (f) = SN (∇a) + SN (h), we get SN − aN+1(XN+1) − E(SN ) = [SN (h) − E(SN (h))] − a1(X1).

The last expression has a finite a.s. limit, by part (1). This proves the direction (⇒).
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To see (⇐), assume that there are uniformly bounded measurable functions an : Sn → R so that SN −

aN+1(XN+1) − E(SN ) has a finite limit almost everywhere, and assume by contradiction that VN → ∞.

Then lim
N→∞

SN − E(SN )
√

VN

= lim
N→∞

SN − aN+1(XN+1) − E(SN )
√

VN

= 0 a.s. , whence SN−E(SN )
√
VN

dist
−−−−−→
N→∞

0. But this

contradicts Dobrushin’s CLT, which says that if VN → ∞, then SN−E(SN )
√
VN

converges in distribution to the
Gaussian law. �

∗3.3 The Almost Sure Invariance Principle

The CLT approximates the distribution of SN by the Gaussian distribution with variance VN . The next result
approximates (SN, SN+1, SN+2, . . .) by a path of standard Brownian motion at times (VN,VN+1,VN+2, . . .).

We remind the reader that a standard Brownian Motion on a probability space Ω̃ is a one-parameter family
of real-valued functions W (t) : Ω̃→ R (t ≥ 0) s.t.:

(1) (t, ω) 7→ W (t)(ω) is measurable;
(2) W (0) ≡ 0;
(3) W (t) −W (s) is normally distributed with mean zero and variance |t − s |;
(4) for all 0 ≤ t1 ≤ · · · ≤ tn, the random variables W (ti) −W (ti−1) (i = 2, . . . , n) are independent;
(5) for a.e. ω ∈ Ω̃, the function t 7→ W (t) is continuous on [0,∞).

Theorem 3.24 Let f be a non center-tight uniformly bounded additive functional of a uniformly elliptic Markov

chain X. Let fn := fn(Xn, Xn+1) and suppose that E( fn) = 0 for all n. Denote SN =

N∑
n=1

fn and let VN be

the variance of SN . Then there exist a number δ > 0, a probability space (Ω̃, P̃), and measurable functions
S̃N,W (t), Ñ : Ω̃→ R (N ∈ N, t ≥ 0) such that

• {SN }N ≥1 and {S̃N }N ≥1 have the same distribution;
• W (t) is a standard Brownian motion on Ω̃;
• for a.e. ω ∈ Ω̃, | S̃N (ω) −W (VN )(ω) | ≤ V 1/2−δ

N for N ≥ Ñ (ω).

Corollary 3.25 (Law of the Iterated Logarithm) With probability one,

lim sup
N→∞

SN
√

VN ln ln VN

=
√

2, lim inf
N→∞

SN
√

VN ln ln VN

= −
√

2.

The proof of these results relies on properties of martingales which we now recall, and which can be found
in [95, Theorems A.1 and 2.2]:

Proposition 3.26 (Skorokhod’s Embedding Theorem forMartingales) Suppose that (∆n, Fn) is a martingale
difference sequence with mean zero and finite variance, defined on a probability space Ω. Then there is a
probability space (Ω̃, F̃ , P̃), a filtration F̃n ⊂ F̃ and measurable functions ∆̃n,W (t), τn : Ω̃ → R such that
(∆̃n, F̃n) is a martingale difference sequence, W (t) is a standard Brownian Motion, τn is F̃n measurable, and
the following holds with T0 = 0, TN = τ1 + · · · + τN :

(a) {∆̃n}n≥1 and {∆n}n≥1 have the same law;
(b) ∆̃n = W (Tn) −W (Tn−1) = W (Tn−1 + τn) −W (Tn−1);
(c) E(τn |F̃n−1) = E(∆̃2

n |F̃n−1);
(d) For each p ≥ 1 there is Cp such that E(τpn |F̃n−1) ≤ CpE(∆2p

n |Fn−1).

Proposition 3.27 (Doob’s Maximal Inequality for Martingales) Let ∆n be a martingale difference, and let

SN =

N∑
n=1

∆n. Then for each p > 1, E
(

max
n∈[1,N ]

|Sn |p
)
≤

(
p

p − 1

)p
E

(
|SN |

p) .
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Proof of Theorem3.24. It suffices to prove the result in the casewhen fn is amartingale difference sequence, with
respect to the σ-algebras Fn generated by X1, . . . , Xn, Xn+1. We can always reduce to this case, by replacing fn

with the∆n defined in (3.19). By (3.20) andLemma2.14, SN =

N∑
n=1

∆n+O(1) andVar(SN ) = Var
( N∑
n=1

∆n

)
+O(1).

So if we can prove the theorem for
N∑
n=1

∆n, then we can prove it for
N∑
n=1

fn.

Note that ∆n is a martingale difference with zero mean and finite variance. The reader can easily verify
using the Markov property that ∆n has measurable versions of the form ∆n = ∆n(Xn, Xn+1). By (2.11),
sup
n

ess sup |∆n | < ∞.

Henceforth we assume that fn is a martingale difference sequence with zero mean. By Lemma 3.16, VN is
monotonically increasing.

Let {∆̃n}, τn, TN , W (t) be the objects provided by Skorokhod’s embedding theorem. We claim that W and

S̃N =
N∑
n=1

∆̃N satisfy the conditions of Theorem 3.24. The proof consists of several steps.

Lemma 3.28 E(TN ) = VN , and Var(TN ) ≤ CVN for some positive constant C.

Proof E(TN ) = VN , by Proposition 3.26 andLemma3.16. SplitTN−E(TN ) =
N∑
n=1

[
τn − ∆̃2

n

]
+

N∑
n=1

[
∆̃2
n − E(∆̃2

n)
]
.

By theCauchy-Schwarz inequality, it is enough to show that the variance of each sum isO(VN ).ByProposition
3.26(c), the first sum is a martingale, hence by Lemma 3.16,

Var *
,

N∑
n=1

[
τn − ∆̃2

n

]+
-
=

N∑
n=1

E
( [
τn − ∆̃2

n

]2) !
≤ const.

N∑
n=1

E(∆̃4
n),

where the last step uses the Cauchy-Schwarz inequality, and Proposition 3.26(d) with p = 2. Since ∆n are
uniformly bounded,

N∑
n=1

E(∆̃4
n) =

N∑
n=1

E(∆4
n) ≤ const.

∑
n

E(∆2
n) ≤ const.VN . (3.21)

Next, Var *
,

N∑
n=1

[
∆̃2
n − E(∆̃2

n)
]+

-
= Var *

,

N∑
n=1

[
∆

2
n − E(∆2

n)
]+

-
≤ const.

N∑
n=1

E
( [
∆

2
n − E(∆2

n)
]2)
≤ const.VN

where the first step follows by Prop. 3.26, second follows by Lemma 3.4 and the third follows by (3.21) This
completes the proof. �

Let α1 > 1 be a numerical parameter to be chosen later. Let Nk be the smallest number such that VNk
≥ kα1 .

We denote Vk := VNk
. First, we will prove Theorem 3.24 along the sequence Nk . Then we will estimate the

oscillation of S̃N and W (VN ) between consecutive Nk , and deduce the theorem for Nk ≤ N < Nk+1.

Lemma 3.29 Suppose that α2 >
1+1/α1

2 . Then with probability one, for all large N we have |TNk
−Vk | ≤ V

α2
k
.

Proof We saw above thatVk = E(TNk
). By Lemma 3.28 and Chebyshev’s inequality,

P
(
|TNk

−Vk | > V
α2
k

)
≤ CV1−2α2

k
≤ Ckα1 (1−2α2) .

Since α1(2α2 − 1) > 1, the result follows from the Borel–Cantelli lemma. �

Lemma 3.30

(a) If α3 > α2/2, then with probability one, for all large k, | S̃Nk
−W (Vk ) | ≤ Vα3

k
.

(b) If α3 >
1
2 (1 − α−1

1 ), then with probability one, for all large k, max
t∈[Vk,Vk+1]

|W (t) −W (Vk ) | ≤ Vα3
k
.
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Proof By Lemma 3.29 and the identity S̃Nk
= W (TNk

),

P{|S̃Nk
−W (Vk ) | ≥ Vα3

k
for infinitely many k} ≤ P

{
max

t∈[Vk−V
α2
k
,Vk+V

α2
k

]
|W (t) −W (Vk ) | ≥ Vα3

k
for infinitely many k

}
.

Thus to prove part (a), it suffices to show that
∑
k

P *
,

max
t∈[Vk−V

α2
k
,Vk+V

α2
k

]
|W (t) −W (Vk ) | ≥ Vα3

k
+
-
< ∞.

It suffices to check that
∑
k

P *
,

max
t∈[Vk,Vk+V

α2
k

]
|W (t) −W (Vk ) | ≥ Vα3

k
+
-
< ∞, the interval [Vk − V

α2
k
,Vk]

completely analogous.

By the reflection principle, for any a< b and h>0,P
(

max
t∈[a,b]

[W (t) −W (a)] ≥ h
)
andP

(
min

t∈[a,b]
[W (t) −W (a)] ≤ −h

)
are both equal to 2P (W (b)−W (a) ≥ h) (see [104, property (1.7.4)].) Hence

P *
,

max
t∈[Vk,Vk+V

α2
k

]
|W (t) −W (Vk ) | ≥ Vα3

k
+
-
≤ 4P

(
W (Vk +V

α2
k

) −W (Vk ) ≥ Vα3
k

)
!
= 4

∫ ∞

V
α3−(α2/2)
k

e−u2/2
√

2π
du

!!
≤ 4e−(1/2)V

2α3−α2
k ≤ 4e−ck

β1
, (3.22)

where c>0 and β1=(2α3 − α2)α1>0. (!) holds since [W (Vk +V
α2
k

) −W (Vk )]/Vα2/2
k

is a standard normal, (!!)

is because for h > 0,
∫ ∞
h

e−u2/2du ≤
∫ ∞
h

u
h e−u2/2du = e−h2/2

h . Since (3.22) is summable in k, part (a) follows.
To prove part (b) we first claim that

Var(SNk+1 − SNk
)� kα1−1. (3.23)

IndeedVk+1 = Var(SNk+1 ) = Vk + Var(SNk+1 − SNk
) + 2Cov(SNk

, SNk+1 − SNk
). Since VN is increasing, Nk is

increasing. By (2.13) and the uniform boundness of fn, there is 0 < θ < 1 such that

Cov(SNk
, SNk+1 − SNk

) =
Nk∑
n1=1

Nk+1∑
n2=Nk+1

Cov( fn1, fn2 ) ≤ const.
Nk∑
n1=1

Nk+1∑
n2=Nk+1

θn2−n1 ≤ const.
∞∑

m=1
mθm ≤ const.

So Var(SNk+1−SNk
)=Vk+1−Vk +O(1) and (3.23) follows from the definition of Nk .

Now similarly to part (a), we obtain P
(

max
t∈[Vk,Vk+1]

|W (t) −W (TNk
) | ≥ Vα3

k

)
≤ e−ck

β2
, where c > 0 and

β2 = 2α1α3 − (α1 − 1) = α1

[
2α3 +

1
α1
− 1

]
> 0. (3.24)

Part (b) can now be proved the same way we proved part (a). �

Lemma 3.31 If α3 >
1 − 1/α1

2
, then with probability one, for all large k

max
n∈[Nk,Nk+1]

| S̃n − S̃Nk
| ≤ V

α3
k
.

Proof It suffices to prove the proposition with SN in place of S̃N . For each p ∈ 2N,
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P

(
max

n∈[Nk,Nk+1]
|Sn − SNk

| ≥ V
α3
k

)
(1)
≤ E

(
max

n∈[Nk,Nk+1]
��Sn − Snk ��p

) /
V
α3p
k

(2)
≤ const.

E
[
|SNk+1 − SNk

|p
]

V
α3p
k

(3)
≤ const.

[Var(SNk+1 − SNk
)]p/2

V
α3p
k

(4)
≤ const.k−pβ2/2,

where β2 is given by (3.24). Inequality (1) is by Markov’s inequality. Inequality (2) is by Doob’s maximal
inequality. Inequality (3) uses the assumption that p is even, and the moment bound in Lemma 3.21. Inequality
(4) uses (3.23).

Thus the lemma follows from Borel–Cantelli lemma after taking p > 1
β2
. �

We are now ready to prove Theorem 3.24. Take

α3 >
1
2 max(α2, 1 − α−1

1 ). (3.25)

Given N take k such that Nk ≤ N < Nk+1.Then |S̃N−W (VN ) | ≤ |S̃Nk
−W (Vk ) |+ |W (VN )−W (Vk ) |+ | S̃N−S̃Nk

|.
We claim that with probability one, each term is less than or equal to Vα3

k
, for all k large enough. For the

first term, this follows from Lemma 3.30(a). For the second term, this follows from Lemma 3.30(b) and the
monotonicity of VN . For the last term, this follows from Lemma 3.31.

Thus, for every α4 > α3, with probability 1, for all large N , |S̃N −W (VN ) | ≤ 3Vα3
k
≤ V

α4
k
≤ Vα4

N . Since
α2 can be taken arbitrary close to 1+1/α1

2 , we conclude from (3.25) that α4 could be taken arbitrary close to

min
α1>1

max
(
1 + (1/α1)

4
,
1 − (1/α1)

2

)
=

1
3
. This shows that the theorem holds for any δ < 1

2 −
1
3 =

1
6 .

We note for future reference that in this proof, the final choice of constants is α1 ↓ 3, α2 ↓
2
3 , α3 ↓

1
3 ,and

α4 ↓
1
3 , where α ↓ c means that α > c, and α can be taken arbitrary close to c. �

Proof of the Law of the Iterated Logarithm (Corollary 3.25). The law of the iterated logarithm for the

Brownian Motion [68, Theorem 8.5.1] says that with probability one, lim sup
t→∞

W (t)
√

t ln ln t
=
√

2. It follows that

with probability one:

√
2 = lim sup

t→∞

W (t)
√

t ln ln t
= lim sup

k→∞

W (Vk )
√
Vk ln lnVk

by Lemma 3.30 with α3 ≈
1
3

= lim sup
k→∞

S̃Nk
√
Vk ln lnVk

by Theorem 3.24

= lim sup
N→∞

S̃N
√

VN ln ln VN

by Lemma 3.31 with α3 ≈
1
3
.

By Theorem 3.24, {SN } and {S̃N } are equal in law. Therefore, with probability one, lim sup SN√
VN ln lnVN

=
√

2.

By the symmetry f↔ −f, the liminf is a.s. −
√

2 as well. �

3.4 Notes and References

The connection between the non-growth of the variance and a representation in terms of gradients is well-known
for stationary stochastic processes. The first result in this direction we are aware of is Leonov’s theorem [129].
He showed that the asymptotic variance of a homogeneous additive functional of a stationary homogeneous
Markov chain is zero iff the additive functional is the sum of a gradient and a constant. Rousseau-Egele [168]
and Guivarc’h & Hardy [88] extended this to the context of dynamical systems preserving an invariant Gibbs
measure. Kifer [112], Conze & Raugi [31], Dragičević, Froyland & González-Tokman [64] have proved versions
of Leonov’s theorem for random and/or sequential dynamical systems (see §9.4).



54 3 Variance Growth, Center-Tightness, and the Central Limit Theorem

The connection between center-tightness and gradients is a central feature of the theory of cocycles over
ergodic transformations. Suppose T : X → X is an ergodic probability preserving transformation on a non-
atomic probability space. For every measurable f : X → R, { f ◦ Tn} is a stationary stochastic process, and
SN = f + f ◦ T + · · · + f ◦ TN−1 are called the ergodic sums of the cocycle f . A coboundary is a function of
the form f = g − g ◦T with g measurable. Schmidt characterized cocycles with center-tight SN as those arising
from coboundaries [178, page 181]. These results extend to cocycles taking values in locally compact groups,
see Moore & Schmidt [145] and Aaronson & Weiss [8]. For more on this, see Aaronson [1, chapter 8], and
Bradley [16, chapters 8,19]. We also refer to [83] for an analogous result in the continuous setting.

The characterization of center-tightness for inhomogeneous Markov chains in Theorem 3.8 seems to be
new. The inhomogeneous theory is different from the stationary theory in that there is another cause for
center-tightness: Having summable variance. This cannot happen in the stationary homogeneous world, unless
f i =const.

We have already commented that if X satisfies the one-step ellipticity condition and fk = fk (Xk ), then the
variance estimate in Theorem 3.6 can be replaced by the simpler estimate (3.1), see [50],[181],[56]. Theorem
3.6 for fk = fk (Xk, Xk+1) seems to be new.

Theorem 3.10 is a special case of a result of Dobrushin [50], which also applies to some unbounded additive
functionals. Our proof follows the paper of Sethuraman & Varadhan [181] closely, except for minor changes
needed to deal with additive functionals of the form fk (Xk, Xk+1), instead of fk (Xk ).

McLeish’s lemma, the martingale CLT, and their proofs are due to McLeish [140]. We refer the reader to Hall
& Heyde [95] for the history of this result, further extensions, and references.

Theorem 3.12 extends the Kolmogorov-Khintchin “two-series theorem" [117]. There are other extensions
to sums of dependent random variables, for example for martingales (Hall & Heyde [95, chapter 2]), for sums
of negatively dependent random variables (Matula [138]) and for Birkhoff sums of expanding maps (Conze &
Raugi [31]). The proofs of theorems 3.10 and 3.12 use Gordin’s “martingale-coboundary decomposition" [81],
see also [95],[120].

Theorem 3.11 is due to B.A. Lifshits [131]. Actually, he proved a more general result which also applies to
the unbounded additive functionals considered in Dobrushin’s paper. For an extension to φ-mixing processes,
see [143, Theorem 6.17].

The first results on the law of the iterated logarithm (LIL) were obtained by Khinchin [108] and Kolmogorov
[115], in the setting of bounded i.i.d. random variables. Kolmogorov’s result also applies to certain sequences
of non-identically distributed but independent and bounded random variables, and this was further extended to
the unbounded case by Hartman and Wintner [96].

The almost sure invariance principle (ASIP) for independent identically distributed random variables and its
application to the proof of the LIL are due to Strassen [193]. He used Skorokhod’s embedding theorem [186].
Komlós, Major and Tusnády found an alternative proof, which gives better error rates [118].

In the stationary case, a classical application of ASIP is the functional central limit theorem, which says that
a random function WN : [0, 1]→ R obtained by linear interpolation of the points WN ( n

N ) = Sn−E(Sn )
√
N

converges
in law as N → ∞ to a Brownian Motion. In the inhomogeneous case, such results are only available after a
random time change, so they are more complicated to state. See [95] for the precise statements.

Skorokhod’s embedding theorem was extended to martingales in [36, 66, 194], and Stout extended the ASIP
to martingales differences in [192]. Philipp & Stout [157] gave a further extension to weakly dependent random
variables, includingMarkov chains. Cuny andMerlevède [35] proved theASIP for reversemartingale differences.
The martingale methods can be used to prove the ASIP for time-series of dynamical systems, homogeneous and
inhomogeneous, see e.g. [43], [63], [97] (this is a very partial list).

For an alternative approach to the ASIP, based on perturbation operators, see [86]. This was applied in the
inhomogeneous setup in [65].



Chapter 4
The Essential Range and Irreducibility

Abstract The local limit theorem may fail for additive functionals whose range can be reduced by subtracting
a center-tight functional. In this chapter we study the structure of such functionals, and calculate the smallest
possible algebraic range which can be obtained this way.

4.1 Definitions and Motivation

Let f = { fn} be an additive functional of a Markov chain X := {Xn}. The algebraic range of (X, f) is the
intersection Galg (X, f) of all closed groups G such that

∀n ∃cn ∈ R s.t. P[ fn(Xn, Xn+1) − cn ∈ G] = 1. (4.1)

Later (Lemma 4.15), we will see that Galg (X, f) itself satisfies (4.1), therefore Galg (X, f) is the smallest closed
group satisfying (4.1).

Example 4.1 (The Simple Random Walk) Suppose {Xn} are independent random variables such that P(Xn =

±1) = 1
2 , and let fn(x, y) = x. Then Sn = X1 + · · · + Xn is the simple random walk on Z. The algebraic range in

this case is 2Z.

Proof : Galg ⊂ 2Z, because we can take cn := −1. Assume by contradiction that Galg ( 2Z, then Galg = tZ
for t ≥ 4, and the supports of Sn are cosets of tZ. But this is false, because ∃a1, a2 s.t. |a1 − a2 | < t and
P(Sn = ai) , 0: For n odd take ai = (−1)i , and for n even take ai = 1 + (−1)i . �

The lattice case is the case when Galg (X, f) = tZ for some t ≥ 0. The non-lattice case is the case
when Galg (X, f) = R. This distinction appears naturally in the study of the LLT for the following reason. If
Galg (X, f) = tZ and γN := c1 + · · · + cN , then

P(SN ∈ γN + tZ) = 1 for all N .

In this case, P[SN − zN ∈ (a, b)] = 0 whenever |a − b| < t and zN + (a, b) falls inside the gaps of γN + tZ,
and P(SN − zN ∈ (a, b)) ?

∼
e−z2/2 |a−b |
√

2πVN
fails. This is the lattice obstruction to the local limit theorem.

There is a related, but more subtle, obstruction. An additive functional f is called reducible on X, if there is
another additive functional g on X such that f− g is center-tight, and Galg (X, g) ( Galg (X, f). In this case we say
that g is a reduction of f, and that Galg (X, g) is a reduced range of f. An additive functional without reductions
is called irreducible.

Example 4.2 (Simple Random Walk with Continuous First Step) Suppose {Xn}n≥1 are independent real
valued random variables such that X1 has a continuous distribution F with compact support, and X2, X3, . . . are
equal to ±1 with equal probabilities. Let fn(x, y) = x, then Sn = X1+X2+ · · ·+Xn. Because of the continuously
distributed first step, Galg (f) = R. But if we subtract from f the center-tight functional c with components

cn(x, y) = x when n = 1 and cn(x, y) ≡ 0 when n > 1,

then the result g := f − c has algebraic range 2Z. So f is reducible.
The reduction g satisfies the lattice local limit theorem (see Chapter 1), because it generates the (delayed)

simple random walk. But for a general distribution F, f = g + c does not satisfy the LLT, lattice or non-lattice.

55
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This can be seen by direct calculations, using the fact that the distribution of Sn is the convolution of F and the
centered binomial distribution. See chapter 6 for details.

Here we see an instance of the reducibility obstruction to the LLT: A situation when the LLT fails because the
additive functional is a sum of a lattice term which satisfies the lattice LLT and a non-lattice center-tight term
which spoils it.

The reducibility obstruction to the LLT raises the following questions:

(1) Given a reducible additive functional f, is there an “optimal" center-tight functional c such that f − c is
irreducible?

(2) What is the algebraic range of the optimal reduction?

Motivated by these questions, we introduce the essential range of f:

Gess (X, f) :=
⋂ {

Galg (X, g) : f − g is center-tight
}
.

This is a closed sub-group of Galg (X, f). In this language, f is irreducible iff Gess (X, f) = Galg (X, f), and an
optimal reduction is g such that f − g is center-tight, and Galg (X, g) = Gess (X, g) = Gess (X, f).

4.2 Main Results

4.2.1 Markov Chains

The questions raised at the end of the last section can be answered using the structure constants dn(ξ) introduced
in (2.26).

Assume henceforth that f is an a.s. uniformly bounded additive functional on a uniformly elliptic Markov
chain X. Define the co-range of f to be the set

H (X, f) :=
{
ξ ∈ R :

∞∑
n=3

dn(ξ)2 < ∞
}
.

Theorem 4.3 If f is center-tight then H (X, f) = R, and if not then either H (X, f) = {0}, or H (X, f) = tZ for some
t ≥ π/(3 ess sup |f|).

Theorem 4.4 (a) If H (X, f) = 0, then Gess (X, f) = R.
(b) If H (X, f) = tZ with t , 0, then Gess (X, f) = 2π

t Z.
(c) If H (X, f) = R, then Gess (X, f) = {0}.

Theorem 4.5 There exists an irreducible uniformly bounded additive functional g such that f − g is center-tight,
and Galg (X, g) = Gess (X, g) = Gess (X, f).

Corollary 4.6 If Gess (X, f) = tZ with t , 0, then |t | ≤ 6 ess sup |f|.

The corollary follows directly from Theorems 4.3 and 4.4(b).

4.2.2 Markov Arrays

Let f be an additive functional on a Markov array X with row lengths kN + 1, then we can make the following
definitions:
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• The algebraic range Galg (X, f) is the intersection of all closed subgroups G of R such that for all N and
1 ≤ k ≤ kN , ∃c(N )

k
∈ R s.t. P

[
f (N )
k

(X (N )
k

, X (N )
k+1 ) − c(N )

k
∈ G

]
= 1.

• The essential range Gess (X, f) is the intersection of the algebraic ranges of all additive functionals of the
form f − h where h is center-tight.

• The co-range is H (X, f) := {ξ ∈ R : sup
N

kN∑
k=3

d (N )
k

(ξ)2 < ∞}.

• An additive functional f is called irreducible if Gess (X, f) = Galg (X, f).

This is consistent with the definitions for Markov chains, see Corollary 4.8 below.

Theorem 4.7 The results of Theorems 4.3, 4.4, 4.5 and of Corollary 4.6 hold for all a.s. uniformly bounded
additive functionals on uniformly elliptic Markov arrays.

Corollary 4.8 Suppose f = { fn} is an a.s. uniformly bounded additive functional on a uniformly elliptic Markov
chain X = {Xn}. Let f̃ = { f (N )

n } be an additive functional on a Markov array X̃ = {X (N )
n } s.t. f (N )

n = fn and
X (N )
n = Xn. Then Galg (X̃, f̃) = Galg (X, f) , Gess (X̃, f̃) = Gess (X, f) , H (X̃, f̃) = H (X, f).

Proof The equality of the algebraic ranges and of the co-ranges is trivial, but the equality of the essential ranges
requires justification, because some center-tight functionals on Markov arrays are not of the form h(N )

n =hn.
However, since the co-ranges agree, the essential ranges also agree, by the version of Theorem 4.4 for arrays. �

4.2.3 Hereditary Arrays

Some results forMarkov chains do not extend to general Markov arrays. Of particular importance is the following
fact, which we will need for the proof of the LLT in Chapter 5. Recall the definition of DN (ξ) from (2.26).

Theorem 4.9 Suppose f is an a.s. uniformly bounded additive functional on a uniformly elliptic Markov chain
X, then

DN (ξ) −−−−−→
N→∞

∞ uniformly on compact subsets of H (X, f)c . (4.2)

Proof Suppose ξ ∈ R\H (X, f), then sup
N

DN (ξ) = ∞, so DN (ξ)=
N∑
k=3

dk (ξ)2 −−−−−→
N→∞

∞∑
k=3

dk (ξ)2 ≡ sup
N

DN (ξ)=∞.

The convergence is uniform on compacts, because in the case of Markov chains, DN (ξ) is non-decreasing, and
ξ 7→ DN (ξ) are continuous. �

Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic Markov array X. We call (X, f)

• hereditary, if DN (ξ) −−−−−→
N→∞

∞ for all ξ ∈ H(X, f)c; and
• stably hereditary, if DN (ξ) −−−−−→

N→∞
∞ uniformly on compacts in H(X, f)c .

By Theorem 4.9, every a.s. uniformly bounded additive functional on a uniformly elliptic Markov chain is stably
hereditary. But as the following two examples show, this is not the case for arrays.

Example 4.10 (Irreducible butNotHereditary)Let Xn be a sequence of independent uniform randomvariables
with mean zero and variance one. Let

X (N )
k
=




Xk 1 ≤ k ≤ N + 1, N odd,
0 1 ≤ k ≤ N + 1, N even.

Let f (N )
k

(x, y) := x. Then for every ξ ∈ H (X, f)c , DN (ξ) 6→ ∞.
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Proof. Suppose P =
(
Xn−2

Xn−1
Yn−1

Xn

Yn
,Yn+1

)
is a random level 2N + 1 hexagon at position n, then Γ(P) =

Xn−1 + Xn − Yn−1 − Yn where Xi,Yj are independent random variables, each having uniform distribution with
mean zero and variance one. The distribution of Γ(P) is independent of n and N , and as a result,

d (2N+1)
n (ξ)2 = E( |eiξΓ(P) − 1|2) = c(ξ),

where c(ξ) is independent of n. In addition, c(ξ) > 0 for ξ , 0, because the distribution of Γ(P) is continuous.
So D2N+1(ξ) = (2N − 1)c(ξ) −−−−−→

N→∞
∞ on R \ {0}. Thus H (X, f) = {0} and Gess (X, f) = R. But DN (ξ) 6→ ∞

for ξ , 0, because D2N (ξ) = 0. �

Example 4.11 (Hereditary but Not Stably Hereditary) Suppose Xn are a sequence of independent identically
distributed random variables, equal to ±1 with probability 1

2 . Form an array with row lengths N + 1 by setting

X (N )
n = Xn, and let f (N )

n (Xn, Xn+1) :=
1
2

(
1 +

1
3√N

)
Xn (1 ≤ n ≤ N + 1). Then DN (ξ) → ∞ on H (X, f)c , but

the convergence is not uniform on compact subsets of H (X, f)c .

Proof. Γ
(
+1+1
+1
+1
−1 + 1

)
= 1 + N−1/3. Since Hex(N, n) consists of 26 hexagons with equal probabilities, the

hexagon
(
+1+1
+1
+1
−1 + 1

)
has probability 2−6. Hence d (N )

n (ξ) ≥ 2−6 |eiξ (1+N−1/3) − 1|2 =
1
16

sin2 ξ (1 + N−1/3)
2

.

Therefore, DN (ξ) ≥
N − 2

16
sin2 ξ (1 + N−1/3)

2
∼




16−1N sin2 ξ
2 ξ < 2πZ

64−1ξ2 3√N ξ ∈ 2πZ.
We see that DN (ξ) → ∞ for all

ξ , 0, whence H (X, f) = {0}, and DN (ξ) → ∞ on H (X, f)c . But the convergence is not uniform on any compact
neighborhood of 2πk, k , 0, because DN (ξN ) ≡ 0 for ξN = 2πk (1 + N−1/3)−1, and ξN → 2πk. �

These examples raise the problem of deciding whether a given (X, f) is (stably) hereditary or not. We will
discuss this now.

We begin with a simple class of examples, which will be important for us when we analyze the local limit
theorem in the regime of large deviations:

Example 4.12 (“Change of Measure") Let Y be an array obtained from a uniformly elliptic Markov chain X
using the change of measure construction (Example 2.6). Let ϕ(N )

n denote the weights of the change of measure.
If for some constant C > 0,

C−1 < ϕ(N )
n < C for all n, N,

then for every a.s. uniformly bounded additive functional f on X, f (N )
n := fn satisfies H (Y, f) = H (X, f),

Gess (Y, f) = Gess (X, f), and (Y, f) is stably hereditary.

Proof. Let mN,n
Hex be the hexagon measures of Y, and let mn

Hex be the hexagon measures of X. It is not difficult

to see that there is a constant C∗ such that C−1
∗ ≤

dmN,n
Hex

dmn
Hex
≤ C∗ for all N ≥ 0 and 5 ≤ n ≤ N, see Corollary 2.10

and its proof.
Thus dn(ξ,Y) � dn(ξ,X) and Dn(ξ,Y) � Dn(ξ,X)+O(1). So H (Y, f) = H (X, f), and Gess (Y, f) = Gess (X, f).

By Theorem 4.9, DN (ξ,X) → ∞ uniformly on compacts in H (X, f)c . So DN (ξ,X) → ∞ uniformly on compacts
in H (Y, f)c . �

The hereditary property can be understood in terms of the behavior of sub-arrays. Let X be a Markov array
with row lengths kN . A sub-array of X is an array X′ of the form {X (N` )

k
: 1 ≤ k ≤ kN` + 1, ` ≥ 1} where

N` ↑ ∞. The restriction of an additive functional f on X to X′ is f|X′ = { f (N` )
k

: 1 ≤ k ≤ kN` , ` ≥ 1}.

Theorem 4.13 Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic Markov array X.
The following conditions are equivalent:

(1) (X, f) is hereditary; (2) for all ξ, lim inf
N→∞

DN (ξ) < ∞ ⇒ lim sup
N→∞

DN (ξ) < ∞;

(3) H (X′, f|X′ ) = H (X, f) for all sub-arrays X′; (4) Gess (X′, f|X′ ) = Gess (X, f) for all sub-arrays X′.
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The equivalence of (1) and (4) is the reason we call hereditary arrays “hereditary." Next we characterize the
stably hereditary arrays:

Theorem 4.14 Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic Markov array X.

(1) If Gess (X, f) = R, then (X, f) is stably hereditary iff Gess (X′, g|X′ ) = R for all sub-arrays X′ and all additive
functionals g = {(1 + εN ) f (N )

n }, where εN → 0.
(2) If Gess (X, f) , R, then (X, f) is stably hereditary iff (X, f) is hereditary.

For a hereditary array which is not stably hereditary, see Example 4.11.

4.3 Proofs

4.3.1 Reduction Lemma

Lemma 4.15 Let f be an additive functional on a Markov array X with row lengths kN + 1. For every N ≥ 1 and
1 ≤ n ≤ kN , there exists a constant c(N )

n such that f (N )
n (X (N )

n , X (N )
n+1 ) − c(N )

n ∈ Galg (X, f) almost surely.

Proof Galg (X, f) is the intersection of all closed subgroups G such that

∀N ∀1 ≤ n ≤ kN, ∃c(N )
n s.t. f (N )

n (X (N )
n , X (N )

n+1 ) − c(N )
n ∈ G almost surely. (4.3)

This is a closed subgroup of R. The lemma is trivial when Galg (X, f) = R (take c(N )
n ≡ 0), so we focus on the

case Galg (X, f) , R.
In this case (4.3) holds with some G = tZ with t ≥ 0, and f (N )

n (X (N )
n , X (N )

n+1 ) is a discrete random variable.
Let A(N )

n denote the set of values attained by f (N )
n (X (N )

n , X (N )
n+1 ) with positive probability. Since G = tZ satisfies

(4.3), A(N )
n are subsets of cosets of tZ, and D(N )

n := A(N )
n − A(N )

n ⊂ tZ. Let G0 denote the group generated by⋃
N ≥1

⋃
1≤n≤kN D(N )

n . Then G0 is a subgroup of tZ. In particular, G0 is closed.
By the previous paragraph, G0 ⊂ tZ for any group tZ which satisfies (4.3). So G0 ⊂ Galg (X, f). Next, we

fix n, N and observe that all the values of f (N )
n (X (N )

n , X (N )
n+1 ) belong to the same translate of A(N )

n − A(N )
n , and

therefore to the same coset of G0. So G0 satisfies (4.3), and G0 ⊃ Galg (X, f). So Galg (X, f) = G0. Since G0
satisfies (4.3), Galg (X, f) satisfies (4.3). �

Lemma 4.16 (Reduction Lemma) Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic

Markov array X, with row lengths kN +1. If ξ , 0 and sup
N

kN∑
k=3

d (N )
k

(ξ)2 < ∞, then there is an additive functional

g on X such that
g − f is center-tight, ess sup |g| < ∞, and Galg (X, g) ⊂

2π
ξ
Z. (4.4)

If X (N )
n = Xn and f (N )

n = fn (as in the case of additive functionals of Markov chains), then we can take g such
that g(N )

n = gn.

Proof for Doeblin Chains: As in the case of the gradient lemma, there is a simple proof in the important
special case of Doeblin Markov chains (Example 2.7). Recall that Doeblin chains have finite state spaces Sn.
Let πnxy := πn,n+1(x, {y}), and relabel the states Sn = {1, . . . , dn} in such a way that πn11 = πn,n+1(1, {1}) , 0
for all n. The Doeblin condition guarantees that for every x ∈ Sn, there exists a state ξn(x) ∈ Sn such that
πn−1

1,ξn (x)π
n
ξn (x),1 > 0.

Define, as in the proof of the gradient lemma,
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a1 ≡ 0, a2 ≡ 0, and an(x) := fn−2(1, ξn−1(x)) + fn−1(ξn−1(x), x) for n ≥ 3

c1 := 0, c2 := 0, and cn := fn−2(1, 1) for n ≥ 3 f̃ := f − ∇a − c.

Then f̃n(x, y) = fn(x, y) − (an+1(y) − an(x)) − cn = −Γn

(
1 1
ξn−1(x)

ξn(y)
x y

)
, where Γn denotes the balance

of a position n hexagon, see (2.25).
For Doeblin chains, there are finitely many admissible hexagons at position n, and the hexagon measure

assigns each of them a mass which is uniformly bounded from below. Let C−1 be a uniform lower bound for this
mass, then |eiξ f̃n (x,y) − 1|2 ≤ CEmHex (|eiξΓn − 1|2) = Cd2

n(ξ).
Decompose f̃n(x, y) = gn(x, y) + hn(x, y) where gn(x, y) ∈ 2π

ξ Z and hn(x, y) ∈ [− πξ ,
π
ξ ). Clearly

|g| ≤ |f| + |∇a | + |c| + |h| ≤ 6|f| + π/ξ, and Galg (X, g) ⊂ 2π
ξ Z.

We show that f − g is center-tight. We need the following inequality: 1

4x2

π2 ≤ |e
ix − 1|2 ≤ x2 for all |x | ≤ π. (4.5)

By (4.5), |hn(x, y) |2 ≤ π2

4ξ2 |eiξhn (x,y) − 1|2 = π2

4ξ2 |eiξ f̃n (x,y) − 1|2 ≤ C π2

4ξ2 d2
n(ξ), whence

∞∑
n=3

Var(hn(Xn, Xn+1) + cn) =
∞∑
n=3

Var(hn(Xn, Xn+1)) ≤
Cπ2

4ξ2

∞∑
n=3

d2
n(ξ) < ∞.

So h + c has summable variance. Therefore f − g = ∇a + (h + c) is center-tight. �

Preparations for the Proof in the General Case.

Lemma 4.17 Suppose E1, . . . , EN are measurable events, and let W denote the random variable which counts

how many of Ei occur simultaneously, then P(W ≥ t) ≤
1
t

N∑
k=1

P(Ek ).

Proof Apply Markov’s inequality to W =
∑

1Ek
. �

The expectation of an L2 random variable W can be characterized as the constant µ ∈ R which minimizes
E(|W − µ|2). The variance is Var(W ) = min

µ∈R
E( |W − µ|2).

Similarly, we define a circular mean of a random variable W to be any real number θ ∈ [−π, π) which
minimizes the quantity E( |ei(W−θ) − 1|2), and we define the circular variance to be the minimum

CVar (W ) := min
θ∈[−π,π)

E(|ei(W−θ) − 1|2) ≡ min
θ∈[−π,π)

4E
(
sin2 W−θ

2
)
.

Circular means always exist, but they are not always unique. Existence is because the function θ 7→ E(|ei(W−θ) −

1|2) is continuous and 2π-periodic. Non-uniqueness can be seen, for example, when W is uniformly distributed
on [−π, π]. In this case, every θ ∈ [−π, π) is a circular mean.

For every x ∈ R, let

〈x〉 := the unique element of [−π, π) s.t. x − 〈x〉 ∈ 2πZ. (4.6)

It is not difficult to see using (4.5), that for every circular mean θ,

4
π2 Var〈W − θ〉 ≤ CVar (W ) ≤ Var(W ). (4.7)

1 Proof of (4.5): y = sin x
2 is concave on [0, π], so its graph lies above the chord y = x

π and below the tangent y = x
2 . So

x
π ≤ sin x

2 ≤
x
2 on [0, π]. Since |eix − 1 |2 = 4 sin2 x

2 , we have (4.5).
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Lemma 4.18 For every real-valued random variable W , we can write W = W1 +W2 where W1 ∈ 2πZ almost
surely, and Var(W2) ≤ π2

4 CVar (W ).

Proof Take a circular mean θ, and let W1 := (W − θ) − 〈W − θ〉, W2 := 〈W − θ〉 + θ. �

Proof of theReductionLemma in theGeneral Case: Suppose f is an a.s. uniformly bounded additive functional

on a uniformly elliptic Markov array X, with row lengths kN + 1, and fix ξ , 0 such that sup
N

kN∑
n=3

d (N )
n (ξ)2 < ∞.

Let L denote the ladder process associated with X (see §2.3.3). Recall that this is a Markov array with entries
L(N )
n = (Z (N )

n−2,Y
(N )
n−1 , X (N )

n ) (3 ≤ n ≤ kN ) such that

(a) {X (N )
n }, {Z (N )

n } are two independent copies of X(N );
(b) Y (N )

n are conditionally independent given {X (N )
i } and {Z (N )

i }; and
(c) the conditional distribution of Y (N )

n given {Z (N )
i } and {X (N )

i } is given by

P

(
Y (N )
n−1 ∈ E

����
{Z (N )

i } = {ζ (N )
i }

{X (N )
i } = {ξ (N )

i }

)
=

the bridge probability for X that X (N )
n−1 ∈ E

given that X (N )
n−2 = ζ

(N )
n−2 and X (N )

n = ξ (N )
n .

Recall see (2.25), (4.6). We need the following (uniformly bounded) additive functionals on L:

F (N )
n (L(N )

n ) := f (N )
n−2 (Z (N )

n−2,Y
(N )
n−1 ) + f (N )

n−1 (Y (N )
n−1 , X (N )

n );

Ĥ (N )
n (L(N )

n , L(N )
n+1) :=

〈
ξΓ

(
Z (N )
n−2

Z (N )
n−1

Y (N )
n−1

Y (N )
n

X (N )
n

X (N )
n+1

)〉
, H (N )

n := Ĥ (N )
n − E[Ĥ (N )

n ].

Sometimes we will abuse notation, and write Ln = (Zn−2,Yn−1, Xn) and

F (N )
n (L(N )

n ) = F (Ln) , H (N )
n (L(N )

n , L(N )
n+1) = H (Ln, Ln+1) , f (N )

n = fn. (4.8)

By construction, Ĥn ≡ ξΓ
(
Zn−2

Zn−1
Yn−1

Yn
Xn Xn+1

)
mod 2πZ, and therefore,

Ĥn ≡ ξ fn−2(Zn−2, Zn−1) + ξ∇F − ξ fn(Xn, Xn+1) mod 2πZ.

Dividing by ξ and rearranging terms, we obtain the decomposition

fn(Xn, Xn+1) =
1
ξ

[
something taking
values in 2πZ

]
+

[
∇F − ξ−1Ĥ

]
+ fn−2(Zn−2, Zn−1). (4.9)

Step 1 below says that Ĥ has summable variance. So ∇F − ξ−1Ĥ is center-tight.
By the structure of the ladder process, fn−2(Zn−2, Zn−1) is independent from fn(Xn, Xn+1). Fix some possible

array of values ζ of Z. If we condition both sides of (4.9) on Xn, Xn+1 and Z = ζ , then the left hand side remains
fn(Xn, Xn+1), but fn−2(Zn−2, Zn−1) is replaced by the constant fn−2(ζn−2, ζn−1).

The idea of the proof is to construct ζ so that the conditional expectation of the RHS on {Xn} and Z = ζ can

still be put in the form
1
ξ

[
something taking
values in 2πZ

]
+

[
center-tight
(w.r.t. X)

]
+ fn−2(ζn−2, ζn−1).

The main difficulty is that the conditional expectation is an average, and the average of a 2πZ-valued quantity
is not necessarily 2πZ-valued. We will address this difficulty by using “approximate conditional circular means,"
see Step 3.

Step 1: Ĥ has summable variances. In addition, E[(Ĥ (N )
n )2] ≤ π2

4 d (N )
n (ξ)2, E(H (N )

n ) = 0,
E[(H (N )

n )2] ≤ π2

4 d (N )
n (ξ)2, and sup

N
E[(H (N )

3 + · · · + H (N )
kN

)2] < ∞.

Proof of the Step. We fix N and drop the superscripts (N ) .
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• E(Hn) = E(Ĥn) − E(Ĥn) = 0.
• By (4.5), E(Ĥ2

n) ≤ π2

4 E( |eiĤn − 1|2). By Lemma 2.22(d), eiĤn is equal in distribution to eiξΓ(P) , where Γ(P)

is the balance of a random hexagon in Hex (N, n). So E(Ĥ2
n) ≤

π2

4
EmHex (|eiξΓ(P) − 1|2) ≡

π2

4
dn(ξ)2. By our

assumptions, sup
N

kN∑
n=3

dn(ξ)2 < ∞. So Ĥ has summable variations.

• E(H2
n) = E(Ĥ2

n) − E(Ĥn)2 ≤ E(Ĥ2
n) ≤ π2

4 dn(ξ)2.
• L is uniformly elliptic, by Lemma 2.22. So Lemma 3.4 applies, and

E



*.
,

kN∑
k=3

Hn
+/
-

2
= Var *.

,

kN∑
k=3

Hn
+/
-
≤ const.

kN∑
k=3

Var(Hn) ≤ const.
kN∑
k=3

dn(ξ)2 < const.

This completes the proof of Step 1.
Fix a constant D such that

sup
N

kN∑
n=3

d (N )
n (ξ)2 + sup

N
E



*.
,

kN∑
n=3

H (N )
n

+/
-

2
+ 4 < D. (4.10)

Step 2 (Choice of ζ): ∃ζ (N ) = (ζ (N )
1 , . . . , ζ (N )

kN+1) ∈ S(N )
1 × · · · ×S

(N )
kN+1 s.t.

kN∑
n=3

E
(
H (N )

n (L(N )
n , L(N )

n+1)2����{Z
(N )
i } = ζ (N )

)
< π2D, E



*.
,

kN∑
n=3

H (N )
n (L(N )

n , L(N )
n+1)+/

-

2
����{Z

(N )
i } = ζ (N )


< π2D,

EX



kN∑
n=3

CVar
(
ξF (N )

n (L(N )
n )

����{Z
(N )
i } = ζ (N ), X (N )

n

)
< π2D, | f (N )

n (ζ (N )
n , ζ (N )

n+1 ) | ≤ ess sup | f | ∀3 ≤ n ≤ kN .

(Here and throughout L(N )
n = (Z (N )

n−2,Y
(N )
n−1 , X (N )

n ), and EX = averaging on {X (N )
i }).

Proof of the Step. We fix N , drop the superscripts (N ) , and use convention (4.8). Let

Ω1 :=


ζ :

kN∑
n=3

E(H2
n |{Zi } = ζ ) < π2D



.

By Step 1,

EZ


E

*.
,

kN∑
n=3

H2
n

����{Zi } = ζ
+/
-


=

kN∑
n=3

E(H2
n) ≤

π2

4

kN∑
n=3

d (N )
n (ξ)2 <

π2

4
D,

where EZ = integration over ζ with respect to the distribution of {Z (N )
i } (recall that {Z (N )

i }
dist
= {X (N )

i }). By
Markov’s inequality, P[{Z (N )

i } ∈ Ω1] > 3
4 .

Let Ω2 :=


ζ : E



*.
,

kN∑
n=3

Hn(Ln, Ln+1)+/
-

2

��{Zi } = ζ


< π2D



. As before, by Markov’s inequality, P[{Z (N )

i } ∈

Ω2] ≥ 1 − 1
π2 .

Let Ω3 :=
{
ζ : EX

[ kN∑
n=3

CVar
(
ξF (Ln)��{Zi } = ζ, Xn

)]
< π2D

}
, and let

θ∗(Ln, Xn+1, Zn−1) := −ξ fn−2(Zn−2, Zn−1) + ξF (Ln) + ξ fn(Xn, Xn+1).
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Then exp[iĤn(Ln, Ln+1)] = exp[iξF (Ln+1) − iθ∗(Ln, Xn+1, Zn−1)].
Given Xn+1 and {Zi }, Ln+1 is conditionally independent from Ln, {Xi }i,n+1. So

EZ,X

(
CVar

(
ξF (Ln+1)��{Zi }, Xn+1

))
= E

(
CVar

(
ξF (Ln+1)��Ln, {Zi }, {Xi }

))
!
≤ E

(
E
(
|eiξF (Ln+1)−iθ∗ (Ln,Xn+1,Zn−1) − 1|2��Ln, {Xi }, {Zi }

))
,

where
!
≤ is because θ∗ is conditionally constant, and by the definition CVar. Thus,

EZ,X
(
CVar

(
ξF (Ln+1)��{Zi }, Xn+1

))
=E( |ei(ξF (Ln+1)−θ∗) − 1|2) = E( |eiĤn − 1|2)=EmN ,n

Hex
( |eiξΓ(P) − 1|2)=dn(ξ)2.

Summing over 3 ≤ n ≤ kN − 1 and adding the trivial bound 4 for n = 2, we obtain after shifting the index that
EZ

[
EX

(∑kN
n=3 CVar

(
ξF (Ln)��{Zi }, Xn)

)]
< D. By Markov’s inequality, P({Z (N )

i } ∈ Ω3) ≥ 1 − 1
π2 .

Finally, let Ω4 := {ζ : | fn(ζn, ζn+1) | ≤ ess sup |f|}, then P({Z (N )
i } ∈ Ω4) = 1.

In summary P


⋃
1≤i≤4

Ω
c
i


≤

2
π2 +

1
4
< 1. Necessarily Ω1 ∩ Ω2 ∩ Ω3 ∩ Ω4 , ∅. Any ζ = ζ (N ) in the

intersection satisfies the requirements of Step 2.

Step 3 (Choice of θ): ∃ measurable functions θ (N )
n :S(N )

n → [−π, π) such that

kN∑
n=3

E
(
|eiξF (N )

n (L(N )
n )−iθ (N )

n (X (N )
n ) − 1|2

����{Z
(N )
i } = ζ (N )

)
< 2π2D.

Remark: As most of the summands must be small, many of the θ (N )
n (X (N )

n ) could be considered as “approximate
circular means" of ξF (Ln), given Z = ζ , Xn.
Proof of the Step. We fix N and drop the superscripts (N ) .
For every random variableW , θ 7→ E( |ei(W−θ)−1|2) is continuous, and therefore CVar (W )= inf

q∈Q
E( |ei(W−q)−1|2).

In particular, CVar (ξFn |{Zi } = ζ, Xn = η) = inf
q∈Q

E(|eiξF (Ln )−iq − 1|2 |{Zi } = ζ, Xn = η).

For each q, the expectation can be expressed explicitly using integrals with respect to bridge distributions,
and its dependence on η is measurable. Passing to the infimum over q ∈ Q, we find that η 7→ CVar (ξFn |{Zi } =

ζ, Xn = η) is measurable.
Fix N and ζ = ζ (N ) . We say that (η, q) ∈ S(N )

n × R has “property Pn(η, q)," if

E( |eiξFn (Ln )−iq − 1|2 |{Zn} = ζ, Xn = η)≤CVar (ξFn(Ln) |{Zn} = ζ, Xn = η)+
D
n2 .

By the previous paragraph, {η : Pn(η, q) holds} is measurable, and for every η there exists q ∈ Q ∩ (−π, π)
such that Pn(η, q) holds. Let θn(η) = θ (N )

n (η) := inf {q : q ∈ Q ∩ (−π, π) s.t. Pn(η, q) holds} . Again, this is a
measurable function, and since for fixed η, Pn(η, q) is a closed property of q, θ (N )

n (η) itself satisfies property
Pn(η, θ (N )

n (ξ)). So, by choice of ζ

EX



kN∑
n=3

E
(
|eiξFn (Ln )−iθn (Xn ) − 1|2��{Zn} = ζ, Xn

)
≤ EX



kN∑
n=3

CVar
(
ξFn(Ln)

����{Zn} = ζ, Xn

)
+
π2

6
D < 2π2D.

Step 4 (The Reduction). Let ζ = ζ (N ) , θn = θ (N )
n , fn = f (N )

n , Fn = F (N )
n , Xn = X (N )

n , Zn = Z (N )
n . Define
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c(N )
n := fn−2(ζn−2, ζn−1) − ξ−1E(Ĥ (N )

n ),

a(N )
n (x) :=

1
ξ

(
θn(x) + E

(
〈ξFn(Ln) − θn(Xn)〉��{Zi } = ζ, Xn = x

))
(x ∈ S(N )

n ),

f̃ :=
1
ξ

〈
ξ
(
f − ∇a − c

)〉
, g := f − ∇a − c − f̃.

Then a, c, f̃, g are uniformly bounded, and Galg (g) ⊂ 2π
ξ Z.

Proof of the Step.By the choice of ζ (N ) , |c| ≤ ess sup |f|+π/|ξ |, and by the definition of θ (N )
n and 〈·〉, |a| ≤ 2π/|ξ |

and |̃f| ≤ π/|ξ |. So |g| is a.s. uniformly bounded. Next, g ≡
1
ξ

(
ξ (f − ∇a − c) − 〈ξ (f − ∇a − c)〉

)
.

By the definition of 〈·〉, Galg (g) ⊂ 2π
ξ Z. Notice that g − f = −∇a − c − f̃. Gradients and constant functionals

are center-tight, so to complete the proof of the reduction lemma, it remains to show:
Step 5: f̃ is center-tight.

Proof of the Step. We fix N , drop the superscripts (N ) , and use convention (4.8).

Let {Zi } = {ζi }, and Pn :=
(
Zn−2

Zn−1
Yn−1

Yn
Xn

Xn+1

)
=

(
ζn−2

ζn−1
Yn−1

Yn
Xn

Xn+1

)
. So

−Γ(Pn) = − fn−2(ζn−2, ζn−1) − Fn+1(Ln+1) + Fn(Ln) + fn(Xn, Xn+1)

= f − c − ξ−1E(Ĥn) − ∇F = (f − ∇a − c) − ξ−1E(Ĥn) + ∇(a − F).

It follows that, conditioned on Z = ζ , we have the following equalities mod 2πZ:

ξ̃f ≡ ξ (f − ∇a − c) mod 2πZ ≡ −ξΓ(Pn) + E(Ĥn) + ξ∇(F − a) mod 2πZ

≡ −(Ĥn − E(Ĥn)) + ξ∇(F − a) mod 2πZ ≡ −H + ξ∇(F − a) mod 2πZ. (4.11)

Define a newadditive functional ofL byW (N )
n (L(N )

n ) := 〈ξF (Ln)−θn(Xn)〉−E
(
〈ξF (Ln) − θn(Xn)〉��{Zi } = ζ, Xn

)
.

By (4.11) and the definition of a, ξ̃f ≡ −H+∇W mod 2πZ. Since ξ̃f takes values in [−π, π), 〈ξ̃f〉 = ξ̃f, and so

ξ f̃n(Xn, Xn+1) =
〈
W (Ln+1) −W (Ln) − H (Ln, Ln+1)

〉
. (4.12)

Claim. Fix N , and given δ > 0, let Tδ := 11π2D/δ. Then there exists a measurable set ΩX of {Xi } such that
P(ΩX ) > 1 − δ, and for all ξ ∈ ΩX ,

(1)
kN∑
n=3

P
(
|W (Ln) | >

π

3
����{Zi } = ζ, {Xi } = ξ

)
< Tδ,

(2)
kN∑
n=3

P
(
|H (Ln, Ln+1) | >

π

3
����{Zi } = ζ, {Xi } = ξ

)
< Tδ,

(3) E
(
��
kN∑
n=3

H (Ln, Ln+1)��
����{Zi } = ζ, {Xi } = ξ

)
< Tδ .

Proof of the Claim. Ln is conditionally independent of {Xi }i,n given {Zi }, Xn. So

kN∑
n=3

P
(
|W (Ln) | ≥

π

4
����{Zi } = ζ, {Xi } = ξ

)
=

kN∑
n=3

P
(
|W (Ln) | ≥

π

4
����{Zi } = ζ, Xn = ξn

)

≤
16
π2

kN∑
n=3

Var
(
〈ξF (Ln) − θn(Xn)〉|{Zi } = ζ, Xn

)
≤

16
π2

kN∑
n=3

E
(
〈ξF (Ln) − θn(Xn)〉2 |{Zi } = ζ, Xn

)
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≤ 4
kN∑
n=3

E
(
|eiξF (Ln )−iθn (Xn ) − 1|2��{Zi } = ζ, Xn

)
, see (4.5).

Integrating over {Xi }, and recalling the choice of θ (N )
n (Xn) (Step 3), we find that

EX



kN∑
n=3

P
(
|W (Ln) | ≥

π

4
����{Zi } = ζ, {Xi }

)
< 8π2D.

Hence by Markov’s inequality, the set Ω1
X (T ) :=



ξ :

kN∑
n=3

P
(
|W (Ln) | >

π

3
����{Zi } = ζ, {Xi } = ξ

)
≤ T




has

probability P[Ω1
X (T )] > 1 − 8π2D/T . Similarly, by Markov’s inequality

P
(
|Hn | ≥

π

4
����{Zi } = ζ, {Xi } = ξ

)
≤

16
π2E

(
H2

n

����{Zi } = ζ, {Xi } = ξ
)
.

By the choice of ζ , EX



kN∑
n=3

P
(
|Hn | ≥

π

4
��{Zi } = ζ, {Xi }

)
< 16D.

So the set Ω2
X (T ) :=



ξ :

kN∑
n=3

P
(
|H (Ln, Ln+1) | >

π

3
����{Zi } = ζ, {Xi } = ξ

)
≤ T



has probability P[Ω2

X (T )] ≥

1 − 16D/T > 1 − 2π2D/T .
Finally, conditional expectations contract L2-norms, therefore

E
[
E
(
��
kN∑
n=3

H (Ln, Ln+1)��
����{Zi } = ζ, {Xi } = ξ

)2����{Zi } = ζ
]

≤ E
[( kN∑

n=3
H (Ln, Ln+1)

)2����{Zi } = ζ
]
≤ π2D, see step 3.

So

Ω
3
X (T ) :=



ξ : E

(
��
kN∑
n=3

H (Ln, Ln+1)��
����{Zi } = ζ, {Xi } = ξ

)
≤ T




has probability P[Ω3
X (T )] > 1 − π2D/T2.

Then P[Ω1
X (T ) ∩Ω2

X (T ) ∩Ω3
X (T )] > 1 − 11π2D

T , and the claim follows.

We can now complete the proof of the Step 5 and show that f̃ is center-tight. Fix δ > 0, ΩX and Tδ as in the
claim. Fix N and define the random set

AN ({L(N )
n }) :=

{
3 ≤ n ≤ kN : |W (Ln) | ≥

π

3
or |Hn(Ln, Ln+1) | ≥

π

3

}
.

For all ξ ∈ ΩX , we have the following bound by Lemma 4.17:

P
(
|AN | > 4Tδ

����{Zi } = ζ, {Xi } = ξ
)
<

1
2
.

In addition, for all ξ ∈ ΩX , P
(
��
kN∑
n=3

Hn
�� > 4Tδ

����{Zi } = ζ, {Xi } = ξ
)
≤

1
4
.

The probabilities of these events add up to less than one, so the intersection of their complements is non-empty.
Thus, for every ξ ∈ ΩX , we can find {Y (N )

i (ξ)}kN−1
i=2 such that
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L∗n := L∗n(ξ) = (ζ (N )
n−2,Y

(N )
n−1 (ξ), ξn)

has the following two properties:

•
������

kN∑
n=3

Hn(L∗n, L∗n+1)
������
≤ 4Tδ , and

• M := #
{
3 ≤ n ≤ kN : |W (L∗n) | ≥

π

3
or |Hn(L∗n, L∗n+1) | ≥

π

3

}
≤ 4Tδ .

Let n1 < · · · < nM be an enumeration of the indices n where |W (L∗n) | ≥ π
3 , or |Hn(L∗n, L∗n+1) | ≥ π

3 . By
(4.12), if ni < n < ni+1 − 1,

ξ f̃n(ξn, ξn+1) = W (L∗n+1) −W (L∗n) − Hn(L∗n, L∗n+1),

because 〈x + y + z〉 = x + y + z whenever |x |, |y |, |z | < π
3 .

So
ni+1−1∑
n=ni

ξ f̃n(ξn, ξn+1) = −
ni+1−1∑
n=ni+1

Hn(L∗n, L∗n+1) ± 6π, where we have used the bounds |W| ≤ 2π and

|ξ f̃ni | ≤ π. Summing over i we find that for every ξ ∈ ΩX ,

������
ξ

kN∑
n=3

f̃n(ξn, ξn+1)
������
≤

������

kN∑
n=3

Hn(L∗n, L∗n+1)
������
+ 10Mπ ≤ 4Tδ + 40Tδπ < 42πTδ .

Setting Cδ := 42πTδ/|ξ |, we find that

P
(
��
kN∑
n=3

f̃ (N )
n

�� ≥ Cδ
)
< 1 − P(ΩX ) < δ

for all N , whence the (center-)tightness of f̃.
This proves Step 5. The Lemma follows from Steps 4 and 5. �

4.3.2 Joint Reduction

The gradient lemma in §3.2.1 modifies an additive functional by a gradient, to make the sums of the variances
of its first kN terms comparable to UN .

The reduction lemma modifies an additive functional by a gradient, so that it can be split into the sum of a

center-tight functional, and a
2π
ξ
-valued functional. But the sum of the variances of the

2π
ξ
-valued functional

may be much larger than UN .

The goal of this section is to achieve a joint reduction, so that the sum of the variances of the
2π
ξ
-valued

functional is of order UN . This result will be used in Chapter 6.

Lemma 4.19 (Integer Reduction Lemma) Let X be a uniformly elliptic Markov chain, and f an integer-valued
additive functional on X such that | f | ≤ K a.s. For every N ,

fn(x, y) = g(N )
n (x, y) + a(N )

n+1 (x) − a(N )
n (y) + c(N )

n (n = 3, . . . , N )

where

(1) c(N )
n are integers such that |c(N )

n | ≤ K,
(2) a(N )

n are measurable integer-valued functions onSn such that |a(N )
n | ≤ 2K,
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(3) g(N )
n are measurable, Z-valued, and

N∑
n=3

E[g(N )
n (Xn, Xn+1)2] ≤ 103K4

N∑
n=3

u2
n, where un are the structure

constants of f.

Proof Let
(
Zn−2

Zn−1 Yn
Yn−1 Xn

Xn+1

)
be a random hexagon. By the definition of the structure constants,

E


N∑
n=3

E *
,
Γ

(
Zn−2

Zn−1 Yn
Yn−1 Xn

Xn+1

)2 ����Zn−2, Zn−1+
-


=

N∑
n=3

u2
n.

Therefore, for every N there exist zn = zn(N ) ∈ Sn (n = 1, . . . , N − 2) such that

N∑
n=3

E *
,
Γ

(
Zn−2

Zn−1 Yn
Yn−1 Xn

Xn+1

)2 ����Zn−2 = zn−2, Zn−1 = zn−1+
-
≤

N∑
n=3

u2
n.

We emphasize that zn depends on N .
Let c(N )

n := fn−2(zn−2, zn−1). Let a(N )
n (xn) be the (smallest) most likely value of

fn−2(zn−2,Y ) + fn−1(Y, xn),

where Y has the bridge distribution of Xn−1 conditioned on Xn−2 = zn−2 and Xn = xn. The most likely value
exists, and has probability bigger than δK := 1

5K , because fn−2(zn−2,Y ) + fn−1(Y, xn) ∈ [−2K, 2K] ∩ Z.
Set g(N )

n (xn, xn+1) := fn(xn, xn+1) + a(N )
n (xn) − a(N )

n+1 (xn+1) − c(N )
n . Equivalently,

g(N )
n (xn, xn+1) = −Γ

(
zn−2

zn−1 yn
yn−1 xn

xn+1

)
for the yk which maximize the likelihood of the value fk−1(zk−1,Y ) + fk (Y, xk+1), when Y has the bridge
distribution of Xk given Xk−1 = zk−1, Xk+1 = xk+1.

Our task is to estimate
N∑
n=3

E[g(N )
n (Xn, Xn+1)2]. Define for this purpose the functions h(N )

n :Sn ×Sn+1 → R,

h(N )
n (xn, xn+1) := E


Γ

(
Zn−2

Zn−1 Yn
Yn−1 Xn

Xn+1

)2 ����
Zn−2 = zn−2 Zn−1 = zn−1
Xn = xn Xn+1 = xn+1



1/2

.

The plan is to show that:

(a)
N∑
n=3

E(h(N )
n (Xn, Xn+1)2) ≤

N∑
n=3

u2
n,

(b) If h(N )
n (xn, xn+1) < δK , then g(N )

n (xn, xn+1) = 0,
(c) E(g(N )

n (Xn, Xn+1)2) ≤ (6K )2P[h(K )
n ≥ δK ] ≤ 36K2δ−2

K E[h(N )
n (Xn, Xn+1)2].

Part (a) is because of the choice of zn. Part (c) follows from part (b), Chebyshev’s inequality, and the estimate
‖g(N )

n ‖∞ ≤ 6K (as is true for the balance of every hexagon). It remains to prove part (b).
Since f is integer-valued, either the balance of a hexagon is zero, or it has absolute value ≥ 1. This leads to

the following inequality.

P

[
Γ

(
Zn−2

Zn−1 Yn
Yn−1 Xn

Xn+1

)
, 0

����
Zn−2 = zn−2 Zn−1 = zn−1
Xn = xn Xn+1 = xn+1

]

≤ E

Γ

(
Zn−2

Zn−1 Yn
Yn−1 Xn

Xn+1

)2 ����
Zn−2 = zn−2 Zn−1 = zn−1
Xn = xn Xn+1 = xn+1


= h(N )

n (xn, xn+1)2.
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Thus, if h(N )
n (xn, xn+1) < δK , then

P

[
Γ

(
Zn−2

Zn−1 Yn
Yn−1 Xn

Xn+1

)
= 0

����
Zn−2 = zn−2 Zn−1 = zn−1
Xn = xn Xn+1 = xn+1

]
> 1 − δ2

K .

At the same time, by the structure of the hexagon measure, if

Ωn :=
{(

Zn−2
Zn−1 Yn
Yn−1 Xn

Xn+1

)
: fn−1(Zn−1,Yn) + fn(Yn, Xn+1) = a(N )

n+1 (Xn+1)
fn−2(Zn−2,Yn−1) + fn−1(Yn−1, Xn) = a(N )

n (Xn)

}
,

then P
[
Ωn

����
Zn−2 = zn−2 Zn−1 = zn−1
Xn = xn Xn+1 = xn+1

]
> δ2

K .

If the sum of the probabilities of two events is bigger than one, then they must intersect. It follows that there
exist yn−1, yn such that

• a(N )
n (xn) = fn−2(zn−2, yn−1) + fn−1(yn−1, xn);

• a(N )
n+1 (xn+1) = fn−1(zn−1, yn) + fn(yn, xn+1);

• Γ

(
zn−2

zn−1 yn
yn−1 xn

xn+1

)
= 0.

By the definition of g(N )
n , g(N )

n (xn, xn+1) = 0, which proves part (b). �

Corollary 4.20 (Joint Reduction) Let f be an additive functional of a uniformly elliptic Markov array X with
row lengths kN , such that |f| ≤ K a.s. If ξ , 0 and sup

N
UN < ∞, then there is an additive functional g satisfying

(4.4), and
kN∑
n=3
‖g(N )

n ‖22 ≤ LUN , with a constant L which only depends on K and ξ.

Caution! g(N )
n depends on N , even if f is an additive functional of a Markov chain.

Proof Apply Lemma 4.16 to f, and then apply Lemma 4.19 to the resulting integer-valued additive functional
ξg
2π . �

4.3.3 The Possible Values of the Co-range

We prove Theorem 4.3 in its version for Markov arrays: The co-range of an a.s. uniformly bounded additive
functional on a uniformly elliptic Markov array X is equal to R when f is center-tight, and to {0} or tZ with
t ≥ π/(6ess sup |f|) otherwise.

Recall that the co-range is defined by

H := H (X, f) = {ξ ∈ R : sup
N

DN (ξ) < ∞}, where DN (ξ) =
kN∑
n=3

d (N )
n (ξ)2.

Step 1. H is a subgroup of R.

Proof of the Step. H = −H , because d (N )
n (−ξ) = d (N )

n (ξ). H contains 0, because d (N )
n (0) = 0. H is closed under

addition, because if ξ, η ∈ H , then by Lemma 2.16,

sup
N

kN∑
n=3

d (N )
n (ξ + η)2 ≤ 8


sup
N

kN∑
n=3

d (N )
n (ξ)2 + sup

N

kN∑
n=3

d (N )
n (η)2


< ∞.
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Step 2. If f is center-tight, then H = R.

Proof of the Step. By Corollary 3.9 and the center-tightness of f, sup
N

kN∑
k=3

(u(N )
k

)2 < ∞. By Lemma 2.16(c),

sup
N

kN∑
k=3

d (N )
n (ξ)2 < ∞ for all ξ ∈ R.

Step 3. If f is not center-tight, then ∃t0 > 0 such that

H ∩ (−t0, t0) = {0}. (4.13)

Proof of the Step. Let K := ess sup |f|, then |Γ(P) | ≤ 6K for a.e. hexagon P.
Fix τ0 > 0 such that |eit − 1|2 ≥ 1

2 t2 for all |t | < τ0, and let t0 := τ0(6K )−1. Then for all |ξ | < t0,
|eiξΓ(P) − 1|2 ≥ 1

2 ξ
2Γ(P)2 for all hexagons P. Taking the expectation over P ∈ Hex(N, n), we obtain that

d (N )
n (ξ)2 ≥

1
2
ξ2(u(N )

n )2 for all |ξ | < t0, 1 ≤ n ≤ kN, N ≥ 1. (4.14)

Now assume by way of contradiction that there is 0 , ξ ∈ H ∩ (−t0, t0), then sup
N

kN∑
n=3

(u(N )
n )2 ≤

2
ξ2 sup

N

kN∑
n=3

d (N )
n (ξ)2 < ∞. By Corollary 3.9, f is center-tight, in contradiction to our assumption.

Step 4. If f is not center-tight, then H = {0}, or H = tZ with t ≥
π

3 ess sup | f |
.

Proof of the Step. By Steps 2 and 3, H is a proper closed subgroup of R. So it must be equal to {0} or tZ, where

t > 0. To see that t ≥
π

3 ess sup | f |
, assume by contradiction that t =

(
π

3 ess sup | f |

)
ρ with 0 < ρ < 1, and let

κ := min{|eiγ − 1|2/|γ |2 : |γ | ≤ 2πρ} > 0.

Then |tΓ(P) | ≤ 6t ess sup | f | = 2πρ for every hexagon P ∈ Hex (N, n), whence

d (N )
n (t)2 = EmHex ( |eitΓ − 1|2) ≥ κEmHex (t2

Γ
2) = κt2(u(N )

n )2.

So DN (ξ) ≥ κt2UN . But this is impossible: t ∈ H so sup
N

DN < ∞, whereas f is not center-tight so by Corollary

3.9, sup
N

UN = ∞. �

4.3.4 Calculation of the Essential Range

We prove Theorem 4.4 in its version for Markov arrays: For every a.s. uniformly bounded additive functional f on
a uniformly elliptic Markov array X, Gess (X, f) = {0} when H (X, f) = R; Gess (X, f) = 2π

t Z when H (X, f) = tZ;
and Gess (X, f) = R when H (X, f) = {0}.

Lemma 4.21 Suppose f, g are two a.s. uniformly bounded additive functionals on the same uniformly elliptic
Markov array. If f − g is center-tight, then f and g have the same co-range.

Proof By Corollary 3.9, if h = g − f is center-tight, then

sup
N

kN∑
n=3

u(N )
n (h)2 < ∞.
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By Lemma 2.16,

sup
N

kN∑
n=3

d (N )
n (ξ, g)2 ≤ 8 sup

N

kN∑
n=3

d (N )
n (ξ, f)2 + 8ξ2 sup

N

kN∑
n=3

u(N )
n (h)2.

So the co-range of f is a subset of the co-range of g. By symmetry they are equal. �

Proof of Theorem 4.4: As we saw in the previous section, the possibilities for the co-range are R, tZ with t , 0,
and {0}.

Case 1: The co-range is R. By Theorem 4.3, this can only happen if f is center-tight, in which case the essential
range is {0} because we may subtract f from itself.

Case 2: The co-range is tZ with t , 0.We show that Gess (X, f) = 2π
t Z.

By assumption, t is in the co-range, so supN

∑kN
n=3 d (N )

n (t)2 < ∞. By the reduction lemma, f differs by a
center-tight functional from a functional with algebraic range inside 2π

t Z. So

Gess (X, f) ⊂
2π
t
Z.

Assume by way of contradiction thatGess (X, f) , 2π
t Z, then there exists a center-tight h such that the algebraic

range of
g := f − h

is a subset of 2π`
t Z for some integer ` > 1. The structure constants of g must satisfy d (N )

n ( t` , g) ≡ 0, and therefore
t
` is in the co-range of g. By Lemma 4.21, t

` is in the co-range of f, whence t
` ∈ tZ. But this contradicts ` > 1.

Case 3: The co-range is {0}.We claim that the essential range is R. Otherwise, there exists a center-tight h such
that the algebraic range of g := f − h equals tZ with t ∈ R. But this is impossible:

(a) If t , 0, then d (N )
n ( 2π

t , g) = 0 for all 3 ≤ n ≤ kN , N ≥ 1, so the co-range of g contains 2π/t. By Lemma
4.21, the co-range of f contains 2π/t, in contradiction to the assumption that it is {0}.

(b) If t = 0, then the algebraic range of g is {0}, and by Lemma 4.15, the entries of g are all a.s. constant. So
f ≡ h + g is center-tight, and by Theorem 4.3, the co-range of f is R. But this contradicts our assumptions. �

4.3.5 Existence of Irreducible Reductions

We prove Theorem 4.5, in its version for arrays: For every a.s. uniformly bounded additive functional on a
uniformly elliptic Markov array X, there exists an irreducible functional g such that f − g is center-tight and
Galg (X, g) = Gess (X, g) = Gess (X, f).

Proof. The essential range is a closed subgroup of R, so Gess (X, f) = {0}, tZ or R.

(a) If Gess (X, f) = {0}, then H (X, f) = R, and f is center-tight. So take g ≡ 0.

(b) IfGess (X, f) = tZwith t , 0, then H (X, f) = ξZwith ξ := 2π/t (Theorem4.4). So sup
N

kN∑
n=3

d (N )
n (ξ, f)2 < ∞. By

the reduction lemma, there exists an additive functional g such that f−g is center-tight, and Galg (X, g) ⊂ tZ.
Clearly, two additive functionals which differ by a center-tight functional have the same essential range. So
Gess (X, f) = Gess (X, g) ⊂ Galg (X, g) ⊂ tZ = Gess (X, f), and Gess (X, f) = Gess (X, g) = Galg (X, g).

(c) If Gess (X, f) = R, take g := f. �
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4.3.6 Characterization of Hereditary Additive Functionals

Proof of Theorem 4.13: Suppose f is an a.s. uniformly bounded additive functional on a uniformly elliptic
Markov array X, and consider the following conditions:

(1) f is hereditary: for all ξ < H (X, f), DN (ξ) −−−−−→
N→∞

∞;
(2) For all ξ,

(
lim inf
N→∞

DN (ξ) < ∞ ⇒ lim sup
N→∞

DN (ξ) < ∞
)
;

(3) H (X′, f|X′ ) = H (X, f) for every sub-array X′ of X;
(4) Gess (X′, f|X′ ) = Gess (X, f) for every sub-array X′ of X.

(1)⇒(2): Let Linf (ξ) := lim inf DN (ξ), and Lsup(ξ) := lim sup DN (ξ). Assume (1), and suppose Linf (ξ) < ∞.
Then Lsup(ξ) < ∞, otherwise sup DN (ξ) = ∞, whence ξ < H (X, f), whence by (1), lim DN (ξ) = ∞. But this
contradicts Linf (ξ) < ∞.

(2)⇒(3): If ξ ∈H (X, f), then sup DN (ξ, f|X′ )≤ supDN (ξ, f) < ∞, and ξ ∈H (X′, f|X′ ).

Conversely, if ξ ∈ H (X′, f|X′ ), then lim inf DN (ξ) < ∞, whence by (2) lim sup DN (ξ) < ∞. Therefore
sup DN (ξ) < ∞, and ξ ∈ H (X, f).

(3)⇒(4) because the co-range determines the essential range (Theorem 4.4).

(4)⇒(1): Suppose ξ < H (X, f), and assume by contradiction that DN (ξ) 6→ ∞. Then ∃N` ↑ ∞ such that
sup
`

DN` (ξ) < ∞. But this means that ξ ∈ H (X′, f|X′ ) for the sub-array X′ = {X (N` )
n : 1 ≤ n ≤ kN` + 1, ` ≥ 1},

and we found a sub-array such that H (X′, f|X′ ) , H (X, f). By Theorem 4.4, Gess (X′, f|X′ ) , Gess (X, f). �

Proof of Theorem 4.14: Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic Markov
array X.

The first part of the theorem assumes that Gess (X, f) = R, and asserts that (X, f) is stably hereditary iff
Gess (X′, g|X′ ) = R for all sub-arrays X′, and all additive functionals g = {(1 + εN ) f (N )

n }, where εN → 0.
(⇐): Taking εN = 0, and applying Theorem 4.13, we find that (X, f) is hereditary. So DN (ξ) → ∞ for all ξ , 0.
To show that the convergence is uniform on compact subsets of R \ {0}, it is sufficient to check that

∀ξ , 0,∀M > 0, ∃Nξ, δξ > 0
(

N > Nξ
|ξ ′ − ξ | < δξ

⇒ DN (ξ ′) > M
)
. (4.15)

Assume by way of contradiction that (4.15) fails for some ξ , 0 and M > 0, then ∃ξN → ξ such that
DN (ξN )≤M . Let

εN :=
ξN
ξ
− 1, and g := {(1 + εN ) f (N )

k
}.

Let DN (ξ, g) denote the structure constants of (X, g), then supN DN (ξ, g) = supN DN (ξN ) ≤ M, whence
ξ ∈ H (X, g). Thus H (X, g) , {0}, whence Gess (X, g) , R, a contradiction. (4.15) follows, and (X, f) is stably
hereditary.

(⇒): Suppose (X, f) is stably hereditary, then DN (ξ) → ∞ uniformly on compact subsets of R \ {0}, so
DN (ξ, g) → ∞ for all ξ , 0, g = {(1+εN ) f (N )

k
}, and εN → 0. Thus H (X′, g|X′ ) = {0}, andGess (X′, g|X′ ) = R

for all sub-arrays X′ and such g. The proof of the first part of the theorem is complete.

The second part of the theorem assumes that Gess (X, f) = tZ or {0}, and asserts that f is stably hereditary iff
it is hereditary.

It is sufficient to consider the case Gess (X, f) = Z: If Gess (X, f) = tZ with t , 0 we work with t−1f, and if
Gess (X, f) = {0} then H (X, f) = R and the statement that DN (ξ) → ∞ on H (X, f)c (uniformly on compacts or
not) holds vacuously.

By Theorem 4.5, we can write f = g − h where Galg (X, g) = Gess (X, g) = Gess (X, f), and h is a.s. uniformly
bounded and center-tight. By Lemma 4.15, we can modify g and h by a suitable collection of uniformly bounded
constants to arrange for g to be integer-valued: P[g(N ) (X (N )

n , X (N )
n+1 ) ∈ Z] = 1 for all n, N .



72 4 The Essential Range and Irreducibility

Choose an integer K such that ess sup |g| ≤ K . Then the g-balance Γ(P) of every hexagon P ∈ Hex(N, n)
satisfies

Γ(P) ∈ Z ∩ [−6K, 6K].

Let mN,n
Hex denote the hexagon measure on Hex(N, n) and define for every γ ∈ Z ∩ [−6K, 6K],

µN (γ) :=
kN∑
n=3

mN,n
Hex {P ∈ Hex(N, n) : Γ(P) = γ}.

Since |eiξγ − 1|2 = 4 sin2 ξγ
2 ,

d2
N (ξ, g) = 4

6K∑
γ=−6K

µN (γ) sin2 ξγ

2
.

This expression shows that if DN (ξ, g) → ∞ for some ξ, then DN (η, g) → ∞ uniformly on an open
neighborhood of this ξ. Thus, if (X, g) is hereditary, then (X, g) is stably hereditary. The converse statement is
trivial.

By Lemma 4.21, H (X, g) = H (X, f). In addition, (X, g) is (stably) hereditary iff (X, f) is (stably) hereditary,
because by Lemma 2.16 and Corollary 3.9,

DN (ξ, f) ≥
1
8

DN (ξ, g) −
1
8
ξ2 sup

n
Un(h) =

1
8

DN (ξ, g) − const.ξ2

DN (ξ, g) ≥
1
8

DN (ξ, f) −
1
8
ξ2 sup

n
Un(h) =

1
8

DN (ξ, f) − const.ξ2.

Therefore the equivalence of the hereditary and stable hereditary properties of (X, g) implies the equivalence of
these properties for (X, f). �

4.4 Notes and References

In the stationary world, a center-tight cocycle is a coboundary (Schmidt [178]) and the problems discussed in
this chapter reduce to the question how small can one make the range of a cocycle by subtracting from it a
coboundary. The question appears naturally in the ergodic theory of group actions, because of its relation to the
ergodic decomposition of skew-products [1, Ch. 8],[32],[178], and its relation to the structure of locally finite
ergodic invariant measures for skew-products [7],[165],[175]. In the general setup of ergodic theory, minimal
reductions such as in Theorem 4.5 are not always possible [128], but they do sometimes exist [165],[175].

The reduction lemma was proved for sums of independent random variables in [56]. For a version of Theorem
4.9 in this case, see [148].

The relevance of (ir)reducibility to the local limit theorem appears in a different form in the papers of
Guivarc’h & Hardy [88], Aaronson & Denker [5], and Dolgopyat [56]. There “irreducibility" is expressed in
terms of a condition which rules out non-trivial solutions for certain cohomological equations. We will meet
this idea again when we discuss irreducibility in the context of homogeneous Markov chains (Theorem 8.9(3),
[88]), and in the context of Markov chains in a random environment (Proposition 9.24).

It is more difficult to uncover the irreducibility condition in the probabilistic literature on the LLT for sums of
independent random variable. Prokhorov [163] and Rozanov [169], for example, prove a LLT for independent Z-
valued random variables Xk assuming Lindeberg’s condition (which is automatic for bounded random variables),∑

Var(Xk ) = ∞, and subject to an arithmetic condition on the distributions of Xk . For an interpretation of this
condition in terms of the irreducibility conditions in this chapter, see §8.2. Other sufficient conditions such as
those appearing in [144],[148],[190] can be analyzed in a similar way.



Chapter 5
The Local Limit Theorem in the Irreducible Case

Abstract We find the asymptotic behavior of P(SN − zN ∈ (a, b)), assuming that (zN − E(SN ))/
√

Var(SN )
converges to a finite limit, and subject to the irreducibility condition: The algebraic range cannot be reduced by
a center-tight modification.

5.1 Main Results

5.1.1 Local Limit Theorems for Markov Chains

In the next two theorems, we assume that f is an a.s. uniformly bounded additive functional on a uniformly
elliptic Markov chain X, and we let SN = f1(X1, X2) + · · · + fN (XN, XN+1) and VN := Var(SN ).

Recall that the algebraic range Galg (X, f) is the smallest closed subgroup G with constants cn such that
P[ fn(Xn, Xn+1)− cn ∈ G] = 1 for all n. We call f irreducible, if there is no center-tight h such that Galg (X, f−h)
is strictly smaller than Galg (X, f).

Theorem 5.1 (Non-Lattice Case) Suppose f is irreducible, with algebraic range R. Then VN → ∞, and for
every (a, b) ⊂ R and zN, z ∈ R such that zN−E(SN )

√
VN

→ z,

P[SN − zN ∈ (a, b)] = [1 + o(1)]
e−z2/2
√

2πVN

(b − a), as N → ∞. (5.1)

Theorem 5.2 (Lattice Case) Suppose t > 0, f is irreducible with algebraic range tZ, and P[SN ∈ γN + tZ] = 1
for all N . Then VN → ∞, and for all zN ∈ γN + tZ and z ∈ R such that zN−E(SN )

√
VN

→ z, for all k ∈ Z,

P[SN − zN = kt] = [1 + o(1)]
e−z2/2t
√

2πVN

, as N → ∞. (5.2)

For a discussion of the necessity of the irreducibility assumption, see §6.1.3.
We can check the conditions of the theorems directly from the data of X and f, using the structure constants (2.26):

Lemma 5.3 Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic Markov chain X. Then

(1) f is irreducible with algebraic range R iff
∑

d2
n(ξ) = ∞ for all ξ , 0.

(2) Fix t > 0, then f is irreducible with algebraic range tZ iff
∑

d2
n(ξ) < ∞ for ξ ∈ (2π/t)Z and

∑
d2
n(ξ) = ∞

for ξ < (2π/t)Z.
(3) f is irreducible with algebraic range {0} iff there are constants cn such that fn(Xn, Xn+1) = cn a.s. for all n.

Proof f is non-lattice and irreducible iff Gess (X, f) = Galg (X, f) = R. By Theorem 4.3, this happens iff f has
co-range {0}, which proves part (1). Part (2) is similar, and part (3) is a triviality. �

5.1.2 Local Limit Theorems for Markov Arrays

Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic Markov array X with row lengths
kN + 1, and set X = {X (N )

n }, f = { f (N )
n }, SN =

∑kN
i=1 f (N )

i (X (N )
i , X (N )

i+1 ), and VN := Var(SN ).

73
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The LLT for SN may fail when f|X′ has different essential range for different sub-arrays X′. To rule this out,
we assume hereditary behavior, see §4.2.3.

Theorem 5.1’. Suppose f is stably hereditary and irreducible, with algebraic range R. Then VN → ∞, and for
every (a, b) ⊂ R and zN, z ∈ R s.t. zN−E(SN )

√
VN

−−−−−→
N→∞

z,

P[SN − zN ∈ (a, b)] = [1 + o(1)]
e−z2/2
√

2πVN

(b − a), as N → ∞. (5.3)

Theorem 5.2’. Suppose t > 0 and f is hereditary, irreducible, and with algebraic range tZ. Suppose P[SN ∈

γN + tZ] = 1 for all N . Then VN → ∞, and for all zN ∈ γN + tZ and z ∈ R such that zN−E(SN )
√
VN

−−−−−→
N→∞

z, for
every k ∈ Z,

P[SN − zN = kt] = [1 + o(1)]
e−z2/2t
√

2πVN

, as N → ∞. (5.4)

Whereas in the non-lattice case we had to assume that f is stably hereditary, in the lattice case it is sufficient
to assume that f is hereditary. This is because the two assumptions are equivalent in the lattice case, see
Theorem 4.14(2).

Again, it is possible to check the assumptions of the theorems using the structure constants (2.26):

Lemma 5.3’. Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic Markov array X with
row lengths kN + 1. Then

(1) f is stably hereditary, irreducible, andwith algebraic rangeR iff DN −−−−−→
N→∞

∞ uniformly on compacts in R\{0}.

(2) Fix t > 0. Then f is hereditary and irreducible with algebraic range tZ, iff sup
N

DN (ξ) < ∞ for ξ ∈ 2π
t Z, and

DN (ξ) −−−−−→
N→∞

∞ for all ξ < 2π
t Z. In this case f is also stably hereditary.

Proof As in the case of Markov chains, f is non-lattice and irreducible iff its co-range equals {0}. In this case, f

is stably hereditary iff
kN∑
n=3

d (N )
n (ξ)2 −−−−−→

N→∞
∞ uniformly on compact subsets of R \ {0}. This proves part (1).

Part (2) is proved similarly, with the additional observation that by Theorem 4.14, in the lattice case, every
hereditary additive functional is stably hereditary. �

5.1.3 Mixing Local Limit Theorems

Let f be an additive functional on a Markov array X with row lengths kN + 1, and state spacesS(N )
n . Let SN and

VN be as in the previous section.

Theorem 5.4 (Mixing LLT) Suppose X is uniformly elliptic, and f is irreducible, stably hereditary, and a.s.
uniformly bounded. Let AN ⊂ S

(N )
kN+1 be measurable events such that P[X (N )

kN+1 ∈ AN ] is bounded away from
zero. Fix xN ∈ S

(N )
1 , and let φ : R→ R be an arbitrary continuous function with compact support.

(1) Non-lattice Case: Suppose f has algebraic range R. Then for every zN, z ∈ R such that zN−E(SN )
√
VN

→ z,

lim
N→∞

√
VNE[φ(SN − zN ) |X (N )

kN+1 ∈ AN, X (N )
1 = xN ] =

e−z2/2
√

2π

∫ ∞

−∞

φ(u)du.

(2) Lattice Case: Suppose f has algebraic range tZ (t > 0) and P[SN ∈ γN + tZ] = 1 for all N . Then for every
zN ∈ γN + tZ and z ∈ R such that zN−E(SN )

√
VN

→ z,
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lim
N→∞

√
VNE[φ(SN − zN ) |X (N )

kN+1 ∈ AN, X (N )
1 = xN ] =

e−z2/2t
√

2π

∑
u∈Z

φ(tu).

To understand what this means, take φ ∈ Cc (R) such that ‖φ − 1(a,b) ‖1 � 1.

Remark. The conditioning on X (N )
1 can be removed, using Lemma 2.27.

In the next chapter, we will use mixing LLT for irreducible additive functionals to study ordinary LLT for
reducible additive functionals. Recall that every reducible additive functional can be put in the form f = g+∇a+h,
where h has summable variance, a is uniformly bounded, and g is irreducible. Assume for simplicity that h ≡ 0.
Then SN (f) = SN (g) + aN+1(XN+1) − a1(X1). To pass from the LLT for SN (g) (which we know since g is
irreducible) to the LLT for SN (f) (which we do not know because of the reducibility of f), we need to understand
the joint distribution of SN (g), a1(X1) and aN+1(XN+1). The mixing LLT helps to do that, since conditioned on
XN+1 and X1, SN (f) − SN (g) is a constant.

5.2 Proofs

5.2.1 Strategy of Proof

Our aim is to find the asymptotic behavior of P[SN − zN ∈ (a, b)] as N → ∞, and assuming that zN−E(SN )
√
VN

→ z.
We will use Fourier analysis.
(I) Fourier-Analytic Formulation of the LLT. P[SN − zN ∈ (a, b)] can be written in terms of the characteristic
functions ΦN (ξ) := E(eiξSN ) as follows:

• In the lattice case, say when SN and zN are integer valued, we write the indicator function δ0(m) := 1{0} (m)

in the form δ0(m) :=
1

2π

∫ π

−π
eimξdξ (m ∈ Z). So, by Fubini’s theorem

P[SN − zN=k]=E[δ0(SN − zN − k)]=E
(

1
2π

∫ π

−π
eiξ (SN−zN−k)dξ

)
=

1
2π

∫ π

−π
e−iξzN e−iξk

ΦN (ξ)dξ, (5.5)

• In the non-lattice case, we put the indicator function φa,b = 1(a,b) in the form

φa,b (t) =
1

2π

∫ ∞

−∞

eitξ φ̂a,b (ξ)dξ, for φ̂a,b (ξ) =
e−iaξ − e−ibξ

iξ
and t , a, b

(this follows from the identity
∫ ∞
−∞

(eipξ/ξ)dξ = sgn(p)πi for p ∈ R \ {0}). So

P[SN−zN∈(a, b)]=E[φa,b (SN−zN )]=E
(

1
2π

∫ ∞

−∞

eiξ (SN−zN ) φ̂a,b (ξ)dξ
)
=

1
2π

∫ ∞

−∞

e−iξzN φ̂a,b (ξ)ΦN (ξ)dξ, (5.6)

provided a, b are not atoms of SN − zN , for any N . (Such a, b are dense in R.)

To analyze these integrals, we need to controlΦN (ξ) as N → ∞. The integral (5.6) is muchmore difficult than
(5.5): To understand (5.5) it is sufficient to control E(eiξSN ) on the compact interval [−π, π]. But to understand
(5.6), we must control E(eiξSN ) on all of R, and it is not sufficient for the error to be small in L∞, it needs to be
small in L1. Getting such control on all of R is not easy.

Luckily, there is a way to circumvent this difficulty. As noted by Charles Stone, instead of calculating the
asymptotic behavior of (5.6) for the specific function φa,b (t), it is sufficient to find the asymptotic behavior of
(5.6) for all L1 functions φ whose Fourier transforms φ̂ have compact supports. We defer the precise statement to
§5.2.3. At this point we just want to emphasize that thanks to Stone’s trick, (5.6) can be replaced by the integral
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1
2π

∫ L

−L

e−iξzN φ̂(ξ)ΦN (ξ)dξ (5.7)

where [−L, L] ⊃ supp(φ̂), and we are back to the problem of estimating ΦN (ξ) uniformly on compacts.

(II) What Does the CLT Say? In Chapter 3 we proved the CLT, and it is reasonable to ask what does this result
say on the integral (5.7).

The answer is that the CLT gives the behavior of the part of the integral (5.7) located within distanceO(V−1/2
N )

from the origin: For every R, no matter how large,

1
2π

R/
√
VN∫

−R/
√
VN

e−iξzN φ̂(ξ)ΦN (ξ)dξ=
1

2π
√

VN

R∫
−R

e
−

izN ξ
√
VN φ̂

(
ξ
√
VN

)
ΦN

(
ξ
√
VN

)
dξ=

1
2π
√

VN

R∫
−R

φ̂
(

ξ
√
VN

)
e
−iξ zN −E(SN )

√
VN E(e

iξ SN −E(SN )
√
VN )dξ

(1)
∼

1
2π
√

VN

R∫
−R

φ̂(0)e−iξz−(ξ2/2)dξ (2)
=
φ̂(0)e−z2/2
√

2πVN

(
1+O(e−R)

)
. (5.8)

The first marked identity uses the continuity of φ̂, the assumption zN−E(SN )
√
VN

→ z, the CLT, and the bounded

convergence theorem. The second marked identity uses the well-known formula
∫
R

e−iξz−ξ2/2dξ =
√

2πe−z2/2.

If φ is close to 1(a,b) in L1, then φ̂(0) =
∫
φdx≈ |a − b|, so φ̂(0)e−z2/2

√
2πVN

≈
e−z2/2 |a−b |
√

2πVN
. Therefore (5.8) gives the

asymptotic predicted by the LLT.

(III) Showing that the Peripheral Contribution is Negligible. To prove the LLT, it remains to show that the
peripheral contribution to (5.7), coming from the integral over {ξ ∈ [−L, L] : |ξ | > RV−1/2

N }, is negligible,
namely, it is V−1/2

N oR→∞(1). This is the crux of the matter, the central mathematical difficulty in the proof.
Since φ̂ is bounded, the peripheral contribution is less than a constant times

∫ L

R/
√
VN
|ΦN (ξ) |dξ +∫ −R/√VN

−L
|ΦN (ξ) |dξ. There are two things to worry about:

(1) The Behavior Close to Zero: ΦN (0) = 1, therefore |Φ(ξ) | must be large on a neighborhood of ±R/
√

VN .

(2) The Behavior Away from Zero: ΦN (ξ) could be large away from zero, due to approximate arithmetic
structures in the distribution of SN . For example, if 1− ε of the mass of SN is located within distance ε from
a coset of (2π/ξ)Z, then |ΦN (ξ) | = 1 −O(ε ).

We address these issues using two key estimates. The first, Proposition 5.7, says that for some positive
constants c1, c2,

|ΦN (ξ) | ≤ c1 exp
[
−c2DN (ξ)

]
, (5.9)

where DN (ξ) are the structure constants from (2.26). The second, Corollary 5.10, says that if |ΦN (ξ) | is large at
some value ξ̃N then |ΦN (ξ̃N + t) | drops very fast to zero as t moves away from zero. For example, in the special
case ξ̃N = 0, Cor. 5.10 says that ∃δ̃, ε̂, C̃ > 0 such that for every N ,

|ΦN (ξ) | ≤ C̃e−ε̂VN ξ
2

(|ξ | < δ̃). (5.10)

In particular,
∫ −R/

√
VN

−δ̃
|ΦN (t) |dt +

∫ δ̃

R/
√
VN

|ΦN (t) |dt = V−1/2
N oR→∞(1), which takes care of the peripheral

behavior near zero.
Corollary 5.10 also leads to the crucial estimate (5.30): ∃δ̃0 > 0 so that for each interval I of length at most

δ̃0, if AN (I) := | log ‖ΦN ‖L∞ (I ) |, then

‖ΦN ‖L1 (I ) ≤
const.
√

VN AN

. (5.11)
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Note that by (5.9), AN (I) ≥ const sup
ξ ∈I

DN (ξ) − const.

For uniformly elliptic Markov chains (and stably hereditary arrays), DN (ξ) → ∞ uniformly on compacts
outside the co-range of (X, f). So for any closed interval I of length at most δ̃0 outside H (X, f), AN (I) → ∞, and
the right-hand-side of (5.11) is V−1/2

N o(1) . This takes care of the behavior away from H (X, f).
We now employ the assumption that (X, f) is irreducible: In the non-lattice case H (X, f) = {0}; in the lattice

case, when the algebraic range is Z, H (X, f) = 2πZ— but the domain of integration in (5.5) is [−π, π]. In both
cases there can be no problematic ξ, except for ξ = 0, with which we have already dealt.

Standing Assumptions and Notation for the Remainder of the Chapter: We fix an additive functional
f = { f (N )

n } on aMarkov array X = {X (N )
n } with row lengths kN +1, state spacesS(N )

n , and transition probabilities
π(N )
n,n+1(x, dy).
We assume throughout that ess sup |f| < K < ∞, and that X is uniformly elliptic with ellipticity constant ε0.
Recall that this means that π(N )

n,n+1(x, dy) = p(N )
n (x, y)µ(N )

n+1(dy), where

0 ≤ p(N )
n (x, y) < ε−1

0 and
∫

p(N )
n (x, y)p(N )

n+1 (y, z)µ(N )
n+1(dy) > ε0.

There is no loss of generality in assuming that µ(N )
k

(E) = P(X (N )
k
∈ E) for k ≥ 3, see Corollary 2.9.

5.2.2 Characteristic Function Estimates

It is convenient to use the characteristic functions of SN conditioned on X1:

ΦN (x, ξ) := Ex

(
eiξSN

)
≡ E

(
eiξSN |X (N )

1 = x
)
.

ΦN (x, ξ |A) = E
(
eiξSN |X (N )

kN+1 ∈ A, X (N )
1 = x

)
:=

Ex (eiξSN 1A (X (N )
kN+1))

Px (X (N )
kN+1

∈ A
(N )
kN+1)

.

Here x ∈ S(N )
1 , ξ ∈ R, Ex (·) = E( · |X (N )

1 = x), and A ⊂ S(N )
kN+1 are measurable.

We write these functions in terms of Nagaev’s perturbation operators: L (N )
n,ξ : L∞(S(N )

n+1 ) → L∞(S(N )
n ),

defined for 1 ≤ n ≤ kN and N ∈ N, by(
L

(N )
n,ξ v

)
(x) :=

∫
S

(N )
n+1

p(N )
n (x, y)eiξ f (N )

n (x,y)v(y)µ(N )
n+1(dy) ≡ E

(
eiξ f (N )

n (X (N )
n ,X (N )

n+1 )v(X (N )
n+1 ) |X (N )

n = x
)
.

Lemma 5.5 (Nagaev) Let 1(·) ≡ 1, then the following identities hold:

E
(
eiξSN v(X (N )

kN+1)
����X

(N )
1 = x

)
=

(
L

(N )
1,ξ L

(N )
2,ξ · · · L

(N )
kN ,ξ

v
)

(x), (5.12)

ΦN (x, ξ) =
(
L

(N )
1,ξ L

(N )
2,ξ · · · L

(N )
kN ,ξ

1
)

(x), (5.13)

ΦN (x, ξ |A) =

(
L

(N )
1,ξ L

(N )
2,ξ · · · L

(N )
N,ξ1A

)
(x)

Px[X (N )
kN+1 ∈ A]

. (5.14)

Proof E(eiξSN v(X (N )
kN+1)��X (N )

1 = x) = E[E(eiξSN v(X (N )
kN+1) |X (N )

1 , X (N )
2 )��X (N )

1 = x]
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=

∫
p(N )

1 (x, y)eiξ f (N )
1 (x,y)E

(
eiξ

∑kN
n=2 f (N )

n v |X (N )
2 = y

)
µ(N )

2 (dy).

Proceeding by induction, we obtain (5.12), and (5.12) implies (5.13) and (5.14). �

Let ‖ · ‖ denote the operator norm, i.e. ‖L (N )
n,ξ ‖ = sup

{
‖L

(N )
n,ξ v‖∞ : ‖v‖∞ ≤ 1

}
.

Lemma 5.6 ‖L (N )
n,ξ ‖ ≤ 1, and there is a positive constant ε̃ which only depends on ε0 such that for all N ≥ 1

and 5 ≤ n ≤ kN ,



L

(N )
n−4,ξL

(N )
n−3,ξL

(N )
n−2,ξL

(N )
n−1,ξL

(N )
n,ξ




 ≤ e−ε̃d
(N )
n (ξ )2

.

Proof It is clear that ‖L (N )
n,ξ ‖ ≤ 1. We will present the operator L (N ) := L (N )

n−4,ξL
(N )
n−3,ξL

(N )
n−2,ξL

(N )
n−1,ξL

(N )
n,ξ as an

integral operator, and study the kernel.
Henceforthwe fix N , and drop the superscripts (N ) . The variables xi, zi will always denote points inSi =S

(N )
i ,

and
∫

ϕ(zi)dzi :=
∫
Si

ϕ(zi)µ
(N )
i (dzi). Let

p(xk, . . . , xm) :=
m−1∏
i=k

pi (xi, xi+1) , f (xk, . . . , xm) :=
m−1∑
i=k

f i (xi, xi+1), and

L(xn−4, zn+1) :=
&

p(xn−4, zn−3, . . . , zn+1)eiξ f (xn−4,zn−3,...,zn+1)dzn−3 · · · dzn.

Then (Lv)(xn−4) =
∫ [

L(xn−4, zn+1)v(zn+1)
]
dzn+1, and it follows that

‖Lv‖∞ ≤ ‖v‖∞ sup
xn−4∈Sn−4

∫
|L(xn−4, zn+1) |dzn+1 (5.15)

≤ ‖v‖∞ sup
xn−4∈Sn−4

"
dzn−2dzn+1

[
|Kn(zn−2, zn+1) | ×

∫
p(xn−4, zn−3, zn−2)dzn−3

]
, (5.16)

where Kn(zn−2, zn+1) :=
"

p(zn−2, zn−1, zn, zn+1)eiξ f (zn−2,zn−1,zn,zn+1)dzn−1dzn.

Claim: Let p(zn−2 → zn+1) :=
"

p(zn−2, zn−1, zn, zn+1)dzn−1dzn, then

|Kn(zn−2, zn−1) |≤p(zn−2 → zn+1)−
1
4

p(zn−2 → zn+1)E
(
|eiξΓ

(
Xn−2

Xn−1
Yn−1

Xn
Yn

Xn+1
)
− 1|2

����
Xn−2=Yn−2=zn−2
Xn+1=Yn+1=zn+1

)
, (5.17)

where {Yn} is an independent copy of {Xn} and Γ is the balance (2.25).

Proof of the Claim. Set K̃n(zn−2, zn+1) :=
Kn(zn−2, zn+1)
p(zn−2 → zn+1)

.

Looking at identity (2.20) for the bridge probabilities P( · |Xn−2=zn−2, Xn+1=zn+1), we find that

K̃n(zn−2, zn+1) ≡ E
(
eiξ

∑n
k=n−2 fk (Xk,Xk+1) ����

Xn−2 = zn−2
Xn+1 = zn+1

)
, K̃n(zn−2, zn+1) ≡ E

(
e−iξ

∑n
k=n−2 fk (Yk,Yk+1) ����

Yn−2 = zn−2
Yn+1 = zn+1

)
.

If Xn−2 = Yn−2 and Xn+1 = Yn+1, then

eiξ
∑n

k=n−2 fk (Xk,Xk+1)e−iξ
∑n

k=n−2 fk (Yk,Yk+1) = eiξΓ
(
Xn−2

Xn−1
Yn−1

Xn
Yn

Xn+1
)
.

Multiplying the identities for K̃n and K̃n, denoting P :=
(
Xn−2

Xn−1,
Yn−1

Xn

Yn
Xn+1

)
and recalling that X,Y are

independent copies, we arrive at the following consequence:
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|K̃n(zn−2, zn+1) |2 = E
(
eiξΓ

(
Xn−2

Xn−1
Yn−1

Xn
Yn

Xn+1
) ����

Xn−2 = Yn−2 = zn−2
Xn+1 = Yn+1 = zn+1

)
= E

(
cos(ξΓ(P))

����
Xn−2 = Yn−2 = zn−2
Xn+1 = Yn+1 = zn+1

)
,

= 1 −
1
2
E
(
|eiξΓ(P) − 1|2

����
Xn−2 = Yn−2 = zn−2
Xn+1 = Yn+1 = zn+1

)
, because cos α = 1 − 1

2 |e
iα − 1|2.

Since
√

1 − t ≤ 1 − t
2 for all 0 ≤ t ≤ 1, (5.17) follows.

Now that we proved the claim, we substitute (5.17) in (5.16). The result is a bound of the form∫
|L(xn−4, zn+1) |dzn+1 ≤ I − II, where

I :=
"

dzn−2dzn+1

[
p(zn−2 → zn+1)

∫
p(xn−4, zn−3, zn−2)dzn−3

]

≡

∫
· · ·

∫
p(xn−4, zn−3, zn−2, zn−1, zn, zn+1)dzn+1dzndzn−1dzn−2dzn−3;

II :=
1
4

"
dzn−2dzn+1

[
p(zn−2 → zn+1) ×

∫
p(xn−4, zn−3, zn−2)dzn−3×

× E
(
|eiξΓ

(
Xn−2

Xn−1
Yn−1

Xn
Yn

Xn+1
)
− 1|2

����
Xn−2 = Yn−2 = zn−2
Xn+1 = Yn+1 = zn+1

)]
.

Clearly I = 1. We will now show that II ≥ const. d (N )
n (ξ)2.

First, p(zn−2 → zn+1) ≥ ε0 by (2.19), and
∫

p(xn−4, zn−3, zn−2)dzn−3 ≥ ε0 by uniform ellipticity. So

II ≥
ε2

0
4

"
E
(
|eiξΓ

(
Xn−2

Xn−1
Yn−1

Xn
Yn

Xn+1
)
− 1|2

����
Xn−2 = Yn−2 = zn−2
Xn+1 = Yn+1 = zn+1

)
dzn−2dzn+1.

Recalling the definitions of the bridge probabilities, we obtain the following:

II ≥
ε2

0
4

$$
|eiξΓ

(
zn−2

xn−1
yn−1

xn
yn

zn+1
)
− 1|2

p(zn−2, xn−1, xn, zn+1)dxn−1dxn
p(zn−2 → zn+1)

p(zn−2, yn−1, yn, zn+1)dyn−1dyn
p(zn−2 → zn+1)

dzn−2dzn+1

(2.23)
≡

ε2
0

4

∫
Hex (N,n)

|eiξΓ(P) − 1|2m′Hex (dP)
(2.24)
≥

ε6
0

4

∫
Hex (N,n)

|eiξΓ(P) − 1|2mHex (dP), ≥
ε6

0
4

d (N )
n (ξ)2.

In summary,
∫
|L(xn−4, zn+1) |dzn+1 ≤ I − II ≤ 1 − 1

4 ε
6
0d (N )

n (ξ)2. By (5.15), ‖L‖ ≤ 1 − ε̃d (N )
n (ξ)2, where

ε̃ := 1
4 ε

6
0. Since 1 − t ≤ e−t , we are done. �

Proposition 5.7 Let ε̃ > 0 be the constant in Lemma 5.6.
(1) ∃C > 0 independent of N such that for all N ,

|ΦN (x, ξ) | ≤ Ce−
1
5 ε̃DN (ξ ) . (5.18)

(2) ∀δ > 0 ∃C(δ) > 0 such that if P[X (N )
kN+1 ∈ A] ≥ δ, then

|ΦN (x, ξ |A) | ≤ C(δ)e−
1
5 ε̃DN (ξ ) . (5.19)

Proof DN (ξ) ≡
kN∑
n=3

d (N )
n (ξ)2 =

4∑
j=0

D j,N , where D j,N (ξ) =
∑

3≤n≤kN
n≡j mod 5

d (N )
n (ξ)2. Applying Lemma 5.6 itera-

tively, we obtain |ΦN (x, ξ) | ≤ Ce−ε̃max(D0,N ,...,D4,N ) ≤ Ce−
1
5 ε̃DN (ξ ), whence (5.18).

If P(X (N )
kN+1 ∈ A) ≥ δ then |ΦN (x, ξ |A) | ≤ δ

−1
‖L

(N )
1,ξ L

(N )
2,ξ . . .L (N )

kN ,ξ
1A ‖∞, see (5.14). Continuing as before,

we obtain (5.19). �
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The next result says that if u(N )
n is big, then dN

n (·) cannot be small at two nearby points. Recall the standing
assumption ess sup ‖ f (N )

n ‖∞ ≤ K .

Lemma 5.8 ∃δ̃ = δ̃(K ) > 0 such that if |δ | ≤ δ̃, then for all 3 ≤ n ≤ kN ,

d (N )
n (ξ + δ)2 ≥

2
3
δ2 (u(N )

n

)2
− 2|δ |u(N )

n d (N )
n (ξ). (5.20)

Proof Fix a hexagon P ∈ Hex(N, n), and let un := Γ(P) and dn(ξ) := |eiξun − 1|.

d
2
n(ξ + δ) = |ei(ξ+δ)un − 1|2 = 2[1 − cos((ξ + δ)un)] = 2[1 − cos(ξun) cos(δun) + sin(ξun) sin(δun)]
= 2[(1 − cos(ξun)) cos(δun) + (1 − cos(δun)) + sin(ξun) sin(δun)]. (5.21)

Suppose |δ | < δ̃ < π
12K , then |δun | < π

2 , so cos(δun) ≥ 0. Make δ̃ even smaller to guarantee that 0 ≤ |t | ≤
6K δ̃ ⇒ 1

3 t2 ≤ 1 − cos t ≤ t2. Then,

d
2
n(ξ + δ) ≥ 2

[
(1 − cos(δun)) − | sin(ξun) sin(δun) |

]
≥ 2

( 1
3 δ

2
u

2
n − |δun |

√
1 − cos2(ξun)

)
= 2

(
1
3 δ

2
u

2
n − |δun |

√
(1 − cos(ξun))(1 + cos(ξun))

)
≥ 2

(
1
3 δ

2
u

2
n − |δun |

√
2(1 − cos(ξun))

)
= 2

3 δ
2
u

2
n − 2|δun | |eiξun − 1| ≥ 2

3 δ
2
u

2
n − 2|δun |dn(ξ).

Integrating on P ∈ Hex(N, n), and using the Cauchy-Schwarz inequality to estimate the second term, gives the
result. �

Proposition 5.9 Let δ̃ be the constant from Lemma 5.8. There are ε̂, ĉ,C, M > 0, which only depend on ε0 and
K , such that if VN > M , then for all ξ and |δ | < δ̃

|ΦN (x, ξ + δ) | ≤ C exp
(
−ε̂VN δ

2 + ĉ|δ |
√

VN DN (ξ)
)
. (5.22)

Proof Un≡

kN∑
k=3

(u(N )
k

)2. ByLemma5.8 and theCauchy-Schwarz inequality, DN (ξ+δ)≥
2
3
δ2UN−2|δ |

√
UN DN (ξ).

Theorem 3.6 says that there are two constants C1,C2 which only depend on ε0 and K such that C−1
1 UN −C2 ≤

VN ≤ C1UN + C2. This implies that VN > 2C2 =⇒
UN

2C1
≤ VN ≤ 2C1UN . Thus there are constants ε̂1, ĉ1 > 0,

which only depend on ε0 and K , such that for all N such thatVN > 2C2, DN (ξ+δ) ≥ ε̂1δ
2VN − ĉ1 |δ |

√
VN DN (ξ).

The proposition now follows from (5.18). �

Given a compact interval I ⊂ R, let

AN (I) := − log sup
{
|ΦN (x, ξ) | : (x, ξ) ∈ S(N )

1 × I
}
. (5.23)

Now choose some pair ( x̃N, ξ̃N ) ∈ S(N )
1 × I such that AN (I) ≤ − log |ΦN ( x̃N, ξ̃N ) | ≤ AN (I) + ln 2.

So |Φ( x̃N, ξ̃N ) | ≥ 1
2e−AN (I ) = 1

2 sup |ΦN (·, ·) | onS(N )
1 × I. Then:

Corollary 5.10 For each δ there are constants C̃, ε̂, c > 0 which only depend on ε0 and K , such that for every
compact interval I with length |I | ≤ δ̃, for every measurable set A ⊂ S(N )

kN+1 with measure µ(N )
kN+1(A) ≥ δ, for

every (x, ξ) ∈ S(N )
1 × I, and for all N ,

|ΦN (x, ξ) | ≤ C̃ exp
(
−ε̂VN (ξ − ξ̃N )2 + c|ξ − ξ̃N |

√
VN AN (I)

)
;

|ΦN (x, ξ |A) | ≤ C̃ exp
(
−ε̂VN (ξ − ξ̃N )2 + c |ξ − ξ̃N |

√
VN AN (I)

)
.
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Proof Let δ̃ be the constant fromLemma 5.8. Let I be an interval such that |I | ≤ δ̃, and fix some (x, ξ) ∈ S(N )
1 ×I.

Choose ( x̃N, ξ̃N ) as above.

By (5.18), e−AN (I ) ≤ 2|ΦN ( x̃N, ξ̃N ) | ≤ const.e−
1
5 ε̃DN (ξ̃N ) , therefore there is a global constant C ′ such that

DN (ξ̃) ≤ C ′AN (I) + C ′.
Fix M,C, ε̂ and ĉ as in Proposition 5.9. Let α :=max{1, M δ̃2, 2C ′

(
2ĉ/ε̂

)2
}.

Suppose first thatVN (ξ− ξ̃N )2 ≤ α. |ΦN (x, ξ) | and |ΦN (x, ξ |A) | are less than or equal to 1, and exp(−ε̂VN (ξ−
ξ̃N )2) ≥ exp(−ε̂α). Therefore the corollary holds with any ε̂, c, C̃ > 0 such that C̃ > exp(ε̂α).

Suppose now that VN (ξ − ξ̃N )2 > α. Since |ξ − ξ̃N | ≤ δ̃, VN ≥ M , and (5.22) holds. (5.22) with ξ̃N instead

of ξ and with δ := ξ − ξ̃N says that |ΦN (x, ξ) | ≤ C exp
(
−ε̂VN (ξ − ξ̃N )2 + ĉ| ξ̃N − ξ |

√
VN DN (ξ̃N )

)
.

• If AN (I) > 1, then DN (ξ̃) ≤ C ′AN (I) + C ′ ≤ 2C ′AN (I), and

|ΦN (x, ξ) | ≤ C exp
(
−ε̂VN (ξ − ξ̃N )2 + ĉ

√
2C ′ | ξ̃N − ξ |

√
VN AN (I)

)
.

• If AN (I) ≤ 1, then DN (ξ̃N ) ≤ 2C ′, and

|ΦN (x, ξ) | ≤ C exp
(
−ε̂VN (ξ − ξ̃N )2 + ĉ

√
2C ′ | ξ̃N − ξ |

√
VN

)
≤ C exp *

,
−ε̂VN (ξ − ξ̃N )2 + ĉ

√
2C ′

VN (ξ̃N − ξ)2
√
α

+
-
, ∵

√
VN (ξ̃N − ξ)2 ≥

√
α

≤ C exp
(
−

1
2
ε̂VN (ξ − ξ̃N )2

)
, ∵ α ≥ 2C ′(2ĉ/ε̂)2.

Thus the corollary holds with 1
2 ε̂ replacing ε̂, c := ĉ

√
2C1, and C̃ := Ceε̂α. The second estimate has a similar

proof. �

5.2.3 The LLT via Weak Convergence of Measures

In this section we give the mathematical background needed to justify Stone’s trick from §5.2.1. Let Cc (R)
denote the space of real-valued continuous functions on R, with compact support. Such functions are bounded
and uniformly continuous, and they can all be approximated uniformly by piecewise constant functions. It follows
that if the LLT asymptotic expansion (5.1) holds for all intervals (a, b), then√

2πVNE[φ(SN − zN )]︸                        ︷︷                        ︸
µN (φ)

−−−−−→
N→∞

e−z
2/2

∫
φ(t)dt︸              ︷︷              ︸

µz (φ)

for all φ ∈ Cc (R). (5.24)

Conversely, (5.24) implies (5.1): To see this, apply (5.24) with φn, ψn ∈ Cc (R) such that φn ≤ 1[a,b] ≤ ψn, and∫
|φn(t) − ψn(t) |dt → 0.
A Radon measure on R is a positive Borel measure on R, which may be infinite, but which assigns finite

mass to every compact set. By the Riesz representation theorem, µN (φ) =
∫
φdµN and µz (φ) =

∫
φdµz , for

some Radon measures µN, µz .
Let mN and m be Radon measures on R. We say that mn converges to m weakly (or vaguely) , if

∫
φdmN →∫

φdm for all φ ∈ Cc (R). In this case we write mN
w
−−−−−→
N→∞

m.

Since the non-lattice LLT (5.1) is equivalent to (5.24), it can be restated as saying that µN
w
−→ µz , with µN

and µz as above. The other LLT have similar reformulations. For example, the lattice mixing LLT is equivalent
to µN

w
−→ µz , where µN (φ) :=

√
VNE[φ(SN − zN ) |X (N )

kN+1 ∈ AN, X (N )
1 = xN ], and µz := e−z2/2t√

2π

∑
u∈Z δtu .
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Weak convergence is defined using test functions in Cc (R), but we claim that it can also be checked using test
functions in K :=

{
φ : R→ C :

∫
|φ(u) |du < ∞, φ̂ ∈ Cc (R)

}
, (φ̂ := Fourier transform of φ) (even though

Cc (R) ∩K = {0}). We note for future reference that by the Fourier inversion formula, every φ ∈ K is uniformly
bounded and continuous.

Lemma 5.11 (Breiman) Let mN and m be Radon measures on R. Suppose ∃ strictly positive φ0 ∈ K such that∫
φ0dm < ∞. If for all φ ∈ K ,

∫
R
φdmN −−−−−→

N→∞

∫
R
φdm, then

∫
R
ψdmN −−−−−→

N→∞

∫
R
ψdm for all ψ ∈ Cc (R).

Proof Let φ0 be as in the statement, and suppose
∫
φdmN →

∫
φdm for all φ ∈ K .

If
∫
R
φ0dm = 0, then m ≡ 0, and

∫
R
φ0dmN → 0. Since φ0 is positive and continuous, for every ψ ∈ Cc (R)

there exists ε > 0 such that ε |ψ | ≤ φ0 on R. It follows that
∫
R
ψdmN → 0 for all ψ ∈ Cc (R).

Suppose now that
∫
R
φ0dm > 0. Then

∫
R
φ0dmN →

∫
R
φ0dm, and

∫
R
φ0dmN > 0 for all N large enough.

For such N , we construct the following probability measures: dµN :=
φ0dmN∫
φ0dmN

and dµ :=
φ0dm∫
φ0dm

.

∀t ∈ R, φt (u) := eituφ0(u) belongs to K , because φ̂t (ξ) = φ̂0(ξ − t). So
∫
R

eituµN (du) −−−−−→
N→∞

∫
R

eituµ(du).

Equivalently, the characteristic functions of the random variables WN with distribution P[WN < a] =
µN ((−∞, a)) converge to the characteristic function of the random variable W with distribution P[W < a] :=
µ((−∞, a)). By Lévy’s continuity theorem, WN

dist
−−−−→
n→∞

W . It follows that
∫
R

G(u)µN (du) →
∫
R

G(u)µ(du) for
every bounded continuous function on R.

Looking at the special case G(u) = ψ(u)/φ0(u) with ψ ∈ Cc (R), we obtain
∫
ψdmN →

∫
ψdm for all

ψ ∈ Cc (R). �

To apply the lemma to the proof of the LLT, we will need to find a strictly positive φ0 ∈ K so that
∫
φ0dm is

finite for the measure m which represents the limit. This is the purpose of the next Lemma. Parts (1) and (2) are
needed for the LLT in this chapter, and part (3) will be used in the next chapter.

Lemma 5.12 There exists a strictly positive φ0 ∈ K so that
∫
φ0dmi < ∞, for i ∈ {1, 2, 3}, where

(1) m1 is Lebesgue’s measure on R; (2) m2 is the counting measure on tZ;
(3) m3 is the measure representing the functional m(φ) =

∑
k∈Z E[φ(kδ+F)] on Cc (R), where δ is a positive

constant, and F is bounded random variable.

Proof Let ψa (x) :=
( sin ax

ax

)2, extended continuously to zero by ψa (0) := 1. This function is non-negative and
absolutely integrable. To see that ψ̂a has compact support, we argue as follows: The Fourier transform of 1[−a,a]
is proportional to sin ax/ax. Therefore the Fourier transform of 1[−a,a] ∗ 1[−a,a] is proportional to ψa. Applying
the inverse Fourier transform to ψa, we find that ψ̂a is proportional to 1[−a,a] ∗ 1[−a,a], a function supported on
[−2a, 2a]. Thus ψa ∈ K . But ψa has zeroes at πk/a, k ∈ Z \ {0}. To get a strictly positive element of K , we
take φ0 := ψ1 + ψ√2. Since φ0(x) = O( |x |−2) as |x | → ∞,

∫
φ0dmi < ∞. �

5.2.4 The LLT in the Irreducible Non-Lattice Case

We give the proof for arrays (Theorem 5.1’). Theorem 5.1 on chains follows, because every additive functional
on a Markov chain is stably hereditary (Theorem 4.9).

We begin by proving that VN −−−−−→
N→∞

∞. Otherwise lim inf VN < ∞, and ∃N` ↑ ∞ such that Var(SN` ) = O(1).

Let X′ denote the sub-array with rows X′(`) = X(N` ) . By Theorem 3.8, f|X′ is center-tight, whence Gess (X′, f|X′ ) =
{0}. But Gess (X, f) = Galg (X, f) = R, because f is irreducible and non-lattice. So Gess (X′, f|X′ ) , Gess (X, f), in
contradiction to the assumption that (X, f) is stably hereditary, see Theorem 4.13.

Next we fix zN ∈ R such that zN−E(SN )
√
VN

→ z, and show that for every non-empty interval (a, b), for every

choice of x (N )
1 ∈ S

(N )
1 (N ≥ 1),
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P
x (N )

1
[SN − zN ∈ (a, b)] ∼

e−z2/2
√

2πVN

(b − a), as N → ∞. (5.25)

By Lemma 5.11, we can prove (5.25) by showing that for every φ ∈ L1(R) whose Fourier transform φ̂(ξ) :=∫
R

e−iξuφ(u)du has compact support,

lim
N→∞

√
VNEx (N )

1

[
φ
(
SN − zN

)]
=

e−z2/2
√

2π

∫ ∞

−∞

φ(u)du. (5.26)

Fix φ ∈ L1 such that supp(φ̂) ⊆ [−L, L]. By the Fourier inversion formula, E
x (N )

1
(φ(SN − zN )) =

1
2π

∫ L

−L

φ̂(ξ)ΦN (x (N )
1 , ξ)e−iξzN dξ. So (5.26) is equivalent to

lim
N→∞

√
VN ·

1
2π

∫ L

−L

φ̂(ξ)ΦN (x (N )
1 , ξ)e−iξzN dξ =

e−z2/2
√

2π
φ̂(0). (5.27)

Below, we give a proof of (5.27).1
Divide [−L, L] into segments Ij so that I0 is centered at zero, and all segments have length less than or equal

to δ̃, where δ̃ is given by Lemma 5.8. Let Jj,N :=
1

2π

∫
Ij

φ̂(ξ)ΦN (x (N )
1 , ξ)e−iξzN dξ.

Claim 1: √
VN J0,N −−−−−→

N→∞

1
√

2π
e−z

2/2φ̂(0). (5.28)

Proof of the Claim. Fix R > 0. Since I0 3 0, AN (I0) = 0. By Corollary 5.10, |ΦN (x, ξ) | ≤ C̃ exp(−ε̂ VN ξ
2) on

[−δ̃, δ̃]. So given ε > 0, there is R > 0 such that
�����

√
VN

2π

∫
{ξ ∈I0: |ξ |>R/

√
VN }

φ̂(ξ)ΦN (x (N )
1 , ξ)e−iξzN dξ

�����
≤ ε.

Changing variables ξ = s/
√

VN , we get
√

VN

2π

∫
[ |ξ | ≤R/

√
VN ]

φ̂(ξ)ΦN

(
x (N )

1 , ξ
)

e−iξzN dξ=
1

2π

∫
[ |s | ≤R]

φ̂

(
s
√

VN

)
E
x (N )

1

(
e

is SN −zN√
VN

)
ds.

By Dobrushin’s CLT for arrays (Theorem 3.10), SN−zN√
VN

converges in distribution w.r.t. P
x (N )

1
to the normal

distribution with mean −z and variance 1. This implies that E
x (N )

1

(
e

is SN −zN√
VN

)
−−−−−→
N→∞

e−isz−s2/2 uniformly on

compacts. Since φ̂ is bounded and continuous at zero,
√

VN

2π

∫
|ξ | ≤R/

√
VN

φ̂(ξ)ΦN (x (N )
1 , ξ)e−iξzN dξ =

φ̂(0)
2π

∫ R

−R

e−isze−s
2/2ds + oN→∞(1).

Since this is true for all R, and
∫
R

e−isze−s2/2ds =
√

2πe−z2/2, we have (5.28).

Claim 2:
√

VN Jj,N −−−−−→
N→∞

0 for j , 0.

Proof of the Claim. Since φ̂ is bounded, it is sufficient to show that√
VN

∫
Ij

|Φ(x (N )
1 , ξ) |dξ → 0. (5.29)

1 We note for future reference that this proof works for all φ such that φ̂ is bounded, continuous at zero, and has compact support,
including φ(u) = sin(πu)

πu (whose Fourier transform is proportional to 1[−π,π]), which does not belong to L1.
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Recall that AN (Ij ) = − log sup |ΦN (·, ·) | on S(N )
1 × Ij , and ( x̃ j,N, ξ̃ j,N ) are points where this supremum is

achieved up to factor 2. Set Aj,N := AN (Ij ).

Take large R and split Ij into two regions, I ′j,N :=


ξ ∈ Ij : |ξ − ξ̃ j,N | ≤ R

√
Aj,N

VN



, I ′′j,N := Ij \ I ′j,N . Split∫

Ij
|Φ(x (N )

1 , ξ) |dξ into two integrals J ′j,N , J ′′j,N accordingly.

• On I ′j,N , |ΦN (x (N )
1 , ξ) | ≤ e−A j,N and |I ′j,N | ≤ 2R

√
A j,N

VN
, so

√
VN |J ′j,N | ≤ 2R

√
Aj,Ne−A j,N .

• On I ′′j,N , we have the following estimate, by Corollary 5.10, provided that Rε̂ > 2c.

|ΦN (x (N )
1 , ξ) | ≤ C̃ exp *.

,
−ε̂VN |ξ − ξ̃ j,N |R

√
Aj,N

VN
+ c|ξ − ξ̃ j,N |

√
VN Aj,N

+/
-
≤ C̃ exp

(
−
ε̂

2
|ξ − ξ̃ j,N |

√
Aj,NVN

)
.

Hence
√

VN J ′′j,N ≤
√

VN C̃
∫ ∞

−∞

e−
ε̂
2 |s |
√

A j,NVN ds = O
(
A
− 1

2
j,N

)
. Combining these estimates, we obtain that

√
VN ‖ΦN (x (N )

1 , ·)‖L1 (Ij ) ≤ 2R
√

Aj,N e−A j,N +O
(
A−1/2
j,N

)
= O

(
A−1/2
j,N

)
. (5.30)

We now employ the assumptions of the theorem: Firstly, f is irreducible with algebraic range R, there-
fore the co-range of f is {0} (Theorem 4.4). Secondly, f is stably hereditary, therefore DN (ξ) −−−−−→

N→∞

∞ uniformly on compacts in R \ {0}. By (5.18), ΦN (x (N )
1 , ξ) → 0 uniformly on compacts in R \ {0}, whence

Aj,N → ∞ as N → ∞ for each j , 0. Thus (5.30) implies (5.29), and Claim 2.

Remark. Notice that (5.30) does not require the irreducibility assumption or the hereditary assumption. It holds
for all uniformly elliptic arrays.

Claims 1 and 2 imply (5.27), and (5.27) implies (5.25) by Lemma 5.11. This proves the LLT for initial
distributions concentrated at single points.

To deduce the theorem for arbitrary initial distributions, we can either appeal to Lemma 2.27, or prove the
following claim and then integrate:
Claim 3: (5.25) holds uniformly with respect to the choice of {x (N )

n }.
Proof of the Claim. Otherwise, there exist ε > 0 and Nk → ∞ with y

(Nk )
1 such that P

y
(Nk )
1

[SNk
− zNk

∈

(a, b)]
/ e−z2/2 (b−a)√

2πVNk

< [e−ε, eε]. But this contradicts (5.25) for a sequence {x (N )
1 } such that x (Nk )

1 = y
(Nk )
1 . �

5.2.5 The LLT in the Irreducible Lattice Case

We give the proof in the context of arrays (Theorem 5.2’). Suppose X is a uniformly elliptic array, and f is an
additive functional on X which is a.s. uniformly bounded, hereditary, irreducible, and with algebraic range tZ
with t > 0. Without loss of generality, t = 1, otherwise work with t−1f. By Lemma 4.15, there are constants c(N )

n

such that f (N )
n (X (N )

n , X (N )
n+1 ) − c(N )

n ∈ Z a.s. We may assume without loss of generality that c(N )
n = 0, otherwise

we work with f − c. So SN ∈ Z a.s. for every N ≥ 1.
We will show that for every sequence of integers zN such that zN−E(SN )

√
VN

→ z, and for every x (N )
1 ∈ S

(N )
n ,

P
x (N )

1
(SN = zN ) = [1 + o(1)]

e−z2/2
√

2πVN

, as N → ∞. (5.31)
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As in the non-lattice case, once we prove (5.31) for all choices of {x (N )
1 }, it automatically follows that (5.31)

holds uniformly in {x (N )
1 }. Integrating overS(N )

1 gives (5.4) with k = 0. For general k, take z′N := zN + k.

The assumptions on f imply that VN −−−−−→
N→∞

∞, see the proof of Theorem 5.1’.
As we explained in §5.2.1, to prove (5.31) it is sufficient to show that

lim
N→∞

√
VN ·

1
2π

∫ π

−π
ΦN (x (N )

1 , ξ)e−iξzN dξ =
1
√

2π
e−z

2/2. (5.32)

Notice that (5.32) is (5.27) in the case φ(u) = sin(πu)
πu , φ̂(ξ) = const.1[−π,π](ξ). It can be proved in almost exactly

the same way.
Here is a sketch of the proof. One divides [−π, π] into segments Ij of length less than the δ̃ of Lemma 5.8, so

that one of the intervals contains zero in its interior.
The contribution of the interval which contains zero is asymptotic to 1√

2πVN
e−z2/2. This is shown as in Claim

1 of the preceding proof.
The remaining intervals are bounded away from 2πZ. Since f is irreducible with algebraic range Z, H (X, f) =

2πZ. Lattice hereditary f are stably hereditary, therefore DN (ξ)−−−−−→
N→∞

0 uniformly on compacts in R \ 2πZ.
Arguing as in the proof of Claim 2 of the preceding proof, one shows that the contribution of the intervals which
do not contain zero is o(1/

√
VN ). �

5.2.6 Mixing LLT

The proof is very similar to the proof of the previous local limit theorems, except that it uses Φ(x, ξ |A) instead
of Φ(x, ξ). We outline the proof in the non-lattice case, and leave the lattice case to the reader.

Suppose X is a uniformly elliptic Markov array, and that f is a.s. uniformly bounded, stably hereditary,
irreducible and with algebraic range R. Let AN ∈ S

(N )
kN+1 be measurable sets such that P(X (N )

kN+1 ∈ AN ) > δ > 0,
and fix xN ∈ S

(N )
1 . Suppose zN−E(SN )

√
VN

→ z. As before, VN → ∞, and as explained in §5.2.3, it is enough to

show that for every φ ∈ L1(R) such that supp(φ̂) ⊂ [−L, L],

lim
N→∞

√
VN ·

1
2π

∫ L

−L

φ̂(ξ)ΦN (xN, ξ |AN )e−iξzN dξ =
e−z2/2
√

2π
φ̂(0).

Divide [−L, L] as before into intervals Ij of length ≤ δ̃, where δ̃ is given by Lemma 5.8 and where I0 is

centered at zero. Let Jj,N :=
1

2π

∫
Ij

φ̂(ξ)ΦN (xN, ξ |AN )e−iξzN dξ.

Claim 1:
√

VN J0,N −−−−−→
N→∞

(2π)−
1
2 e−z2/2φ̂(0).

Proof of the Claim: Fix R > 0. As before, applying Corollary 5.10 with AN = 0 we conclude that for each ε > 0

there is R > 0 such that
�����

√
VN

∫
{ξ ∈I0: |ξ |>R/

√
VN }

φ̂(ξ)ΦN (xN, ξ |AN )e−iξzN dξ
�����
≤ ε.

Next the change of variables ξ = s/
√

VN gives

√
VN

∫
{ξ ∈I0: |ξ | ≤R/

√
VN }

φ̂(ξ)Φ(xN, ξ |AN )e−iξzN dξ =
∫ R

−R

φ̂

(
s
√

VN

)
ExN

(
e

is SN −zN√
VN

����X
(N )
kN+1 ∈ AN

)
ds

=
1

P(X (N )
kN+1 ∈ AN )

∫ R

−R

φ̂

(
s
√

VN

)
ExN

(
e

is SN −zN√
VN 1AN (X (N )

kN+1)
)

ds. (5.33)

We analyze the expectation in the integrand. Take 1≤rN ≤ kN such that rN → ∞ and rN/
√

VN → 0, and let
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S∗N :=
kN−rN−1∑

j=1
f (N )
j (X (N )

j , X (N )
j+1 ) ≡ SN −

kN∑
j=kN−rN

f (N )
j (X (N )

j , X (N )
j+1 ).

Since ess sup |f| < ∞, ‖SN − S∗N ‖∞ = o(
√

VN ), and so

ExN

(
e

is SN −zN√
VN 1AN (X (N )

kN+1)
)
=ExN

*
,
e

is
S∗
N
−zN
√
VN 1AN (X (N )

kN+1)+
-
+o(1)=ExN

*
,
e

is
S∗
N
−zN
√
VN E

(
1AN (X (N )

kN+1) |X (N )
1 , . . . , X (N )

kn−rN

)
+
-
+o(1)

= ExN
*
,
e

is
S∗
N
−zN
√
VN E

(
1AN (X (N )

kN+1) |X (N )
kn−rN

)
+
-
+ o(1) by the Markov property.

By (2.11), 


E
(
1AN (X (N )

kN+1) |X (N )
kn−rN

)
−P(X (N )

kN+1 ∈ AN )


∞≤const.θrN , where 0 < θ < 1. Since rN → ∞, we get

ExN

(
e

is SN −zN√
VN 1AN (X (N )

kN+1)
)
= ExN

*
,
e

is
S∗
N
−zN
√
VN +

-
P(X (N )

kN+1 ∈ AN ) + o(1).

Since rN = o(
√

VN ),
S∗N − zN
√

VN

=
SN − zN
√

VN

+ o(1) =
SN − E(SN )
√

VN

− z + o(1).

By Dobrushin’s CLT (applied to the array with the transition probabilities of X, and the initial distributions

π(N ):=δxN ), we get ExN
*
,
e

is
S∗
N
−zN
√
VN +

-
∼ ExN

(
e

is SN −zN√
VN

)
−−−−−→
N→∞

e−isz−s2/2. So

ExN
*
,
e

is
S∗
N
−zN
√
VN 1AN (X (N )

kN+1)+
-
= e−isz−s2/2P(X (N )

kN+1 ∈ AN ) + o(1). Substituting this in (5.33) gives the claim.

Claim 2:
√

VN Jj,N −−−−−→
N→∞

0 for j , 0.

This is similar to Claim 2 in §5.2.4. Instead of (5.18), use (5.19). �

5.3 Notes and References

For the history of the local limit theorem, see the end of Chapter 1.
The first statement of the LLT in terms of weak convergence of Radon measures is due to Shepp [183]. Stone’s

trick (the reduction to test functions with Fourier transformswith compact support) appears in [191]. Thismethod
was further developed and clarified by Breiman. Lemma 5.11 and its proof, are taken from Breiman’s book [17,
Chapter 10, §2].

The method of perturbation operators is due to Nagaev [149], who used it to prove central and local limit
theorems for homogeneous Markov chains (see §8.4). Guivarc’h & Hardy used this method to prove LLT for
Birkhoff sums generated by dynamical systems [88]. See also [168] where Rousseau-Egele used similar ideas
in the study of interval maps. Hafouta & Kifer [93], Hafouta [89, 90], and Dragičević, Froyland, & González-
Tokman [64], used this technique to prove the local limit theorem in different but related non-homogeneous
settings.

The terminology “mixing LLT" is due to Rényi [166]. Mixing LLT have numerous applications including
mixing of special flows [88], homogenization [60], and the study of skew-products [58, 57]. Mixing LLT
for additive functionals of (stationary) Gibbs-Markov processes in the Gaussian and in the stable domains of
attraction were proved by Aaronson & Denker [5]. Guivarc’h & Hardy noted the relevance of Mixing LLT to
the study of reducible additive functionals, in the homogeneous case [88]. In the next chapter, we will use the
mixing LLT to study the inhomogeneous reducible case.



Chapter 6
The Local Limit Theorem in the Reducible Case

Abstract We prove the local limit theorem for P(SN − zN ∈ (a, b)) when zN−E(SN )
√
Var(SN )

converges to a finite limit
and f is reducible. In the reducible case, the asymptotic behavior of P(SN − zN ∈ (a, b)) is not universal, and it
depends on fn(Xn, Xn+1). The dependence is strong for small intervals, and weak for large intervals.

6.1 Main Results

6.1.1 Heuristics and Warm Up Examples

Recall that an additive functional is called reducible if f = g+c where c is center-tight, and the algebraic range of
g is strictly smaller than the algebraic range of f. By the results of Chapter 4, if Var(SN (f)) → ∞, X is uniformly
elliptic, and f is a.s. bounded, then we can choose g to be irreducible. In this case, SN (f) = SN (g)+ SN (c), where
Var(SN (g)) ∼ Var(SN (f)) → ∞, Var(SN (c)) = O(1), and SN (g) satisfies the lattice local limit theorem. But
the contribution of Sn(c) cannot be neglected. In this chapter we give the corrections to the LLT needed to take
Sn(c) into account. Before stating our results in general, we discuss two simple examples which demonstrate
some of the possible effects of SN (c).

Example 6.1 (Simple Random Walk with Continuous First Step) Suppose {Xn}n≥1 are independent real-
valued randomvariables, where X1 has some distributionF, and Xi (i≥2) are equal to 0, 1with equal probabilities.

Suppose 0 ≤ F < 1, E[F] = 1
2 , the distribution ofF has a density, andF is not uniformly distributed on [0, 1].

Let µF (dx) denote the probability measure on R associated with the distribution of F.
Let SN := X1 + · · · + XN , then SN = SN (f), where fn(x, y) := x. Since the distribution of F has a density,

(X, f) has algebraic range R. The following decomposition shows that (X, f) is reducible:

f = g + c, where gn(x, y) :=



0 n = 1
x n ≥ 2

and cn(x, y) :=



x n = 1
0 n ≥ 2.

Clearly, g is irreducible with essential range Z, and c is center-tight. SN (g), SN (c) are independent; SN (c) ∼ F;
SN (g) has the binomial distribution B( 1

2, N − 1); and

SN = (X2 + · · · + XN︸            ︷︷            ︸
SN (g)

) + X1︸︷︷︸
SN (c)

.

So SN has distribution µF ∗ B( 1
2, N − 1). This distribution has a density, which we denote by pN (x)dx.

(A) The Scaling Limit of pN (x)dx is not Haar’s Measure: Fix zN:=E(SN )=N/2 and let VN:=Var(SN )∼N/4.
The measure mN := pN (x)dx determines a positive functional on Cc (R), and for every φ ∈ Cc (R) and N even,∫

φ(x − zN )pN (x)dx = E[φ(SN − zN )] = E[φ(SN (g) + SN (c) − zN )] =
∑
m∈Z

E[φ(F +m − zN )]P[SN (g) = m]

=

N−1∑
m=0

(
N − 1

m

)
1

2N−1E[φ(F + m − zN )] =
1

2N−1

N−1∑
m=0

(
N − 1

m

)
ψ(m − N

2 ), where ψ(m) := E[φ(F + m)]

=
1

2N−1

N/2−1∑
m=−N/2

(
N − 1

m + N/2

)
ψ(m) ∼

1
√

2πVN

∑
m∈Z

ψ(m),∼
1

√
2πVN

∑
m∈Z

E[φ(F + m)], as N → ∞.
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This also holds for N odd. Thus the distribution of SN − zN converges weakly to zero, “at a rate of 1/
√

VN ," and
if we inflate it by

√
VN then it converges weakly to

λ := µF ∗
1
√

2π
(the counting measure on Z).

By the assumptions on F, the scaling limit λ is not a Haar measure on a closed subgroup of R. This is different
from the irreducible case, when the scaling limit is a Haar measure on Gess (X, f).
(B) Non-Standard Limit for

√
2πVNP[SN − E(SN ) ∈ (a, b)]: Fix a, b ∈ R \ Z such that |a − b| > 1. Let

zN := E(SN ). The previous calculation with φi ∈ Cc (R) such that φ1 ≤ 1(a,b) ≤ φ2 gives√
2πVNP[SN − zN ∈ (a, b)] −−−−−→

N→∞

∑
m∈Z

E[1(a,b) (m +F)]. (6.1)

This is different from the limit in the irreducible non-lattice LLT (Theorem 5.1),√
2πVNP[SN − zN ∈ (a, b)] −−−−−→

N→∞
|a − b|; (6.2)

and the limit in the irreducible lattice LLT with range Z (Theorem 5.2):√
2πVNP[SN − zN ∈ (a, b)] −−−−−→

N→∞

∑
m∈Z

1(a,b) (m). (6.3)

(C) Robustness for Large Intervals: Although different, the limits in (6.1)–(6.3) are nearly the same, as
|a − b| → ∞. This is because all three limits belong to [|a − b| − 2, |a − b| + 2].

Example 6.1 is very special in that Sn(g), SN (c) are independent. Nevertheless, we will see below that (A),
(B), (C) are general phenomena, which also happen when SN (g), SN (h) are strongly correlated.

The following example exhibits another common pathology:

Example 6.2 (Gradient Perturbation of the Lazy Random Walk) Suppose Xn,Yn are independent random
variables such that Xn = −1, 0,+1 with equal probabilities, and Yn are uniformly distributed in [0, 1/2]. Let
X = {(Xn,Yn)}n≥1.

• The additive functional gn((xn, yn); (xn+1, yn+1)) = xn generates the lazy random walk on Z,
SN (g) = X1 + · · · + XN . It is irreducible, and satisfies the lattice LLT.

• The additive functional cn((xn, yn), (xn+1, yn+1)) = yn+1 − yn is center-tight, and SN (c) = YN+1 − Y1.
• The sum f = g + c is reducible, with algebraic range R (because of c) and essential range Z (because of g). It

generates the process
SN (f) = SN (g) + YN+1 − Y1.

Observe that SN (f) lies in a “random coset" bN + Z, where bN = YN+1 − Y1.
Since the distribution of bN is continuous, P[SN − zN = k] = 0 for all zN, k ∈ Z, and the standard lattice

LLT fails. To deal with this, we must “shift" SN − zN back to Z. This leads to the following (correct) statement:

For all z ∈ R and zN ∈ Z such that zN√
VN
→ z, for all k ∈ Z, P[SN − zN − bN = k] ∼

e−z2/2
√

2πVN

. Notice that the

shift bN = YN+1 − Y1 is random.

6.1.2 The LLT in the Reducible Case

Theorem 6.3 Let X = {Xn} be a uniformly elliptic Markov chain, and let f be a reducible a.s. uniformly bounded
additive functional with essential range δ(f)Z, where δ(f) , 0. Then there are bounded random variables
bN = bN (X1, XN+1) and F = F(X1, X2, . . .) with the following properties:
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(1) For every z ∈ R and zN ∈ δ(f)Z such that zN−E(SN )
√
VN

→ z, for every φ ∈ Cc (R),

lim
N→∞

√
VNE

[
φ(SN − zN − bN )

]
=
δ(f)e−z2/2
√

2π

∑
m∈Z

E[φ(mδ(f) +F)].

(2) In addition, for every sequence of measurable sets AN+1⊂SN+1 such that P[XN+1∈AN+1] is bounded below,

lim
N→∞

√
VNE

[
φ(SN − zN − bN )��X1 = x, XN+1 ∈ AN+1

]
=
δ(f)e−z2/2
√

2π

∑
m∈Z

E[φ(mδ(f) +F) |X1 = x].

(3) ‖bN ‖∞ ≤ 9δ(f), and F ∈ [0, δ(f)).

Remark. We can remove the dependence of bN and F on X1, and the conditioning on X1 = x in (2), using
Lemma 2.27.

Theorem 6.3 may seem abstruse at first reading, and it is worthwhile to explain it in more detail.
• E

[
φ(SN − zN − bN )

]
, as an element of Cc (R)∗, represents the Radon measure

mN (E) = P[SN − zN − bN (X1, XN+1) ∈ E] (E ∈ B(R)).

This is the distribution of SN , after a shift by zN+bN (X1, XN+1). The deterministic shift by zN cancels most of
the drift E(SN ); The random shift bN brings SN back to δ(f)Z. To understand why we need bN , see Example 6.2.
• The limit

A(φ) := δ(f)
∑
m∈Z

E[φ(mδ(f) +F)], (6.4)

is also an element of Cc (R)∗. It represents the Radon measure µA := µF ∗ mδ(f) , where µF (E) = P(F ∈ E) and
mδ(f) := δ(f) × counting measure on δ(f)Z.

• Theorem 6.3(1) says that mN → 0 weakly at rate 1/
√

VN , and gives the scaling limit
√

VNmN
w
−−−−−→
N→∞

e−z2/2
√

2π
µA . In particular, for all a < b such thatF has no atoms in {a, b} + δ(f)Z, and for all z ∈ R and zN ∈ δ(f)Z

such that zN−E(SN )
√
VN

→ z, we have P[SN − zN − bN ∈ (a, b)] = [1 + o(1)]
e−z2/2
√

2πVN

µA ((a, b)).

• On one hand, µA (a, b) ∼ |a − b| as |a − b| → ∞ (Lemma 6.10). But for small (a, b) ⊂ [0, δ(f)),
µA (a, b) = P[F ∈ (a, b) mod δ(f)Z], which could be quite different from |a − b|.

In summary, Theorem 6.3(1) gives the necessary “correction" to the classical LLT (5.1) in the reducible
case. This correction is significant for intervals with length ≤ δ(f), and becomes less and less significant, as
|a − b|/δ(f) → ∞.

Theorem 6.3(2) is a “mixing" version of part (1), in the sense of §5.1.3. Such results are particularly useful
in the reducible setup for the following reason. The random shift bN (X1, XN+1) is sometimes a nuisance, and it
is tempting to turn it into a deterministic quantity by conditioning on X1, XN+1. We would have liked to say that
part (1) survives such conditioning, but we cannot. The best we can say in general is that part (1) remains valid
under conditioning of the form X1 = x1, XN+1 ∈ AN+1 provided P(XN+1 ∈ AN+1) is bounded below. This the
content of part (2). For an example how to use such a statement, see §6.2.3.

The LLT in this section is only stated for Markov chains. The reason is that to construct F, we need the joint
distribution of (X1, X2, . . .), which is not defined for Markov arrays. For (weaker) results for arrays, see §6.2.5.

6.1.3 Irreducibility as a Necessary Condition for the Mixing LLT

We can use Theorem 6.3 to clarify the necessity of the irreducibility condition for the “classical" LLT expansions
in Theorems 5.1 and 5.4.We begin with an example showing that strictly speaking, irreducibility is not necessary:
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Example 6.4 Take SN = X1+ X2+ X3+ · · ·+ XN where Xi are independent, X1 ≡ 0, X2 is uniformly distributed
on [0, 1], and X3, X4, . . . = 0, 1 with equal probabilities.

Conditioned on X1 and XN , SN is the sum of a constant plus two independent random variables, one, U, is
uniformly distributed on [0, 1], and the other, BN , has the binomial distribution B( 1

2, N − 2). It is not difficult
to see, using the De-Moivre-Laplace LLT for the binomial distribution, that for every z, zN ∈ R such that
zN−E(SN )
√
VN

→ z, ∀φ ∈ Cc (R), E[φ(SN − E(SN )) |X1, XN ] ∼
e−z2/2
√

2πVN

∑
m∈Z

E[φ(m + U)] !
=

e−z2/2
√

2πVN

∫
φ(u)du.

So the “classical" non-lattice mixing LLT (Theorem 5.4) holds, even though our additive functional is
reducible, with algebraic range R and essential range Z.

Of course, the identity marked by (!) is a “coincidence," due to the particular choice of X2. If we change X2,
it need not be valid anymore.

The next result says that irreducibility is a necessary condition for the mixing LLT, provided we impose the
mixing LLT not just for (X, f), but also for all (X′, f′) obtained from (X, f) by deleting finitely many terms.

Let f be an additive functional on aMarkov chainX. Denote the state spaces ofX bySn, andwriteX = {Xn}n≥1,
f = { fn}n≥1. A sequence of events Ak ⊂ Sk is called regular if Ak are measurable, and P(Xn ∈ An) is bounded
away from zero.

• We say that (X, f) satisfies the mixing non-lattice LLT if VN := Var(SN ) → ∞, and for every regular
sequence of events An ∈ B(Sn), x ∈ S1, for all zN, z ∈ R such that zN−E(SN )

√
VN

→ z, and for each non-empty

interval (a, b), Px

(
SN − zN ∈ (a, b)��XN+1 ∈ AN+1

)
= [1 + o(1)]

e−z2/2
√

2πVN

|a − b| as N → ∞.

• Fix t > 0. We say that (X, f) satisfies the mixing mod t LLT, if for every regular sequence of events
An ∈ B(Sn), x ∈ S1, and for every non-empty interval (a, b) with length less than t,

Px
(
SN ∈ (a, b) + tZ|XN+1 ∈ AN+1

)
−−−−−→
N→∞

|a − b|
t

. (6.5)

Theorem 6.5 Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic Markov chain. Given
m, let (Xm, fm) := ({Xn}n≥m, { fn}n≥m). The following are equivalent:

(1) f is irreducible with algebraic range R; (2) (Xm, fm) satisfy the mixing non-lattice LLT for all m;
(3) (Xm, fm) satisfy the mixing mod t LLT for all m and t.

6.1.4 Universal Bounds for Prob[SN − zN ∈ (a, b)]

So far, we have considered the problem of finding P[SN − zN ∈ (a, b)] up to asymptotic equivalence, and
subject to assumptions on the algebraic and essential range. We now consider the problem of estimating these
probabilities up to a bounded multiplicative error, but only assuming that VN → ∞.

We already saw that the predictions of the LLT for large intervals (a, b) are nearly the same in all non
center-tight cases, reducible or irreducible, lattice or non-lattice. Therefore it is reasonable to expect universal
lower and upper bounds, for all sufficiently large intervals, and without further assumptions on the arithmetic
structure of the range. The question is how large is “sufficiently large."

Define the graininess constant of (X, f) to be

δ(f) :=




t Gess (X, f) = tZ, t > 0
0 Gess (X, f) = R
∞ Gess (X, f) = {0}.

(6.6)

By Corollary 4.6, if (X, f) is uniformly elliptic and VN → ∞, then δ(f) ≤ 6ess sup |f|.
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We certainly cannot expect universal lower and upper bounds for intervals with length smaller than δ(f),
because such intervals may fall in the gaps of the support of SN − zN . However, universal bounds do apply as
soon as |a − b| > δ(f):

Theorem 6.6 Suppose f is an a.s. uniformly bounded additive functional on a uniformly elliptic Markov chain
X. Then for every interval (a, b) of length L > δ(f), for all ε > 0 and zN, z ∈ R such that zN−E(SN )

√
VN

→ z, for all
N large enough,

P(SN − zN ∈ (a, b)) ≤
e−z2/2 |a − b|
√

2πVN

(
1 +

21δ(f)
L
+ ε

)
, (6.7)

P(SN − zN ∈ (a, b)) ≥
e−z2/2 |a − b|
√

2πVN

(
1 −

δ(f)
L
− ε

)
. (6.8)

In addition, if 0 < δ(f) < ∞ and kδ( f ) � L � (k + 1)δ( f ), k ∈ N, then

*
,

e−z2/2
√

2πVN

+
-

kδ( f ) . P(SN − zN ∈ (a, b)) . *
,

e−z2/2
√

2πVN

+
-

(k + 1)δ( f ). (6.9)

Here AN . BN means that lim sup
N→∞

(AN/BN ) ≤ 1.

Notice that the theorem makes no assumptions on the irreducibility of f, although it does become vacuous in
the center-tight case, when δ(f) = ∞. Note also that the bounds in this theorem are sharp in the limit L → ∞.

Theorem 6.6 is an easy corollary of Theorem 6.3, see §6.2.4, but this is an overkill. §6.2.5 gives another
proof of similar estimates, for intervals of length L > 2δ(f), which does not require the full force of Theorem
6.3, and which also applies to arrays. There we will also see that anti-concentration inequalities similar to (6.7)
hold without any assumptions on zN .

6.2 Proofs

6.2.1 Characteristic Functions in the Reducible Case

Throughout this section we assume that X = {Xn} is a uniformly elliptic Markov chain with state spaces
Sn, marginals µn(E) := P(Xn ∈ E), and transition probabilities πn,n+1(x, dy) = pn(x, y)µn+1(dy), with
the uniform ellipticity condition, and ellipticity constant ε0. Given ϕ ∈ L∞(Sn × Sn+1), we let E(ϕ) :=
E[ϕ(Xn, Xn+1)] and σ(ϕ) :=

√
Var(ϕ(Xn, Xn+1)).

As explained in §5.2.1, it is possible to express the LLT probabilities in terms of

ΦN (x, ξ |AN+1) = Ex (eiξSN |XN+1 ∈ AN+1) ≡
Ex (eiξSN 1AN+1 )
Ex (1AN+1 )

.

It will transpire that ΦN (x, ξ |AN+1) decays fast to zero for ξ bounded away from the co-range H (X, f). What

matters is the behavior for ξ within distance O
(

1
√

VN

)
from H (X, f). Our aim in this section is to estimate

ΦN (x, ξ |AN+1) for such ξ.

We begin with an estimate for arrays. Suppose Ĉ, K > 0, ε ∈ (0, 1) and f is an array of real-valued functions
f (N )
n ∈ L∞(Sn ×Sn+1) (1 ≤ n ≤ N ) as follows:

(I) E( f (N )
n ) = 0 and ess sup |f| < K .
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(II) Let SN :=
N∑
n=1

f (N )
n (Xn, Xn+1) and VN := Var(SN ), then

VN → ∞ and
1

VN

N∑
n=1

σ2( f (N )
n ) ≤ Ĉ. (6.10)

(III) f = F + h + c, where

(a) F(N )
n are measurable, integer valued, and ess sup |F| < K .

(b) h(N )
n are measurable functions such that E(h(N )

n ) = 0, ess sup |h| < K and
N∑
n=1

σ2(h(N )
n ) ≤ ε .

(c) c(N )
n are constants. Necessarily |c(N )

n | ≤ 3K and c(N )
n = −E(F(N )

n ). Let c(N ) :=
N∑
n=1

c(N )
n .

We are not assuming that E(F(N )
n ) = 0: F(N )

n are integer-valued, and we do not wish to destroy this by subtracting
the mean.

Lemma 6.7 Suppose (I), (II) and (III). For every K > 0 and m ∈ Z, there are C, N > 0 such that for every
N > N , |s | ≤ K , x ∈ S1, and vN+1 ∈ L∞(SN+1) with ‖vN+1‖∞ ≤ 1,

Ex

(
e

i
(
2πm+ s√

VN

)
SN

vN+1(XN+1)
)
=e2πimc(N )−(s2/2)E(vN+1(XN+1))+ηN (x), where E( |η |)≤C



N∑
n=1

σ2(h(N )
n )



1/2

≤C
√
ε .

Proof We will use Nagaev’s perturbation operators, as in §5.2.2.
Throughout this proof, we fix the value of N , and drop the superscripts (N ) . For example c(N )

k
= ck and c(N )=c.

Define Ln,ξ : L∞(Sn+1) → L∞(Sn) by (Ln,ξu)(x) =
∫
Sn+1

pn(x, y)eiξ fn (x,y)u(y)µn+1(dy), Ln := Ln,0.

Let ξ = ξ (m, s) := 2πm +
s
√

VN

, with m ∈ Z fixed and |s | ≤ K . Since Fn(x, y) ∈ Z,

eiξ fn = exp[2πimFn + is√
VN
Fn + iξcn + iξhn] = e2πimcne

is√
VN

(Fn+cn )+iξhn
.

We split e−2πimcnLn,ξ = Ln,ξ + L̂n,ξ + L̃n,ξ , where(
Ln,ξu

)
(x) =

∫
Sn+1

pn(x, y)e
is√
VN

(Fn (x,y)+cn )
u(y)µn+1(dy),(

L̂n,ξu
)

(x) = iξ
∫
Sn+1

pn(x, y)hn(x, y)u(y)µn+1(dy), and

(
L̃n,ξu

)
(x) =

∫
Sn+1

pn(x, y)
[
e

iξhn+
is√
VN

(Fn (x,y)+cn )
− e

is√
VN

(Fn (x,y)+cn )
− iξhn(x, y)

]
u(y)µn+1(dy).

Preparatory Estimates 1: ∃C1(K,m) > 1 such that for every |s | ≤ K and n ≥ 1,




Ln,ξ



 := 


Ln,ξ




L∞→L∞
≤ 1, (6.11)




Ln,ξ



L1→L∞

≤ C1(K,m), (6.12)



Ln,ξ




 := 


Ln,ξ



L∞→L∞

≤ 1, (6.13)



L̂n,ξ




L∞→L1 ≤ C1(K,m)σ(hn), (6.14)




L̃n,ξ



L∞→L1 ≤ C1(K,m)

[
σ2(hn) +

σ(hn)σ( fn)
√

VN

]
. (6.15)
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Proof of the Step. The first three estimates are trivial.
To see (6.14), we note that L̂n,ξ is an integral operator whose kernel has absolute value |iξpn(x, y)hn(x, y) | ≤

ε−1
0 |ξ | |hn(x, y) |. So ‖L̂n,ξ ‖L∞→L1 ≤ ε−1

0 |ξ |‖hn‖L1 ≤ ε−1
0 (2π |m | + KV−1/2

N )‖hn‖L2, and (6.14) follows from the
identity ‖hn‖L2 ≡ σ(hn), and the assumption VN → ∞.

Similarly, L̃n,ξ is an integral operator with kernel k̃ (x, y) such that

| k̃ (x, y) | ≤ ε−1
0

��e
is Fn (x,y)+cn√

VN
(
eiξhn − 1

)
− iξhn

�� = ε−1
0

��e
is Fn (x,y)+cn√

VN
(
iξhn +O(ξ2h2

n)
)
− iξhn

��

= ε−1
0

��e
is Fn (x,y)+cn√

VN − 1��|ξhn | +O
(
h2
n

)
= O

( 1√
VN
|hn(Fn + cn) |

)
+O(h2

n).

The big Oh’s are uniform on compact sets of ξ.
So, uniformly on compact sets of ξ,

‖L̃n,ξ ‖L∞→L1 = O(V−1/2
N )E(|hn(Fn + cn) |) +O(‖hn‖

2
2 ) = O(V−1/2

N )‖hn‖2‖Fn + cn‖2 +O(‖hn‖
2
2 ).

By (III), f = F + h + c, so

‖L̃n,ξ ‖L∞→L1 = O(V−1/2
N )‖hn‖2‖ fn − hn‖2 +O(‖hn‖

2
2 ) = O(V−1/2

N )‖hn‖2(‖ fn‖2 + ‖hn‖2) +O(‖hn‖
2
2 )

= O
(
‖hn‖2‖ fn‖2
√

VN

+ ‖hn‖
2
2

)
= O

(
σ(hn)σ( fn)
√

VN

+ σ2(hn)
)
,

as claimed in (6.15).
Preparatory Estimates 2. There is a constant C ′1(K,m) such that for all k,

‖L̂k,ξ (Lk+1,ξLk+2,ξ−Lk+1Lk+2)‖L∞→L1≤C ′1(K,m)
σ(hk )
√

VN

(σ( fk+1)+σ( fk+2)+σ(hk+1)+σ(hk+2)) . (6.16)

Next, let ϕk := Lk L̂k+1,ξ1, then

E[ϕk (Xk )] = 0 , ‖ϕk ‖∞ ≤ C ′1(K,m)2σ(hk+1). (6.17)

Proof.Call the operator on theLHSof (6.16)K . Then (K u)(x) =
$

k (x, y, z,w)u(w)µk+1(dy)µk+2(dz)µk+3(dw)

where k (x, y, z,w) equals pk (x, y)pk+1(y, z)pk+2(z,w) · iξhk (x, y)
(
e

is√
VN

(Fk+1 (y,z)+Fk+2 (z,w)+ck+1+ck+2)
− 1

)
.

Recall from (III) that F + c = f − h. Therefore

|k (x, y, z,w) | ≤ Cpk (x, y)pk+1(y, z)pk+2(z,w)V−1/2
N |hk (x, y) |

(
| fk+1(y, z) |+ | fk+2(z,w) |+ |hk+1(y, z) |+ |hk+2(z,w) |

)
,

and the constant depends only on K, K and m.
Clearly, ‖K ‖L∞→L1 ≤

%
|k (x, y, z,w) |µk (dx)µk+1(dy)µk+2(dz)µk+3(dw). Integrating and applying the

Cauchy-Schwarz inequality, we arrive at (6.16).
We continue to (6.17). By definition, (Lku)(Xk ) = E(u(Xk+1) |Xk ). So

E(ϕk ) = E((L̂k+1,ξ1)(Xk+1)) = iξ
"

pk+1(x, y)hk+1(x, y)µk+1(dx)µk+2(dy).

Thus E(ϕk ) = iξE(hk+1) = 0. Next, by (6.12) and (6.14),

‖ϕk ‖∞ ≤ ‖Lk ‖L1→L∞ ‖L̂k+1,ξ ‖L∞→L1 ≤ C1(K,m)2σ(hk+1).

Preparatory Estimates 3: Let L ′
k,ξ

:= Lk,ξ − e2πimckLk . There is a constant C ′′1 (K,m) such that for all k,



94 6 The Local Limit Theorem in the Reducible Case

‖L ′k,ξ ‖L∞→L1 ≤ C ′′1

(
σ( fk )
√

VN

+ σ(hk )
)
, (6.18)

‖L ′k−1,ξ L̂k,ξ1‖1 ≤ C ′′1 σ(hk )
(
σ( fk−1)
√

VN

+ σ(hk−1)
)
. (6.19)

Proof of the Step. L ′
k,ξ

is an integral operator with kernel

l(x, y) := e2πimck pk (x, y)
(
eiξ fk (x,y)−2πimck − 1

)
= e2πimck pk (x, y)

(
e

is√
VN

( fk (x,y)−hk (x,y))+iξhk (x,y)
− 1

)

because by (III), iξ fk−2πimck = is√
VN

( fk−hk )+iξhkmod 2πZ. Thus |l(x, y) | ≤ Cpk (x, y)
(
| fk (x, y) |
√

Vn

+ |hk (x, y) |
)
.

(6.18) can now be shown as in the proof of (6.16).
The bound (6.19) has a similar proof, which we leave to the reader.

Preparatory Estimate 4: The following estimates hold uniformly in x ∈ S1:

E(SN |X1 = x) = E(SN ) +O(1) = O(1) , Var(SN |X1 = x) = VN +O(1). (6.20)

Proof of the Step. By (2.11), |E(SN |X1 = x) − E(SN ) | = O(1), and the estimate on E(SN |X1 = x) follows from
the assumption that E( fn) = 0 for all n.

Let Yx := (X conditioned on X1 = x). These Markov chains are all uniformly elliptic with the ellipticity
constant of X. So, uniformly in x, for all 1 ≤ i < j ≤ N ,

Ex ( f 2
i ) = E( f 2

i ) +O(θi), Ex ( f i f j ) = Ex ( f i)Ex ( f j ) +O(θ j−i) = [E( f i) +O(θi)][E( f j ) +O(θ j )] +O(θ j−i)

!
= E( f i)E( f j ) +O(θ j−i) = E( f i f j ) +O(θ j−i) (∵ E( f i) = E( f j ) = 0).

Ex ( f i f j ) = E(gi j |X1 = x), where gi j := E( f i f j |Xi+1, . . . , X1)

!
= E(gi j ) +O(θi) = E( f i f j ) +O(θi) (∵ gi j depends only on Xi, Xi+1).

Therefore |Ex ( f i f j ) − E( f i f j ) |=O(min{θi, θ j−i }}) = O(θi/2θ ( j−i)/2). Summing over 1 ≤ i, j ≤ N , we obtain

|Ex (S2
N ) − E(S2

N ) | ≤
∑
|Ex ( f i f j ) − E( f i f j ) | = O(1).

Since E(SN ) = 0 and Ex (SN ) = O(1), Var(SN |X1 = x) = Var(SN ) +O(1).
We are ready to start the proof of the lemma. By (5.12), Ex[eiξSN vN+1(XN+1)] = (L1,ξL2,ξ · · · LN,ξvN+1)(x).

The decomposition e−2πimcnLn,ξ = Ln,ξ + L̂n,ξ + L̃n,ξ implies that

Ex

(
eiξSN vN+1(XN+1)

)
= e2πimc

(
ΦN (x, ξ) + Φ̂N (x, ξ) + Φ̃N (x, ξ)

)
(6.21)

where c = c(N ) = c1 + · · · + cN , and

ΦN (x, ξ) :=
(
L1,ξ · · · LN,ξvN+1

)
(x),

Φ̃N (x, ξ) :=
N−1∑
k=1

e−2πim(c1+· · ·+ck−1)
(
L1,ξ · · · Lk−1,ξ L̃k,ξLk+1,ξ · · · LN,ξvN+1

)
(x),

Φ̂N (x, ξ) :=
N−1∑
k=1

e−2πim(c1+· · ·+ck−1)
(
L1,ξ · · · Lk−1,ξ L̂k,ξLk+1,ξ · · · LN,ξvN+1

)
(x).

We analyze ΦN, Φ̃N and Φ̂N separately.
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Claim 1: For every m ∈ Z, ���ΦN (x, ξ) − e−s2/2Ex (vN+1(XN+1))��� −−−−−→N→∞
0 in L1 uniformly in s on {s ∈ R : |s | ≤

K }, and vN+1 ∈ {v ∈ L∞(SN+1) : ‖v‖ ≤ 1}.

Proof of the Claim: ΦN (x, ξ) = Ex

(
exp

(
is

∑N
k=1 Fk+c√

VN

)
vN+1(XN+1)

)
, and E *

,

N∑
k=1

Fn+
-
= −c. Fix 1 ≤ r ≤ N .

Using the decomposition f = F + h + c, we find that

1
√

VN

( N∑
k=1

Fk + c
)
=

1
√

VN

SN−r +
1
√

VN

(
O(r) −

N∑
k=1

hk
)
, where SN−r :=

N−r−1∑
i=1

f (N )
i .

By assumption III(b), the L2 norm of the second summand isO(1/
√

VN ). Therefore the second term converges
to 0 in probability as N → ∞, and

ΦN (x, ξ) = Ex

(
e

is√
VN

SN−r
vN+1(XN+1)

)
+ o(1). (6.22)

The rate of convergence to 0 of the error term in (6.22) depends on r and m, but is uniform when |s | ≤ K and
‖vN+1‖∞ ≤ 1. Next, we study the main term:

Ex

(
e

is√
VN

SN−r
vN+1(XN+1)

)
= Ex

[
e

is√
VN

SN−r
Ex

(
vN+1(XN+1)��X1, . . . , XN−r

)]

= Ex

[
e

is√
VN

SN−r
Ex

(
vN+1(XN+1)��XN−r

)]
(Markov property)

(2.11)
= Ex

(
e

is√
VN

SN−r [Ex (vN+1(XN+1)) +O(θr )]
)
= Ex (eisSN−r /

√
VN )Ex (vN+1(XN+1)) +O(θr ), (6.23)

and the big Oh is uniform in x and in ‖vN+1‖∞ (because X conditioned on X1 = x has the same ellipticity
constant for all x).

Fix r . By Dobrushin’s CLT for X conditioned on X1 = x, SN−r−Ex (SN−r )
√

Varx (SN−r )
converges in distribution to the

standard normal distribution. Equation (6.20) and another mixing argument shows that

Ex (SN−r ) = E(SN−r ) = O(1) and Varx (SN−r ) = VN +O(1).

Therefore, conditioned on x, SN−r√
VN

converges in distribution to the standard normal distribution. In particular, it

is tight, and sup
|s | ≤K

��Ex (eisSN−r /
√
VN ) − e−s

2/2�� −−−−−→
N→∞

0 as N → ∞, for all x.

The claim follows from this, (6.22), and (6.23), and the observation that a uniformly bounded sequence of
functions which tends to zero pointwise, tends to zero in L1.

Claim 2. There exists C2(K,m) such that for all |s | ≤ K and ‖vN+1‖∞ ≤ 1, 

Φ̃N (x, ξ)

L1 ≤ C2(K,m)
√
ε.

Proof of the Claim: We begin with the obvious estimate

‖Φ̃N (x, ξ)‖1 ≤ ‖L̃1,ξ ‖L∞→L1



L2,ξ




 · · ·



LN,ξ




 +
N−1∑
k=2

(


L1,ξ



 · · ·




Lk−1,ξ L̃k,ξ








Lk+1,ξ



 · · ·




LN,ξ




)
.

Suppose |s | ≤ K . By (6.13) and (6.15), the first summand is bounded above byC1(K,m)
[
σ(h1)2 +

σ(h1)σ( f1)
√
VN

]
.

Next, (6.12) and (6.15) give 


Lk−1,ξ L̃k,ξ



 ≤ C1(K,m)2

[
σ(hk )2 +

σ(hk )σ( fk )
√
VN

]
. The other norms are no larger

than one.
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Therefore ‖Φ̃N (x, ξ)‖1 ≤ C1(K,m)2
N−1∑
k=1

[
σ(hk )2 +

σ(hk )σ( fk )
√

VN

]
. By the Cauchy-Schwarz inequality, and

assumptions II and III(b),

‖Φ̃N (x, ξ)‖1 ≤C1(K,m)2
N−1∑
k=1

σ(hk )2 + C1(K,m)2

√√√
N−1∑
k=1

σ2(hk ) ·
1

VN

N−1∑
k=1

σ2( fk ) ≤ const.(ε +
√
ε ).

Claim 3. There exists C3(K,m) such that for all |s | ≤ K and ‖vN+1‖∞ ≤ 1, ‖Φ̂N (x, ξ)‖1 ≤ C3(K,m)
√
ε.

Proof of the Claim. Fix N , vN+1 ∈ L∞(SN+1) such that ‖vN+1‖∞ ≤ 1, and let φk (·) := (Lk,ξ · · · LN,ξ )vN+1.
Observe that ‖φk ‖∞ ≤ 1, and



Φ̂N (x, ξ)

1 ≤

N∑
k=1
‖L1,ξ · · · Lk−1,ξ L̂k,ξφk+1‖1. (6.24)

We will decompose φ = ζ ′
k
+ ζ ′′

k
+ ηk , and then estimate the contribution to (6.24) from ζ ′

k
, ζ ′′

k
and ηk .

Step 1 (Decomposition): We can decompose φk = ζ ′k + ζ
′′
k
+ ηk so that ηk := E(φk (Xk )) (a constant function),

and for all |s | ≤ K , there exist Ĉ0, K̂0 > 0 and 0 < θ̂0 < 1 such that for all k = 1, . . . , N − 2

‖ζ ′k ‖∞ ≤ θ̂
2
0‖ζ

′
k+2‖∞ + K̂0‖ζ

′′
k+2‖1, (6.25)

‖ζ ′′k ‖1 ≤ Ĉ0

(
σ( fk ) + σ( fk+1) + σ(hk ) + σ(hk+1)

√
VN

)
, (6.26)

E(ζ ′k (Xk )) = E(ζ ′′k (Xk )) = 0. (6.27)

Proof of the Step. Let ζk := φk − ηk , a function with mean zero.
By construction, φk =

(
Lk,ξLk+1,ξ

)
φk+2, therefore

φk = (LkLk+1) ηk+2 + (LkLk+1) ζk+2 +
(
Lk,ξLk+1,ξ − LkLk+1

)
φk+2.

Observe that Lk1 = 1, so (LkLk+1) ηk+2 = ηk+2. This leads to the decomposition

ζk = (LkLk+1) ζk+2︸             ︷︷             ︸
ζ ′
k

+
(
Lk,ξLk+1,ξ − LkLk+1

)
φk+2 + ηk+2 − ηk︸                                                   ︷︷                                                   ︸

ζ ′′
k

.

Then ζk = ζ ′k + ζ
′′
k
, and the pieces ζ ′

k
, ζ ′′

k
satisfy the following recursion:

ζ ′k = (LkLk+1) ζ ′k+2 + (LkLk+1) ζ ′′k+2,

ζ ′′k =
(
Lk,ξLk+1,ξ − LkLk+1

)
φk+2 + ηk+2 − ηk .

(6.28)

Notice that ζ ′
k
, ζ ′′

k
have zero means. Indeed in our setup, µ j (E) = P(X j ∈ E), whence by the identities

ζ ′
k
= LkLk+1ζk+2 and (Lku)(x) = E(u(Xk+1) |Xk = x),∫

ζ ′kdµk = E(ζ ′k (Xk )) = E[E(E(ζk+2(Xk+2) |Xk+1) |Xk )] = E(ζk+2(Xk+2)) = 0,

and E(ζ ′′
k

) = E(ζk ) − E(ζ ′
k
) = 0 − 0 = 0.

To prove the estimates on ‖ζ ′
k
‖∞, we first make the following general observations. If ψk+2 ∈ L∞(Sk+2), then

(LkLk+1ψk+2) (x) =
∫

p̃(x, z)ψk+2(z)µk+2(dz), where p̃(x, z) =
∫
Sk+1

pk (x, y)pk+1(y, z)µk+1(dy).
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By uniform ellipticity, p̃ ≥ ε0 so we can decompose p̃k = ε0 + (1 − ε0)q̃k where q̃k is a probability density.
Hence, if ψk+2 has zero mean, then

(LkLk+1ψk+2) (x)=ε0

∫
ψk+2dµk+2 + (1−ε0)

∫
q̃k (x, y)ψk+2(y)µk+2(dy)=(1−ε0)

∫
q̃k (x, y)ψk+2(y)µk+2(dy).

Thus ‖LkLk+1ψk+2‖∞ ≤ (1 − ε0)‖ψk+2‖∞. By (6.28),

‖ζ ′k ‖∞ = ‖ (LkLk+1) ζ ′k+2 + (LkLk+1) ζ ′′k+2‖∞ ≤ (1 − ε0)‖ζ ′k+2‖∞ + ‖LkLk+1ζ
′′
k+2‖∞

≤ (1 − ε0)‖ζ ′k+2‖∞ + ‖Lk ‖L∞→L∞ ‖Lk+1‖L1→L∞ ‖ζ
′′
k+2‖1 ≤ (1 − ε0)‖ζ ′k+2‖∞ + C1(K,m)‖ζ ′′k+2‖1,

by (6.11) and (6.12). This proves (6.25).
Next we analyze ‖ζ ′′

k
‖1. Since ζ ′′

k
has zero mean and ηk+2 − ηk is constant, we can write ζ ′′

k
=

ζ̂ ′′
k
− E(ζ̂ ′′

k
) with ζ̂ ′′

k
:=

(
Lk,ξLk+1,ξ − LkLk+1

)
φk+2. Observe that

(
Lk,ξLk+1,ξu − Lk+1Lk+2u

)
(x) =!

k (x, y, z)u(z)µk+1(dy)µk+2(dz), where

|k (x, y, z) | ≤ const.pk (x, y)pk+1(y, z)
|s |
√

VN

|Fk (x, z) + Fk+1(z, y) + ck + ck+1 |

≤
const.
√

VN

pk (x, y)pk+1(y, z) (| fk (x, z) | + | fk+1(z, y) | + |hk (x, z) | + |hk+1(z, y) |) ,

because F + c = f − h.
Next, ‖ζ ′′

k
‖1 ≤ 2‖ ζ̂ ′′

k
‖1 ≤ 2

#
|k (x, y, z) |µk (dx)µk+1(dy)µk+2(dz)‖φk+2‖∞. The estimate for |k (x, y, z) |

and the Cauchy-Schwarz inequality now lead to (6.26).

Step 2 (Contribution of ζ ′): For some constant which depends only on K, K,m,∑
k




L1,ξ · · · Lk−1,ξ L̂k,ξ (ζ ′k+1)


L1 ≤ const.
√
ε. (6.29)

Proof of the Step. Using (6.25) and (6.26), it is easy to see by induction that for some constant C, ‖ζ ′
k
‖∞ is

bounded above by

C
(
θ̂

2 b N−k2 c

0 +

b N−k2 c−1∑
r=1

θ̂2r
0 (σ( fk+2r ) + σ( fk+2r+1) + σ(hk+2r ) + σ(hk+2r+1))

√
VN

)

≤ Cθ̂−1
0

(
θ̂N−k0 +

N−k∑
r=1

θ̂r0
√

VN

(
σ( fk+r ) + σ(hk+r )

))
.

Since L j,ξ are contractions and ‖L̂k,ξ ‖L∞→L1 ≤ C1(K,m)σ(hk ), this implies that

∑
k



L1,ξ . . .Lk−1,ξ L̂k,ξ (ζ ′k+1)

L1 ≤ CC1(K,m)


∑
r

θ̂r0

∑
k

σ(hk )
σ( fk+r ) + σ(hk+r )

√
VN

+
∑
k

σ(hk )θ̂N−k0


.

As in the proof of Claim 2, it follows from the Cauchy Schwartz inequality, (6.10), and assumption III(b) that
the sum over k is O(

√
ε). Hence (6.29).

Step 3 (Contribution of ηk): For some constant which depends only on K,m, K and ε0,∑
k




L1,ξ · · · Lk−1,ξ L̂k,ξηk+1



1
≤ const.

√
ε. (6.30)
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Proof of the Step. Recall that ηk+1 is a constant function, with value E(φk+1). Since ‖φk+1‖∞ ≤ 1, |ηk+1 | ≤ 1.
Therefore (after possibly rescaling ηk) it suffices to prove the step when ηk ≡ 1. Split Ln,ξ = e2πimcnLn +L

′
n,ξ ,

then for all k ≥ 2,

L1,ξ · · · Lk−1,ξ L̂k,ξ (1) = e2πim(c1+· · ·+ck−1)L1 · · · Lk−1L̂k,ξ (1)

+

k−1∑
j=1

e2πim(c j+1+· · ·+ck−1)L1,ξ · · · L j−1,ξL
′
j,ξL j+1 · · · Lk−1L̂k,ξ (1).

(6.31)

The first expression on the RHS of (6.31), when k = 1, equals L̂k,ξ1, and has norm ‖L̂k,ξ1‖1 ≤
C1(K,m)σ(hk ), by (6.14).

For k ≥ 2, we use (6.17):

‖L1 · · · Lk−1L̂k,ξ1‖1 = ‖L1 · · · Lk−2ϕk−1‖1 ≤ 

E(ϕk−1(Xk−1) |X1)

∞.

By (2.11) and (6.17) the last expression is bounded byCθkσ(hk ), for some constantC which depends only on
K ,m, ε0, and some 0 < θ < 1which depends only on ε0. So for all k ≥ 1, ‖L1 · · · Lk−1L̂k,ξ1‖1 ≤ const.θkσ(hk ).

The second term on the RHS of (6.31) is not zero only for k ≥ 2. If k = 2, it has L1 norm ‖L ′1,ξ L̂2,ξ1‖1 ≤

C ′′1 (K,m)σ(h2)
(
σ( f1)
√

VN

+ σ(h1)
)
, by (6.19). If k ≥ 3, then it has L1-norm bounded by

k−1∑
j=1
‖L1,ξ ‖ · · · ‖L j−2,ξ ‖ · ‖L j−1,ξ ‖L1→L∞ ‖L

′
j,ξ ‖L∞→L1const.θk−jσ(hk )

≤ const.
k−1∑
j=1

(
σ( f j )
√

Vk

+ σ(h j )
)
σ(hk )θk−j, see (6.11), (6.12), (6.17), (6.18), (2.11).

Thus
∑
k




L1,ξ · · · Lk−1,ξ L̂k,ξ (1)


1
is bounded by

C
N∑
k=1

(
σ(hk )θk + σ(hk )

k∑
j=1

θk−j
(σ( f j )
√

VN

+ σ(h j )
))
≤ C

√√√
N∑
k=1

σ2(hk )

√√√
N∑
k=1

θ2k + C
N−1∑
r=0

θr
N∑
j=1

(σ( f j )
√

VN

+ σ(h j )
)
σ(h j+r )

≤ C
√
ε + C

N−1∑
r=0

θr


*.
,

√√√ N∑
j=1

σ2( f j )
VN

+

√√√ N∑
j=1

σ2(h j )
+/
-

√√√ N∑
j=1

σ2(h j+r )

≤ C
√
ε, and C depends only on K , m, and X.

Step 4 (Contribution of ζ ′′
k

): For some constant depending only on K,m, K, ε0,∑
k




L1,ξ · · · Lk−1,ξ L̂k,ξ (ζ ′′k+1)


L1 ≤ const.
√
ε. (6.32)

Proof of the Step. Recall that ζ ′′
k+1 ≡

(
Lk,ξLk+1,ξ − LkLk+1

)
φk+2 + (ηk+2 − ηk ). The term ηk+2 − η2 is a

constant function with size at most two, and its contribution can be controlled as in the previous step. Let
ζ̂ ′′
k+1 := ζ ′′

k+1 − (ηk+2 − ηk ), then:

‖L1,ξ · · · Lk−1,ξ L̂k,ξ (ζ̂ ′′k+1)‖1 ≤ ‖L1,ξ · · · Lk−1,ξ L̂k,ξ (ζ̂ ′′k+1)‖∞

≤ ‖L1,ξ · · · Lk−2,ξ ‖L∞→L∞ · ‖Lk−1,ξ ‖L1→L∞ ‖L̂k,ξ (ζ̂ ′′k+1)‖L∞→L1

!
≤ 1 · C1(K,m) · C ′1(K,m)

σ(hk )
√

VN

(σ( fk+1) + σ( fk+2) + σ(hk+1) + σ(hk+2)),
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see (6.11), (6.12), and (6.16).
Now we sum over k, and apply the Cauchy-Schwarz inequality and assumptions II and III. Step 4 follows.

Claim 3 follows from Steps 1–4.
Lemma 6.7 follows from Claims 1–3 and (6.21). �

We now return to the proof of Theorem 6.3. Let f = { fn} be a non center-tight a.s. uniformly bounded additive
functional on a uniformly elliptic Markov chain X = {Xn} with state spacesSn and marginals µn(E) = P(Xn ∈

E). In particular, VN → ∞. Without loss of generality, δ(f) = 1 , Gess (X, f) = Z, and E( fn) = 0 for all n.
By the reduction lemma (Lemma 4.16), f = F+∇a+ h+ c, where Galg (X, F) = Z, h has summable variances,

c = {cn} are constants, and F, a, h, c are a.s. uniformly bounded. We make the following additional assumptions:

(IV) Fn are integer-valued;
(V) E(hn) = 0, cn = −E(Fn);
(VI) a ≡ 0. In particular, f = F + h + c.

Assumptions (IV) and (V) can be arranged using Galg (X, F) = Z and E( fn) = 0, by trading constants with cn.
Assumption (VI) is a genuine assumption. Let

c(N ) := −
N∑
k=1

E[Fk (Xk, Xk+1)]. (6.33)

ByTheorem3.12 and the uniformellipticity assumption,H(X1, X2, . . .) :=
∞∑
n=1

hn(Xn, Xn+1) converges almost surely.

Here it is essential that X be a Markov chain and not just a Markov array.

Proposition 6.8 Suppose (IV), (V) and (VI). Let vN+1 ∈ L∞(SN+1) be non-negative functions such that
‖vN+1‖∞ , 0, and for some δ > 0,

E(vN+1(XN+1)) ≥ δ‖vN+1‖∞. (6.34)

Then for all m ∈ Z, s ∈ R and x ∈ S1,

Ex

(
e

i(2πm+ s√
VN

)SN
vN+1(XN+1)

)
E(vN+1(XN+1))

= e2πimc(N )− s2
2 Ex

(
e2πmiH

)
+ o(1), (6.35)

as N → ∞, where the o(·) term converges to 0 uniformly when |m + is | are bounded, vN+1 are bounded, and
(6.34) holds.

Proof Since the LHS of (6.35) remains unchanged upon multiplying vN+1 by a constant, we may assume that
‖vN+1‖∞ = 1.

Fix ε > 0 small and r so large that
∞∑
k=r

Var(hk ) < ε . Fix N . Applying Lemma 4.19 to {Fn}Nn=r , we obtain the

following decomposition:

Fn(xn, xn+1) = a (N )
n+1 (xn+1) − a (N )

n (xn) + c(N )
n + f̃ (N )

n (xn, xn+1)

where c(N )
n are bounded integers, and a (N )

n (·), f̃ (N )
n (·, ·) are uniformly bounded measurable integer-valued

functions such that
N∑
n=r

‖ f̃ (N )
n ‖22 = O *

,

N∑
n=r

u2
n(F)+

-
.

There is no loss of generality in assuming that a (N )
N+1 = a

(N )
r = 0, otherwise replace f̃ (N )

r (x, y) by f̃ (N )
r (x, y)−

a
(N )
r (x), and f̃ (N )

N (x, y) by f̃ (N )
N (x, y) + a (N )

N+1(y). Then
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N∑
n=r

Fn =
N∑
n=r

(c(N )
n + f̃ (N )

n ). (6.36)

This and the identity f = F + h + c gives

SN−Sr−1=

N∑
n=r

fn=
N∑
n=r

[
c

(N )
n + f̃ (N )

n + hn + cn
]
=

N∑
n=r

[
f̃ (N )
n + hn − E( f̃ (N )

n + hn)
]
, ∵ E(SN − Sr ) = 0. (6.37)

Let g denote the array with rows g(N )
n := f̃ (N )

n + hn − E( f̃ (N )
n + hn) (n = r, . . . , N ), N > r . We claim that

g satisfies assumptions (I)–(III) of Lemma 6.7. (I) is clear, and (III) holds by choice of r and because f̃ (N )
n is

integer-valued. Next we check (II):

N∑
n=1

σ2(g(N )
n )=

N∑
n=1

σ2( f̃ (N )
n +hn)=

N∑
n=1

[
σ2( f̃ (N )

n )+σ2(hn+2Cov( f̃ (N )
n , hn)

]
≤

N∑
n=1

[
σ2( f̃ (N )

n )+σ2(hn)+2σ( f̃ (N )
n )σ(hn)

]

≤ 2
N∑
n=1

[
σ2( f̃ (N )

n ) + σ2(hn)
]
= O

( N∑
n=r

u2
n(F)

)
+O(1), by choice of f̃ and h.

Since f = F + h + c, u2
n(F) = u2

n(f − h − c) ≤ 2[u2
n(f) + u2

n(h)], see Lemma 2.16(4). Thus by Theorem 3.7 and
the assumption that h has summable variances,

N∑
n=r

u2
n(F) ≤ 2

N∑
n=r

[
u2
n( f ) + u2

n(h)
]
= O

(
Var(SN − Sr )

)
+O(1) = O

(
Var(SN − Sr )

)
.

We now apply Lemma 6.7 to g, and deduce that for every K > 0 and m ∈ Z there are C, N > 0 such that for
all N > N + r , |s | ≤ K , and vN+1 in the unit ball of L∞

E
(
e

i(2πm+ s√
VN

)(SN−Sr−1)
vN+1(XN+1)

����Xr

)
= e2πimc(N )

· e−s
2/2E(vN+1(XN+1))+ηN−r (Xr ),

where c(N ) := −
∑N

n=r E( f̃ (N )
n ) and ‖ηN−r ‖1 ≤ C

√
ε . Since ‖vN+1‖∞ = 1, we also have the trivial bound

‖ηN−r ‖∞ ≤ 2.
We are ready to prove the proposition:

Ex

(
e

i(2πm+ s√
VN

)SN
vN+1(XN+1)

)
E(vN+1(XN+1))

= Ex

*...
,

e
i(2πm+ s√

VN
)Sr−1

E
(
ei(2πm+ s√

Vn
)(SN−Sr−1)

vN+1(XN+1)��Xr

)
E(vN+1(XN+1))

+///
-

= Ex

[
e

i(2πm+ s√
VN

)Sr−1
(
e2πimc(N )−s2/2 +

ηN−r (Xr )
E(vN+1(XN+1))

)]

= e2πimc(N )−s2/2Ex (e2πimSr−1+o(1))︸                                    ︷︷                                    ︸
A

+O(δ
−1

)Ex (|ηN−r (Xr ) |)︸               ︷︷               ︸
B

, as N → ∞.

Summand A: By assumption, f = F + h + c with F integer valued. Necessarily,

exp(2πimSr−1) = exp(2πimHr + 2πimĉ(r−1)), (6.38)

where Hr :=
r−1∑
k=1

hk (Xk, Xk+1) and ĉ(r−1):=
r−1∑
k=1

ck = −E(
r−1∑
k=1

Fk (Xk, Xk+1)). Substituting (6.38) in A, we obtain



6.2 Proofs 101

A = e2πim[c(N )+ĉ(r−1)]−s2/2Ex (e2πimHr ).

We claim that c(N ) + ĉ(r−1) = c(N ) modZ:

c(N ) ≡ −
N∑
k=1

E(Fk ) !
= −

r−1∑
k=1

E(Fk ) −
N∑
k=r

E( f̃ (N )
k

) −
N∑
k=r

c
(N )
k

, by (6.36)

≡ ĉ(r−1) + c(N ) −

N∑
k=r

c
(N )
k

!
= ĉ(r−1) + c(N ) mod Z, because c(N )

k
∈ Z.

The following bound holds uniformly when ξ varies in a compact domain, by the choice of r , Lemma 3.4,
and the Cauchy-Schwarz inequality:

��Ex (eiξH) − Ex (eiξHr )�� ≤ |ξ |Ex (|H − Hr |) ≤ |ξ |Var
( ∞∑
k=r

hk (Xk, Xk+1)
) 1

2
= O(

√
ε ).

It follows that A = [1 + o(1)]e2πimc(N )−s2/2Ex (e2πimH) +O
(√
ε
)
.

Summand B: By the exponential mixing of X, for all N large enough,

B = Ex (|ηN−r (Xr ) |) = E(|ηN−r (Xr ) |) + o(1) = O(
√
ε ).

Thus the left-hand-side of (6.35) equals e2πimc(N )−s2/2Ex (e2πimH+o(1)) +O(
√
ε ). The lemma follows, because ε

was arbitrary. �

6.2.2 Proof of the LLT in the Reducible Case

We prove Theorem 6.3.
It is sufficient to prove parts 2 and 3, on Ex (φ(SN − zN − bN ) |XN+1 ∈ AN+1). Part 1, which deals with

E(φ(SN − zN − bN )), can be deduced as follows: The conditioning on X1 = x can be removed using Lemma
2.27; and the conditioning on XN+1 ∈ AN+1 can be removed by taking AN+1 :=SN+1.

Suppose f is an a.s. uniformly bounded additive functional on a uniformly elliptic Markov chain X, and assume
Gess (X, f) = δ(f)Z with δ(f) , 0.

We begin with some reductions. By Theorem 4.5, f has an optimal reduction, and we can write f = F + F
where F has algebraic range δ(f)Z and F is a.s. uniformly bounded and center-tight. Trading constants in δ(f)Z
between Fn and Fn we can arrange for Fn to be a.s. δ(f)Z-valued.

Let t = [t]Z + {t}Z denote the unique decomposition of t ∈ R into the ordered sum of an integer and a number
in [0, 1). Replacing F by {F}δ(f)Z and F by F + [F]δ(f)Z, we can also arrange ess sup |F| ≤ δ(f).

By the gradient lemma (Lemma 3.14), we can decompose

F = ∇a + f̃ + c̃

where ess sup |a| ≤ 2ess sup |F|, f̃ has summable variances, and c̃n are constants. Let f ∗n :=
1
δ(f)

[ fn − ∇an −

E( fn − ∇an)], then Gess (X, f∗) = Z, and

f∗ =
1
δ(f)

F + h + c, (6.39)

where hn := 1
δ(f) [ f̃n − E( f̃n)] is a centered additive functional with summable variances, and cn := 1

δ(f) [c̃n +
E( f̃n) − E( fn − ∇an)].
A Special Case: We begin with the special case when
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δ(f) = 1, E( fn) = 0 for all n, and a ≡ 0. (6.40)

In this case f = f∗, and (6.39) places us in the setup of Proposition 6.8. Given this proposition, the proof of
part (2) of the theorem is very similar to the proof of the mixing LLT in the irreducible non-lattice case, but we
give it for completeness.

As in (6.33), let c(N ) := −
N∑
k=1

E[Fk (Xk, Xk+1)], H :=
∞∑
n=1

hn(Xn, Xn+1), and

bN := {c(N )}Z.

Fix φ ∈ L1(R) such that supp(φ̂) ⊂ [−L, L], and let vN+1 denote the indicator function of AN+1. By the Fourier
inversion formula

Ex (φ(SN − bN − zN ) |XN+1∈ AN+1)

=
1

2π

∫ L

−L

φ̂(ξ)
Ex

(
eiξ (SN−bN−zN )vN+1(XN+1)

)
E(vN+1(XN+1))

dξ. (6.41)

Our task is to find the asymptotic behavior of (6.41) in case zN ∈ Z, zN√
VN
→ z.

Let K := ess sup |f| and recall the constant δ̃ = δ̃(K ) from Lemma 5.8. Split [−L, L] into a finite collection
of subintervals Ij of length less than min{δ̃, π}, in such a way that every Ij is either bounded away from 2πZ, or
intersects it an unique point 2πm exactly at its center. Let Jj,N denote the contribution of Ij,N to (6.41).

If Ij ∩ 2πZ , ∅, then the center of Ij equals 2πm for some m ∈ Z. Fix some large R. Let J ′j,N be the
contribution to (6.41) from {ξ ∈ Ij : |ξ − 2πm | ≤ RV−1/2

N }, and let J ′′j,N be the contribution to (6.41) from
{ξ ∈ Ij : |ξ − 2πm | > RV−1/2

N }.
Working as in Claim 2 in §5.2.4, one can show that for every R,

|J ′′j,N | ≤ C
∫
|u |>RV−1/2

N

e−cVNu2
du ≤ C

e−cR2

R
√

VN

=
oR→∞(1)
√

VN

.

Thus the main contribution comes from J ′j,N . We make the change of variables ξ = 2πm + s√
VN

. Since zN ∈ Z
and bN = {c(N )}Z, we have

ξ (SN − bN − zN ) = ξSN − 2πmc(N ) −
s
√

VN

(zN + {c(N )}Z) mod 2π.

So J ′j,N is equal to

1
2π
√

VN

∫ R

−R

φ̂

(
2πm +

s
√

VN

) e−2πimc(N )Ex

(
eiξSN vN+1(XN+1)

)
E(vN+1(XN+1))

e
−is zN +O (1)

√
VN ds.

Fixing R and letting N → ∞, we see by Proposition 6.8 that√
VN J ′j,N =

1
2π
φ̂(2πm)Ex

(
e2πimH

) ∫
|s |<R

e−isz−s2/2ds + oN→∞(1)

=
1
√

2π
φ̂(2πm)Ex

(
e2πimH

)
e−z

2/2 + oR→∞(1) + oN→∞(1).

Combining the estimates for J ′j,N, J ′′j,N , we obtain that if Ij intersects 2πZ, then
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lim
N→∞

√
VN Jj,N =

e−z2/2
√

2π
Ex

(
e2πimH

)
φ̂(2πm).

If Ij ∩ 2πZ = ∅, then
∑

d2
n(ξ) = ∞ uniformly on Ij (Theorem 4.9). Thus by (5.19), ΦN (x, ξ) → 0 uniformly

on Ij . In this case we can argue as in the proof of (5.29) and show that the contribution of Ij to the integral (6.41)
is o

(
V−1/2
N

)
. Hence,

lim
n→∞

√
VNEx (φ(SN − bN − zN ) |XN+1 ∈ AN+1)

=
e−z2/2
√

2π

∑
m∈Z∩[−L,L]

Ex

(
e2πimH

)
φ̂(2πm) =

e−z2/2
√

2π

∑
m∈Z

Ex

(
e2πimH

)
φ̂(2πm)

=
e−z2/2
√

2π

∑
m∈Z

Ex

(
e2πimF

)
φ̂(2πm), where F ∈ [0, 1), F := HmodZ

=
e−z2/2
√

2π

∑
m∈Z

F(Cxφ)(2πm), where (Cxφ)(t) := Ex[φ(t +F)],

!
=

e−z2/2
√

2π

∑
m∈Z

(Cxφ) (m) ≡
e−z2/2
√

2π

∑
m∈Z

Ex[φ(m +F)],

by Poisson’s summation formula.
This proves part (2) of the theorem, in the special case (6.40), and in particular for the additive functional

f∗ =
1
δ(f)

[f − ∇a − E(f − ∇a)].

Proof of the Theorem in the General Case: f − E(f) = δ(f)f∗ + ∇a − E(∇a), so

SN (f) − E[SN (f)] ≡ δ(f)SN (f∗) + aN+1(XN+1) − a1(X1) + E[a1(X1) − aN+1(XN+1)].

Since part (2) of Theorem 6.3 holds for f∗ with F={
∑

hn} ∈ [0, 1) and bN={c(N )}Z, it must also hold for f with
δ(f)F and

bN (X1, XN+1) := δ(f){c(N )}Z + aN+1(XN+1) − a1(X1) + E[a1(X1) − aN+1(XN+1)].

Clearly |bN | ≤ δ(f) + 4ess sup |a|. Recalling that ess sup |a| ≤ 2ess sup |F| ≤ 2δ(f), we find that ess sup |bN | ≤

9δ(f), proving part (3) as well.
As we explained in the beginning of the proof, part (1) of Theorem 6.3 is a special case of part (2). �

6.2.3 Necessity of the Irreducibility Assumption

Suppose f is an a.s. uniformly bounded additive functional on a uniformly elliptic Markov chain X. Recall that
fr = { fn}n≥r and Xr = {Xn}n≥r . In this section we prove Theorem 6.5, which asserts the equivalence of the
following three conditions:

(a) f is irreducible with algebraic range R.
(b) (Xr, fr ) satisfies the mixing non-lattice LLT, for all r .
(c) (Xr, fr ) satisfies the mixing mod t LLT for all r and t > 0.
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(a)⇒(b): By Theorem 4.4, if (a) holds then H (X, f) = {0}. Clearly, H (Xr, fr ) = H (X, f) for all r , therefore
H (Xr, fr ) = {0} for all r . By Theorem 4.4, (Xr, fr ) are all irreducible with essential range R. Part (b) now follows
from Theorem 5.4.

(b)⇒(a):Without loss of generality, E( fn(Xn, Xn+1)) = 0 for all n.
IfGess (X, f) = R then f is irreducible with algebraic rangeR, and we are done. Assume byway of contradiction

that Gess (X, f) , R, then Gess (X, f) = tZ for some t. If t were equal to zero, then (X, f) would have been center-
tight, andVN would have been bounded (Theorem 3.8). By the definition of themixing non-lattice LLT,VN → ∞,
so t , 0. There is no loss of generality in assuming that t = 1. So

Gess (X, f) = Z and H (X, f) = 2πZ.

Let S(r )
N := fr (Xr, Xr+1) + · · · + fN (XN, XN+1) and V (r )

N := Var(S(r )
N ). Clearly, E(S(r )

N ) = E(SN ) = 0. Next,
by the exponential mixing of X (Proposition 2.13),

|VN − V (r )
N | = |Vr−1 + 2Cov(S(r )

N , Sr−1) | ≤ Vr + 2
r−1∑
j=1

∞∑
k=r

|Cov( f j, fk ) | = O(1).

Therefore, for fixed r , VN/V
(r )
N −−−−−→

N→∞
1.

By the reduction lemma,
f = F + ∇a + h + c,

where F is irreducible with algebraic range Z, an(x) are uniformly bounded, h has summable variances,
E(an) = 0, E(hn) = 0, and c are constants.

Let F :=
∞∑
n=1

hn(Xn, Xn+1), Fr :=
∞∑
n=r

hn(Xn, Xn+1) (the sums converge a.s. and in L2 by Theorem 3.12).

Next, set β(r )
N :=



−

N∑
k=r

E(Fk (Xk, Xk+1))


(where {·} denotes the fractional part), and define

b(r )
N (Xr, XN+1) := aN+1(XN+1) − ar (Xr ) + β(r )

N .

If
zN − E(SN )

VN
→ 0, then

zN − E(S(r )
N )√

V (r )
N

→ 0.

By Theorem 6.3 and its proof, if lim inf
N→∞

P(Xn ∈ A
(r )
n ) > 0, then the following holds for all φ ∈ Cc (R) and

xr ∈ Sr :

lim
N→∞

√
2πV (r )

N Exr[φ(S(r )
N − b(r )

N − zN ) |XN+1 ∈ A
(r )
N+1]=

∑
m∈Z

Exr [φ(m +Fr )] (6.42)

Here and throughout, we abuse notation and write for xr ∈ Sr , Exr := E(·|Xr = xr ) and Pxr := P(·|Xr = xr ).
The plan is to choose r, xr,A

(r )
N+1, zN and φ in such a way that (6.42) is inconsistent with the mixing LLT.

Choice of r: Let K ∈ N be a bound for ess sup |a|, and fix γ := 10−6(4K + 2)−4. SinceFr −−−−→
r→∞

0 almost surely,
we can choose r such that

P(|Fr | < 0.2) > 1 − γ2.

Let µr denote the marginal distribution of Xr . We claim that

µr
{
xr ∈ Sr : Pxr (|Fr | < 0.2) > 1 − γ

}
> 1 − γ. (6.43)

To see this, let pr (xr ) := Pxr (|Fr | < 0.2) and α := µr [pr > 1 − γ], then
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1 − γ2 < P(|Fr | < 0.2) =
∫

prdµr =
∫

[pr>1−γ]
prdµr +

∫
[pr ≤1−γ]

prdµr

≤ α + (1 − α)(1 − γ) = 1 − γ(1 − α). So α > 1 − γ.

Choice of xr . Divide [−2K −1, 2K +1] into a family I of 103(4K +2) pairwise disjoint intervals of equal length
10−3. There must be some J ′r ∈ I such that P(ar (Xr ) ∈ J ′r ) ≥ |I|−1 � γ. Then

µr {xr ∈ Sr : ar (xr ) ∈ J ′r } + µr {xr ∈ Sr : Pxr (|Fr | < 0.2) > 1 − γ} > 1.

Choose xr in the intersection of the last two events. Then

Pxr ( |Fr | < 0.2) > 1 − γ and ar (xr ) ∈ J ′r .

Choice of A(r )
N+1: Choose J ′N ∈ I such that P

[
aN+1(XN+1) ∈ J ′N

]
≥ |I|−1.

Let JN := J ′N − J ′r + β
(r )
N := {a− b+ β(r )

N : a ∈ J ′N, b ∈ J ′r }. This is an interval of length |JN | = |J ′N |+ |J
′
r | <

0.01, and JN ⊂ [−4K − 3, 4K + 3]. Define

A
(r )
N+1 := {y ∈ SN+1 : b(r )

N (xr, y) ∈ JN }.

We claim that AN is regular, i.e. lim inf
N→∞

P[XN+1 ∈ A
(r )
N+1] > 0:

P[XN+1 ∈ A
(r )
N+1] ≥ Pxr [XN+1 ∈ A

(r )
N+1] − Cmixθ

N−r, with 0 < θ < 1, see (2.11)

≡ Pxr [b(r )
N (xr, XN+1) ∈ JN ] − Cmixθ

N−r

≡ Pxr
[
aN+1(XN+1) − ar (xr ) + β(r )

N ∈ J ′N − J ′r + β
(r )
N

]
− Cmixθ

N−r

≥ Pxr
[
aN+1(XN+1) ∈ J ′N

]
− Cmixθ

N−r, because ar (xr ) ∈ J ′r
≥ P

[
aN+1(XN+1) ∈ J ′N

]
− 2Cmixθ

N−r ≥ |I|−1−o(1), by the choice of J ′N , (2.11).

Choice of zN : Let ζN := −center of JN , then |ζN | ≤ 2K + 1. Let zN := [ζN ]Z (the integer part of ζN ). Then

zN ∈ Z and zN−E(S(r )
N )√

V (r )
N

→ 0.

Choice of Nk and φ: Choose a sequence Nk → ∞ such that ζNk
→ a. Let I := −a + [0.4, 0.6], and choose

φ ∈ Cc (R) such that 1[0.3,0.7] ≤ φ ≤ 1[0.2,0.8].

The Contradiction. With these choices, if (b) holds but Gess (X, f) = Z, then

|I | = lim
N→∞

√
2πV (r )

N Pxr
(
S(r )
N − zN ∈ I ��XN+1 ∈ A

(r )
N+1

)
, by (b)

= lim
k→∞

√
2πV (r )

Nk
Pxr

(
S(r )
Nk
− zNk

∈ I ��b(r )
Nk

(Xr, XNk+1) ∈ JNk

)
, by choice of xr,A

(r )
N+1

!
≤ lim inf

k→∞

√
2πV (r )

Nk
Pxr

(
S(r )
Nk
− b(r )

Nk
− zNk

∈ [0.3, 0.7] �� b(r )
Nk
∈ JNk

)
,

because I − b(r )
Nk
⊂ I − JNk

⊂ I +
(
ζNk
−
|JNk

|

2 , ζNk
+
|JNk

|

2

)
, and ζNk

→ a, so for k � 1, I − b(r )
Nk
⊂

I + (a − 0.1, a + 0.1) ⊂ [0.3, 0.7]. Hence

|I | ≤ lim
k→∞

√
2πV (r )

Nk
Exr

(
φ(S(r )

Nk
− b(r )

Nk
− zNk

) ��A(r )
N+1

)
, because φ ≥ 1[0.3,0.7]

=
∑
m∈Z

Exr [φ(m +Fr )] ≤
∑
m∈Z

Pxr
(
m +Fr ∈ [0.2, 0.8]

)
≤ Pxr

(
|Fr | ≥ 0.2

)
< γ

by (6.42) and the choice of r , xr , and A(r )
N+1. But |I | = 0.2 and γ < 10−6.
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(a)⇒(c): Fix r , t > 0, x ∈ Sr , and some sequence of measurable events An ⊂ Sn such that P(Xn ∈ An) is
bounded below. We need to show that if 0 < b − a < t, then

Px (S(r )
N ∈ (a, b) + tZ|XN+1 ∈ AN+1) −−−−−→

N→∞

|a − b|
t

.

By standard approximation arguments, it suffices to show that for every continuous periodic function φ(x)
with period t,

Ex (φ(S(r )
N ) |XN+1 ∈ AN+1) −−−−−→

N→∞

1
t

∫ t

0
φ(x)dx. (6.44)

By the Stone-Weierstrass theorem, it is sufficient to do this for trigonometric polynomials φ(u) =∑
|n |<L cne2πinu/t . For such φ, we have the following:

Ex (φ(S(r )
N ) |XN+1 ∈ AN+1) =

∑
|n |<L

cnEx (e2πinS(r )
N /t |XN+1 ∈ AN+1)

= c0 +
∑

0< |n |<L
ΦN

(
x, 2πn

t
��AN+1

)
, with ΦN as in §5.2.2.

As we saw in the proof of (a)⇒(b), (a) implies that (Xr, fr ) are non-lattice and irreducible for all r . Therefore
Gess (Xr, fr ) = R, and H (Xr, fr ) = {0}. It follows that the structure constants D(r )

N (ξ) of (Xr, fr ) tend to infinity
for all ξ , 0, and in particular for ξ = 2πn

t , n , 0. By (5.19), ΦN (x, 2πn
t |AN+1) → 0. (6.44) follows.

(c)⇒(a): We need the following lemma.

Lemma 6.9 Fix a regular sequence of sets AN , x, and t > 0, and suppose that Px (S(r )
N ∈ (a, b) + tZ|XN+1 ∈

AN+1) −−−−−→
N→∞

|a − b|/t for all intervals (a, b) such that 0 < b− a < t. Then the convergence is uniform in (a, b).

Proof Without loss of generality, (a, b) ⊂ [0, t). Given ε > 0, we need to find an N0 such that

���Px
(
S(r )
N ∈ (a, b) + tZ|XN+1 ∈ AN+1

)
−
|a−b |
t

��� < ε for all N > N0 and a < b.

Choose δ > 0 such that
4δ
t
+ δ < ε,

and divide [0, t] into finitely many equal disjoint intervals {Ij } with length |Ij | < δ. Choose N0 so that for all
N > N0, for all Ij ,

�����
Px (S(r )

N ∈ Ij + tZ|XN+1 ∈ AN+1) −
|Ij |
t

�����
<
δ |Ij |

t
. (6.45)

I := (a, b) can be approximated from within and from outside by finite (perhaps empty) unions of intervals
Ij whose total length differs from |a − b| by at most 2δ.

Summing (6.45) over these unions we see that for all N > N0,

Px (S(r )
N ∈ I + tZ|XN+1 ∈ AN+1) ≤

|a − b| + 2δ
t

+
δ(|a − b| + 2δ)

t

Px (S(r )
N ∈ I + tZ|XN+1 ∈ AN+1) ≥

|a − b| − 2δ
t

−
δ |a − b|

t
.

By choice of δ, |Px (S(r )
N ∈ I + tZ|XN+1 ∈ AN+1) − |a−b |t | < ε . �

We can now prove that (c)⇒(a). Suppose (Xr, fr ) satisfies the “mixing mod t LLT" for all r and t. This
property is invariant under centering, because of Lemma 6.9. So we may assume without loss of generality that
E[ fn(Xn, Xn+1)] = 0 for all n.

First we claim that (X, f) is not center-tight. Otherwise there are constants cN and M such that P(|SN − cN | >
M) < 0.1 for all N . Take t := 5M and Nk → ∞ such that cNk

−−−−→
k→∞

c mod tZ, then by the bounded convergence
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theorem and (c),

0.9 ≤ lim
k→∞

P
(
SNk
∈ [c − 2M, c + 2M]

)
≤ lim

N→∞
P
(
SN ∈ [c − 2M, c + 2M] + tZ

)
=

∫
S1

lim
N→∞

Px
(
SN ∈ [c − 2M, c + 2M] + tZ|XN+1 ∈ SN+1

)
µ1(dx) =

4M
t
= 0.8.

Thus (X, f) is not center-tight, and VN → ∞.
Assume by way of contradiction that Gess (X, f) , R, then Gess (X, f) = tZ for some t, and t , 0 because

VN → ∞. Without loss of generality t = 1, otherwise rescale f. By the reduction lemma, we can write

fn(x, y) + an(x) − an+1(y) = Fn(x, y) + hn(x, y) + cn

where ak, Fk, hk, ck are uniformly bounded, Fn are integer valued, ck are constants, hn have summable variances,
and E(hn) = 0.

Then F :=
∑
n≥1

hn(Xn, Xn+1) converges a.s., and Fr :=
∑
n≥r

hn(Xn, Xn+1) −−−−→
r→∞

0 almost surely. Working as

in the proof of (b)⇒(a), we construct r > 1, xr ∈ Sr , measurable sets AN+1 ⊂ SN+1, and intervals JN with the
following properties:

• |Exr (e2πiFr ) | > 0.9,
• JN are intervals with lengths less than 10−4 and centers ζN = O(1),
• y ∈ AN+1 ⇒ ar (xr ) − aN+1(y) ∈ JN ,
• and lim inf

N→∞
P[XN+1 ∈ AN+1] > 0.

If Xr = xr and XN+1 ∈ AN+1, then |ar (Xr ) − aN+1(XN+1) − ζN | ≤ |JN |, so

����Exr

(
e2πiS(r )

N |XN+1 ∈ AN+1
) ���� ≥

����Exr

(
e2πi(S(r )

N +ar−aN+1−ζN ) |XN+1 ∈ AN+1
) ���� − 0.1

!
≥ |Exr (e2πiFr ) | − 0.2 for N � 1, by (6.35) for (Xr, fr − ∇a) with s = 0, m = 1
> 0.7, by the choice of xr .

But by (c), Exr

(
e2πiS(r )

N |XN+1 ∈ AN+1
)
−−−−−→
N→∞

1
2π

∫ 2π
0 eiudu = 0, a contradiction. �

6.2.4 Universal Bounds for Markov Chains

The aim of this section is to prove Theorem 6.6. We begin with two simple lemmas.

Lemma 6.10 Suppose F is a real random variable. If b − a = L > 0, then(
1 −

δ

L

)
|a − b| < δ

∑
m∈Z

E
[
1(a,b) (mδ +F)

]
<

(
1 +

δ

L

)
|a − b|.

Proof By the monotone convergence theorem,

δE *
,

∑
m∈Z

1(a,b) (mδ +F)+
-
≡ δ · E

(
#[(a, b) ∩ (F + δZ)]

)
.

For each realization of F, (a, b) ∩ (F + δZ) contains at least (|a − b|/δ) − 1 points, and at most (|a − b|/δ) + 1
points. The lemma follows. �
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Proof of Theorem 6.6: By Lemma 2.27, it is sufficient to consider the case when P[X1 = x] = 1 for some x. In
this case Px = P,Ex = E.

If δ(f) = ∞ then there is nothing to prove, and if δ(f) = 0 then Gess (X, f) = R, and we can use Theorem 5.1.
It remain to consider the case when δ := δ(f) ∈ (0,∞).

Suppose zN−E(SN )
√
VN

→ z. Let F and bN (X1, XN ) be as in Theorem 6.3.

Upper Bound (6.7): Suppose (a, b) is an interval of length L > δ.
Suppose zN−E(SN )

√
VN

→ z, and write zN = zN + ζN, where zN ∈ δZ and |ζN | ≤ δ.
Fix ε > 0 small and choose φ ∈ Cc (R) such that

1[a−10δ,b+10δ] ≤ φ ≤ 1(a−10δ−ε,b+10δ+ε) .

By Theorem 6.3, |bN | ≤ 9δ, so 1(a,b) (SN − zN ) ≤ φ(SN − zN − bN ), and

lim sup
N→∞

√
2πVNP[SN − zN ∈ (a, b)] ≤ lim sup

N→∞

√
2πVNE[φ(SN − zN − bN )]

= e−z
2/2δ

∑
m∈Z

E[φ(mδ +F)], by Theorem 6.3

≤ e−z
2/2δ

∑
m∈Z

E[1(a−10δ−ε,b+10δ+ε) (mδ +F)], since φ ≤ 1(a−10δ−ε,b+10δ+ε)

≤

(
1 +

δ

|a − b| + 20δ + 2ε

)
e−z

2/2(|a − b| + 20δ + 2ε), by Lemma 6.10

≤ ( |a − b| + 21δ + 2ε) e−z
2/2 ≤

(
1 +

21δ + 2ε
L

)
e−z

2/2 |a − b|.

Since ε is arbitrary, the result follows.

Lower Bound (6.8): Fix an interval (a, b) with length bigger than some L > δ(f). Recall that |bN | are uniformly
bounded and that bN = bN (X1, XN+1). Choose some K so that P[|bN | ≤ K] = 1. Since P[X1 = x] = 1,
Px[|bN | ≤ K] = 1.

Next, divide [−K, K] into k disjoint intervals Ij,N of equal length 2K
k , with k large. For each N ,∑

Px [bN ∈Ij,N ]≥k−2

Px[bN ∈ Ij,N ] ≥ 1 −
1
k
,

because to complete the left-hand-side to one we need to add the probabilities of [bN ∈ Ij,N ] for the j such that
Px[bN ∈ Ij,N ] < k−2, and 1 ≤ j ≤ k.

Therefore, we can divide {Ij,N } into two groups of size at most k: The first contains the Ij,N with Px[bN ∈

Ij,N ] ≥ k−2, and the second corresponds to events with total probability less than or equal to 1
k .

Re-index the intervals in the first group (perhaps with repetitions) in such a way that it takes the form Ij,N
( j = 1, . . . , k) for all N . For each 1 ≤ j ≤ k, let

A j,N := {y ∈ SN+1 : bN (x, y) ∈ Ij,N }.

These are regular sequences of events, because by the assumption P[X1 = x] = 1, P[XN+1 ∈ A j,N ] =
Px[bN (X1, XN+1) ∈ Ij,N ] ≥ k−2.

Let β j,N := center of Ij,N and set z j,N := zN − β j,N . Every sequence has a subsequence such that z j,N
converges mod δZ. We will henceforth assume that z j,N = z j,N + ζ0 + ζ j,N where z j,N ∈ δZ and |ζ j,N | < K/k,
and |ζ0 | < δ is fixed.

Recall that |Ij,N | = 2K/k. Conditioned on A j,N , bN = β j,N ±
K
k , therefore z j,N + ζ0 + bN = zN ± 3K

k . It
follows that if SN − z j,N − bN ∈

(
a + ζ0 +

3K
k , b + ζ0 −

3K
k

)
, then SN − zN ∈ (a, b).
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There is no loss of generality in assuming that a + ζ0 ±
3K
k are not atoms of the distribution of F, otherwise

perturb K a little. Since A j,N is a regular sequence, we have by Theorem 6.3(2) and Lemma 6.10 that

lim inf
N→∞

√
2πVNPx (SN − zN ∈ (a, b) |XN+1 ∈ A j,N )

≥ lim inf
N→∞

√
2πVNPx (SN − z j,N − bN ∈ (a + ζ0 +

3K
k , b + ζ0 −

3K
k ) |XN+1 ∈ A j,N )

= δe−z
2/2

∑
m∈Z

Ex[1
(a+ζ0+

3K
k ,b+ζ0−

3K
k )

(mδ +F)] ≥
(
1 − δ

L

) (
|a − b| − 6K

k

)
e−z

2/2.

We now multiply these bounds by Px[XN+1 ∈ A j,N ] and sum over j. This gives

lim inf
N→∞

√
2πVNPx

(
[SN − zN ∈ (a, b)] ∩

k⋃
j=1

[XN+1 ∈ A j,N ]
)

≥
(
1 − δ

L

) (
|a − b| − 6K

k

)
e−z

2/2
(
1 − 1

k

)
.

Passing to the limit k → ∞, we obtain

lim inf
N→∞

√
2πVNPx ([SN − zN ∈ (a, b)]) ≥

(
1 −

δ

L

)
e−z

2/2 |a − b|.

Proof of Equation (6.9). Let A be the positive functional on Cc (R) defined by (6.4), and let µA be the Radon
measure on R which represents A.

Clearly, µA is invariant under translation by δ = δ(f). By Lemma 6.10, lim
L→∞

µA[0, L]
L

= 1. Necessarily, for
each a, µA[a, a + δ) = δ, and

∀k ∈ N µA ([a, a + kδ)) = kδ. (6.46)

Given kδ < L < (k+1)δ and an interval (a, b) of length L, take two intervals I−, I+ such that I− ⊂ (a, b) ⊂ I+,
µA (∂I−) = µA (∂I+) = 0, |I− | = kδ, |I+ | = (k + 1)δ. Choose φ−, φ+ ∈ Cc (R) such that 1I− < φ− < 1[a,b] <
φ+ < 1I+ .

By Theorem 6.3, for large N , ez2/2√2πVNP(SN − zN ∈ (a, b)) is sandwiched between A(φ−) and A(φ+)
which in turn is sandwiched between µA (I−) = kδ and µA (I+) = (k + 1)δ (see (6.46)). The proof of the
theorem is complete. �

6.2.5 Universal Bounds for Markov Arrays

The proof in the last section uses Theorem 6.3, and is therefore restricted toMarkov chains.Wewill now consider
the more general case of arrays.

Theorem 6.11 Let X be a uniformly elliptic Markov array, and f an a.s. uniformly bounded additive functional
which is stably hereditary and not center-tight.1 Suppose zN−E(SN )

√
VN

−−−−−→
N→∞

z ∈ R. For every L, ε > 0 there is
Nε (L) > 0 such that for every [a, b] ⊂ [−L, L] such that |a − b| > 2δ(f) + ε , and for all N > Nε (L),

1
3

*
,

e−z2/2 |a − b|
√

2πVN

+
-
≤ P(SN − zN ∈ (a, b)) ≤ 3 *

,

e−z2/2 |a − b|
√

2πVN

+
-
.

Remark. Recall that δ(f) ≤ 6ess sup |f|. Hence the theorem applies to every interval with length bigger than
13ess sup |f|.

1 In particular, the theorem applies to all a.s. uniformly bounded additive functionals on uniformly elliptic Markov chains, assuming
only thatVN → ∞.
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The upper bound in the Theorem 6.11 holds in much greater generality, for all sequences zN , and without
assuming that f is stably hereditary or non center-tight:

Theorem 6.12 (Anti-Concentration Inequality) For each K, ε0 and ` there is a constant C∗ = C∗(K, ε0, `)
such that if f is an additive functional of a uniformly elliptic Markov array with ellipticity constant ε0, and if
|f| ≤ K a.s., then for every N ≥ 1, x ∈ S(N )

1 , and for each interval J of length `,

Px (SN ∈ J) ≤
C∗
√

VN

.

Recall that by our conventions, the Fourier transform of an L1 function γ : R→ R is γ̂(x) =
∫ ∞
−∞

e−itxγ(t)dt .
Fix some b > 0, and let

ψb (t) :=
π

4b
1[−b,b](t), ψ̂b (x) =

π

2b

(
sin(bx)

x

)
.

Lemma 6.13 1 ≤ ψ̂b (x) ≤
π

2
for |x | ≤

π

2b
, and |ψ̂b (x) | < 1 for |x | >

π

2b
.

Proof The function ψ̂b (x) is even, with zeroes at zn = πn/b, n ∈ Z \ {0}. The critical points are c0 = 0
and ±cn, where n ≥ 1 and cn is the unique solution of tan(bcn) = bcn in

(
zn, zn + π

2b

)
. It is easy to see that

cn = zn + π
2b − o(1) as n → ∞, and that sgn[ψ̂b (cn)] = (−1)n, |ψ̂b (cn) | ≤ 1

2n, ψ̂b (cn) ∼ (−1)n
2n as n → ∞.

So ψ̂b attains the global maximum ψ̂b (0) = π
2 at c0, and |ψ̂b (t) | ≤ 1

2n everywhere on [πn/b, π(n + 1)/b]. In
particular, |ψ̂b (t) | < 1/2 for |t | ≥ π/b.

On (0, π/b), ψ̂b decreases from ψ̂b (0) = π
2 to ψ̂b ( πb ) = 0, passing through ψ̂b ( π2b ) = 1. It follows that

1 ≤ ψ̂b (t) ≤ π
2 on (0, π2b ) and |ψ̂b (t) | < 1 for t > π

2b . The lemma follows, because ψ̂b (−t) = ψ̂b (t). �

Lemma 6.14 There exist two continuous functions γ1(x), γ2(x) such that supp(γi) ⊂ [−2, 2]; γ1(0) > 1
3 ;

γ2(0) < 3; and γ̂1(x) ≤ 1[−π,π](x) ≤ γ̂2(x) (x ∈ R).

Proof Throughout this proof, ψ∗n := ψ ∗ · · · ∗ ψ (n times), and ∗ denotes the convolution. Let γ1(t) :=
1
4 [ψ∗41

2
(t) − ψ∗21

2
(t)]. Then γ̂1(x) = 1

4 [ψ̂ 1
2
(x)4 − ψ̂ 1

2
(x)2]. By Lemma 6.13, 1 ≤ ψ̂ 1

2
≤ π

2 on [−π, π] and |ψ̂ 1
2
| < 1

outside [−π, π]. So

max
|x | ≤π

γ̂1(x) ≤ max
1≤y≤ π2

1
4

(y4 − y2) =
1
4

[(
π

2

)4
−

(
π

2

)2]
< 1,

max
|x | ≥π

γ̂1(x) ≤ max
|y | ≤1

1
4

(y4 − y2) = 0.

So γ̂1(x) ≤ 1[−π,π](x) for all x ∈ R.
It is obvious from the definition of the convolution that supp(γ1) ⊂ [−2, 2].
Here is the calculation showing that γ1(0) > 1

3 :

(ψ∗2b )(t) =
π2

16b2 (1[−b,b] ∗ 1[−b,b])(t) =
π2

16b2 1[−2b,2b](t)(2b − |t |);

(ψ∗4b )(0) = (ψ∗2b ∗ ψ
∗2
b )(0)

=
π4

256b4

∫ 2b

−2b
(2b − |t |)2dt =

π4

128b4

∫ 2b

0
(2b − t)2dt =

π4

128b4 ·
(2b)3

3
=

π4

48b
.

So ψ∗41
2

(0) = π4

24 , ψ
∗2
1
2

(0) = π2

4 , and γ1(0) = 1
4 ( π

4

24 −
π2

4 ) > 1
3 .

Next we set γ2(t) := (ψ 1
2
∗ ψ 1

2
)(t) ≡ π2

4 1[−1,1](t)(1 − |t |). Then supp(γ2) = [−1, 1] and γ2(0) = π2

4 < 3.
Finally, γ̂2(x) ≥ 1[−π,π](x), because by Lemma 6.13,
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• γ̂2(t) = (ψ̂ 1
2
)2(x) ≥ 1 for all |x | ≤ π

2· 12
= π, and (trivially)

• γ̂2(t) = (ψ̂ 1
2
)2(x) ≥ 0 for all |x | ≥ π. �

Lemma 6.15 For every a > 1, zN ∈ R and x (N )
1 ∈ S1, we have

P
x (N )

1
( |SN − zN | ≤ a) ≥

a
π

∫ 2π/a

−2π/a
E
x (N )

1
(e−iξ (SN−zN ))γ1

(
aξ
π

)
dξ, (6.47)

P
x (N )

1
(|SN − zN | ≤ a) ≤

a
π

∫ 2π/a

−2π/a
E
x (N )

1
(e−iξ (SN−zN ))γ2

(
aξ
π

)
dξ. (6.48)

Proof Let γi (t) be the functions from Lemma 6.14, and set I := [−a, a], then γ̂1

(
πt
a

)
≤ 1I (t) ≤ γ̂2

(
πt
a

)
.

Therefore, for every choice of x (N )
1 ∈ S

(N )
1 (N ≥ 1),

P
x (N )

1
(SN − zN ∈ I) = E

x (N )
1

[1I (SN − zN )] ≥ E
x (N )

1

[
γ̂1

(
π(SN − zN )

a

)]

= E
x (N )

1

[∫ ∞

−∞

e−i π ta (SN−zN )γ1(t)dt
]
=

∫ ∞

−∞

E
x (N )

1
(e−i π ta (SN−zN ))γ1(t)dt .

Recalling that supp(γ1) ⊂ [−2, 2], and substituting t = aξ/π, we obtain (6.47). The proof of (6.48) is similar.�

Lemma 6.16 Under the assumptions of Theorem 6.11, if Gess (X, f) = Z and zN−E(SN )
√
VN

converges to a real
number z, then for every a > 1

√
VN

2π/a∫
−2π/a

E
x (N )

1
(e−iξ (SN−zN ))γi

(
aξ
π

)
dξ −−−−−→

N→∞

√
2πe−

1
2 z

2
γi (0).

Moreover, the convergence is uniform on compact subsets of a ∈ (1,∞).

Proof. In what follows we fix i ∈ {1, 2}, and let γ(ξ) := γi
(
aξ
π

)
. Divide [− 2π

a ,
2π
a ] into segments Ij of length at

most δ̃, where δ̃ is the constant in Lemma 5.8 and Corollary 5.10, making sure that I0 is centered at zero. Let

Jj,N :=
∫
Ij

E
x (N )

1
(e−iξ (SN−zN ))γ(ξ)dξ.

Claim 1.
√

VN J0,N −−−−−→
N→∞

√
2πe−z2/2γ(0).

Proof of the Claim. The proof is similar to the proof of (5.28), and we use the notation of that proof. Applying
Corollary 5.10 to the interval I0, and noting that AN (I0) = 0 and ξ̃N = 0, we find that |E

x (N )
1

(e−iξ (SN−zN )) | ≤

C̃ exp(−ε̂ξ2VN ).
So for R > 1, √

VN

∫
[ξ ∈I0: |ξ |> R√

VN
]
E
x (N )

1
(e−iξ (SN−zN ))γ(ξ)dξ = O(e−ε̂R

2
).

Similarly, for all N large enough,

√
VN

∫
[ξ ∈I0: |ξ | ≤ R√

VN
]
E
x (N )

1

(
e−iξ (SN−zN )

)
γ(ξ)dξ =

∫ R

−R

E
x (N )

1

(
e
−iη SN −zN√

VN

)
γ

(
η
√
VN

)
dη =
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−R

E
x (N )

1

(
e
−iη SN −E(SN )

√
VN

)
e

iη zN −E(SN )
√
VN γ

(
η
√
VN

)
dη !
=

∫ R

−R

e−
1
2η

2+iηzγ(0)dη+oN→∞(1) uniformly on compacts

(6.49)
=
√

2πe−
1
2 z

2
γ(0) + oR→∞(1) + oN→∞(1).

Let us justify the equality (6.49). Arguing as in the proof of (6.20), one shows that |E(SN )−E
x (N )

1
(SN ) | = O(1)

and Var(SN |X
(N )
1 = x (N )

1 ) ∼ VN , therefore

zN − E(SN )
√

VN

→ z ⇔
zN − Ex (N )

1
(SN )√

Var(SN |X
(N )
1 = x (N )

1 )
→ z.

(6.49) follows from Dobrushin’s CLT for Yx := X, conditioned on X (N ) = x (N )
1 .

In summary,
√

VN J0,N =
√

2πe−
1
2 z

2
γ(0) + oR→∞(1) + oN→∞(1). Fixing R, we see that lim sup

√
VN J0,N and

lim inf
√

VN J0,N are both equal to
√

2πe−
1
2 z

2
γ(0) + oR→∞(1).

Passing to the limit R → ∞ gives us that the limit exists and is equal to
√

2πe− 1
2 z

2
γ(0). The convergence is

uniform on compact subsets of a.

Claim 2.
√

VN Jj,N −−−−−→
N→∞

0 for every j , 0.

Proof of the Claim. Since Gess (X, f) = Z, the co-range is H (X, f) = 2πZ. So

Ij ⊂ [− 2π
a ,

2π
a ] \ int(I0) ⊂ a compact subset of R \ H (X, f).

This implies by the stable hereditary property of f that DN (ξ) −−−−−→
N→∞

∞ uniformly on Ij , whence by (5.18),

|E
x (N )

1
(e−iη(SN−zN )) | −−−−−→

N→∞
0 uniformly on Ij .

Let Aj,N := − log{sup |Ex (e−iξ (SN−zN )) | : (x, ξ) ∈ S(N )
1 × Ij }, then Aj,N −−−−−→

N→∞
∞, and this divergence is

uniform for a ranging over compact subsets of (1,∞).
From this point onward, the proof of the claim is identical to the proof of (5.29). We omit the details.
The lemma follows by summing over all subintervals Ij in [− 2π

a ,
2π
a ], and noting that the number of these

intervals is uniformly bounded
(
by 1 + 4π

δ̃

)
. �

Proof of Theorem 6.11. If Gess (X, f) = R then the theorem follows from the LLT in the irreducible case.
Otherwise (since f is not center-tight), Gess (X, f) = tZ for some t > 0, and there is no loss of generality in
assuming that Gess (X, f) = Z.

In this case our interval I := [a, b] has length bigger than 2. Notice that we can always center I by modifying
zN by a constant. So we may take our interval to be of the form I = [−a, a], with a > 1.

Lemma 6.16, (6.47), (6.48), and the inequalities γ1(0) > 1
3 and γ2(0) < 3 imply that for every choice of

{x (N )
1 }N ≥1, for all N sufficiently large,

1
3
·
|I |

√
2πVN

e−z
2/2 ≤ P

x (N )
1

(SN − zN ∈ I) ≤ 3 ·
|I |

√
2πVN

e−z
2/2. (6.50)

Thus we have proved the theorem for all Markov arrays with point mass initial distributions. By Lemma 2.27,
the theorem follows for general arrays. �

Proof of Theorem 6.12. It is sufficient to prove the theorem for N such that VN ≥ 1. If VN < 1, the theorem
holds (trivially) provided that C∗ ≥ 1.

It is also sufficient to prove the result for intervals J with length 4, since longer intervals can be covered by
no more than |J |/4 + 1 such intervals. Thus J = ζ + [−2, 2] and ζ :=center of J. By (6.48) (with a = 2 and
zN := ζ),
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Px (SN ∈ J) ≤
2
π
‖γ2‖∞

∫ π

−π
|ΦN (x, ξ) | dξ.

To prove the theorem, we need to bound the integral from above.
The argument is similar to the previous proof, except that we cannot assume that Gess (X, f) = Z or VN → ∞,

and we must pay closer attention to the uniformity of the estimates in N (the statement in Theorem 6.12 is for
all N , not just for N � 1).

Recall the notation
AN (I) := − log sup

{
|ΦN (x, ξ) | : (x, ξ) ∈ S(N )

1 × I
}
,

and let ( x̃N (I), ξ̃N (I)) ∈ I ×S(N )
1 be a pair where

|AN (I) | ≤ − log |ΦN ( x̃N (I), ξ̃N (I)) | + log 2.

By Lemma 5.8 and Corollary 5.10, there are constants δ̃, C̃, ε̂, c > 0 which depend only on ε0 and K , so that if
|I | ≤ δ̃, then for all (x, ξ) ∈ S(N )

1 × I and N ,

|ΦN (x, ξ) | ≤ C̃ exp
(
−ε̂ VN (ξ − ξ̃N (I))2 + c|ξ − ξ̃N (I) |

√
VN AN (I)

)
. (6.51)

We now divide [−π, π] into no more than 4π/δ̃ + 1 intervals of length at most δ̃/2. We claim that for each

interval I in our partition,
∫
I

|Φ(x, ξ) |dξ ≤ const.V−1/2
N .

To prove this we consider two cases.

(1) Suppose A(I) ≤ 1, then I ⊂ [ξ̃N (J) − δ̃/2, ξ̃N (J) + δ̃/2], and by (6.51),∫
I

ΦN (x, ξ) |dξ ≤ C̃
∫ δ̃/2

−δ̃/2
e−ε̂VN ξ

2+c |ξ |
√
VN dξ ≤ const.V−1/2

N ,

with the constant only depending on ε̂ and c, whence only on K and ε0.

(2) If AN (I) ≥ 1, then (5.30) (with R = 1) gives
∫
I

|ΦN (x, ξ) |dξ≤const.V−1/2
N ,with the constant only depending

on K and ε0.

Summing over all intervals I, and recalling that there are at most 4π/δ̃ + 1 such intervals, we obtain∫ π

−π
|ΦN (x, ξ) |dξ ≤ const.V−1/2

N , with the constant only depending on ε0 and K . As explained at the begin-
ning of the proof, this implies the theorem. �

It is interesting to note that the anti-concentration inequality could be used to provide a different justification
for Stone’s trick of using φ ∈ L1 with Fourier transform with compact support in the proof of the LLT (see
§5.2.1).

Namely let f be an irreducible additive functional with algebraic range R, such that E(SN ) = 0 for all N .
Approximating 1[a,b] from above and below by compactly supported functions we see that the LLT follows if
one could show that

lim
N→∞

√
VNE (φ(SN − zN )) =

1
√

2π
e−z

2/2
∫
R
φ(x)dx (6.52)

for each C2 compactly supported function φ and every sequence zN such that lim
N→∞

zN
√

VN

= z. Fix a small ε > 0

and let φ be a function such that the Fourier transform of φ has compact support,
∫
R
φ(x)dx =

∫
R
φ(x)dx and 2

2 To find such a function take a large L and define φ by the condition that the Fourier transforms of φ and φ are related by
φ̂(ξ ) = φ̂(ξ )χL (ξ ) where χL is smooth, χL (ξ ) = 1 on −[L, L], 0 ≤ χL (ξ ) ≤ 1 for |ξ | ∈ [L, L + 1], and χL (ξ ) = 0 for

ξ < [−(L+1), L+1]. To verify (6.53) we use the Fourier inversion formula, and the obvious inequality |ψ̂(ξ ) | ≤
1
ξ2

∫
|ψ′′(x) |dx.
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���φ(x) − φ(x)��� ≤
ε

1 + x2 . (6.53)

Combining (6.53) and Theorem 6.12 we get

���E
(
φ(SN − zN ) − φ(SN − zN )

) ��� ≤ ε
∞∑
j=0

P(|SN − zN | ∈ [ j, j + 1))
1 + j2 ≤ 2C∗ε

where C∗ is the constant obtain by applying Theorem 6.12 with ` = 1.
Since ε is arbitrary, we see that to prove the LLT, it is sufficient to show (6.52) for all φ with compactly

supported Fourier transform. This justifies “Stone’s trick." We will meet this idea again, when we discuss large
deviations, see §7.3.8.

6.3 Notes and References

Theorem 6.3 extends an earlier result for sums of independent random variables, due to Dolgopyat [56]. In this
case, one can take bN to be constants, see Theorem 8.3(2b) and the discussion in §8.2.

The connection between the LLT and mixing mod t LLT was considered for sums of independent random
variables by Prokhorov [163], Rozanov [169], and Gamkrelidze [76].

As far as we know, the first paper devoted to the perturbative analysis of non stationary product of transfer
operators is due to Bakhtin [12].

The study of the concentration function ΛN (h) = sup
x∈R

P(SN ∈ [x, x + h]) goes back to works of Paul Lévy

[130] and Wolfgang Doeblin [53]. The idea to use the characteristic function to study this function is due
to Esseen [71, 72]. We refer the reader to [156, Chapter III] for a detailed discussion, and the history of the
subject. Our proof of the anti-concentration inequality (Theorem 6.12) follows [156, Section III.1] closely. [156]
considers independent random variables, but given the results of §5.2.2, the argument in the Markov case is
essentially the same.

For long intervals, the universal bounds in §6.2.4 and 6.2.5 can be obtained from the aBerry-Esseen Estimate
for the rate of convergence in the CLT. Suppose we could show that ∃L s.t.

sup
z∈R

�����
P

(
SN − E(SN )
√

VN

≤ z
)
−

1
√

2π

∫ z

−∞

e−t
2/2dt

�����
≤

L
√

VN

.

Then ∃M such that for all |a − b| > M , if zN−E(SN )
√
VN

→ z, then for all N large enough, P[SN − zN ∈ (a, b)]

equals
e−z2/2 |a − b|
√

2πVN

up to bounded multiplicative error.

For the additive functionals considered in this monograph the Berry-Esseen estimate has been obtained in
[59] using the results from Chapters 3–5. The Berry-Esseen approach has the advantage of giving information
on the time N when the universal estimates kick in, but it only applies to large intervals (the largeness depends
on the bound on sup

k

‖ fk ‖∞ but it does not take into account the graininess constant δ(f)). By contrast, the results

of §6.2.5 apply to intervals of length larger than δ(f), which is optimal, but do not say how large N should be for
the estimates to work.



Chapter 7
Local Limit Theorems for Moderate Deviations and Large
Deviations

Abstract We prove the local limit theorem in the regimes of moderate deviations and large deviations. In
these cases the asymptotic behavior of P(SN − zN ∈ (a, b)) is determined by the Legendre transforms of the
log-moment generating functions.

7.1 Moderate Deviations and Large Deviations

Suppose f is an irreducible and a.s. uniformly bounded additive functional on a uniformly elliptic Markov chain
X. Let

SN = f1(X1, X2) + · · · + fN (XN, XN+1) , VN := Var(SN ),

and suppose VN → ∞.
In the previous chapters, we analyzed P(SN − zN ∈ (a, b)) as N → ∞, in the regime of local deviations,

zN−E(SN )
√
VN

→ const. In this chapter we consider the following more general scenarios, which include cases when
zN−E(SN )
√
VN

→ ∞:

(1) Moderate Deviations: zN − E(SN ) = o(VN ),

(2) Large Deviations: |zN − E(SN ) | ≤ εVN for some ε > 0 small enough.

We should explain why we did not define the large deviations regime by the more natural condition that
|zN − E(SN ) | ≥ εVN for some ε > 0. We should also explain the role of the upper bound on |zN − E(SN ) |/VN .

The decision not to impose a lower bound on |zN − E(SN ) |/VN is mainly a matter of convenience; It allows
us to view moderate deviations as a special case of large deviations, and handle the two regimes simultaneously.
The decision to impose an upper bound on |zN − E(SN ) |/VN reflects a limitation of our methods: We do not
know how to handle the degeneracies which may occur when zN−E(SN )

VN
is “too large." Let us indicate briefly

what could go wrong in this case.
Themost extreme scenario iswhen zN−E(SN )

VN
>rN , where rN=

ess sup SN−E(SN )
VN

. In this case,P[SN−zN ∈ (0,∞)]=0
for all N . A more subtle degeneracy may happen when zN−E(SN )

VN
falls near the boundary of the domain of the

Legendre transform of F c
N (t) := 1

VN
logE(et (SN−E(SN ))) (Legendre transforms are discussed in §7.2.2.). The

following example shows that in this case, the probabilities P[SN − zN ∈ (a, b)] may be so sensitive to zN , that

they could have different asymptotic behaviors for z(1)
N , z(2)

N with the same limit lim
N→∞

z (i)
N −E(SN )

VN
:

Example 7.1 Let SN := X1+ · · ·+XN , where Xi are identically distributed independent random variables, equal
to −1, 0, 1 with equal probabilities.

Here E(SN ) = 0, VN = 2N/3, and the Legendre transforms of the log-moment generating functions have
domains (− 3

2,
3
2 ). Clearly: if zN = N , thenP[SN−zN ∈ (0, 2)] = 0; if zN = N−1, thenP[SN−zN ∈ (0, 2)] = 3−N ;

115
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if zN = N − 2, then P[SN − zN ∈ (0, 2)] = 3−N N . In all cases, zN−E(SN )
VN

→ 3
2 , but the asymptotic behavior of

P[SN − zN ∈ (0, 2)] is completely different.

The assumption that |zN − E(SN ) | < εVN with ε “small enough" guarantees that zN−E(SN )
VN

falls “well inside"
the domain of the Legendre transform of F c

N , and this prevents these pathologies. A detailed discussion of the
sequences {zN } to which our results apply appears in Section 7.4.

It is instructive to compare the regime of large deviations to the regime of local deviations from the point of
view of universality.

In the regime of local deviations, the asymptotic behavior of P[SN − zN ∈ (a, b)] does not depend on the
details of the distributions of fn(Xn, Xn+1). It depends only on rough features such as Var(SN ), the algebraic
range, and (in case the algebraic range is tZ) on the constants cN s.t. SN ∈ cN + tZ almost surely.

By contrast, in the regime of large deviations the asymptotic behavior of P[SN − zN ∈ (a, b)] depends on the
entire distribution of SN . The dependence is through the Legendre transform of logE(etSN ), a function which
encodes the entire distribution of SN , not just its rough features.

We will consider two partial remedies to the lack of universality:

(a) Conditioning: The distribution of SN − zn conditioned on SN − zN > a has a universal scaling limit, see
Corollary 7.10.

(b) Moderate Deviations: If |zN − E(SN ) | = o(Var(SN )), then P[SN − zN ∈ (a, b)] have universal lower and
upper bounds (Theorems 7.5 and 7.6).

7.2 Local Limit Theorems for Large Deviations

7.2.1 The Log Moment Generating Functions

Suppose |f| < K almost surely. For every N such that VN ,0, we define the normalized log moment generating
function of SN to be

FN (ξ) :=
1

VN
logE(eξSN ) (ξ ∈ R).

The uniform boundedness of f implies the finiteness of the expectation, and the real-analyticity of FN (ξ) on R.

Example 7.2 (Sums of IID’s) Let SN =

N∑
n=1

Xn where Xn are iid bounded random variables with non-zero

variance. Let X denote the common law of Xn. Then FN (ξ)=FX (ξ):=
1

Var(X )
logE(eξX ), for all N . Clearly,

(i) FN (0) = 0, F ′N (0) = E(X )/Var(x) and F ′′N (0) = 1. (ii) FN (ξ) are uniformly strictly convex on compacts.

These properties play a key role in the study of large deviations for sums of i.i.d. random variables. A significant
part of the effort in this chapter is to understand to which extent similar results hold in the setting of bounded
additive functionals of uniformly elliptic Markov chains. We start with the following facts.

Theorem 7.3 Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic Markov chain X, and
assume VN , 0 for all N ≥ N0. Then:

(1)∀N ≥ N0, FN (0) = 0 , F ′N (0) =
E(SN )

VN
and F ′′N (0) = 1. (2) ∀N ≥ N0, FN (ξ) is strictly convex on R.

(3) The convexity is uniform on compacts: For every R > 0 there isC = C(R) positive such that for all N ≥ N0,

C−1 ≤ F ′′N (ξ) ≤ C on [−R, R].

(4) Suppose VN → ∞. ∀ε>0 ∃δ, Nε>0 such that for all |ξ | ≤ δ and N > Nε , we have e−ε ≤ F ′′N (ξ) ≤ eε ,

and e−ε
(
ξ2

2

)
≤ FN (ξ) −

E(SN )
VN

ξ ≤ eε
(
ξ2

2

)
.
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This is very similar to what happens for iid’s, but there is one important difference: in our setting, VN may be
much smaller than N . For the proof of this theorem, see §7.3.5.

7.2.2 The Rate Functions

Suppose VN , 0. The rate functions IN (η) are the Legendre transforms of FN (ξ). Specifically, if aN :=
inf
ξ
F ′N (ξ) and bN := sup

ξ
F ′N (ξ), then IN : (aN, bN ) → R is

IN (η) := ξη − FN (ξ), for the unique ξ s.t. F ′N (ξ) = η.

The existence and uniqueness of ξ when η ∈ (aN, bN ) is because of the smoothness and strict convexity of FN
on R. We call (aN, bN ) the domain of IN , and write

dom(IN ) := (aN, bN ).

Equivalently,
dom(IN ) = (F ′(−∞), F ′(+∞)), where F ′(±∞) := lim

t→±∞
F ′(t).

Later we will also need the sets (aR
N, b

R
N ) ⊂ dom(IN ), where R > 0 and

aR
N := F ′N (−R), bRN := F ′N (R). (7.1)

The functions IN and their domains depend on N . The following theorem identifies certain uniformity and
universality in their behavior.

Theorem 7.4 Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic Markov chain X, and
assume VN , 0 for all N large enough, then:

(1) ∃c, N1, R > 0 such that for all N > N1,

dom(IN ) ⊃ [aR
N, b

R
N ] ⊃

[
E(SN )

VN
− c,

E(SN )
VN

+ c
]
.

(2) For each R there exists ρ = ρ(R) such that for all N > N1,

ρ−1 ≤ I ′′N ≤ ρ on [aR
N, b

R
N ].

(3) Suppose VN → ∞. For every ε > 0 there exists δ > 0 and Nε such that for all η ∈ [E(SN )
VN

− δ, E(SN )
VN
+ δ]

and N > Nε ,

e−ε
1
2

(
η −

E(SN )
VN

)2
≤ IN (η) ≤ eε

1
2

(
η −

E(SN )
VN

)2
.

(4) Suppose VN → ∞ and zN−E(SN )
VN

→ 0, then

VNIN

(
zN
VN

)
=

1 + o(1)
2

(
zN − E(SN )
√

VN

)2
as N → ∞.

The proof of the theorem is given in §7.3.6.
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7.2.3 The LLT for Moderate Deviations

Theorem 7.5 Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic Markov chain X.
Suppose f is irreducible with algebraic range R. If zN ∈ R satisfy zN−E(SN )

VN
→ 0, then for every non-empty

interval (a, b), when N → ∞,

P[SN − zN ∈ (a, b)] = [1 + o(1)]
|a − b|
√

2πVN

exp
(
−VNIN

(
zN
VN

))
,

P[SN − zN ∈ (a, b)] = [1 + o(1)]
|a − b|
√

2πVN

exp

−

1 + o(1)
2

(
zN − E(SN )
√

VN

)2
.

Theorem 7.6 Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic Markov chain X.
Assume f is irreducible with algebraic range Z, and SN ∈ cN + Z a.s. If zN ∈ cN + Z and zN−E(SN )

VN
→ 0, then

P[SN = zN ] =
[1 + o(1)]
√

2πVN

exp
(
−VNIN

(
zN
VN

))
,

P[SN = zN ] =
[1 + o(1)]
√

2πVN

exp

−

1 + o(1)
2

(
zN − E(SN )
√

VN

)2
as N → ∞.

We will deduce these results from the more general Theorem 7.8, below.

Remark. The first asymptotic relation in Theorems 7.5 and 7.6 is not universal, because of the dependence on
IN . The second asymptotic relation is universal, but it is not a proper asymptotic equivalence because of the
o(1) in the exponent.

The following result provides less information than Theorems 7.5 and 7.6, but requires no irreducibility
assumptions:

Theorem 7.7 Suppose f is an a.s. uniformly bounded additive functional on a uniformly elliptic Markov chain
X. If VN → ∞, then for all 0 < α < 1

2 and κ > 0, if
zN − E(SN )

VN
∼ κV−αN as N → ∞, then

lim
N→∞

1
V 1−2α
N

logP[SN − zN ≥ 0] = −
1
2
κ2.

Proof There is no loss of generality in assuming that E(SN ) = 0 for all N . Let an := V 1−2α
n , bn := Vα

n ,

Wn := Sn/bn. Then an → ∞, and lim
n→∞

1
an

logP[Sn − zn ≥ 0] = lim
n→∞

1
an

logP[Wn/an ≥ κ + o(1)]. By Theorem

7.3(4), lim
n→∞

1
an

logE(eξWn ) = lim
n→∞

V 2α
n FN ( ξ

Vα
n

) = 1
2 ξ

2. Thus, by the Gärtner-Ellis Theorem (see Appendix A),

lim
n→∞

1
an

logP[Wn

an
≥ κ + o(1)] = − 1

2 κ
2. �

7.2.4 The LLT for Large Deviations

Recall that (aR
N, b

R
N ) := (F ′N (−R), F ′N (R)) ⊂ dom(IN ). It is convenient to define

[âR
N, b̂

R
N ] :=

[
aR
N −

E(SN )
VN

, bRN −
E(SN )

VN

]
.

Theorem 7.8 Let f be an a.s. uniformly bounded, irreducible, additive functional on a uniformly elliptic Markov
chain X. For every R large enough there are functions ρN :

[
âR
N, b̂

R
N

]
→ R+ and ξN : [âR

N, b̂
R
N ]→ R as follows:
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(1) ∃c > 0 such that [âR
N, b̂

R
N ] ⊃ [−c, c] for all N large enough.

(2) Non Lattice Case: Suppose Galg (X, f) = R. For every sequence of zN ∈ R such that zN−E(SN )
VN

∈ [âR
N, b̂

R
N ],

and for all finite non-empty intervals (a, b), we have the following asymptotic result as N → ∞:

P[SN − zN ∈ (a, b)] = [1 + o(1)] ·
e−VN IN ( zN

VN
)

√
2πVN

|a − b|ρN
(
zN−E(SN )

VN

)
×

1
|a − b|

∫ b

a

e−tξN
(
zN−E(SN )

VN

)
dt .

(3) Lattice Case: Suppose Galg (X, f) = Z and SN ∈ cN + Z a.s., then for every sequence of zN ∈ cN + Z such
that zN−E(SN )

VN
∈ [âR

N, b̂
R
N ], the following asymptotic relation holds when N → ∞:

P[SN = zN ] = [1 + o(1)] ·
e−VN IN ( zN

VN
)

√
2πVN

× ρN
(
zN−E(SN )

VN

)
.

(4) Properties of the Error Terms:
(a) ρN (η) are bounded away from 0 and∞ on [âR

N, b̂
R
N ], uniformly in N , and ρN (η) −−−−→

η→0
1 uniformly in N .

(b) For each R > 0 there exists C = CR > 0 such that for all η ∈ [âR
N, b̂

R
N ] and N , C−1 |η | ≤ |ξN (η) | ≤ C |η |

and sgn(ξ (η)) = sgn(η).

Warning. ρN depends on the initial distribution.
Theorem 7.8 assumes irreducibility. The following coarser result, does not:

Theorem 7.9 Suppose f is an additive functional on a uniformly elliptic Markov chain X such that K :=
ess sup |f| < ∞, and suppose VN → ∞. For each ε, R > 0 there is D(ε, R, K ) and N0 such that for all N > N0,
if zN

VN
∈ [F ′N (ε), F ′N (R)], then

D−1
√

VN

e−VN IN

(
zN
VN

)
≤ P(SN ≥ zN ) ≤

D
√

VN

e−VN IN

(
zN
VN

)
.

Theorem 7.8 is proved in §§7.3.1–7.3.7. Theorem 7.9 is proved in §7.3.8.
To assist the reader to digest the statement of Theorem 7.8, let us see how to use it to obtain Theorems 7.5

and 7.6 on moderate deviations.

Proof of Theorems 7.5 and 7.6: Fix R > 0, and suppose zN−E(SN )
VN

→ 0. By Theorem 7.8(1), zN−E(SN )
VN

∈

[âR
N, b̂

R
N ] for all N large enough. By Theorem 7.8(4), ρN

(
zN−E(SN )

VN

)
−−−−−→
N→∞

1, ξN
(
zN−E(SN )

VN

)
→ 0 and

1
b−a

∫ b

a
e−tξN (

zN−E(SN )
VN

)dt → 1. Thus by Theorem 7.8(2), if Galg (X, f) = R, then

P[SN − zN ∈ (a, b)] ∼
|a − b|
√

2πVN

exp
(
−VNIN

(
zN
VN

))
.

ByTheorem7.4(4),VNIN

(
zN
VN

)
∼

1
2

(
zN − E(SN )
√

VN

)2
. HenceP[SN−zN ∈ (a, b)]∼

|a − b|
√

2πVN

exp *
,
−

1 + o(1)
2

(
zn − E(SN )
√

VN

)2
+
-
.

This proves Theorem 7.5. The proof of Theorem 7.6 is similar, and we omit it. �

Corollary 7.10 Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic Markov chain.
Suppose f is irreducible, with algebraic range R.

(1) If zN−E(SN )
VN

→ 0, then for any finite non empty interval (a, b), the distribution of SN − zN conditioned on
SN − zN ∈ (a, b) is asymptotically uniform on (a, b).

(2) If lim inf zN−E(SN )
VN

> 0 and there exists R such that zN−E(SN )
VN

∈ [âR
N, b̂

R
N ] for all sufficiently large N, then

the distribution of ξN
(
zN−E(SN )

VN

)
· (SN − zN ) conditioned on SN > zN is asymptotically exponential with

parameter 1.
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Remark. Condition (2) holds when lim inf zN−E(SN )
VN

>0, and lim sup zN−E(SN )
VN

>0 is small, see Theorem 7.8(1).

Proof To see part (1), note using Theorem 7.8(4) that if zN−E(SN )
VN

→ 0, then ξN = ξN ( zN−E(SN )
VN

) → 0,

whence 1
β−α

∫ β

α
e−tξN dt −−−−−→

N→∞
1 for every non-empty interval (α, β). Thus by Theorem 7.8, for every interval

[c, d] ⊂ [a, b], lim
N→∞

P[SN − zN ∈ (c, d)]
P[SN − zN ∈ (a, b)]

=
|c − d |
|a − b|

. (the prefactors e−VN IN
√

2πVN
ρN are identical, and cancel out).

To see part (2), note first that our assumptions on zN guarantee that ξN = ξN
(
zN−E(SN )

VN

)
is bounded away

from zero and infinity, and that all its limit points are strictly positive.
Suppose ξNk

→ ξ. Then arguing as in part (1) it is not difficult to see that for all (a, b) ⊂ (0,∞) and r > 0,

lim
k→∞

P[ξNk
(SNk

− zNk
) ∈ (a + r, b + r) |SNk

> zNk
]

P[ξNk
(SNk

− zNk
) ∈ (a, b) |SNk

> zNk
]

= e−r .

Since this is true for all convergent {ξNk
}, and since any subsequence of {ξN } has a convergent subsequence,

lim inf
N→∞

P[ξN (SN − zN ) ∈ (a + r, b + r) |SN > zN ]
Px[ξN (SN − zN ) ∈ (a, b) |SN > zN ]

= e−r,

lim sup
N→∞

P[ξN (SN − zN ) ∈ (a + r, b + r) |SN > zN ]
P[ξN (SN − zN ) ∈ (a, b) |SN > zN ]

= e−r,

and so lim
N→∞

P[ξN (SN − zN ) ∈ (a + r, b + r) |SN > zN ]
P[ξN (SN − zN ) ∈ (a, b) |SN > zN ]

= e−r . Thus, conditioned on SN > zN , ξN (SN − zN )

is asymptotically exponential with parameter 1. �

Corollary 7.11 Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic Markov chain.
Suppose f is irreducible, with algebraic range Z, and cN are constants such that SN ∈ cN + Z a.s. Suppose
zN ∈ cN + Z. (1) If zN−E(SN )

VN
→ 0, then for any a < b in Z, the distribution of SN − zN conditioned on

SN − zN ∈ [a, b] is asymptotically uniform on {a, a + 1, . . . , b}.
(2) If lim inf zN−E(SN )

VN
> 0, ξN

(
zN−E(SN )

VN

)
→ ξ, and there exists R such that zN−E(SN )

VN
∈ [âR

N, b̂
R
N ] for all

sufficiently large N , then (SN − zN ) conditioned on SN ≥ zN is asymptotically geometric with parameter e−ξ .

The proof is similar to the proof in the non-lattice case, so we omit it.
It is worth noting the following consequence of this result, which we state using the point of view of §5.2.3.

Corollary 7.12 Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic Markov chain.
Let zN be a sequence s.t. for some R, zN−E(SN )

VN
∈ [âR

N, b̂
R
N ] for large N . Let ζN be the Radon measure

ζN (φ) = E(φ(SN − zN )) Let ζ be a weak limit of {qN ζN } for some sequence qN > 0. If f is irreducible then ζ
has density c1ec2t with respect to the Haar measure on the algebraic range of f for some c1 ∈ R+, c2 ∈ R.

If the restriction zN−E(SN )
VN

∈ [âR
N, b̂

R
N ] is dropped, then it is likely that ζ is either as above, or an atomic measure

with one atom, but our methods are insufficient for proving this.

7.3 Proofs

In this section we prove Theorems 7.3, 7.4 on the behavior of Fn and IN as N → ∞, and Theorems 7.8 and 7.9
on the LLT for large deviations.

We assume throughout that {Xn} is a uniformly elliptic Markov chain with state spaces Sn and transition
kernels πn,n+1(x, dy), and suppose µk are the measures µk (E) := P(Xk ∈ E). Let f = { fn} be an a.s. uniformly
bounded additive functional on X. Let ε0 denote the ellipticity constant of X, and let K = ess sup |f|.
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7.3.1 Strategy of Proof

The proof is an implementation of Cramér’s “change of measure" method.
We explain the idea. Let zN be numbers as in Theorem 7.8. We will modify the transition kernels of X = {Xn}

to generate a Markov array X̃ = {X̃ (N )
n } whose row sums S̃N = f1(X̃ (N )

1 , X̃ (N )
2 ) + · · · + fN (X̃ (N )

N , X̃ (N )
N+1) satisfy

|zN − E(S̃N ) | ≤ const. (7.2)

(7.2) places us in the regime of local deviations, which was analyzed in Chapter 5. The results of that chapter
provide asymptotics for P(S̃N−zN ∈ (a, b)), and these can be translated into asymptotics for P(SN−zN ∈ (a, b)).

The array X̃ will have state spacesS(N )
n :=Sn, row lengths N +1, initial distributions π(N ) (E) := P[X1 ∈ E],

and transition probabilities

π̃(N )
n,n+1(x, dy) := eξN fn (x,y) hn+1(y, ξN )

epn (ξN ) hn(x, ξN )
· πn,n+1(x, dy), (7.3)

where the real parameters ξN are calibrated to get (7.2), and the positive functions hn, hn+1 and the real numbers
pn are chosen to guarantee that

∫
π̃(N )
n,n+1(x, dy) = 1.

The value of ξN will depend on zN−E(SN )
VN

. To construct ξN and to control it, we must know that zN
VN

belong
to a sets where FN are strictly convex, uniformly in N . This is the reason why we need to assume that ∃R s.t.
zN−E(SN )

VN
∈ [âR

N, b̂
R
N ] for all N , a condition we can check as soon as | zN−E(SN )

VN
| < c with c small enough.

We remark that the dependence of ξN on N means that {X̃ (N )
n } is an array, not a chain. The fact that the

change of measure produces arrays from chains is the main reason we insisted on working with arrays in the first
part of this work.

7.3.2 A Parameterized Family of Changes of Measure

Let ξN be arbitrary bounded real numbers. In this section we construct functions hξN
k

(·) = hk (·, ξN ) and
pn(ξN ) ∈ R so that the measures π̃(N )

n,n+1(x, dy) in (7.3) are probability measures. In the next section we will
choose specific {ξN } to get (7.2).

Lemma 7.13 Given ξ ∈ R and a sequence of real numbers {an}n∈N, there are unique numbers pn(ξ) ∈ R, and
unique positive hn(·, ξ) ∈ L∞(Sn,B(Sn), µn) s.t.

∫
Sn

hn(x, ξ)µn(dx) = exp(anξ) for all n, and for a.e. x∫
Sn+1

eξ fn (x,y) hn+1(y, ξ)
epn (ξ ) hn(x, ξ)

πn,n+1(x, dy) = 1. (7.4)

We will sometimes write hξn (·) := hn(·, ξ).

Remark. If {hn(·, ξ)}, {pn(ξ)} satisfy the Lemma with an = 0, then the unique solution with general {an} is
given by

hn(·, ξ) := eanξ hn(·, ξ) , pn(ξ) := pn(ξ) − anξ + an+1ξ. (7.5)

Evidently, (hn, pn) and (hn, pn) give rise to the same transition probabilities (7.3). We call {hn} and {pn} the
fundamental solution.

Proof It is enough to prove the existence and uniqueness of the fundamental solution, so henceforth we assume
an = 0. We may also assume without loss of generality that |ξ | ≤ 1; otherwise we scale f.

Set Vn := L∞(Sn,B(Sn), µn), and define the operators Lξn : Vn+1 → Vn by
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(Lξnh)(x) =
∫

Sn+1

eξ fn (x,y) h(y)πn,n+1(x, dy). (7.6)

Lξn are linear, bounded, and positive.
For (7.4) to hold, it is necessary and sufficient that hξn (·) := hn(·, ξ) be positive a.e., and Lξnhξ

n+1 = epn (ξ ) hξn .
Positivitymay be replaced by theweaker property that hξn ∈ L∞\{0} and hξn ≥ 0. For such functions, since |f| ≤ K
a.s. and X is uniformly elliptic, hξn (x) = e−pn (ξ )−pn+1 (ξ ) (LξnLξ

n+1hξ
n+2)(x) ≥ e−pn (ξ )−pn+1 (ξ )−2K ε0‖h

ξ
n+2‖1.

So to prove the lemma it is enough to find pn(ξ) ∈ R and non-negative hξn ∈ L∞\{0} such that Lξnhξ
n+1 = epn (ξ ) hξn .

The existence and uniqueness of such “generalized eigenvectors" can be proved using Hilbert’s projective
metrics. We recall, briefly, what these are, and refer the reader to Appendix B for more details.

Let Cn := {h ∈ Vn : h ≥ 0 a.e. }. These are closed cones and Lξn (Cn+1) ⊂ Cn. Given h, g in the interior of Cn,
let M = M (h|g) and m = m(h|g) denote the best constants in the double a.e. inequality mg ≤ h ≤ Mg, and set

dn(h, g) := log
( M (h|g)

m(h|g)

)
∈ [0,∞], (h, g ∈ Cn).

This is a pseudo-metric on the interior of Cn, and d(h, g) = 0 ⇔ h, g are proportional. Also, for all h, g in the
interior of Cn, 





h∫
h
−

g∫
g





1
≤ edn (h,g) − 1. (7.7)

Denote T ξn := LξnLξ
n+1 : Cn+2 → Cn. By the uniform ellipticity assumption and the bounds ess sup |f| < K

and |ξ | ≤ 1,
e−2K ε0‖h‖1 ≤ (T ξn h)(x) ≤ e2K ε−2

0 ‖h‖1 (h ∈ Cn+2). (7.8)

So dn(T ξn h, 1) ≤ 4K + 3 log(1/ε0), and the diameter of T ξn (Cn+2) in Cn is less than ∆ := 8K + 6 log(1/ε0). By
Birkhoff’s theorem (Theorem B.6), every linear map T : Cn+2 → Cn such that the dn–diameter of T (Cn+2) in
Cn is less than ∆, contracts dn at least by a factor θ := tanh(∆/4) = tanh(2K + 3

2 log(1/ε0)) ∈ (0, 1). Hence

dn(T ξ
n+1h,T ξ

n+1g) ≤ θdn+2(h, g) (h, g ∈ Cn+2). (7.9)

Since θ ∈ (0, 1), {LξnLξ
n+1 · · · L

ξ
n+k−11Sn+k

}k≥1 is a Cauchy sequence in Cn, with respect to dn. By (7.7),
LξnLξ

n+1 · · · L
ξ
n+k−11Sn+k

‖LξnLξ
n+1 · · · L

ξ
n+k−11Sn+k

‖1
(k ≥ 1) is a Cauchy sequence in L1(Sn). Call the limiting function hξn . Clearly

hξn has integral one, and hξn is positive and bounded because of (7.8). It is also clear that Lξnhξ
n+1 = epn hξn for

some pn ∈ R. So {h
ξ
n }, {pn} exist.

The proof shows that the dn-diameter of
⋂

k≥1 Lξn · · · L
ξ
n+k−1(Cn+k ) is zero. So hξn is unique up tomultiplicative

constant. Since
∫

hξn = 1, it is unique. �

The proof has a useful consequence: For every R > 0, there exists C0 > 0 and θ ∈ (0, 1) (depending on R)
such that for every |ξ | ≤ R

d1
(
Lξ1 · · · L

ξ
N hξ

N+1, Lξ1 · · · L
ξ
N1

)
≤ C0θ

N/2dN+1
(
hξ
N+1, 1

)
. (7.10)

The case when N is even follows from (7.9). The case when N is odd is obtained from the even case, by using
the exponential contraction of Lξ2 · · · L

ξ
N , and Proposition B.5, that says that (7.9) holds even when ∆ = ∞ and

θ = 1.

Lemma 7.14 Let h(·, ξ) be as in Lemma 7.13. If an is bounded, then for every R > 0 there is C = C(R, sup an)
such that for all n ≥ 1, a.e. x ∈ Sn and |ξ | ≤ R,

hn(x, 0) = 1 , pn(0) = 0 , C−1 ≤ hn(x, ξ) ≤ C and C−1 < epn (ξ ) < C.
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Proof It is enough to consider the fundamental solution (an = 0); the general case follows from (7.5). So
henceforth assume that

∫
hndµn = 1. It is also sufficient to consider the case |ξ | ≤ 1; otherwise, we scale f.

The first two statements (hn(·, 0) ≡ 1 and pn(0) = 0) are because hn ≡ 1 solves (7.4) when ξ = 0, and the
solution is unique.

Let {hξn } be the fundamental solution, then in the notation of the previous proof, T ξn hξ
n+2 = epn (ξ )+pn+1 (ξ ) hξn .

By (7.8), e−2K ε0 ≤ epn (ξ )+pn+1 (ξ ) hξn ≤ e2K ε−2
0 . Integrating, we obtain e−2K ε0 ≤ epn (ξ )+pn+1 (ξ ) ≤ e2K ε−2

0 . So,

e−4K ε3
0 ≤ hξn (·) ≤ e4K ε−3

0 . (7.11)

Next, epn (ξ ) =
∫

epn hξndµn =
∫

Lξnhξ
n+1dµn = e±K

!
hξ
n+1πn,n+1(x, dy)µn(dy). By (7.11), epn (ξ ) =

e±(5K+3 | log ε0 |) . �

In the next section we will choose ξN to guarantee (7.2). As it turns out, the choice involves a condition on
p′n(ξ). Later, we will also need to use p′′n (ξ). In preparation for this, we will now analyze the differentiability of
ξ 7→ hξn and ξ 7→ pn(ξ).

The map ξ 7→ hξn takes values in the Banach space L∞, and we will need the machinery of real-analytic
maps into Banach spaces [49]. Here is a brief review. Suppose X,Y are Banach spaces. Let an : Xn → Y

be a multilinear map. We set ‖an‖ := sup{‖an(x1, . . . , xn)‖ : xi ∈ X, ‖xi ‖ ≤ 1 for all i}. A multilinear
map is called symmetric if it is invariant under the permutation of its coordinates. Given x ∈ X, we denote
anxn := an(x, . . . , x). A power series is a formal expression

∑
n≥1

anxn where an : Xn → Y are multilinear

and symmetric. A function φ : X → Y is called real-analytic at x0, if there is some r > 0 and a power series∑
anxn, called theTaylor series at x0, such that

∑
‖an‖rn < ∞ and φ(x) = φ(x0)+

∑
n≥1 an(x− x0)n whenever

‖x − x0‖ < r . One can check that if this happens, then:

an(x1, . . . , xn) =
1
n!

d
dt1

�����t1=0
· · ·

d
dtn

�����tn=0
φ
(
x0 +

n∑
i=1

ti xi
)
. (7.12)

Conversely, one can show that if
∑

an(x − x0)n has a positive radius of convergence with an as in (7.12), then
φ is real-analytic, and equal to its Taylor series at x0, on a neighborhood of x0.

Example 7.15 Let φ : X×X×R→ X be the map φ(x, y, z) := x− y/z. Then φ is real-analytic at every (x0, y0, z0)
such that z0 , 0, and the coefficients of its Taylor series φ(x, y, z) = φ(x0, y0, z0)+

∑∞
n=1 an(x− x0, y− y0, z− z0)n

satisfy ‖an‖ = O(‖y0‖/|z0 |
n+1) +O(n/|z0 |

n+1).
Proof. If |z− z0 |< |z0 |, then x− yz−1= x− yz−1

0

∑
k≥0

(−1)k z−k0 (z− z0)k . Let xi := (xi, yi, zi) and (t1, . . . , tn) ∈ Rn.

The series

φ
(
x0 +

n∑
i=1

ti xi

)
= x0 +

n∑
i=1

ti xi +
∞∑
k=0

(−1)k+1

zk+1
0

(
y0 +

n∑
i=1

tiyi
) ( n∑

i=1
ti zi

)k
(7.13)

converges in norm whenever (t1, . . . , tn) ∈ An :=
[
|
∑n

i=1 ti zi | < |z0 |
]
.

In particular, on An, this series is real-analytic separately in each ti , and can be differentiated term-by-term
infinitely many times.

To find an(x1, . . . , xn) we observe that the differential (7.12) is equal to the coefficient of t1 · · · tn on the
right-hand-side of (7.13). So for n > 2,

an(x1, . . . , xn) = (−1)n+1y0z−(n+1)
0 · z1 · · · zn + (−1)nz−n0

n∑
i=1

yi z1 · · · ẑi · · · zn

where the hat above zi indicates that the i-th term should be omitted. It follows that ‖an‖ = O(‖y0‖/|z0 |
n+1) +

O(n/|z0 |
n). �
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Lemma 7.16 The functions ξ 7→ hξn, pn(ξ) are real-analytic. If an is bounded, then for every R > 0 there is
C(R, sup an) > 0 such that for every |ξ | ≤ R and n ≥ 1,







∂

∂ξ
hn(·, ξ)






∞
≤ C(R),







∂2

∂ξ2 hn(·, ξ)





∞
≤ C(R).

Proof Without loss of generality, R = 1 and hξn are the fundamental solutions (an = 0), i.e.
∫

hξndµn = 1. Fix
|ξ | ≤ 1 and let Tn := T ξn , hn(·) = hn(·, ξ) be as in the proof of Lemma 7.13. Define two Banach spaces:

X :=
{

(Sn)n∈N : Sn : L∞(Sn+2) → L∞(Sn) are bounded linear operators,
and ‖S‖ := supn ‖Sn‖ < ∞

}
Y := {(ϕn)n∈N : ϕn ∈ L∞(Sn) , ‖ϕ‖ := sup ‖ϕn‖∞ < ∞}.

By (7.8), T := (Tn) belongs to X . By Lemma 7.14, h := (hn)n∈N belongs to Y .

Step 1. There exists some 0 < δ < 1 such that for every (S, ϕ) ∈ X × Y , for all |ξ | ≤ 1, if ‖S − T ‖ < δ and
‖ϕ − h‖ < δ, then inf |

∫
(Snϕn+2) | > δ.

Proof of the Step. Let C := sup |ξ | ≤1 supn ‖h
ξ
n ‖∞. By (7.8), ‖Tn‖ ≤ M where M := e2K ε−2

0 , and by Lemma 7.14,
there is a constant ε1 > 0 so that for all n and |ξ | ≤ 1, ε1 ≤ (Tnhn+2)(x) ≤ ε−1

1 .
So if ‖S − T ‖ < δ and ‖ϕ − h‖ < δ, then for a.e. x,

Snϕn+2(x) = (Tnhn+2)(x) − (Tn − Sn)hn+2(x) − Sn(hn+2 − ϕn+2)(x)
≥ ε1 − ‖T − S‖‖h‖ − (‖S − T ‖ + ‖T ‖)‖h − ϕ‖ ≥ ε1 − Cδ − (δ + M)δ.

If δ is small enough, then Snϕn+2 > δ a.e. for all n, and the step follows.

Henceforth we fix δ as in Step 1. Let Bδ (T ) := {S ∈ X : ‖S − T ‖ < δ} and Bδ (h) := {ϕ ∈ Y : ‖ϕ − h‖ < δ}.
Define

Υ : Bδ (T ) × Bδ (h) → Y, Υ(S, ϕ) := *
,
ϕn −

Snϕn+2∫
(Snϕn+2)dµn

+
-n∈N

.

This is well-defined by the choice of δ, and Υ(T, h) = 0.

Step 2. Υ is real-analytic on Bδ (T ) × Bδ (h).

Proof of the Step. Υ = Φ(Υ(1),Υ(2),Υ(3)), with
• Φ((ϕ, ψ, ξ)i≥1) = (ϕi − ξ−1

i ψi)i≥1; • Υ(1) : X × Y → Y , Υ(1) (S, ϕ) = ϕ;
• Υ(2) : X × Y → Y , Υ(2) (S, ϕ) = (Snϕn+2)n∈N; • Υ(3) : X × Y → `∞, Υ(3) (S, ϕ) = (

∫
(Snϕn+2)dµn)n∈N.

We claim that for each i, some high-order derivative of Υ(i) is identically zero. Let D be the total derivative,
and let Di be the partial derivative with respect to the i-th variable, then:

• D2Υ(1) = 0, because Υ(1) is linear, so its first total derivative is constant.

• D3Υ(2) = 0: Starting with the identity Υ(2) (S, ϕ) = (Snϕn+2)n∈N, we find by repeated differentiation that

(D1Υ
(2))(S, ϕ)(S′) = (S′nϕn+2)n∈Z , (D2

1Υ
(2))(S, ϕ) = 0

(D2Υ
(2))(S, ϕ)(ϕ′) = (Snϕ′n+2)n∈Z , (D2

2Υ
(2))(S, ϕ) = 0

(D1D2Υ
(2))(S, ϕ)(S′, ϕ′) = (S′nϕ

′
n+2)n∈Z.

We see that all second-order partial derivatives of Υ(2) at (S, ϕ) do not depend on (S, ϕ). Therefore D2Υ(2)

is constant, and D3Υ(2) = 0.

• D3Υ(3) = 0, because Υ(3) = L ◦ Υ(2) where L is a bounded linear map, so D3(L ◦ Υ(2)) = LD3Υ(2) = 0.

Consequently, Υ(i) are real-analytic on their domains (with finite Taylor series).
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By Step 1,
−→
Υ := (Υ(1),Υ(2),Υ(3)) maps Bδ (T ) × Bδ (h) into

U := {(ϕ, ψ, ξ) ∈ Y × Y × `∞ : ‖ϕ‖ < C + δ, ‖ψ‖ < (C + δ)(M + δ), inf |ξi | > δ/2}.

We will show that Φ is real-analytic on U.

By Example 7.15, x −
y

z
=

∞∑
n=0

an(x0, y0, z0)(x − x0, y − y0, z − z0)n, where an(x0, y0, z0) : (R3)n → R are

symmetric multilinear functions depending on (x0, y0, z0), and satisfying
‖an(x0, y0, z0)‖ = O( |y0 |/|z0 |

n+1) +O(n/|z0 |
n+1). So

Φ(ϕ, ψ, ξ) = Φ(ϕ(0), ψ (0), ξ (0)) +
∞∑
n=1

An(ϕ − ϕ(0), ψ − ψ (0), ξ − ξ (0))n, (7.14)

where An((ϕ(1), ψ (1), ξ (1)), . . . , (ϕ(n), ψ (n), ξ (n))) ∈ Y has i-th entry

an
(
ϕ(0)
i (x), ψ (0)

i (x), ξ (0)
i

) (
(ϕ(1)

i (x), ψ (1)
i (x), ξ (1)

i ), . . . , (ϕ(n)
i (x), ψ (n)

i (x), ξ (n)
i )

)
.

An inherits multilinearity and symmetry from an, and by construction,

‖An‖ ≤ sup
{
‖an(x0, y0, z0)‖ : |x0 |, |y0 | ≤ (C + δ)(M + 1 + δ), |z0 | >

δ
2

}
= O( 2nn

δn ).

So the right-hand-side of (7.14) has positive radius of convergence, proving the analyticity of Φ : U → Y . The
step follows from the well-known result that the composition of real-analytic functions is real-analytic, see [49].

Step 3. (D2Υ)(T, h) : Y → Y has a bounded inverse.

Proof.Adirect calculation gives (D2Υ)(T, h)(ϕ) = ϕ−Λϕ, where (Λϕ)n =
Tnϕn+2∫

(Tnhn+2)dµn
−*

,

∫
(Tnϕn+2)dµn∫
(Tnhn+2)dµn

+
-

hn.

It is sufficient to show that Λ has spectral radius strictly smaller than one.
Let T (k)

n := TnTn+2 · · ·Tn+2(k−1) , then we claim that

(Λkϕ)n =
T (k)
n ϕn+2k∫

(T (k)
n hn+2k )dµn

− *
,

∫
(T (k)

n ϕn+2k )dµn∫
(T (k)

n hn+2k )dµn
+
-

hn. (7.15)

To see this, we use Tmhm+2 ∝ hm and
∫

hmdµm = 1 to note that∫
(T (k+1)

n hn+2(k+1))dµn =
∫

(Tnhn+2)dµn
∫

(T (k)
n+2hn+2(k+1))dµn+2.

With this identity in mind, the formula for Λk follows by induction.
We now explain why (7.15) implies that the spectral radius of Λ is less than one.
Fix ϕ ∈ Y . Recall that C−1 ≤ hn ≤ C for all n, and let ψ := ϕ + 2C‖ϕ‖h. Then ψ ∈ Y , Λkψ = Λkϕ for all k

(because Λh = 0), and for all n
C‖ϕ‖hn ≤ ψn ≤ 3C‖ϕ‖hn. (7.16)

In particular, if Cn is the cone from the proof of Lemma 7.13, and dn is its projective Hilbert metric,
then ψn ∈ Cn and dn(ψn, hn) ≤ log 3. Since Tn contracts the Hilbert projective norm by a factor θ ∈ (0, 1),
dn(T (k)

n ψn+2k,T
(k)
n hn+2k ) ≤ θk log 3. This implies by the definition of dn that for a.e. x ∈ Sn,

������

(T (k)
n ψn+2k )(x)/

∫
(T (k)

n ψn+2k )

(T (k)
n hn+2k )(x)/

∫
(T (k)

n hn+2k )
− 1

������
≤ max{3θ

k

− 1, 1 − 3−θ
k

} =: εk .

The denominator simplifies to hn. So
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(T (k)
n ψn+2k )∫

(T (k)
n ψn+2k )

− hn







∞
≤ εk ‖h‖. (7.17)

By (7.16), C‖ϕ‖T (k)
n hn+2k ≤ T (k)

n ψn+2k ≤ 3C‖ϕ‖T (k)
n hn+2k ; therefore

C‖ϕ‖ ≤

∫
(T (k)

n ψn+2k )∫
(T (k)

n hn+2k )
≤ 3C‖ϕ‖. (7.18)

By (7.15), (7.17) and (7.18),

‖Λkψ‖=sup
n









T (k)
n ψn+2k∫
T (k)
n hn+2k

−

∫
T (k)
n ψn+2k∫

T (k)
n hn+2k

· hn







∞
≤ sup

n









T (k)
n ψn+2k∫
T (k)
n ψn+2k

− hn







∞
sup
n









∫
T (k)
n ψn+2k∫

T (k)
n hn+2k







∞
≤ 3Cεk ‖h‖ ‖ϕ‖.

In summary, ‖Λkϕ‖ = O(εk ‖ϕ‖). Since lim k
√
εk = θ < 1, the spectral radius of Λ is less than 1. Therefore

D2Υ ≡ Id − Λ has a bounded inverse.
We can now complete the proof of the lemma.We constructed a real-analytic functionΥ : X×Y → Y such that

Υ(T, h) = 0 and (D2Υ)(T, h) : Y → Y has a bounded inverse. By the implicit function theorem for real-analytic
functions on Banach spaces [199], T has a neighborhood W ⊂ X where one can define a real-analytic function
h : W → Y so that Υ(S, h(S)) = 0.

Recall that T = T ξ := {T ξn }n∈N and h = {hn(·, ξ)}n≥1. It is easy to see using ess sup |f| < ∞ that η 7→ Tη is
real-analytic (even holomorphic). Therefore the composition η 7→ h(Tη ) is real-analytic.

We will now show that h(Tη ) = hη = {hηn }n≥1, for all |η | small enough, and deduce real-analyticity with
uniform derivative bounds for η 7→ hηn (x). Since hn(·, ξ) are uniformly bounded below by a positive constant, we
can choose W so that the functions h(S)n are uniformly bounded from below for S ∈ W and n ∈ N. In particular,
for all η close enough to ξ, Tη ∈ W , and h(Tη )n are all positive. Next, by construction, Υ(Tη, h(Tη )) = 0, and
this implies that Tηn h(Tη )n+2 ∝ h(Tη )n and

∫
h(Tη )ndµn = 1 for all n.

Lemma 7.13 and its proof show that there can be at most one sequence of functions like that. So h(Tη ) =
{hn(·, η)}n≥1 for all η sufficiently close to ξ.

Thus η 7→ {hηn }n≥1 is real-analytic, as a function taking values inY . It follows that η 7→ hn(·, η) is real-analytic
for all n, and

{
∂ j

∂η j hn(·, η)
}
n≥1
= ∂ j

∂η j h(Tη ) ∈ Y for all j. By the definition of Y ,

sup
n≥1






∂ j

∂η j

����η=ξ
hn(·, η)





∞
=






∂ j

∂η j

����η=ξ
h(Tη )





 < ∞ for all j ∈ N. Since η 7→ h(Tη ) is real-analytic on a

neighborhood of ξ, this norm is uniformly bounded on compact sets of ξ. The lemma is proved. �

7.3.3 Choosing the Parameters

Fix ξ and {an}, and construct pn(ξ) and hk (·, ξ) as in Lemma 7.13. Let X̃ξ denote the Markov chain with the
initial distribution and state spaces of X, but with transition probabilities π̃ξ

n,n+1(x, dy) = eξ fn (x,y) hn+1 (y,ξ )
epn (ξ )hn (x,ξ ) ·

πn,n+1(x, dy).
Denote the expectation and variance operators of this chain by Ẽξ , Ṽ ξ . We now show that ifVN := Var(SN ) → ∞
and zN−E(SN )

VN
is sufficiently small, then it is possible to choose ξN and an bounded such that

ẼξN (SN ) = zN +O(1) ,
zN − ẼξN (SN )√

Ṽ ξN (SN )
−−−−−→
N→∞

0 and
N∑
n=1

p′n(0) = E(SN ).

The construction will show that if
zN − E(SN )

VN
→ 0, then ξN → 0.
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Recall thatwhile the choice of {an} affects hξn := hn(·, ξ), it does not affect π̃ξ
n,n+1. Specifically, if h

ξ

n := hn(·, ξ)

and pn(ξ) ∈ R is the fundamental solution, then h
ξ

n = e−anξ hn(·, ξ) and pn(ξ) = pn(ξ) + anξ − an+1ξ, so

π̃
ξ
n,n+1(x, dy) = eξ fn (x,y) hn+1(x, ξ)

epn (ξ ) hn(y, ξ)
πn,n+1(x, dy). Let PN (ξ) := p1(ξ) + · · · + pN (ξ).

Lemma 7.17 ξ 7→ PN (ξ) is real-analytic, and for every R > 0 there is a constant C(R) such that for all |ξ | ≤ R
and N ∈ N,

(1) |P′N (ξ) − Ẽξ (SN ) | ≤ C(R);
(2) Suppose VN → ∞. Then C(R)−1 ≤ Ṽ ξ (SN )/VN ≤ C(R) for all N and |ξ | ≤ R.

Moreover P
′′

N (ξ)/Ṽ ξ (SN ) −−−−−→
N→∞

1 uniformly in |ξ | ≤ R.

Proof Wehave the identity ePN (ξ ) =
∫

(Lξ1 · · · L
ξ
N h

ξ

N+1)(x)µ1(dx). Since ξ 7→ h
ξ
and ξ 7→ Lξn are real-analytic,

ξ 7→ PN (ξ) is real-analytic.
Given x ∈ S1 (the state space of X1), define two measures on

∏N+1
i=2 Si so that for every Ei ∈ B(Si)

πx (E2 × · · · × EN+1) := P(X2 ∈ E2, . . . , XN+1 ∈ EN+1 |X1 = x),

π̃
ξ
x (E2 × · · · × EN+1) := P̃ξ (X̃ ξ

2 ∈ E2, . . . , X̃ ξ
N+1 ∈ EN+1 | X̃

ξ
1 = x).

Let SN (x, y2, . . . , yN+1) := f1(x, y1)+
N∑
i=2

f i (yi, yi+1), then
dπ̃ξx
dπx

(y2, . . . , yN+1) = eξSN (x,y)e−PN (ξ ) *
,

hN+1(yN+1, ξ)

h1(x, ξ)
+
-
.

By Lemma 7.16, ξ 7→ dπ̃ξx
dπx (y2, . . . , yN+1) is real-analytic. Differentiating, gives

d
dξ



dπ̃ξx
dπx


=

[
SN (x, y) − P

′

N (ξ) + εN (x, yN+1, ξ)
] dπ̃ξx

dπx
, (7.19)

where εN (x, yN+1, ξ) :=
h1(x, ξ)

hN+1(yN+1, ξ)

d
dξ

*
,

hN+1(yN+1, ξ)

h1(x, ξ)
+
-
. By Lemmas 7.14 and 7.16, εN (x, yN+1, ξ) is

uniformly bounded in N , x, y, and |ξ | ≤ R.

Fix N . By the intermediate value theorem and the uniform boundedness of d
dξ

[
dπ̃ξx
dπx

]
on compact subsets of

ξ ∈ R, 1
δ

[
dπ̃ξ+δx

dπx −
dπ̃ξx
dπx

]
is uniformly bounded for 0 < δ < 1. By the bounded convergence theorem,

∫
lim
δ→0

1
δ



dπ̃ξ+δx

dπx
−

dπ̃ξx
dπx


dπx = lim

δ→0

∫
1
δ



dπ̃ξ+δx

dπx
−

dπ̃ξx
dπx


dπx = 0.

So
∫

d
dξ

[
dπ̃ξx
dπx

]
dπx = 0, whence by (7.19), 0 = Ẽξx (SN ) − P

′

N (ξ) +O(1) (here Ẽξx = Ẽξ (·| X̃ ξ
1 = x)). Integrating

with respect to x we obtain that P
′

N (ξ) = Ẽξ (SN ) +O(1) uniformly in |ξ | ≤ R, as N → ∞.
Differentiating (7.19) again gives

d2

dξ2



dπ̃ξx
dπx


=

d
dξ



dπ̃ξx
dπx

(
SN (x, y) − P

′

N (ξ) + εN (x, yN+1, ξ)
)

=
dπ̃x
dπx

[(
SN (x, y) − P

′

N (ξ) + εN (x, yN+1, ξ)
)2
− P

′′

N (ξ) +
dεN
dξ

]
.

By Lemmas 7.14 and 7.16, dεN
dξ is uniformly bounded in x, yN+1, N and |ξ | ≤ R. As before,∫

d2

dξ2
dπ̃ξx
dπx dπx = d2

dξ2

∫ dπ̃ξx
dπx dπx = 0. As P

′

N (ξ) = Ẽξ (SN ) +O(1), we get:
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0 = Ẽξ
[(

SN − Ẽ
ξ (SN ) +O(1)

)2]
− P

′′

N (ξ) +O(1), (7.20)

= Ṽ ξ (SN ) − P
′′

N (ξ) +O(1)
√

Ṽ ξ (SN ) +O(1). (7.21)

The proof shows that the big-Oh’s are uniformly bounded for all N and |ξ | ≤ R.
If |ξ | ≤ R, then π̃ξ

n,n+1(x, dy) are uniformly elliptic with ε0 replaced by ε0/(C4e2KR) with the C in Lemma
7.14. Thus by Theorem 3.7, Ṽ ξ (SN ) �

∑N
n=3 u2

n(ξ) where un(ξ) are the structure constants of {X̃ ξ
n }.

Using Corollary 2.10, it is not difficult to show that the hexagonmeasures associated to X̃ξ andX onHex (N, n)
with 5 ≤ n ≤ N < ∞ are equivalent, and their Radon-Nikodym derivatives are bounded away from zero and
infinity uniformly in n, N . Therefore un(ξ) � un(X, f). By Theorem 3.6, Ṽ ξ (SN ) � VN → ∞, uniformly in N
and |ξ | ≤ R. By (7.21), P

′′

N (ξ)/Ṽ ξ (SN ) −−−−−→
N→∞

1 uniformly on compacts. �

The Choice of aN : Lemma 7.17(1) with ξ = 0 says that P
′

N (0) = E(SN ) +O(1). The error term is a nuisance,
and we will choose an to get rid of it. Given N , let

an := E(Sn−1) − P
′

n−1(0) , a1 := 0. (7.22)

This is bounded, because of Lemma 7.17(1). Let hξn (x) := eanξ hn(x, ξ) and

pn(ξ) := pn(ξ) + (an+1 − an)ξ. (7.23)

The transition kernel π̃ξ
n,n+1 is left unchanged, because the differences between hn and hn and between pn

and pn cancel out. But now, P′N (0) = E(SN ), where

PN (ξ) := p1(ξ) + · · · + pN (ξ) ≡ PN (ξ) +
(
E(SN ) − P

′

N (0)
)
ξ. (7.24)

Properties of PN (ξ ): Recall that FN (ξ) := 1
VN

logE(eξSN ), and that Ṽ ξ is the variance with respect to the
change of measure X̃ξ .

Lemma 7.18 Suppose VN → ∞, then ξ 7→ PN (ξ) is real-analytic, and:
(1) P′N (0) = E(SN ). (2) ∀R > 0, ∃C(R) > 0 s.t. |P′N (ξ) − Ẽξ (SN ) | ≤ C(R) for all |ξ | ≤ R, N ∈ N.
(3) P′′N (ξ)/Ṽ ξ (SN ) −−−−−→

N→∞
1 uniformly on compact subsets of ξ.

(4) PN (ξ)/VN = FN (ξ) +O(V−1
N ) uniformly on compact subsets of ξ: ∀R > 0,

∆N (R) := sup
|ξ | ≤R
|VNFN (ξ) − PN (ξ) | = O(1), and sup

N
∆N (R) −−−−−→

R→0+
0.

(5) P′N (ξ)/VN = F
′
N (ξ) + O(V−1

N ) uniformly on compact subsets of ξ, as N → ∞: If ∆N (R) :=
sup
|ξ | ≤R

���VNF
′
N (ξ) − P′N (ξ)���, then sup

N
∆N (R) < ∞.

(6) PN (·) are uniformly strictly convex on compacts: ∀R > 0∃N (R) such that inf
ξ ∈[−R,R]

inf
N ≥N (R)

P′′N (ξ) > 0.

Proof The real-analyticity of PN (ξ) and parts (1)–(3) and (6) follow from Lemma 7.17, the identity PN (ξ) =
PN (ξ) + (aN+1 − a1)ξ, and the boundedness of an.

The proof of part (4) uses the operators Lξn : L∞(Sn+1) → L∞(Sn) from (7.6),
(Lξnh)(x) :=

∫
Sn+1

eξ fn (x,y) h(y)πn,n+1(x, dy) ≡ E[eξ fn (Xn,Xn+1) h(Xn+1) |Xn = x]. Let hξn := hn(·, ξ) ∈ L∞(Sn)

be the unique positive functions s.t.
∫

hξn = eanξ and Lξnhξ
n+1 = epn (ξ ) hξn . Then h0

n ≡ 1, p1(ξ)+· · ·+pN (ξ)=PN (ξ)
and

Ex[eξSN hξ
N+1(XN+1)]=E

[
E(eξSN hξ

N+1(XN+1) |XN, . . . , X1)��X1=x
]
=E

[
eξSN−1E(eξ fN (XN ,XN+1) hξ

N+1(XN+1) |XN )��X1=x
]

= E
[
eξSN−1 (LξN hξ

N+1)(XN )��X1 = x
]
= epN (ξ )Ex

[
eξSN−1 hξN (XN )] = epN (ξ )+pN−1 (ξ )Ex

[
eξSN−2 hξ

N−1(XN−1)]

= · · · = epN (ξ )+· · ·+p1 (ξ )Ex
[
hξ1 (X1)] = ePN (ξ ) hξ1 (x). (7.25)
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By Lemma 7.14, there exists C1 = C1(R) > 1 such that C−1
1 ≤ hξj ≤ C1 for j = 1, N + 1 and every |ξ | ≤ R

and N ≥ 1. Thus by (7.25),

C1(R)−2ePN (ξ ) ≤ E
(
eξSN

)
≤ C1(R)2ePN (ξ ) . (7.26)

Taking logarithms, we deduce that |FN (ξ) − PN (ξ)/VN | ≤ 2 log C1(R)/VN for all N ≥ 1 and |ξ | ≤ R.
Equivalently, supN ∆N (R) ≤ 2 log C1 < ∞.

By Lemma 7.16 and the identity h0
n ≡ 1, ‖hξN − 1‖∞ −−−−→

ξ→0
0 uniformly in N . Returning to the definition

of C1(R) we find that we may choose C1(R) −−−−−→
R→0+

1. As before, this implies that supN ∆N (R) −−−−→
R→0

0. This
proves part (4).

Here is the proof of part (5). Fix R > 0, then

VNF
′
N (ξ) =

E(SNeξSN )
E(eξSN )

=
Ẽξ (SN (hξ1 /hξ

N+1))

Ẽξ (hξ1 /hξ
N+1)

. (7.27)

We have already remarked that Xξ are uniformly elliptic, and that their uniform ellipticity constants are bounded
away from zero for ξ ranging on a compact set. This gives us the mixing bounds in Proposition 2.13 with the
same Cmix > 0, 0 < θ < 1 for all |ξ | ≤ R. So Ẽξ

(
hξ1 /hξ

N+1

)
= Ẽξ (hξ1 )Ẽξ

(
1/hξ

N+1

)
+ O(θN ), as N → ∞

Similarly, Ẽξ
(
SN (hξ1 /hξ

N+1)
)
= Ẽξ (hξ1 )Ẽξ

(
1/hξ

N+1

)
Ẽξ (SN ) +O(1) as N → ∞.

The big oh’s are uniform for |ξ | ≤ R. By (7.27), VNF
′
N (ξ)=Ẽξ (SN ) + O(1) as N → ∞, uniformly for |ξ | ≤ R.

Part 5 now follows from part 2. �

The Choice of ξN : Recall that to reduce the regime of large deviations to the regime of local deviations, we
need a change of measure for which ẼξN (SN ) = zN +O(1). By Lemma 7.18(2) this will be the case for ξN such
that P′N (ξN ) = zN .

The following lemma gives sufficient conditions for the existence of such ξN .

Lemma 7.19 Suppose VN → ∞, R > 0, and

[âR
N, b̂

R
N ] :=

[
F ′N (−R) −

E(SN )
VN

, F ′N (R) −
E(SN )

VN

]
.

(1) For each R there are C(R) and N (R) such that if zN−E(SN )
VN

∈ [âR
N, b̂

R
N ] and N > N (R), then

(a) ∃!ξN ∈ [−(R + 1), (R + 1)] such that P′N (ξN ) = zN ; (b) C(R)−1 ���
zN−E(SN )

VN

��� ≤ |ξN | ≤ C(R) ���
zN−E(SN )

VN

���;
(c) sgn(ξN ) = sgn( zN−E(SN )

VN
); (d) ���Ẽ

ξN (SN ) − zN
��� ≤ C(R).

(2) For every R > 2 there exists c(R) > 0 such that for all N large enough,

if
�����
zN − E(SN )

VN

�����
≤ c(R), then

zN − E(SN )
VN

∈ [âR
N, b̂

R
N ]. (7.28)

Consequently, if ���
zN−E(SN )

VN

��� < c(R), then there exists a unique ξN with (a)–(d).

Proof Let [ãR
N, b̃

R
N ] :=

[
P′N (−R) − E(SN )

VN
,

P′N (R) − E(SN )
VN

]
.

Claim: For all R > 0, for all N large enough,

[âR
N, b̂

R
N ] ⊂ [ãR+1

N , b̃R+1
N ] ⊂ [âR+2

N , b̂R+2
N ]. (7.29)

Proof of the Claim: By Lemmas 7.17 and 7.18, there exists a δ > 0 such that for all sufficiently large N ,
P′′N (ξ)/VN ≥ δ on [−(R + 2), (R + 2)]. By the mean value theorem, b̃R+2

N ≥ b̃R+1
N + δ, b̃R+1

N ≥ b̃RN + δ, ãR+2
N ≤

ãR+1
N − δ, ãR+1

N ≤ ãR
N − δ.
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Next, by Lemma 7.18(5), |b̂R′N − b̃R
′

N | = O(V−1
N ) and |âR′

N − ãR′

N | = O(V−1
N ) for all R′ ≤ R + 2. For all N large

enough, |O(V−1
N ) | < δ, and aR+2

N < ãR+1
N < âR

N < b̂RN < b̃R+1
N < b̂R+2

N .

We can now prove part (1) of the lemma. Let ϕN (ξ) :=
PN (ξ) − ξP′N (0)

VN
. By Lemma 7.18, for all N large

enough, ϕN (ξ) is strictly convex, smooth, and P′N (ξN ) = zN iff ϕ′N (ξN ) =
zN − P′N (0)

VN
.

Fix R > 0. By the claim, for all N large enough, if zN−E(SN )
VN

∈ [âR
N, b̂

R
N ], then zN−P

′
N (0)

VN
≡

zN−E(SN )
VN

∈

[ãR+1
N , b̃R+1

N ] ≡ ϕ′N [−(R + 1), (R + 1)]. Since ϕ′N is continuous and strictly increasing, there is a unique
ξN ∈ [−(R + 1), (R + 1)] s.t. ϕ′N (ξN ) =

zN−P
′
N (0)

VN
. So there is a unique |ξN | ≤ R + 1 s.t. P′N (ξN ) = zN .

This argument shows that for every N sufficiently large, for every η ∈ [âR
N, b̂

R
N ] there exists a unique

ξ = ξ (η) ∈ [−(R + 1), (R + 1)] such that ϕ′N (ξ (η)) = η.
By Lemma 7.18(6), ∃δ(R) > 0 so that δ(R) ≤ ϕ′′N ≤ δ(R)−1 on [−(R + 1), (R + 1)]. So η 7→ ξ (η) is

1
δ(R) -bi-Lipschitz on [âR

N, b̂
R
N ]. By construction, ϕ′N (0) = 0. So ξ (0) = 0, whence by the bi-Lipschitz property

δ(R) |η | ≤ |ξ (η) | ≤ δ(R)−1 |η | on [âR
N, b̂

R
N ].

Since ϕN is real-analytic and strictly convex, ϕ′N is smooth and strictly increasing. By the inverse mapping
theorem, η 7→ ξ (η) is smooth and strictly increasing. So sgn(ξ (η)) = sgn(η) on [âR

N, b̂
R
N ]. Specializing to the

case η = zN−E(SN )
VN

, gives properties (a)–(c) of ξN .
Property (d) is because of Lemma 7.18, which says that zN = P′N (ξN ) = ẼξN (SN ) + O(1). The big oh is

uniform because |ξN | ≤ R + 1.
This completes the proof of part (1). To prove part (2), fix R > 2. By (7.29), for all N large enough,

[âR
N, b̂

R
N ] ⊃ [ãR−1

N , b̃R−1
N ] ≡ ϕ′N [−(R − 1), (R − 1)]. Since ϕ′N (0) = 0 and ϕ′′N ≥ δ(R) on [−R, R], we have that

ϕ′(±R) = ±(R)ϕ′′(η±) for some η± ∈ [−R, R]. Therefore [âR
N, b̂

R
N ] ⊃ [−c, c], where c := Rδ(R). �

Corollary 7.20 Suppose VN → ∞ and zN−E(SN )
VN

→ 0, then for all N large enough, there exists a unique ξN
such that P′N (ξN ) = zN . Furthermore, ξN → 0.

7.3.4 The Asymptotic Behavior of Ṽ ξN (SN )

Recall that Ṽ ξ
N denotes the variance of SN with respect to the change of measure X̃ξ from (7.3).

Lemma 7.21 Suppose VN −−−−−→
N→∞

∞, and define ξN as in Lemma 7.19.

(1) Suppose R > 0 and zN−E(SN )
VN

∈ [âR
N, b̂

R
N ] for all N , then Ṽ ξN

N � VN as N → ∞.
(2) If zN−E(SN )

VN
→ 0, then Ṽ ξN

N ∼ VN as N → ∞.
(3) Uniformity: ∀ε > 0 ∃ξ∗ > 0 and ∃N0 > 1, so that ∀N > N0, if |ξ | < ξ∗, then Ṽ ξ

N/VN ∈ [e−ε, eε ].

Proof We assume without loss of generality that E( fk (Xk, Xk+1)) = 0 for all k; otherwise we subtract suitable
constants from fk , and note that this has no effect on âN, b̂N , VN or Ṽ ξ

N . In particular, E(SN ) = 0 for all N .
If zN−E(SN )

VN
∈ [âR

N, b̂
R
N ], then |ξN | ≤ R + 1 (Lemma 7.19), and part (1) follows from Lemma 7.17.

If zN−E(SN )
VN

→ 0, then ξN → 0 (Corollary 7.20), and part (2) follows from part (3). It remains to prove part (3).
To do this we decompose SN into weakly correlated large blocks with roughly the same X-variances, and we

check that the X̃ξ -variance of the i-th block converges uniformly in i to its X-variance, as ξ → 0.

We denote the entries of X̃ξ by {X̃ ξ
n }, and define for m ≥ n + 1, Sn,m :=

m−1∑
k=n

fk (Xk, Xk+1),
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S̃ξn,m :=
m−1∑
k=n

fk (X̃ ξ
k
, X̃ ξ

k+1), Vn,m := Var(Sn,m), Ṽ ξ
n,m := Var(S̃ξn,m), pn,m(ξ) :=

m−1∑
k=n

pk (ξ).

We claim that for all R > 0, n < m, and |ξ | ≤ R,

pn,m(0) = 0, p′n,m(0) = E(Sn,m) = 0, |p′n,m(ξ) − Ẽξ (S̃ξn,m) | ≤ C(R). (7.30)

The first identity is because hn(·, 0) ≡ 1 and pn(0) = 1, by the uniqueness of the fundamental solution. The
second identity is because p′n,m(0) = P′m−1(0) − P′n−1(0) = E(Sm−1) − E(Sn−1) = 0 − 0 = 0. The third part of
(7.30) can be shown by applying the proof of Lemma 7.18(2) to the truncated Markov chains {Xk }k≥n.

Similarly, applying the proof of Lemma 7.17 to the truncated chain {Xk }k≥n gives a constant M0 such that for
all n < m and |ξ | ≤ R,

Vn,m ≥ M0 ⇒



C(R)−1 ≤ Ṽ ξ
n,m/Vn,m ≤ C(R)

2−1 ≤ p′′n,m(ξ)/Ṽ ξ
n,m ≤ 2.

(7.31)

Step 1 (Mixing Estimates). Recall that K = ess sup |f|. There are C∗mix = C∗mix (K, R) > 1 and η = η(K, R) ∈
(0, 1) such that for every |ξ | ≤ R and k ≤ n < m,

(1) ��Cov
(

fm(X̃ ξ
m, X̃ ξ

m+1), fn(X̃ ξ
n , X̃ ξ

n+1)
) �� ≤ C∗mixη

m−n; (2) 

Ẽξ (S̃ξn,m | X̃
ξ
k

) − Ẽξ (S̃ξn,m)

∞ ≤ C∗mix ;
(3) 

Ẽξ ((S̃ξn,m)2 | X̃k ) − Ẽξ ((S̃ξn,m)2)

∞ ≤ C∗mix (1 + |p′n,m(ξ) |).

Proof of the Step: Let f̃ ξi := f i (X̃ ξ
i , X̃ ξ

i+1) and f̂ ξi := f̃ ξi − Ẽ
ξ ( f̃ ξi ). Then | f̂ ξi | ≤ 2K .

The Markov chains X̃ ξ
n are uniformly elliptic with the same ellipticity constant ε0(R) > 0 for all |ξ | ≤ R. By

Proposition 2.13, there are constants C ′mix = C ′mix (K, R) > 0 and η = η(K, R) ∈ (0, 1) such that for all |ξ | ≤ R
and for every i > k,

‖Ẽξ ( f̂ ξi | X̃
ξ
k

)‖∞ ≤ C ′mixη
i−k . (7.32)

Thus 

Ẽξ (S̃ξn,m | X̃
ξ
k

) − Ẽξ (S̃ξn,m)

∞≤
∑
‖Ẽξ ( f̂ ξi | X̃

ξ
k

)‖∞ <
C′mix

1−η , a constant independent of ξ. This proves part 2.
Next, Ẽξ ( f̂ ξm f̂ ξn ) = Ẽξ ( f̂ ξn Ẽ

ξ ( f̂ ξm | X̃
ξ
n , X̃ ξ

n+1)) = Ẽξ ( f̂ ξn Ẽ
ξ ( f̂ ξm | X̃

ξ
n+1)); therefore |Ẽξ ( f̂ ξm f̂ ξn ) | ≤ 2K ·

C ′mixη
m−n−1. Part 1 follows.

Henceforth, we fix ξ and set Ẽ = Ẽξ , f̂ i = f̂ ξi , X̃ ξ
k
= X̃k . We claim that:

‖Ẽ( f̂ i f̂ j | X̃k ) − Ẽ( f̂ i f̂ j )‖∞ ≤ const.η
i−k

2 η
j−i
2 (|ξ | ≤ R, k ≤ i < j). (7.33)

Fix k ≤ i < j. To prove (7.33), we will estimate the LHS in two ways:

• Ẽ( f̂ i f̂ j | X̃k ) − Ẽ( f̂ i f̂ j ) = Ẽ(g | X̃k ), with g := Ẽ( f̂ i f̂ j | X̃i, X̃i+1, X̃k ) − Ẽ( f̂ i f̂ j ). A calculation shows that g
depends only on X̃i and X̃i+1. By (7.32),

‖Ẽ( f̂ i f̂ j | X̃k ) − Ẽ( f̂ i f̂ j )‖∞ = ‖Ẽ(g | X̃k )‖∞ ≤ const.ηi−k . (7.34)

• Consider the Markov chain Y = (X̃ ξ
k
, X̃ ξ

k+1, . . .) with initial distribution X̃ ξ
k
= xk for some fixed xk ∈ Sk . Y

has the same uniform ellipticity constant as X̃ξ , and therefore Y and X̃ξ have the same mixing rates. Thus for
every xk ∈ Sk , |Ẽ( f̂ i f̂ j | X̃

ξ
k
= xk ) − Ẽ( f̂ i | X̃k = xk )Ẽ( f̂ j | X̃k = xk ) | ≤ const.η j−i uniformly in xk and k, i, j.

This, (7.32), and i ≥ k lead to ‖Ẽ( f̂ i f̂ j | X̃
ξ
k

)‖∞ ≤ ‖ f̂ i ‖∞‖Ẽ( f̂ j | X̃k )‖∞ + const.η j−i ≤ const.η j−i .

Obviously, this implies that |Ẽ( f̂ i f̂ j ) | ≤ const.η j−i and

‖Ẽ( f̂ i f̂ j | X̃
ξ
k

) − Ẽ( f̂ i f̂ j )‖∞ ≤ const.η j−i . (7.35)

By (7.34) and (7.35), the RHS of (7.33) is O(min{ηi−k, η j−i }). Since min{|a |, |b|} ≤
√
|ab|, (7.33) follows.

We can now prove the Step 1(3). Let S̃n,m := S̃ξn,m and Ŝn,m := S̃n,m − Ẽ(S̃n,m).
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Ẽ(Ŝ2
n,m | X̃k ) − Ẽ(Ŝ2

n,m)‖∞ ≤ 2
∑

n≤i≤ j≤m

‖Ẽ( f̂ i f̂ j | X̃k ) − Ẽ( f̂ i f̂ j )‖∞ ≤ C
∑

n≤i≤ j≤m

η
i−k

2 η
j−i
2 ≤ C(1 − η1/2)−2 =: C1.

‖Ẽ(S̃2
n,m | X̃k ) − Ẽ(S̃2

n,m)‖∞= ‖Ẽ[(Ŝn,m+Ẽ(S̃n,m))2 | X̃k] − Ẽ[(Ŝn,m+Ẽ(S̃n,m))2]‖∞
= ‖Ẽ(Ŝ2

n,m | X̃k ) + 2Ẽ(Ŝn,m | X̃k )Ẽ(S̃n,m) + Ẽ(S̃n,m)2 − Ẽ(Ŝ2
n,m) − Ẽ(S̃n,m)2‖∞

≤ ‖Ẽ(Ŝ2
n,m | X̃k ) − Ẽ(Ŝ2

n,m)‖∞+2‖Ẽ(Ŝn,m | X̃k )‖∞ |Ẽ(S̃n,m) | ≤ C1 +
∑

n≤i≤m

‖Ẽ( f̂ i | X̃k )‖∞
(
|p′n,m(ξ) | + |Ẽ(S̃n,m) − p′n,m(ξ) |

)
≤ const.(1 + |p′n,m(ξ) |), by (7.30) and (7.32).

The constant is uniform for |ξ | ≤ R, k, n and m. Increasing C∗mix , we obtain (3).

Step 2 (Block Decomposition). For every ε > 0 small enough, for every R > 1, there exists M > 1 and a
sequence of integers ni ↑ ∞ such that:

(1) M > 1000(C∗mix )2/ε; (2) M ≤ Vni,ni+1 ≤ 2M;
(3) |Cov(S̃ξni,ni+1, S̃

ξ
n j,n j+1 ) | ≤ C#

mixη
n j−ni+1 ∀|ξ | ≤ R and i < j, where C#

mix is independent of M, i, j and ξ;
(4) For all |ξ | ≤ R, for all i > 3, for all n ∈ [ni, ni+1],

e−ε ≤
Ṽ ξ
n

i−1∑
k=1

Ṽ ξ
nk,nk+1 + Ṽ ξ

ni,n

≤ eε ; (7.36)

(5) M∗ := sup
i

sup
n∈[ni,ni+1]

sup
|ξ | ≤R

|p′′ni,n(ξ) | < ∞; (6) M#:=sup
i

sup
n∈[ni,ni+1]

sup
|ξ | ≤R

sup
xni ∈Sni

E(eξSni ,n |Xni = xni ) < ∞.

Proof of the Step. Fix M >max


M0,

1000(C∗mix )2

ε
, 2

(
K2+

C∗mix

1 − η

)
,

8C∗mixC(K, R)

ε (1 − η(K, R))3



. Set n1 := 1, and define ni

inductively by ni+1 := min{n > ni : Vni,ni+1 > M }. Such n > ni exist, because Vni,n −−−−→n→∞
∞:

∞ ←−−−−−
∞← n

Vn−1≡V1,n=V1,ni + Vni,n + 2Cov(S1,ni , Sni,n)=Vni,n+V1,ni +O *.
,

ni−1∑
m=1

∞∑
k=0
|Cov( fm, fni+k ) |+/

-

!
= Vni,n+V1,ni +O(1),

by Step 1 with ξ = 0.
By construction, Vni,ni+1 > M , and
Vni,ni+1 ≤ Vni,ni+1−1 + |Vni,ni+1 − Vni,ni+1−1 | ≤ M + |Vni,ni+1 − Vni,ni+1−1 |, (by the minimality of ni+1)

≤ M + Var( fni+1−1(Xni+1−1, Xni+1 )) + 2|Cov( fni+1−1(Xni+1−1, Xni+1 ), Sni,ni+1−1) | ≤ M + 2
(
K2 +

C∗mix

1 − η

)
≤ 2M

by the choice of M and η. So M < Vni,ni+1 ≤ 2M , and {ni } satisfies part 2.

If i < j, then |Cov(S̃ξni,ni+1, S̃
ξ
n j,n j+1 ) | ≤

ni+1−1∑
k=ni

n j+1−1∑
`=n j

C∗mixη
`−k . The last sum is equal to

C∗mix

ni+1−1∑
k=ni

ηn j−k

1 − η
=

C∗mixη
n j−ni+1

1 − η

ni+1−1∑
k=ni

ηni+1−k ≤
C∗mixη

n j−ni+1

(1 − η)2 . Part 3 follows with C#
mix := C∗mix/(1 − η)2.

Fix n ∈ [ni, ni+1], then
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������
Ṽ ξ
n −

i−1∑
k=1

Ṽ ξ
nk,nk+1 − Ṽ ξ

ni,n

������
≤ 2

∑
1≤k<`≤i−1

|Cov(S̃ξnk,nk+1, S̃
ξ
n`,n`+1 ) | + 2

∑
1≤k≤i−1

|Cov(S̃ξnk,nk+1, S̃
ξ
ni,n) ≤

2
∑

1≤k<`≤i−1
C#
mixη

n`−nk+1 + 2
∑

1≤k≤i−1
C#
mixη

ni−nk+1 ≤ 4
∑

1≤k<`≤i
C#
mixη

`−k−1 = 4C#
mix

i∑
k=1

i∑
`=k+1

η`−k−1 ≤
4C∗mixi

(1 − η)3 .

By (7.31) and part 2,
i−1∑
k=1

Ṽ ξ
nk,nk+1 ≥

M (i − 1)
C(R)

. So

������

Ṽ ξ
n∑i−1

k=1 Ṽ ξ
nknk+1 + Ṽ ξ

ni,n

− 1
������
≤

(
4C∗mix

(1−η)3

)
i

C(R)−1M (i − 1)
=

1
M
·

4C∗mixC(R)

(1 − η)3 ·
i

i − 1
≤
ε

2
·

i
i − 1

.

If i > 3, then the last bound is less than 3
4 ε , and part 4 follows for all ε small.

Part 5 is a uniform bound on |p′′ni,n(ξ) | for i ∈ N, n ∈ [ni, n], |ξ | ≤ R. By construction, Vni,n ≤ 2M . By
Theorem 3.7, this implies a uniform upper bound on

∑n−1
k=ni

u2
k
. We have already seen that the structure constants

of {Xn} and {X̃
ξ
n } are equal up to a bounded multiplicative error. So the same theorem, applied to the Markov

chain {X̃ ξ
k
}k≥ni , gives a uniform upper bound for Ṽ ξ

ni,n, whence sup
i

sup
n∈[ni,ni+1]

sup
|ξ | ≤R

Ṽ ξ
ni,n < ∞.

A routine modification of the argument used to show (7.20) gives
����p
′′
ni,n

(ξ)−̃Eξ
[(

S̃ξni,n−̃E
ξ (S̃ξni,n) +O(1)

)2] ����≤C.

Ẽξ
[(

S̃ξni,n − Ẽ
ξ (S̃ξni,n) +O(1)

)2]
is uniformly bounded because of the bound on Ṽ ξ

ni,n and the Minkowski
inequality, so part 5 follows.

Given xni ∈ Sni , let Exni
(·) := E(·|Xni = xni ). We have the following variant of (7.25) (with the same

proof): Exni
(eξSni ,n hξn (Xn)) = epni n

(ξ ) hξni (xni ). By Lemma 7.14, there is a constant Ĉ := Ĉ(K, R) independent
of xni such that for all n < m and |ξ | < R, hξn, h

ξ
ni ∈ [Ĉ−1, Ĉ]. It follows that Exni

(eξSni ,n ) ≤ Ĉ2epni ,n
(ξ ) .

By (7.30) and part 5, |pni,n(ξ) | ≤ 1
2 M∗R2 on [−R, R]. So Exni

(eξSni ,n ) ≤ M#, where M# := Ĉ2 exp( 1
2 M∗R2).

Step 3 (Block Variance). Fix M and ni as in Step 2. There is ξ∗ > 0 such that for all |ξ | < ξ∗, i ∈ N, and
ni ≤ n ≤ ni+1, |Ṽ ξ

ni,n − Vni,n | < εM/10.

Proof of the Step. Fix 0 < δ < (3M#)−1 ∧ R, and choose L > 0 so big that t2 < δeδ |t | , whenever |t | > L. Given
xn ∈ Sn, let Exn (·) := E(·|Xn = xn) and Ẽξxn (·) := Ẽξ (·| X̃ ξ

n = xn). By the definition of X̃ξ , for every i ∈ n and
n ∈ [ni, ni+1],

Ẽ
ξ
xni

[(S̃ξni,n)2] − Exni
(S2

ni,n
) = Exni

[(
eξSni ,n

−pni ,n
(ξ ) hξn (Xn)

hξni (xni )
− 1

)
S2
ni,n

]
. (7.37)

We will choose ξ∗ > 0 so that some of the terms inside the brackets are close to constants, whenever |ξ | < ξ∗.

Firstly, by (7.30) and Step 2(5), if ξ∗ < R, then |pni,n(ξ) | ≤
1
2

M∗ξ∗2 for all |ξ | < ξ∗. Next, by Lemma 7.16

and the identity h0
n ≡ 1, ‖hξn − 1‖∞ ≤ c(R) |ξ | for some c(R) and all n. Therefore by decreasing ξ∗, we can

guarantee that for all |ξ | < ξ∗, e−3c(R)ξ∗ ≤
hξn (Xn)

hξni (xni )
≤ e3c(R)ξ∗ a.s. Finally (for reasons which will soon

become apparent), we make ξ∗ so small that

ξ∗ + δ< R, ��e±ξ
∗ (L+ 1

2 M
∗ξ∗2+3c(R)) − 1��L2<1, e

1
2 M

∗ξ∗2+3c(R)ξ∗ < 2, M∗ξ∗<1.

We now return to (7.37), and decompose the RHS into the sum I+II+II, where I,II and III are the contributions
to the expectation from [|Sni,n | ≤ L], [Sni,n > L], and [Sni,n < −L] respectively. Suppose |ξ | < ξ∗, then
|pni,n(ξ) | ≤ 1

2 M∗ξ∗2, so
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|I| ≤ Exni



����e
ξSni ,n

−pni ,n
(ξ ) hξn (Xn)

hξni (xni )
− 1

����S
2
ni,n

1[ |Sni ,n
| ≤L]


= ��e±ξ

∗ (L+ 1
2 M

∗ξ∗2+3c(R))−1��L2 < 1, if ξ∗ is small enough.

|II| ≤ Exni



����e
ξSni ,n

−pni ,n
(ξ ) hξn (Xn)

hξni (xni )
− 1

����S
2
ni,n

1[Sni ,n
>L]


≤ Exni



����e
ξSni ,n

−pni ,n
(ξ ) hξn (Xn)

hξni (xni )
− 1

����δe
δSni ,n


,

≤ Exni

[
e(ξ+δ)Sni ,n

]
e

1
2 M

∗ξ∗2+3c(R)ξ∗δ + Exni

[
eδSni ,n

]
δ ≤ δM#

(
e

1
2 M

∗ξ∗2+3c(R)ξ∗ + 1
)
< 3δM# < 1,

There the second inequality follows by the choice of L and the last one is by the choice of δ, M# and ξ∗.

|III|≤Exni



����e
ξSni ,n

−pni ,n
(ξ ) hξn (Xn)

hξni (xni )
− 1

����S
2
ni,n

1[Sni ,n
<−L]


≤Exni

[
e(ξ−δ)Sni ,n

]
e

1
2 M

∗ξ∗2+3c(R)ξ∗δ + Exni

[
e−δSni ,n

]
δ<1.

Thus, ��Ẽ
ξ
xni

[(S̃ξni,n)2] − Exni
(S2

ni,n
)�� ≤ |I| + |II| + |III| ≤ 3. The same argument also shows that

��Ẽ
ξ
xni

[S̃ξni,n] − Exni
(Sni,n)�� ≤ 3 < 3C∗mix .

Applying Step 1(3) twice (once for |ξ | < ξ∗, and once for ξ = 0), we obtain

��Ẽξ [(S̃ξni,n)2] − E(S2
ni,n

)��≤3C∗mix+ 2C∗mix (1 + |p′ni,n(ξ) |)≤3C∗mix (1 + M∗ξ∗)<6C∗mix .

Similarly, ��Ẽξ (S̃ξni,n)−E(Sni,n)�� ≤ 5C∗mix . Since E(Sni,n) = 0, the last estimate gives |Ẽξ (S̃ξni,n) | ≤ 5C∗mix . Thus,

��Ṽ
ξ
ni,n − Vni,n

�� ≤ ��Ẽξ [(S̃ξni,n)2] − E(S2
ni,n

)�� + Ẽξ (S̃ξni,n)2 < 50(C∗mix )2 <
εM
10

. (7.38)

Proof of Part (3) of the Lemma. Fix ε > 0 very small. Vnk,nk+1 ≥ M , and by (7.38), for every |ξ | < ξ∗,
|Ṽ ξ

nk,nk+1 − Vnk,nk+1 | < (ε/10)Vnk,nk+1 . So for all k, e−ε < Ṽ ξ
nk,nk+1/Vnk,nk+1 < eε . Also by (7.38), for all

n ∈ [nk, nk+1], |Ṽ ξ
nk,n − Vnk,n | < (ε/10)Vn1,n2 .

Fix n so large that Vn > 4M . Then n ∈ [ni, ni+1] with i ≥ 2, and by Step 2(4)

Ṽ ξ
n

Vn
=

Ṽ ξ
n

Ṽ 0
n

=

e±ε (
i−1∑
k=1

Ṽ ξ
nk,nk+1 + Ṽ ξ

ni,n)

e±ε (
i−1∑
k=1

Ṽ 0
nk,nk+1 + Ṽ 0

ni,n)
=

e±2ε (
i−1∑
k=1

Vnk,nk+1 + Vni,n ±
ε
10Vn1,n2 )

e±ε (
i−1∑
k=1

Vnk,nk+1 + Vni,n)
.

The last fraction is e±3ε (1 ± ε
10 ). If ε is small enough, this is inside [e−4ε, e4ε ].

We proved the lemma, with 4ε instead of ε . �

7.3.5 Asymptotics of the Log Moment Generating Functions

Let X,Y be two random variables on the same probability space (Ω,F , P). Suppose X has finite variance, and
Y is positive and bounded. Let VarY (X ) be the variance of X with respect to the change of measure Y

E(Y ) dP.

Equivalently, VarY (X ) :=
E(X2Y )
E(Y )

−

(
E(XY )
E(Y )

)2
.

Lemma 7.22 Suppose 0 < Var(X ) < ∞ and C−1 ≤ Y ≤ C with C a positive constant, then C−4Var(X ) ≤
VarY (X ) ≤ C4Var(X ).
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Proof Let (X1,Y1), (X2,Y2) be two independent copies of (X,Y ), then VarY (X ) =
1
2
E[(X1 − X2)2Y1Y2]

E(Y1Y2)
=

C±4 1
2
E[(X1 − X2)2] = C±4Var(X ). �

Proof of Theorem 7.3 Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic Markov
chain X, such that VN := Var(SN ) , 0 for N ≥ N0, and let FN (ξ) := 1

VN
logE(eξSN ).

Since ‖SN ‖∞ < ∞, we may differentiate under the expectation and obtain that for all k, dk
dξk E(eξSN ) =

E(Sk
NeξSN ). A direct calculation shows that denoting Y ξ

N := eξSN , we have

F ′N (ξ) =
1

VN

E(SNeξSN )
E(eξSN )

=
1

VN
EY

ξ
N (SN ), F ′′N (ξ) =

1
VN



E(S2
NeξSN )

E(eξSN )
−

(
E(SNeξSN )
E(eξSN )

)2
=

VarY
ξ
N (SN )
VN

.

Part 1: Substituting ξ = 0 gives FN (0) = 0, F ′N (0) = E(SN )
VN

and F ′′N (0) = 1.

Part 2: F ′′N (ξ) = 0⇔ VarY
ξ
N (SN ) = 0⇔ SN = const Y

ξ
N

E(Y ξN )
dP–a.s.⇔ SN = const P–a.s.⇔ Var(SN ) = 0. So

FN is strictly convex on R for all N > N0.

Part 3: Ṽ ξ (SN ) ≡ VarZN (SN ), where ZξN := eξSN
h
ξ
N+1

h
ξ
1

(the normalization constant does not matter). Next,

ZξN ≡ Y ξ
NW ξ

N , where W ξ
N := hξ

N+1/hξ1 . Lemma 7.14 says that for every R > 0 there is a constant C = C(R) s.t.
C−1 ≤ W ξ

N ≤ C for all N and |ξ | ≤ R. Lemma 7.16 and the obvious identity h0
n ≡ 1 imply that W ξ

N −−−−→ξ→0
1

uniformly in N . So there is no loss of generality in assuming that C(R) −−−−→
R→0

1.

By Lemma 7.22 with the probability measure eξSN

E(eξSN )
dP and Y = W ξ

N ,

Ṽ ξ (SN )
VNF

′′
N (ξ)

=
VarY

ξ
NW

ξ
N (SN )

VarY
ξ
N (SN )

∈
[
C(R)−4,C(R)4

]
, ∀|ξ | ≤ R, N ≥ 1. (7.39)

By Lemma 7.17, Ṽ ξ (SN ) � VN uniformly on compact sets of ξ, and by Lemma 7.21 for every ε there exists
δ, Nε > 0 s.t. e−ε < Ṽ ξ (SN )/VN < eε for all N > Nε and |ξ | ≤ δ. It follows that for every R there exists
C2(R) > 1 such that C2(R) −−−−→

R→0
1 and C2(R)−1 ≤ F ′′N (ξ) ≤ C2(R) for all |ξ | ≤ R.

Part 4: Fix ε > 0. Since C2(R) −−−−→
R→0

1, there exist δ > 0 and Nε ∈ N such that e−ε ≤ F ′′N (ξ) ≤ eε for all

|ξ | ≤ δ, N ≥ Nε . So FN (ξ) = FN (0) +
∫ ξ

0

(
F ′N (0) +

∫ η

0 F
′′
N (α)dα

)
dη = E(SN )

VN
ξ + 1

2e±ε ξ2. �

7.3.6 Asymptotics of the Rate Functions

The rate functions IN (η) are the Legendre transforms of FN (ξ) = 1
VN

logE(eξSN ). Recall that the Legendre
transform of a continuously differentiable and strictly convex function ϕ : R → R is the function ϕ∗ :
(inf ϕ′, sup ϕ′) → R given by

ϕ∗(η) = ξη − ϕ(ξ), for the unique ξ such that ϕ′(ξ) = η. (7.40)

Lemma 7.23 Suppose ϕ(ξ) is strictly convex and twice differentiable on R, and let ϕ′(±∞) := lim
ξ→±∞

ϕ′(ξ).

Then the Legendre transform ϕ∗ is strictly convex and twice differentiable on (ϕ′(−∞), ϕ′(+∞)). In addition,
for every t ∈ R,

ϕ∗(ϕ′(t)) = tϕ′(t) − ϕ(t), (ϕ∗)′(ϕ′(t)) = t , and (ϕ∗)′′(ϕ′(t)) =
1

ϕ′′(t)
. (7.41)
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Proof Under the assumptions of the lemma, ϕ′ is strictly increasing and differentiable. So (ϕ′)−1 : (ϕ′(−∞), ϕ′(∞)) →
R is well-defined, strictly increasing, differentiable, and ϕ∗(η) = η(ϕ′)−1(η) − ϕ[(ϕ′)−1(η)]

The lemma follows by differentiation of right-hand-side. �

Proof of Theorem 7.4. Let IN := F ∗N .

Part 1: Since FN is strictly convex and smooth, F ′N is strictly increasing and continuous. So F ′N [−1, 1] =
[F ′N (−1), F ′N (1)] ≡ [a1

N, b
1
N ], and for every η ∈ [a1

N, b
1
N ], there is a unique ξ ∈ [−1, 1] s.t. F ′N (ξ) = η. So

dom(IN ) ⊃ [a1
N, b

1
N ].

By Theorem 7.3 there is C > 0 such that C−1 ≤ F ′′N ≤ C on [−1, 1] for all N ≥ N0. Since F ′N (0) = E(SN )
VN

and F ′N (ρ) = F ′N (0) +
∫ ρ

0 F
′′
N (ξ)dξ, we have b1

N ≡ F
′
N (1) ≥

E(SN )
VN

+ C−1 , a1
N ≡ F

′
N (−1) ≤

E(SN )
VN

− C−1.

So dom(IN ) ⊇ [a1
N, b

1
N ] ⊇

[
E(SN )
VN

− C−1, E(SN )
VN
+ C−1

]
for all N ≥ N0.

Part 2 follows from Lemma 7.23 and the strict convexity of FN on [−R, R].

Part 3: Let JN :=
[
E(SN )
VN

− C−1, E(SN )
VN
+ C−1

]
. In part 1 we constructed the functions ξN : JN → [−1, 1] such

that F ′N (ξN (η)) = η.
SinceC−1 ≤ F ′′N ≤ C on [−1, 1], ξ ′N (η) = 1

F ′′N (ξN (η)) ∈ [C−1,C] on JN . This and the identity ξN
(
E(SN )
VN

)
= 0

lead to
|ξN (η) | = ��ξN (η) − ξN

( E(SN )
VN

) �� ≤ C��η − E(SN )
VN

�� for all η ∈ JN , N ≥ N0.

Fix 0 < ε < 1. By Theorem 7.3(4) there are δ, Nε > 0 such that e−ε ≤ F ′′N ≤ eε on [−δ, δ] for all N > Nε . If
|η − E(SN )

VN
| < δ/C, then |ξN (η) | < δ, and F ′′N (ξN (η)) ∈ [e−ε, eε ].

Since FN (0) = 0 and F ′N (0) = E(SN )
VN

, we have by (7.41) that IN ( E(SN )
VN

) = I ′N ( E(SN )
VN

) = 0 and I ′′N (η) =
1/F ′′N (ξN (η)) ∈ [e−ε, eε ].Writing

IN (η) = IN ( E(SN )
VN

) +
∫ η

E(SN )
VN

*.
,
I ′N ( E(SN )

VN
) +

∫ α

E(SN )
VN

I ′′N (β)dβ+/
-

dα,

we find that IN (η) = e±ε 1
2 (η − E(SN )

VN
)2 for all η such that |η − E(SN )

VN
| ≤ δ/C.

Part 4: If zN−E(SN )
VN

→ 0, then zN
VN
∈

[
E(SN )
VN

− δN,
E(SN )
VN
+ δN

]
with δN → 0. By part 3,

IN ( zN
VN

) ∼ 1
2

(
zN−E(SN )

VN

)2
, whence VNIN ( zN

VN
) ∼ 1

2

(
zn−E(SN )
√
VN

)2
. �

Let HN (η) denote the Legendre transform of PN (ξ)/VN . We will compare HN (η) to IN (η). This is needed
to link the change of measure we performed in section §7.3.3 to the functions IN which appear in the statement
of the LLT for large deviations.

Lemma 7.24 Suppose R > 0 and VN , 0 for all N ≥ N0. Then for all N ≥ N0,

(1) HN is well-defined and real-analytic on [aR
N, b

R
N ] =

[
F ′N (−R), F ′N (R)

]
.

(2) For all R large enough, there exists c > 0 such that HN (·) is well-defined and real-analytic on(
E(SN )
VN

− c, E(SN )
VN
+ c

)
, for all N large enough.

Proof Let [aR
N, b

R

N ] := [ãR
N, b̃

R
N ] + E(SN )

VN
≡

[ P′N (−R)
VN

,
P′N (R)
VN

]
. Lemma 7.19 and its proof provide real-analytic

maps ξN :
[
aR
N, b

R

N

]
→ R such that P′N (ξN (η))

VN
= η. So for all R > 0, HN is real-analytic and well-defined on[

aR
N, b

R

N

]
. By (7.29), [aR

N, b
R
N ] ≡ [âR

N, b̂
R
N ]+

E(SN )
VN

⊂ [ãR+1
N , b̃R+1

N ]+
E(SN )

VN
=

[
aR+1
N , b

R+1
N

]
and part 1 follows.

Part 2 follows from Lemma 7.19(2) and (7.29). �
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Lemma 7.25 Suppose R > 0 and VN , 0 for all N ≥ N0. Then for all N > N0,

(1) dom(IN ) ∩ dom(HN ) ⊃ [aR
N, b

R
N ].

(2) There exists C(R) > 0 such that if z
VN
∈ [aR

N, b
R
N ] and N ≥ N0, then

(a) ���VNIN

(
z

VN

)
− VN HN

(
z

VN

) ��� ≤ C(R); (b) C(R)−1 ≤ H ′′N ( z
VN

) ≤ C(R).

(3) For every ε > 0, ∃δ, Nε > 0 such that if N ≥ Nε and ���
z−E(SN )

VN

��� < δ, then
(a) ���VNIN

(
z

VN

)
− VN HN

(
z

VN

) ��� ≤ ε ; (b) e−ε ≤ H ′′N
(

z
VN

)
≤ eε .

Proof Part 1 is a direct consequence of Lemma 7.24 and Theorem 7.4(1).
To prove the other parts of the lemma, we use the following consequence of (7.29) and the continuity of P′N

and F ′N : For every R > 0, for all N large enough, for every η ∈ [aR
N, b

R
N ], there exist ξ (1)

N , ξ (2)
N ∈ [−(R+1), (R+1)]

such that
P′N (ξ (1)

N )
VN

= η and F ′N (ξ (2)
N ) = η.Arguing as in the proof of Theorem 7.4(3), we can also find a constant

C(R) such that |ξ (i)
N | ≤ C(R)��η − E(SN )

VN

��.
It is a general fact that the Legendre transform of a C1 convex function ϕ is equal on its domain to

ϕ∗(η) = sup
ξ
{ξη − ϕ(ξ)}. Thus for every z ∈ [aR

NVN, bRNVN ],

VNIN

(
z

VN

)
= VN sup

ξ

{
ξ

z
VN
− FN (ξ)

}
= VN

(
ξ (2)
N

z
VN
− FN (ξ (2)

N )
)

Lm.7.18(4)
≤ VN

(
ξ (2)
N

z
VN
−

PN (ξ (2)
N )

VN

)
+ ∆N (R + 1)

≤ VN sup
ξ

{
ξ

z
VN
−

PN (ξ)
VN

}
+ ∆N (R + 1) ≡ VN HN

(
z

VN

)
+ ∆N (R + 1).

SoVNIN
( z
VN

)
−VN HN

( z
VN

)
≤ ∆N (R+1). Similarly, one can show thatVN HN

( z
VN

)
−VNIN

( z
VN

)
≤ ∆N (R+1).

Part (2a) now follows from Lemma 7.18(4).
If z/VN ∈

(
E(SN )
VN

− δ, E(SN )
VN
+ δ

)
, then |ξ (i)

N | < Cδ, and the same argument gives

sup
N ≥N0

sup
����
z−E(SN )

VN

����≤δ
|VNIN (z/VN ) − VN HN (z/VN ) | ≤ sup

N ≥N0

∆N (Cδ).

Part (3a) follows from Lemma 7.18(4).
By (7.41), H ′′N ( z

VN
) = VN

P′′N (ξ ) =
VN

Ṽ
ξ
N

·
Ṽ
ξ
N

P′′N (ξ ) , for the unique ξ s.t. P′N (ξ )
VN

= z
VN

. Part (2b) now follows from
Lemmas 7.18(3) and 7.21(1).

Part (3b) is because if | z−E(SN )
VN

| is small, then |ξ | is small, and VN

Ṽ
ξ
N

and Ṽ
ξ
N

P′′N (ξ ) are close to one, by Lemmas
7.18(3) and 7.21(3). �

7.3.7 Proof of the Local Limit Theorem for Large Deviations

Proof of Theorem 7.8.We consider the non-lattice case, when Gess (X, f) = R; the modifications needed for the
lattice case are routine.

By Lemma 2.27, it is sufficient to prove the theorem under the additional assumption that the initial distribution
of X is a point mass measure δx . Because of this reduction, we can assume that P = Px and E = Ex .

Since Gess (X, f)=R, f is not center-tight, and VN:=Var(SN ) →∞ (see Corollary 3.7 and Theorem 3.8). There
is no loss of generality in assuming that VN , 0 for all N .

Let [âR
N, b̂

R
N ] := [F ′N (−R) − E(SN )

VN
, F ′N (R) − E(SN )

VN
]. By Theorem 7.4(1), for R large enough,

⋂
N

[âR
N, b̂

R
N ]

contains a non-empty interval. Fix R like that.
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Suppose zN−E(SN )
VN

∈ [âR
N, b̂

R
N ], and let hξn (·) := hn(·, ξ), pn(ξ), and PN (ξ) be as in §§7.3.2, 7.3.3. Then

∃ξN ∈ [−(R + 1), (R + 1)] as in Lemma 7.19: P′N (ξN ) = zN, ξN = O
(
zN−E(SN )

VN

)
and ẼξN (SN ) = zN +O(1).

Define a Markov array X̃ := {X̃ (N )
n : 1 ≤ n ≤ N + 1} with the state spaces of X (i.e.S(N )

n = Sn), the initial
distributions of X (i.e. π(N ) = δx), but with the transition probabilities

π̃(N )
n,n+1(x, dy) := eξN fn (x,y) hn+1(y, ξN )

epn (ξN ) hn(x, ξN )
· πn,n+1(x, dy).

Let f̃ = { f (N )
n : 1 ≤ n ≤ N + 1, N ∈ N} where f (N )

n := fn, and set

S̃N := f1(X̃ (N )
1 , X̃ (N )

2 ) + · · · + fN (X̃ (N )
N , X̃ (N )

N+1).

Recall that eξN fn , hn, and epn (ξN ) are uniformly bounded away from zero and infinity, see Lemma 7.14. So
π̃(N )
n,n+1(x, dy) differ from πn,n+1(x, dy) by densities which are bounded away from zero and∞, uniformly in N .
By Corollary 2.10, X̃ is uniformly elliptic, and the hexagon measures associated to X̃ and X on Hex (N, n) are

related by Radon-Nikodym derivatives which are bounded away from zero and∞ uniformly in 5 ≤ n ≤ N < ∞.
Thus, d (N )

n (̃f, η) � dn(f, η) and u(N )
n (̃f) � un(f) for 5 ≤ n ≤ N < ∞. So,

• (X̃, f̃) and (X, f) have the same co-ranges and essential ranges. In particular, (X̃, f̃) is irreducible and non-lattice.
• (X̃, f̃) is stably hereditary (see Example 4.12 in §4.2.3).
• ṼN := Var(S̃N ) −−−−−→

N→∞
∞ (because ṼN �

∑N
n=3 u2

n � VN → ∞).

By the choice of ξN ,
zN − E(S̃N )
√

VN

= O
( 1
√

VN

)
−−−−−→
N→∞

0. Therefore S̃N satisfies the local limit theorem

(Theorem 5.1):

P(S̃N − zN ∈ (a, b)) ∼ |a − b|
/√

2πṼ ξN
N . (7.42)

The task now is to translate (7.42) into an asymptotic for P(SN − zN ∈ (a, b)). By construction, the initial
distributions of X̃ are π(N ) = π = δx , therefore

P[SN − zN ∈ (a, b)] = Ex (1(a,b) (SN − zN )) = ePN (ξN )−ξN zN×

× Ex
*
,
eξN SN

hξN
N+1(X (N )

N+1)

ePN (ξN ) hξN1 (x)
·

hξN1 (x)

hξN
N+1(X (N )

N+1)
· eξN (zN−SN )1(a,b) (SN − zN )+

-

= ePN (ξN )−ξN zN × hξN1 (x) × ẼξNx
(
hξN
N+1(X̃ (N )

N+1)−1φa,b (S̃N − zN )
)
, (7.43)

where φa,b (t) := 1(a,b) (t)e−ξN t .
The first term simplifies as follows: By construction P′N (ξN )

VN
=

zN
VN
, so

ePN (ξN )−ξN zN = exp
[
−VN

(
ξN

zN
VN
−

PN (ξN )
VN

)]
= e−VNHN

(
zN
VN

)
, (7.44)

where HN (η) is the Legendre transform of PN (ξ)/VN .
To simplify the third term Ẽ

ξN
x (· · · ), we sandwich φa,b in L1(R) between continuous functions with com-

pact support, and sandwich 1/hξN
N+1 between finite linear combinations of indicators of sets A(N+1)

i such that
P̃ξN (X̃ ξN

N+1 ∈ Ai) is bounded away from zero. Then we apply the Mixing LLT (Theorem 5.4) to (X̃, f̃), and obtain
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Ẽ
ξN
x

*
,

φa,b (S̃N − zN )

hξN
N+1(X̃ (N )

N+1)
+
-
∼
ẼξN

(
hξN
N+1(X̃ ξN

N+1)−1
)

√
2πṼ ξN

N

∫ b

a

e−ξN tdt . (7.45)

Since ξN is bounded, Ṽ ξN
N ∼ P′′N (ξN ) as N → ∞ (Lemma 7.18(3)). Since HN (η) is the Legendre transform of

PN (ξ)/VN , H ′′N (zN/VN ) = VN/P′′N (ξN ) ∼ VN/Ṽ
ξN
N , see (7.41). This leads to

Ṽ ξN
N ∼

VN

H ′′N ( zN
VN

)
as N → ∞. (7.46)

Substituting (7.44), (7.45), and (7.46) in (7.43), we obtain the following:

P[SN − zN ∈ (a, b)] ∼
e−VN IN ( zN

VN
)

√
2πVN

|a − b| ×
1

|a − b|

∫ b

a

e−ξN tdt ×

×

[
eVN IN ( zN

VN
)−VNHN ( zN

VN
)
√

H ′′N
(
zN
VN

) ]

︸                                            ︷︷                                            ︸
ρ̂N

×

[
hξN1 (x)ẼξN

[
hξN
N+1

(
X̃ ξN
N+1

)−1] ]

︸                                     ︷︷                                     ︸
ρN

.

Let ηN := zN−E(SN )
VN

, then ξN = ξN (ηN ) where ξN : [âR
N, b̂

R
N ]→ [−(R+ 1), (R+ 1)] is defined implicitly by

P′N (ξN (η)) = ηNVN + E(SN ). Lemma 7.19 shows that ξN (·) is well-defined, and that it satisfies the statement
of Theorem 7.8(4b).

There exists a constant L = L(R) such that |ηN | ≤ L(R). Indeed, ηN ∈ [âR
N, b̂

R
N ] and |âR

N |, |b̂
R
N | ≤

|F ′(±R) − F ′(0) | ≤ R sup
[−R,R]

F ′′N , which is uniformly bounded by Theorem 7.3(3).

Let ρ̂N (η) := eVN IN

(
η+

E(SN )
VN

)
−VNHN

(
η+

E(SN )
VN

)√
H ′′N

(
η + E(SN )

VN

)
. This is well-defined for η ∈ [âR

N, b̂
R
N ], and

by Lemma 7.25, there is a constant C such that C−1 ≤ ρ̂N (η) ≤ C for all N and η ∈ [âR
N, b̂

R
N ]. In addition,

for every ε > 0 there are δ, Nε > 0 such that e−ε ≤ ρ̂N (η) ≤ eε for all N > Nε and |η | ≤ δ. In particular, if
zN−E(SN )

VN
→ 0, then ρ̂N

( zN−E(SN )
VN

)
−−−−−→
N→∞

1.

Let ρN (η) := h1(x, ξ (η))Ẽξ (η)
(
hN+1(X̃ ξ (η)

N+1, ξ (η))−1
)
. (There is no dependence on x, because x is fixed.)

This function is well-defined for all η ∈ [âR
N, b̂

R
N ], and by Lemma 7.14, there is a constant C such that

C−1 ≤ ρN (η) ≤ C for all N and η ∈ [âR
N, b̂

R
N ].

By Lemma 7.16 and the obvious identity hn(·, 0) ≡ 1, ‖hξn − 1‖∞ −−−−→
ξ→0

0 uniformly in n. Since |ξ (η) | ≤ C |η |,

for every ε > 0 there are δ, Nε > 0 such that e−ε ≤ ρN (η) ≤ eε for all N > Nε , and |η | ≤ δ.
Setting ρN := ρ̂N · ρN , we obtain the theorem in the non-lattice case. The modifications needed for the lattice

case are routine, and are left to the reader. �

7.3.8 Rough Bounds in the Reducible Case

Proof of Theorem 7.9: We use the same argument we used in the previous section, except that we will use
the rough bounds of §6.2.5 (which do not require irreducibility), instead of the LLT for local deviations (which
does).

Let }=100K + 1 where K = ess sup(f). Looking at (7.43) and using Theorem 6.11 and the assumption that
zN
VN
∈ [F ′N (ε), F ′N (R)], we get that there exists a constant c = c(R) and ξN := ξN

(
zN
VN

)
∈ [ε, R + 1] such that

for all N large enough,



140 7 Local Limit Theorems for Moderate Deviations and Large Deviations

P(SN − zN ∈ [0, }]) ≥
ce−ξN }}
√

VN

e−VN IN

(
zN
VN

)
(7.47)

(Theorem 6.11 is applicable because } > 2δ(f) due to Corollary 4.6).)
Since P(SN ≥ zn) ≥ P(SN − zN ∈ [0, }]) the lower bound follows.
Likewise, applying Theorem 6.12, we conclude that there is a constant C∗ = C∗(R) such that for all N large

enough we have, uniformly in j ∈ N ∪ {0}, P(SN − zN ∈ [} j, }( j + 1)]) ≤ C∗e−ξN } j
√
VN

e−VN IN

(
zN
VN

)
. Summing

over j we obtain the upper bound. �

7.4 Large Deviations Thresholds

7.4.1 The Large Deviations Threshold Theorem

In this section we look closer into the conditions imposed on zN−E(SN )
VN

in the LLT for Large Deviations (Theorem
7.8), and ask what happens when they fail.

Let f be an additive functional on a uniformly elliptic Markov chain X. We assume throughout that f is
non-center-tight, irreducible, and a.s. uniformly bounded. Without loss of generality, G := Galg (X, f) = R or Z.
Our main result is:

Theorem 7.26 There exist c− < 0 < c+ as follows. Suppose zN is a sequence of numbers such that P[SN − zN ∈
G] = 1 for all N , and zN−E(SN )

VN
→ z.

(1) If z ∈ (c−, c+), then zN satisfies the assumptions and conclusions of the LLT for large deviations (Theorem7.8),

and ∃ a bounded sequence IN s.t. for all intervals (a, b) which intersect G, P[SN − zN ∈ (a, b)] �
e−VN IN

√
2πVN

.

(2) If z < [c−, c+], then the conditions of Theorem 7.8 fail, and ∃Nk ↑ ∞ such that P[SNk
− zNk

∈ (a, b)] → 0
faster than e−VNk

I , for each I > 0.

The theorem does not extend to the case when z = c− or c+, see Example 7.37. The numbers c−, c+ are called the
large deviations thresholds of (X, f).

Corollary 7.27 Let Ia (z) = lim sup
N→∞

V−1
N | logP(SN −E(SN ) ∈ zVN + [−a, a]) |. If a is bigger than the graininess

constant of (X, f), then c+ = sup{z : Ia (z) < ∞} and c− = inf{z : Ia (z) < ∞}.

Thus, if z < [c−, c+], then P[SN − zN ∈ (a, b)] decays “too fast" along some sub-sequence. Here is a simple
scenario when this happens. Let

r− := lim sup
N→∞

ess inf(SN − E(SN ))
VN

, r+ := lim inf
N→∞

ess sup(SN − E(SN ))
VN

.

If zN−E(SN )
VN

→ z and z < [r−, r+], then ∃Nk → ∞ such that P[SNk
− zNk

∈ (a, b)] is eventually zero, and we
must be in case (2) of Theorem 7.26. We call r± the positivity thresholds of (X, f). Clearly, (c−, c+) ⊂ (r−, r+).

If c± = r± then we say that (X, f) has a full large deviations regime. Otherwise, we say that the large deviations
regime is partial. For examples, see §7.4.4. Note that even in the full regime case, our results do not apply to
z = r±.

In the partial case, P[SN − zN ∈ (a, b)] decays faster than expected when zN−E(SN )
VN

→ z ∈ (r−, r+) \ (c−, c+),
but the precise asymptotic behavior remains unknown. We are not aware of general results in this direction, even
for sums of independent, non-identically distributed, random variables.
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7.4.2 Admissible Sequences

Let f be a non-center-tight and a.s. uniformly bounded additive functional on a uniformly elliptic Markov chain
X, and recall that FN (ξ) = (1/VN ) logE(eξSN ).

Theorem 7.8 is stated under the assumption that for some R > 0, for all N large,

zN − E(SN )
VN

∈

[
F ′N (−R) −

E(SN )
VN

, F ′N (R) −
E(SN )

VN

]
. (7.48)

Sequences {zN } satisfying (7.48) for a specific R are called R-admissible, and sequences which satisfy (7.48)
for some R > 0 are called admissible. Admissible sequences exist, see Theorem 7.4(1).

Why do we need admissibility? The proof of the LLT for large deviations uses a change of measure X̃, given
by (7.3). The change of measure depends on parameters ξN , which are calibrated so that E(S̃N ) = zN + O(1).
These parameters are roots of the equation P′N (ξN ) = zN , where PN are the functions from (7.24), and the
admissibility condition is necessary and sufficient for these roots to exist:

Lemma 7.28 Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic Markov chain X, such
that VN → ∞. The following are equivalent:

(1) {zN } is admissible; (2) For some R > 0, for all N large enough, ∃ξN ∈ [−R, R] s.t. P′N (ξN ) = zN ;
(3) For some R′ > 0, for all N large enough, ∃ξN ∈ [−R′, R′] s.t. F ′N (ξN ) = zN

VN
.

Proof (1)⇒(2) is Lemma 7.19(1).
Assume (2). PN is strictly convex, therefore if ∃ξN ∈ [−R, R] such that P′N (ξN ) = zN , then zN−E(SN )

VN
∈[

P′N (−R)−E(SN )
VN

,
P′N (R)−E(SN )

VN

]
=: [ãR

N, b̃
R
N ]. By (7.29), zN−E(SN )

VN
∈ [âR+1

N , b̂R+1
N ] =

[
F ′N (−R−1)−E(SN )

VN
,
F ′N (R+1)−E(SN )

VN

]
.

Since F ′N is continuous, (3) follows with R′ := R + 1. So (2)⇒(3).
Assume (3). FN is a smooth convex function, therefore F ′N is continuous and increasing, whence

[F ′N (−R′), F ′N (R′)] = F ′N ([−R′, R′]). By (3), for all N � 1,
zN−E(SN )

VN
∈

[
âR′

N , b̂
R′

N

]
:=

[
F ′N (−R′) − E(SN )

VN
, F ′N (R′) − E(SN )

VN

]
, and {zN } is R′-admissible. So (3)⇒(1). �

Lemma 7.29 Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic Markov chain, and
assume that VN → ∞. Then ∀R > 0 ∃ε = ε(R) > 0 such that if {zN } is R-admissible, and |zN − zN | ≤ εVN,
then {zN } is (R + 1)-admissible.

Proof It is sufficient to prove the lemma under the assumption that E(SN ) = 0. Suppose {zN } is R-admissible,
and choose ξN∈[−R, R] such that F ′N (ξN ) = zN

VN
.

FN are uniformly strictly convex on [−(R + 1), (R + 1)] (Theorem 7.3), so there exists an ε > 0 such
that F ′N (R + 1) ≥ F ′N (R) + ε and F ′N (−(R + 1)) ≤ F ′N (−R) − ε for all N . So, if |zN − zN | ≤ εVN , then
zN/VN ∈ [F ′N (−R − 1), F ′N (R + 1)]. �

The following theorem characterizes the admissible sequences probabilistically. Recall the definition of the
graininess constant δ(f) from (6.6).

Theorem 7.30 Let f be a non center-tight a.s. uniformly bounded additive functional on a uniformly elliptic
Markov chain X. The following are equivalent:

(a) {zN } is admissible.
(b) ∃ε > 0, η > 0 such that for every sequence {zN } with |zN − zN | ≤ εVN and for every a, b such that
|a |, |b| ≤ 10δ(f) + 1 and b − a > 2δ(f), for all N large enough, P[SN − zN ∈ (a, b)] ≥ ηVN .

(c) ∃ε > 0, η > 0 such that for all N large enough, P(SN ≥ zN + εVN ) ≥ ηVN and P(SN ≤ zN − εVN ) ≥ ηVN .

Proof Note that under the assumptions of the theorem, VN → ∞ (Corollary 3.7).
(a)⇒(b): Let ε := ε(R) be the constant from Lemma 7.29. Suppose {zN } is R-admissible, then zN is (R + 1)-
admissible.
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By Lemma 7.28, there is a bounded sequence of real numbers ξN such that P′N (ξN ) = zN . Consider the
decomposition (7.43). Integrating over x ∈ S1 and taking note of the uniform bounds for hξN

k
in Lemma 7.14,

we obtain P[SN − zN ∈ (a, b)] ≥ const.ePN (ξN )−ξN zN P̃[S̃N − zN ∈ (a, b)], where P̃ and S̃N correspond to the
change of measure (7.3).

The term ePN (ξN )−ξN zN is bounded below by a constant times e−VN IN (zN /VN ) , see (7.44) and Lemma 7.25(2).
By the choice of ξN , Ẽ(S̃N ) = zN +O(1), so the asymptotics of P̃[S̃N − zN ∈ (a, b)] is given by Theorem 6.11,

provided |a − b| > 2δ(f). In this case, P[SN − zN ∈ (a, b)] ≥ C
e−VN IN ( zN

VN
)

√
2πVN

for all N large enough.

To finish the proof of (b), it is sufficient to show that IN ( zNVN
) is bounded from above. First we note that since

{zN } is (R + 1)-admissible,
zN
VN
∈ [aR+1

N , bR+1
N ] for all N . (7.49)

By Theorem 7.4(2) and (3), IN ( E(SN )
VN

) = I ′N ( E(SN )
VN

) = 0, and there exists ρ > 0 such that 0 ≤ I ′′N < ρ on
[aR+1

N , bR+1
N ] for all N . As E(SN )

VN
= F ′N (0) ∈ [aR+1

N , bR+1
N ],

�����
IN

(
zN
VN

) �����
=

�����
IN

(
zN
VN

)
− IN

(
E(SN )

VN

) �����
≤

1
2
ρ2

(
zN − E(SN )

VN

)2
.

Equation (7.49) and Theorem 7.3 (1) and (3) tell us that

�����
zN − E(SN )

VN

�����
≤ C := sup

N
max
|ξ | ≤R+1

�����
F ′N (ξ) −

E(SN )
VN

�����
< ∞.

So IN (zN/VN ) ≤ 1
2 ρ

2C2, and part (b) follows.

(b)⇒(c): The bound P[SN ≥ zN + εVN ] ≥ ηVN follows from part (b) with zN = zN + εVN, a = 0, and
b = 2δ(f) + 1. The lower bound is similar.

(c)⇒(a): If (c) holds, then E(eRSN ) ≥ E(eRSN 1[SN ≥zN+εVN ]) ≥ ηVN eR(zN+εVN ) , whence FN (R) ≥ log η +
R( zN

VN
+ε). If R > 2ε−1 | log η |, then FN (R) ≥ R( zN

VN
+ ε2 ). Since FN (0) = 0 and F ′N is increasing, F ′N (R) > zN

VN
.

Similarly one shows that F ′N (−R) < zN
VN

. So {zN } is admissible. �

Example 7.31 The following example shows that condition (c) with ε = 0 is not equivalent to admissibility.
Let SN =

∑N
n=1 Xn where Xn are iid random variables supported on [α, β] and such that X has an atom on

the right edge: P(X = β) = γ > 0. Then P[SN ≥ βN] = P[SN = βN] = γN while P[SN ≥ βN + 1] = 0. Thus
{βN } is not admissible.

We note that the notion of R-admissibility depends on the initial distribution π0 since E(SN ) depends on π0.
However, the notion of admissibility is independent of the initial distribution as the next result shows.

Lemma 7.32 Let f be a uniformly bounded non center-tight additive functional of a uniformly elliptic Markov
chain. If zN is admissible with respect to the initial distribution π0, then it is admissible with respect to any other
initial distribution π̃0.

Proof Let X̃ denote the Markov chain obtained from X by changing the initial distribution to π̃0. Objects
associated with (X̃, f) will be decorated with a tilde.

Suppose zN is R-admissible for (X, f). Then for all N large enough
zN − E(SN )

VN
∈

[
F ′N (−R) −

E(SN )
VN

, F ′N (R) +
E(SN )

VN

]
.

By (7.29),
zN − E(SN )

VN
∈

[
P′N (−R − 1) − E(SN )

VN
,

P′N (R + 1) − E(SN )
VN

]
.

By Lemmas 7.18(3) and 7.21(3), there is a constant c1 which only depends on R so that P′′N
VN

> c1 on

[−R − 3, R + 3] for all N large enough. Necessarily, P′N (R+2)
VN

−
P′N (R+1)

VN
≥ c1 and

P′N (−R−2)
VN

−
P′N (−R−1)

VN
≤ −c1.

This leads to:
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zN − E(SN )
VN

∈

[
P′N (−R − 2) + c1VN − E(SN )

VN
,

P′N (R + 2) − c1VN − E(SN )
VN

]
.

Applying the increasing map t 7→ (VN/ṼN )
(
t + E(SN )−Ẽ(SN )

VN

)
, we arrive at

zN − Ẽ(SN )

ṼN

∈



P′N (−R − 2) + c1VN − Ẽ(SN )

ṼN

,
P′N (R + 2) − c1VN − Ẽ(SN )

ṼN


.

Looking at (7.24), we see that P′N (ξ) − P̃′N (ξ) = ξ (E(SN ) − Ẽ(SN )), (the function PN (ξ) does not depend
on the initial distribution, is the same for (X, f) and (X̃, f̃), and cancels out). Next, Lemma 7.17(1) tells us that���E(SN ) − Ẽ(SN )��� ≤ c2 for some constant c2. Thus, ∃c3 = c3(R) so that

|P′N (R + 2) − P̃′N (R + 2) | < c3, and |P′N (−R − 2) − P̃′N (−R − 2) | < c3.

(X, f) is not center-tight, therefore VN → ∞. If N is so large that c1VN > c3, then

zN − Ẽ(SN )

ṼN

∈



P̃′N (−R − 2) − Ẽ(SN )

ṼN

,
P̃′N (R + 2) − Ẽ(SN )

ṼN


.

By (7.29), zN−Ẽ(SN )
ṼN

∈

[
F̃ ′N (−R − 3) − Ẽ(SN )

ṼN
, F̃ ′N (R + 3) − Ẽ(SN )

ṼN

]
, whence the (X̃, f)-admissibility of zN . �

We say that (X, f) and (X̃, f̃) are related by a change of measure with bounded weights if X, X̃ have the same
state spaces, fn ≡ f̃n for all n, and if for some ε, the initial distributions and transition probabilities of X and X̃
are equivalent and related by ε ≤ dπ̃n (x,dy)

dπn (x,dy) ≤ ε
−1 for all n.

Lemma 7.33 Suppose f is an a.s. uniformly bounded additive functional on a uniformly elliptic Markov chain
X. If (X, f) and (X̃, f̃) are related by the change of measure with bounded weights, and VN ≥ cN for some c > 0,
then {zN } is (X, f)-admissible iff {zN } is (X̃, f̃)-admissible.

Proof Since admissibility does not depend on the initial distribution we may suppose without the loss of
generality that π̃ = π.

Since X is uniformly elliptic, X̃ is uniformly elliptic. By the exponential mixing bounds for uniformly elliptic
chains both ṼN := Var[SN (̃f)] and VN := Var[SN (f)] are O(N ). Without loss of generality, cN ≤ VN ≤ c−1N .

Under the assumptions of the lemma, the structure constants of (X, f) are equal to the structure constants
of (X̃, f̃) up to bounded multiplicative error. By Theorem 3.7, ṼN � VN as N → ∞. So ∃c̃ > 0 such that
c̃N ≤ ṼN ≤ c̃−1N .

Let {zN } be (X, f)-admissible. Then there are ε > 0 and η > 0 such that for all N large enough, P[SN ≥

zN + εVN ] ≥ ηN, P[SN ≤ zN − εVN ] ≥ ηN .
It follows that P̃[SN (̃f) ≥ zN + ε̃ṼN ] ≥ η̃N, P̃[SN (̃f) ≤ zN − ε̃ṼN ] ≥ η̃N where η̃ = ηε and ε̃ := c̃cε.

Hence {zN } is (X̃, f̃)-admissible. �

Lemma 7.34 Let f and f̃ be two a.s. uniformly bounded additive functionals on the same uniformly elliptic
Markov chain. Suppose VN := Var[SN (f)]→ ∞ and

lim
N→∞

‖SN (̃f) − SN (f)‖∞
VN

= 0. (7.50)

Then {zN } is f-admissible iff {zN } is f̃-admissible.

Proof We write SN = SN (f), and S̃N = SN (f). By the assumptions of the lemma, ṼN := Var(S̃N ) ∼ VN as
N → ∞.
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Let {zN } be f-admissible. By Theorem 7.30(c), there are ε > 0, η > 0 such that P[SN ≥ zN + εVN ] ≥
ηN, P[SN ≤ zN − εVN ] ≥ ηN . It now follows from (7.50) that for large N , P̃

[
S̃N ≥ zN + ε

2 ṼN

]
≥ ηN and

P̃
[
S̃N ≤ zN − ε

2 ṼN

]
≥ ηN . Hence {zN } is f̃-admissible. �

7.4.3 Proof of the Large Deviations Threshold Theorem

Let f be an a.s. uniformly bounded and non-center-tight irreducible additive functional on a uniformly elliptic
Markov chain X. Then VN → ∞, and the algebraic range is R or tZ, with t > 0. It is sufficient to consider the
cases R and Z.

We call z ∈ R reachable, if at least one of the following conditions holds:
(1) The sequence zN:=E(SN )+VN z is admissible. (2) ∃ an admissible sequence {zN } such that zN−E(SN )

VN
→ z.

(3) Every sequence {zN } such that zN−E(SN )
VN

→ z is admissible.
The conditions are equivalent, by Lemma 7.29. If zN:=E(SN )+VN z is R-admissible, we say that z is R-reachable.

We denote the set of R–reachable points by CR and the set of reachable points by C. Since F ′N is monotone
increasing, CR and C are connected, and by Theorem 7.4(1), C contains a non-empty neighborhood of the origin.
Therefore int(C) = (c′−, c

′
+) for some c′− < 0 < c′+. The plan is to show that Theorem 7.26 holds with c± := c′±.

Step 1. Let Ia (z) = lim sup
N→∞

1
VN
| logP(SN − E(SN )∈zVN + [−a, a]) | with a ≥ 3δ(f) (see (6.6)), then

c
′
+ = sup{z : Ia (z) < ∞} and c′− = inf{z : Ia (z) < ∞}.

Proof. If z ∈ (c′−, c
′
+) then z ∈ C, zN := zVN + E(SN ) is admissible, and Ia (z) < ∞ by Theorem 7.30(b). So

c
′
+ ≤ sup{z : Ia (z) < ∞} =: S.

In particular, S > 0. We claim that S is the limit of z with the following property:

∃0 < ε < z such that Ia (z + 2ε ) < ∞. (7.51)

If S = ∞, this is clear, and if S < ∞, then any
1
2

sup{z : Ia (z) < ∞} < z < sup{z : Ia (z) < ∞} satisfies (7.51).
Fix z as in (7.51). Necessarily ∃η ∈ (0, 1) such that for all N large enough

P[SN − E(SN ) ≥ (z + ε )VN ] ≥ P
(
SN − E(SN ) ∈ (z + 2ε )VN + [−a, a]

)
≥ ηVN ;

P[SN − E(SN ) ≤ (z − ε )VN ] ≥ P[SN − E(SN ) ≤ 0] !
=

1
2
+o(1) ≥ ηVN , by the CLT.

By Theorem 7.30(c), zVN + E(SN ) is admissible, and z is reachable.
We just proved that S is the supremum of reachable z. It follows that c′+ = S ≡ sup{z : Ia (z) < ∞}. The

formula for c′− follows by considering (X,−f).

Step 2. Theorem 7.26 holds with c± := c′±.

Proof. Suppose first that Galg (X, f) = R.
If z ∈ (c′−, c

′
+), then zN := E(SN ) + zVN is R-admissible for some R > 0, and the conditions and conclusions

of Theorem 7.8(2) and (4) are satisfied.
In particular, for some R > 0, zN−E(SN )

VN
∈ [âR

N, b̂
R
N ] and log ρN ( zN−E(SN )

VN
) and ξN ( zN−E(SN )

VN
) are uniformly

bounded. Therefore P[SN − zN ∈ (a, b)] �
e−VN IN

√
2πVN

, with IN := IN
(

zN
VN

)
.

By assumption, zN
VN
∈ [aR

N, b
R
N ]. By Theorem 7.4(2), there is a constant ρ = ρ(R) such that for all N ,

0 < I ′′N ≤ ρ on [aR
N, b

R
N ]. In addition, Theorem 7.4(3) clearly implies that IN

(
E(SN )
VN

)
=I ′N

(
E(SN )
VN

)
= 0. Thus

0≤ IN ≤ 1
2 ρ( zN−E(SN )

VN
)2 → 1

2 ρz2, proving that IN is bounded.
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Now take z < [c′−, c′+]. By step 1,Ia (z)=∞ for all a>3δ(X, f). Equivalently, lim sup
N→∞

1
VN
| logP(SN−zN∈ [−a, a]) |=∞.

It follows that ∃Nk ↑ ∞ such that P(SNk
− zNk

∈ [−a, a]) decays to zero faster that e−VNk
I for all I > 0.

In summary, if Galg (X, f) = R, then Theorem 7.26 holds with c± := c′±. The case when Galg (X, f) = Z is
handled in the same way, and is left to the reader. �

7.4.4 Examples
Recall that (c−, c+) ⊂ (r−, r+). We give examples of equality (“full large deviation regime") and strict inclusion
(“partial large deviations regime"):

Example 7.35 (Equality) Let SN = X1 + · · · + XN where Xn are bounded iid random variables with law X ,
expectation zero, and non-zero variance. In this case FN (ξ) = logE(eξX )/Var(X ) for all N (Example 7.2), and

it is not difficult to see that c− =
ess inf(X )

Var(X )
= r−, c+ =

ess sup(X )
Var(X )

= r+. So we have full large deviation
regime. See also Theorem 8.7.

Example 7.36 (Strict Inclusion) Let Xn = (Yn, Zn) where {Yn}, {Zn} are two independent sequences of iid
random variables uniformly distributed on [0, 1]. Fix a sequence of numbers 0 < pn < 1 such that pn → 0, and

let fn(Xn) =



Zn if Yn > pn
2 if Yn ≤ pn.

Then fn(Xn) are independent, but not identically distributed.

A calculation shows that E(SN ) =
N
2
+ o(N ) and Var(SN ) =

N
12
+ o(N ). Clearly ess sup SN = 2N , so

r+ = lim
N→∞

2N − (N/2 + o(N ))
N/12

= 18.We will show that c+ = 6, proving that (c−, c+) , (r−, r+).

FN (ξ)=
1

VN
log

N∏
n=1

E
(
eξ fn (Yn,Zn )

)
∼

12
N

N∑
n=1

logE
(
eξ fn (Yn,Zn )

)
=

12
N

N∑
n=1

log
(
pne2ξ+(1−pn)E(eξU[0,1])

)
→12 logE

(
eξU[0,1]

)
,

because pn → 0. Hence FN (ξ)−−−−−→
N→∞

12 log
(

eξ−1
ξ

) !
<12ξ for ξ>0, because

eξ − 1
ξ
=

∞∑
n=0

ξn

(n + 1)!
<eξ . Therefore

for every ξ > 0, for every sufficiently large N,

E
(
eξSN

)
≤ e12VN ξ . (7.52)

Take some arbitrary 0 < z < z′ < c+. By Corollary 7.27, we can choose z′ so that I1(z′) < ∞, and there is
some η > 0 such that for all N large enough, for all ξ > 0,

ηVN≤P
(
SN − E(SN ) ∈ z′VN + [−1, 1]

)
≤ P[SN > zVN + E(SN )] ≤ E(eξ[SN−zVN−E(SN )])

(7.52)
≤ eξVN [12−(z+E(SN )/VN )].

Since η is fixed but ξ can be arbitrarily large, the term in the square brackets must be non-negative for all N
large enough. As E(SN )/VN → 6, z must be no larger than 6. Since z can be chosen to be arbitrarily close to c+,
we get c+ ≤ 6.

Next we show that c+ = 6. It suffices to show that zN := zVN + E(SN ) is admissible for each 0 < z < 6
(because then zN satisfies the conditions of Theorem 7.8, and we are in the first case of Theorem 7.26).

By Theorem 7.30, it suffices to find ε, η > 0 such that for all N large enough,

P
(
SN ≤ zN − εVN

)
≥ ηVN (7.53)

P
(
SN ≥ zN + εVN

)
≥ ηVN . (7.54)

(7.53) is because for ε < z, P
(
SN ≤ zN − εVN

)
≥ P(SN − E(SN ) ≤ 0) → 1

2 , by the CLT. To see (7.54), we
let S′N := Z1 + · · · + ZN, and note that E(S′N ) = N

2 = E(SN ) + o(N ), V ′N := Var(S′N ) = N
12 = VN + o(N ), and
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SN ≥ S′N (because fn(Xn,Yn) ≥ Zn). Let z′N := zV ′N + E(S′N ), then z′N = zN + o(N ), and so for all large N ,

P
(
SN ≥ zN + εVN

)
≥ P

(
S′N ≥ zN + εVN

)
≥ P

(
S′N ≥ z′N + 2εV ′N

)
.

By Example 7.35, the large deviations thresholds for S′N are the positivity thresholds of S′N , which can be
easily found to be ±6. Since 0 < z < 6, P

(
S′N ≥ z′N + 2εV ′N

)
≥ η

V ′N
1 ≥ ηVN

2 for some ε, ηi > 0 and all N large
enough. This completes the proof of (7.54), and the proof that c+ = 6.

Example 7.37 (Failure of Theorem 7.26 at z = c±) This already happens in Example 7.1, when SN = X1 +

· · · + XN , and Xi are iid random variables such that Xi = −1, 0, 1 with equal probabilities.
By Example 7.35, c± = r± = ± 3

2 . Clearly, E(SN ) = 0 and VN =
2
3 N . So z±N := N ± 1 satisfy z±N−E(SN )

VN
→ c+.

However, P[SN − z+N ∈ (− 1
2,

1
2 )] = 0, which violates the first alternative of Theorem 7.26, and P[SN − z−N ∈

(− 1
2,

1
2 )] = 3−N N which violates the second alternative of the Theorem 7.26.

7.5 Notes and References

The reader should note the difference between the LLT for large deviations and the large deviations principle
(LDP): LLT for large deviations give the asymptotics of P[SN − zN ∈ (a, b)] or P[SN > zN ]; The LDP gives
the asymptotics of the logarithm of P[SN > zN ], see Dembo & Zeitouni [40] and Varadhan [197].

The interest in precise asymptotics for P[SN > zN ] in the regime of large deviations goes back to the first
paper on large deviations, by Cramér [34]. That paper gave an asymptotic series expansion for P[SN−E(SN ) > x]
for the sums of iid random variables. The first sharp asymptotics for P[SN − zN ∈ (a, b)] appear to be the work
of Richter [167], [103, chapter 7] and Blackwell & Hodges [14].

These results were refined by many authors, with important contributions by Petrov [155], Linnik [133],
Moskvin [146], Bahadur & Ranga Rao [11], Statulavicius [188] and Saulis [176]. For accounts of these and
other results, we refer the reader to the books of Ibragimov & Linnik [103], Petrov [156], and Saulis &
Statulevicius [177]. See also the survey of Nagaev [150].

Plachky and Steinebach [158] and Chaganty & Sethuraman [23, 24] proved LLT for large deviations for arbi-
trary sequences of random variables Tn (e.g. sums of dependent random variables), subject only to assumptions
on the asymptotic behavior of the normalized log-moment generating functions ofTn and their Legendre-Fenchel
transforms (their rate functions). Our LLT for large deviations are in the spirit of these results.

Corollary 7.10 is an example of a limit theorem conditioned on a large deviation. For other examples of such
results, in the context of statistical physics, see [45].

We comment on some of the technical devices in the proofs. The “change of measure" trick discussed in
section 7.3.1 goes back to Cramér [34] and is a standard idea in large deviations. In the classical homogeneous
setup, a single parameter ξN = ξ works for all times N , but in our inhomogeneous setup, we need to allow the
parameter ξN to depend N . For other instances of changes of measure which involve a time dependent parameter,
see Dembo & Zeitouni [39] and references therein.

The Gärtner-Ellis Theorem we used to prove Theorem 7.7 can be found in [69]. The one-dimensional case,
which is sufficient for our purposes, is stated and proved in appendix A, together with historical comments.

Birkhoff’s Theorem is proved in [13], and is discussed further in appendix B.
Results similar to Lemma 7.13 on the existence of the generalized eigenfunction hξn were proved by many

authors in many different contexts, see for example [15], [67], [75], [90], [93], [113], [173]. The analytic
dependence of the generalized eigenvalue and eigenvector on the parameter ξ was considered in a different
context (the top Lyapunov exponent) by Ruelle [172] and Peres [154]. Our proof of Lemma 7.16 follows closely
a proof in Dubois’s paper [67].

For an account of the theory of real-analyticity for vector valued functions, see [49] and [199].



Chapter 8
Important Examples and Special Cases

Abstract In this chapter we consider several special cases where our general results take stronger form. These
include sums of independent random variables, and homogeneous or asymptotically homogeneous or equicon-
tinuous additive functionals.

8.1 Introduction

In the previous chapters we studied the LLT for general uniformly bounded additive functionals f on uniformly
elliptic inhomogeneous Markov chains X. We saw that

• If Gess (X, f) = R, and zN−E(SN )
√
VN

→ z, then P[SN − zN ∈ (a, b)] ∼
|a − b|
√

2πVN

e−z
2/2.

• If Gess (X, f) = R, and zN−E(SN )
VN

→ 0, then P[SN − zN ∈ (a, b)] ∼
|a − b|
√

2πVN

e−VN IN

(
z

VN

)
, where IN are the

rate functions, see §§7.2.2, 7.2.3.
• If Gess (X, f) = R, z ∈ (c−, c+), and zN−E(SN )

VN
→ z, then

P[SN − zN ∈ (a, b)] ∼
|a − b|
√

2πVN

e−VN IN

(
z

VN

)
ρN

(
zN−E(SN )

VN

)
×

1
|a − b|

∫ b

a

e−tξN
(
zN −E(SN )

VN

)
dt,

where ρN (η) −−−−→
η→0

1 and ξN (η) −−−−→
η→0

0 uniformly in N (see §7.2.4), and c± are the large deviation thresholds

of (X, f) (see §7.4).

Wewill now apply the general theory to special cases of interest. The point is to verify the conditionGess (X, f) = R
and to find c±.

8.2 Sums of Independent Random Variables

Throughout this section, let Xn be independent real-valued randomvariables, possiblywith different distributions,
such that for some K , |Xn | ≤ K for all n. Let SN = X1+· · ·+XN , VN := Var(SN ) = Var(X1)+· · ·+Var(XN ).This
is a special case of the setup studied in the previous chapters: X := {Xn} is a uniformly elliptic inhomogeneous
Markov chain (with ellipticity constant ε0 = 1), and SN ≡ SN (f), for the uniformly bounded additive functional
fn(x, y) := x.

Proposition 8.1 (X, f) is center-tight iff
∑

Var(Xn) < ∞. In this case, the limit lim
N→∞

(SN − E(SN )) exists and is
finite almost surely.

Proof Corollary 3.9 says that (X, f) is center-tight iff sup
N

UN ≡

∞∑
n=3

u2
n < ∞, where un are given by (2.26). In

Proposition 2.20 we saw that u2
n = 2(Var(Xn−1) + Var(Xn)). Thus (X, f) is center-tight iff

∑
Var(Xn) < ∞. The

a.s. existence of lim
n→∞

(Sn − E(Sn)) is due to the two-series theorem (see also Theorem 3.12). �

Recall the following definition from Chapter 3: Given a real-valued random variable X and a number ξ ∈ R,

D(X, ξ) := min
θ∈R

E

[
dist2

(
X, θ +

2π
ξ
Z

)]1/2
.

147
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Proposition 8.2 Suppose
∑

Var(Xn) = ∞.

(1) (X, f) has essential range R iff
∞∑
n=1

D(Xn, ξ)2 = ∞ for all ξ > 0.

(2) Otherwise, the following holds:

(a) There is a minimal positive ξ such that
∞∑
n=1

D(Xn, ξ)2 < ∞. (b) Gess (X, f) = tZ for t := 2π/ξ.

(c) We can decompose Xn = Fn(Xn)+ hn(Xn) where Fn are uniformly bounded measurable functions taking
values in tZ, and

∑
Var[hn(Xn)] < ∞.

(d) ∃ constants γN such that SN − γN converges a.s. modulo tZ, i.e. lim
N→∞

exp
[
2πi

t
(SN − γN )

]
exists a.s.

Notice that unlike the general case discussed in Lemma 4.16, the decomposition in (c) does not require a gradient.

Proof By Proposition 2.21, for every ξ > 0 there is a constant C(ξ) > 1 such that

d2
n(ξ) = C(ξ)±1[D(Xn−1, ξ)2 +D(Xn, ξ)2)]. (8.1)

Therefore,
∑
D(Xn, ξ)2 < ∞ iff

∑
d2
n(ξ) < ∞. Hence the co-range of (X, f) is given by H (X, f) = {ξ ∈ R :

∞∑
n=1

D(Xn, ξ)2 < ∞}. Parts (1), (2)(a), and (2)(b) now follow from Theorems 4.3 and 4.4 on H (X, f).

Next we prove (2)(c). Let ξ > 0 be as in (2)(a), and set t := 2π/ξ. For every n, choose θn ∈ R such that

E
[
dist2 (Xn, θn + tZ)

]
< Dn(Xn, ξ)2 +

1
2n
.

We can decompose every x ∈ R into x = Fn(x) + hn(x), where

Fn(x) := the (minimal) closest point to x − θn in tZ, hn(x) := x − Fn(x).

Necessarily, |hn(x) − θn |=dist(x, θn + tZ), and Xn = Fn(Xn) + hn(Xn) with Fn bounded and taking values in tZ.
We claim that h has summable variances. Recall that for a random variable Y , Var(Y ) = min

θ∈R
E[(Y − θ)2]. Thus

∞∑
n=1

Var(hn(Xn))=
∞∑
n=1

min
θ
E[(hn(Xn) − θ)2]≤

∞∑
n=1

E[(hn(Xn)−θn)2]=
∞∑
n=1

E[dist2(x, θn + tZ)]<


∞∑
n=1

D
2
n(Xn, t)


+1<∞.

We proved (2)(c).

Let αn := E[hn(Xn)]. By the two-series theorem, the series
∞∑
n=1

(hn(Xn) − αn) converges a.s. Therefore, if

γN := α1 + · · · + αN , then exp
[
2πi

t
(SN − γN )

]
=

exp
[
2πi

t
(SN (F) + SN (h) − γN )

]
= exp

[
2πi

t
(SN (h) − γN )

]
−−−−−→
N→∞

exp *
,

2πi
t

∞∑
n=1

(hn(Xn) − αn)+
-
, whence (2)(d).�

We are now ready to state the non-lattice LLT for independent random variables:

Theorem 8.3 (Dolgopyat) Let Xn be a sequence of uniformly bounded independent real-valued random vari-
ables such that

∑
Var(Xn) = ∞.

(1) Suppose
∞∑
n=1

D(Xn, ξ)2 = ∞ for all ξ > 0. Then for every zN, z ∈ R s.t. zN−E(SN )
√
VN

→ z, for every a < b,

P[SN − zN ∈ (a, b)] = [1 + o(1)] e−z2/2
√

2πVN
|a − b| as N → ∞.
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(2) Otherwise, there is a finite maximal t such that
∞∑
n=1

D

(
Xn,

2π
t

)2
< ∞, and:

(a) There exist constants γN s.t. SN − γN converge a.s. modulo tZ, (i.e. lim
N→∞

exp
[
2πi

t
(SN − γN )

]
exists a.s.).

(b) There is a bounded random variable F(X1, X2, . . .) and a bounded sequence of numbers bN s. t. for all

zN ∈ bN + tZ such that zN−E(SN )
√
VN

→ z ∈ R, ∀φ ∈ Cc (R), lim
N→∞

√
VNE[φ(SN − zN )] =

te−z2/2
√

2π

∑
m∈Z

E[φ(mt +F)].

Proof In case 1, Proposition 8.2 says that Gess (X, f) = R. So (X, f) is non-lattice and irreducible, and the first
part of the theorem follows from Theorem 5.1. In case 2, Proposition 8.2 says that there is a minimal ξ > 0 such
that

∑
D(Xn, ξ)2 < ∞, and for this ξ, Gess (X, f) = tZ, where t := 2π/ξ. In addition, there are constants γN such

that SN − γN converge a.s. modulo tZ.
By Theorem 6.3(a) there are bounded random variables F(X1, X2, . . .) and bN (X1, XN+1) so that for all

φ ∈ Cc (R) and z′n ∈ tZ such that z′N−E(SN )
√
VN

→ z,

lim
N→∞

√
VNE[φ(SN − z′N − bN )] =

te−z2/2
√

2π

∑
m∈Z

E[φ(mt +F)]. (8.2)

To finish the proof, we need to show that (8.2) holds with constant bN , because then we can take z′N := zN − bN

for any zN ∈ bN + tZ such that zN−E(SN )
√
VN

→ z.
There is no loss of generality in assuming that E(Xn) = 0 for all n, and t = 1 (this can always be achieved by

scaling). By Proposition 8.2(c), we can decompose Xn = Fn(Xn) + hn(Xn) with Fn uniformly bounded taking
values in Z, and where h has summable variances. The absence of a gradient term in this decomposition places
us in the “special case" (6.40), where the proof of Theorem 6.3(a) gives (8.2) with bN constant and bounded. �

Next, we discuss the lattice LLT for sums of independent integer-valued random variables Xn. We say that
Xn satisfies Prokhorov’s condition, if

∞∏
k=1

(
max

0≤m<t
P(Xk = m mod t)

)
= 0 for all integers t ≥ 2. (8.3)

Let mk be the (smallest) most likely residue mod t for Xk . Then it is not difficult to see that Prokhorov’s condition
is equivalent to ∑

k

P[Xk , mk mod t] = ∞ for all integers t ≥ 2. (8.4)

Lemma 8.4 Let Xn be a sequence of independent Z-valued random variables, then the following are equivalent:
(1) Prokhorov’s condition (8.4); (2) (X, f) is irreducible, with essential range Z.

Proof
(2) ⇒ (1): Fix an integer t ≥ 2. Every x ∈ Z can be decomposed uniquely in the form x = {x}tZ + [x]tZ, where
{x}tZ ∈ [0, t) and [x]tZ ∈ tZ. Set

• yk (x) := the (smallest) integer in mk + tZ closest to x, and zk (x) := x − yk (x),
• gk (x) := (yk (x) − mk ) + [x − yk (x)]tZ (gk takes values in tZ),
• hk (x) := {x − yk (x)}tZ (hk takes values in Z). Then

Xk = gk (Xk ) + hk (Xk ) + mk .

The algebraic range of (X, g) is inside tZ, and by the Borel-Cantelli lemma, (8.4) fails ⇔ Xk ,

mk mod tZ finitely often a.s. ⇔ hk (Xk ) , 0 finitely often a.s. So if (8.4) fails, then
∞∑
k=0
|hk (Xk ) | < ∞ almost

surely. Hence h is center-tight. Since Galg (X, f − h)=Galg (X, g)⊂tZ, Gess (X, f),Z contradicting to (2).
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(1) ⇒ (2): Fix an integer t ≥ 2, θ ∈ [0, t), and let mθ be the (smallest) closest integer to θ. Then |m′ − θ | ≥ 1
2

for m′ , mθ , whence E[dist2(Xn, θ + tZ)] ≥
1
4
P(Xn , mθ mod t) ≥

1
4

[1 − max
0≤m<t

P(Xn = m mod t)].

Passing to the infimum over θ, we obtainD2(Xn,
2π
t ) ≥

1
4

[1 − max
0≤m<t

P(Xn = m mod t)] =
1
4
P[Xn , mn mod t].

By (8.1) and (8.4), we get
∞∑
n=3

d2
n( 2π

t ) ≥ const
∞∑
n=3

(
D

2(Xn−1,
2π
t ) +D2(Xn,

2π
t )

)
= ∞.

We find that the co-range does not contain 2π/t for t ∈ {2, 3, 4, . . .}. But it does contain 2π (because Xk are
integer-valued). The only closed sub-group of R with these properties is 2πZ. So the co-range is 2πZ, and the
essential range is Z. Since Xk are integer-valued, we have irreducibility. �

Theorem 8.5 (Prokhorov) Let Xn be a uniformly bounded sequence of integer-valued independent random
variables. Assume (8.3). Then

∑
Var(Xn) = ∞, and for all zN ∈ Z and z ∈ R such that zN−E(SN )

√
VN

→ z, ∀k ∈ Z,

P[SN − zN = k] = [1 + o(1)]
e−z2/2
√

2πVN

as N → ∞.

Proof The theorem is a direct consequence of Lemma 8.4, and Theorem 5.2. �

Prokhorov also showed that (8.3) is a necessary condition for his LLT to apply to all uniformly bounded sequences
of integer-valued independent random variables X ′n such that for some r , X ′n = Xn for all n ≥ r .We omit the
proof, which given Lemma 8.4, follows from a lattice version of Theorem 6.5.

We now turn to the LLT for large deviations. Recall that the large deviations thresholds are the endpoints of
the largest interval (c−, c+) so that the LLT for large deviations in Chapter 7 applies to all sequences zN such that
zN−E(SN )

VN
→ z with z ∈ (c−, c−) (see Theorem 7.26). Necessarily, (c−, c+) ⊂ (r−, r+), where

r− := lim sup
N→∞

ess inf[SN − E(SN )]
VN

, r+ := lim inf
N→∞

ess sup[SN − E(SN )]
VN

.

“Full large deviations regime" means that (c−, c+) = (r−, r+).
We saw in Example 7.35 that sums of iid random variables have full large deviation regime. We will now give

a sufficient condition for full regime in the case of non-identically distributed independent random variables.
A sequence of bounded real-valued independent random variables Xn is called tame, when one of the

following conditions holds:

(a) lim inf
N→∞

VN/N > 0, and ∀δ > 0 there is an ηδ > 0 such that for all n,

P[Xn > ess sup Xn − δVar(Xn)] ≥ ηδ, P[Xn < ess inf Xn + δVar(Xn)] ≥ ηδ . (8.5)

(b) lim inf
N→∞

VN/N = 0, and ∀δ > 0 there is an ηδ > 0 such that for all n,

P[Xn > ess sup Xn − δVar(Xn)] ≥ ηVar(Xn )
δ , P[Xn < ess inf Xn + δVar(Xi)] ≥ ηVar(Xn )

δ . (8.6)

If Var(Xn) = O(1), then (8.6) implies (8.5), but it is not equivalent to it. For example, suppose there
are sequences nk → ∞ and σnk ∈ (0, 1) such that σnk → 0, and Xnk = ±σnk with probabilities 1

2 . Then
P[Xnk >ess sup Xnk − δVar(Xnk )] = 1

2 , and (8.5) holds. But (8.6) fails, because η
Var(Xnk

)
δ → 1 for all ηδ > 0.

Example 8.6 Let Xn be bounded independent random variables with non-zero variance. The tameness assump-
tion holds in each of the following cases:

(1) Xn are identically distributed;
(2) There are finitely many random variables Y1, . . . ,Yk such that for all n there is some k such that Xn = Yk in

distribution;
(3) Xn are uniformly bounded discrete random variables, and there is ε0 > 0 such that every atom of Xn has

mass bigger than or equal to ε0.
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Theorem 8.7 Suppose Xn is a uniformly bounded and tame sequence of independent random variables such
that

∑
Var(Xn) = ∞, then

c+ = r+ = lim inf
N→∞

1
VN

N∑
n=1

ess sup(Xn − E(Xn)), c− = r− = lim sup
N→∞

1
VN

N∑
n=1

ess inf(Xn − E(Xn)).

Proof Without loss of generality, E(Xn) = 0. By symmetry, c−(X, f) = −c+(X,−f) and r+(X,−f) = −r−(X, f).
Therefore, it is sufficient to prove the inequalities for c+.

We claim that c+≤r+= lim inf
N→∞

1
VN

N∑
n=1

ess sup(Xn). The first inequality is valid for general Markov chains (see

§7.4); the second follows from the independence of Xn.
Next we show that c+ ≥ r+. Since VN → ∞, c+ > 0, (see Lemma 7.19(2)). Therefore, by what we just

proved, r+ > 0. Fix 0 < δ < 1
4 r+ small, and choose some δ < z < r+ − 3δ. For all large enough N ,

zVN + δVN ≤

N∑
n=1

ess sup(Xn) − δVN, so

P[SN ≥ zVN + δVN ] ≥ P
[
SN ≥

N∑
n=1

ess sup(Xn) − δVN

]

≥

N∏
i=1

P[Xi ≥ ess sup(Xi) − δVar(Xi)], because Xi are independent.

By the tameness assumption, there exists 0 < η < 1 independent of N such that

P[SN ≥ zVN + δVN ] ≥ ηVN . (8.7)

Indeed, in case (b), (8.7) is straightforward, and in case (a) we use the inequalities P[SN ≥ zVN + δVN ] ≥ ηNδ
and VN ≥ const.N for large N .

Next, by the CLT, since z > δ, P[SN ≤ zVN − δVN ] ≥ P[SN ≤ 0]→ 1
2 . So for all N large enough,

P[SN ≤ zVN − δVN ] ≥ ηVN . (8.8)

By (8.7), (8.8) and Theorem 7.30, zN := zVN ≡ zVN + E(SN ) is admissible.
As explained in §7.4.3, the admissibility of zN means that z is reachable, and therefore z ∈ [c−, c+]. In

particular, z ≤ c+. Passing to the supremum over z we obtain r+ − 3δ ≤ c+. Passing to the limit δ → 0, we obtain
r+ ≤ c+. �

In the absence of the tameness condition, the identities c± = r± may be false, see Example 7.36. We are not
aware of general formulas for c± in such cases.

8.3 Homogenous Markov Chains

A Markov chain X = {Xn} is called homogeneous, if its state spaces and transition probabilities do not depend
on n. In this case we let

Sn =S, πn(x, dy) = π(x, dy).

An additive functional on a homogeneous Markov chain is called homogeneous, if f = { fn}, where fn(x, y) =
f (x, y) for all n.

If f (x, y) = a(x) − a(y) with a :S → R bounded and measurable, then f is called a homogeneous gradient.
A Markov chain is called stationary, if {Xn} is a stationary stochastic process: For each n, the joint

distribution of (X1+k, . . . , Xn+k ) is the same for all k ≥ 0. Homogeneity and stationarity are closely related:
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• Every stationary Markov chain is equal in distribution to a homogeneous Markov chain with state space
S :=

⋂
n≥1Sn, and transition kernel π = π1 |S. Moreover, the initial distribution µ(E) := P[X1 ∈ E] must

satisfy

µ(E) =
∫

π(x, E)µ(dx) (E ∈ B(S)) (8.9)

(on the left we have P[X1 ∈ E], and on the right P[X2 ∈ E]).
• Conversely, any homogeneous Markov chain with an initial distribution satisfying (8.9) is stationary. To see
this iterate (8.9) to see that P[Xn ∈ E] = µ(E) for all n, and then use (2.1).

Probability measures satisfying (8.9) are called stationary.
Every homogeneous Markov chain with a finite state space admits a stationary measure, by the Perron-

Frobenius theorem. Some Markov chains on infinite state spaces, e.g. null recurrent Markov chains, do not have
stationary measures. However, if the chain is uniformly elliptic, then a stationary measure always exists:

Lemma 8.8 Let X be a uniformly elliptic homogeneous Markov chain. Then X admits a unique stationary initial
distribution.

Proof Fix x ∈ S, and consider the measure µn which describes the distribution of Xn given X1 = x, i.e.
µn(φ) = E(φ(Xn) |X1 = x).

By homogeneity and Proposition 2.13, there is a constant 0 < θ < 1 such that for every bounded measurable
φ :S → R,

µn+1(φ) =
∫

E(φ(Xn+1) |X2 = y)π(x, dy) =
∫

E(φ(Xn) |X1 = y)π(x, dy)

=

∫ [
µn(φ) +O(θn)

]
π(x, dy) = µn(φ) +O(θn).

Necessarily {µn(φ)} is a Cauchy sequence, and µ(φ) := lim
n→∞

µn(φ) exists for every bounded measurable φ.
Let µ̂ denote the set function µ̂(E) := µ(1E ). We claim that µ̂ is σ-additive. Finite additivity is clear, because

φ 7→ µ(φ) is linear. Next suppose A is a disjoint union of measurable sets {Al }. By finite additivity,

µ̂(A) =


L∑
l=1

µ̂(Al)

+ µ̂ *

,

∞⋃
l=L+1

Al
+
-
. (8.10)

Let ε0 and ν be the ellipticity constant and background measure with respect to which our chain satisfies the
ellipticity condition. (By definition, νn depends on n but since the chain is homogeneous, ν := ν3 will work for

all n.) Applying Proposition 2.8 to X conditioned on X1 = x, we obtain that
dµn
dν
≤ ε−1

0 for n ≥ 3. Hence,

0 ≤ µ̂ *
,

∞⋃
l=L+1

Al
+
-
= µ

(
1⋃∞

l=L+1 Al

)
= lim

n→∞
µn

(
1⋃∞

l=L+1 Al

)
≤ ε−1

0 ν *
,

∞⋃
l=L+1

Al
+
-
.

Since ν is σ-additive, lim
L→∞

ν
(⋃∞

l=L+1 Al

)
=0. It follows that lim

L→∞
µ̂

(⋃∞
l=L+1 Al

)
=0. Looking at (8.10), we find

that µ̂(A) =
∞∑
l=1

µ̂(Al). So µ̂ is a well-defined measure.

A standard approximation argument shows that for any bounded measurable function φ, µ(φ) =
∫
φdµ̂. It

follows that for every bounded measurable φ :S → R,

lim
n→∞

∫
φdµn =

∫
φdµ̂. (8.11)

Take an arbitrary measurable set E ⊂ S, then
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µ̂(E) = µ(1E ) = lim
n→∞

µn(1E ) = lim
n→∞

Ex[1E (Xn+1)] = lim
n→∞

Ex[E(1E (Xn+1) |Xn)]

= lim
n→∞

"
π(y, dz)1E (z)µn(dy) = lim

n→∞

∫
π(y, E)µn(dy) !

=

∫
π(y, E) µ̂(dy),

see (8.11). This proves that µ̂ is stationary. So a stationary measure exists.
Suppose µ̃ is another stationary measure, and let {X̃n} denote the Markov chain with initial distribution µ̃ and

transition kernel π. This chain is stationary.
Hence µ̃(φ)=E(φ(X̃1))=E(φ(X̃n))=

∫
E(φ(Xn) |X1=y) µ̃(dy) for all n. By (2.11),

µ̃(φ) = lim
n→∞

∫
E(φ(Xn) |X1 = y) µ̃(dy) = lim

n→∞

∫
[µn(φ) +O(θn)]µ̃(dy) = µ(φ).

So the stationary measure is unique. �

We will now discuss the LLT for uniformly elliptic homogeneous Markov chains. Nagaev gave the first
proof of this result (in the regime of local deviations). His proof is described in a special case, in the next
section. Nagaev’s proof is homogeneous in character; Here we will explain how to deduce the result from the
inhomogeneous theory we developed in the previous chapters.

We will always assume that the chain is equipped with its unique stationary initial distribution, given by the
previous lemma. Non-stationary uniformly elliptic homogeneous chains are “asymptotically homogeneous" in
the sense of §8.5, and will be discussed there.

Theorem 8.9 Let f denote an a.s. uniformly bounded homogeneous additive functional on a uniformly elliptic
stationary homogeneous Markov chain X.

(1) Asymptotic Variance: The limit σ2 = lim
N→∞

1
N

Var(SN ) exists, and σ2 = 0 iff f is the a.s. sum of a
homogeneous gradient and a constant.

(2) CLT: If σ2 > 0, then SN−E(SN )
√
N

converges in probability as N → ∞ to the Gaussian distribution with mean
zero and variance σ2.

(3) LLT: If σ2 > 0 then exactly one of the following options holds:

(a) Gess (X, f) = R. In this case, if zN−E(SN )
√
N

→ z, then for every interval (a, b),

P[SN − zN ∈ (a, b)] = [1 + o(1)]
e−z2/(2σ2)
√

2πσ2N
(b − a), as N → ∞;

(b) Gess (X, f) = tZ with t > 0. In this case, there are κ ∈ R and a bounded measurable function a : S → R
such that

f (X1, X2) + a(X1) − a(X2) + κ ∈ tZ a.s.

Proof. Let VN := Var(SN ) and fk := f (Xk, Xk+1), and assume without loss of generality that E[ f (X1, X2)] = 0.
By stationarity, E( fn) = 0 for all n.

Proof of Part (1): VN = E(S2
N ) =

N∑
n=1

E( f 2
n ) + 2

∑
1≤m<n≤N

E( fn fm). By stationarity, E( fn fm) = E( f0 fn−m), so

1
N

VN = E( f 2
0 ) + 2

N−1∑
k=1

E( f0 fk )(1 − k
N ).

|E( f0 fm) | decays exponentially (Prop. 2.13), so
∑
|E( f0 fk ) | < ∞, whence
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σ2 := lim
N→∞

1
N

Var(SN ) = E( f 2
0 ) + 2

∞∑
k=1

E( f0 fk ). (8.12)

(This identity for σ2 is called the Green-Kubo formula. Note that had fn(Xn, Xn+1) been uncorrelated, then

Var(SN ) would have been trivially equal to NE( f 2
0 ). The term

∞∑
k=1

E( f0 fk ) is the correction needed for the

dependent case.)
Let un denote the structure constants of (X, f). The stationarity assumption implies that un is independent of

n, say un = u for all n. It follows that UN ≡ u2
3 + · · · + u2

N = (N − 2)u2. Now we have two cases:

• u > 0: In this case by Theorem 3.7, VN � UN � N , whence σ2 > 0.
• u = 0: In this case, Var(SN ) = O(1) by Theorem 3.7, whence σ2 = 0 and f is center-tight. By the gradient

lemma (Lemma 3.14),
f (X1, X2) = a2(X2) − a1(X1) + κ

for some a1, a2 :S → R bounded and measurable and κ ∈ R. In the homogeneous case, we may take a1 ≡ a2,
see (3.6) in the proof of the gradient lemma. So f (X1, X2) = a(X2) − a(X1) + κ a.s.

Part (2) follows from Dobrushin’s CLT (Theorem 3.10).

Proof of Part (3): By stationarity, the structure constants dn(ξ) are independent of n, and they are all equal to

d(ξ) := E(|eiξΓ − 1|2)1/2, where Γ is the balance of a random hexagon at position 3. So DN (ξ) =
N∑
k=3

d2
k (ξ) =

(N − 2)d2(ξ).
If d(ξ) , 0 for all ξ , 0, then DN (ξ) → ∞ for all ξ , 0, and H (X, f) = {0}. By Theorem 4.4. Gess (X, f) = R

and f is irreducible. The non-lattice LLT now follows from Theorem 5.1.
If d(ξ) = 0 for some ξ , 0, then DN (ξ) = 0 for all N , ξ is in the co-range of (X, f), and the reduction

lemma says that there exist κn ∈ R and uniformly bounded measurable an : S → R and hn(Xn, Xn+1) such that∑
hn(Xn, Xn+1) converges a.s., and f (Xn, Xn+1) + an(Xn) − an+1(Xn+1) + hn(Xn, Xn+1) + κn ∈

2π
ξ
Z a.s.

Let An(Xn, Xn+1, . . .) := an(Xn) +
∑
k≥n

hk (Xk, Xk+1). Then for all n

fn(Xn, Xn+1) + An(Xn, Xn+1, . . .) − An+1(Xn+1, Xn+2, . . .) + κn ∈
2π
ξ
Z a.s. (8.13)

To finish the proof, we need to replace Ai (Xi, Xi+1, . . .) by functions of the form a(Xi). This is the purpose of
the following proposition:

Proposition 8.10 Let X be a uniformly elliptic stationary homogeneous Markov chain with state space (S,B).
Let f : S × S → R be a measurable function such that ess sup | f (X1, X2) | < ∞. If there are measurable
functions An :SN → R and κn ∈ R satisfying (8.13), then there are κ ∈ R and a measurable a :S → R s.t.

f (Xn, Xn+1) + a(Xn) − a(Xn+1) + κ ∈
2π
ξ
Z a.s. for all n.

Proof We assume for notational simplicity that ξ = 2π.
Let Ω :=SN, equipped with the σ-algebra F generated by the cylinder sets

[A1, . . . , An] := {x ∈ SN : xi ∈ Ai (i = 1, . . . , n)} (Ai ∈ B(S)).

Let m be the probability measure on (Ω,F ) defined by

m[A1, . . . , An] = P[X1 ∈ A1, . . . , Xn ∈ An].
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Let σ : Ω → Ω denote the left-shift map, σ[(xn)n≥1] = (xn+1)n≥1. The stationarity of X translates to the shift
invariance of m: m ◦ σ−1 = m.
Step 1 (Zero-One Law): Let σ−nF := {σ−n(A) : A ∈ F }, then for every A ∈

⋂
n≥1 σ

−nF , either m(A) = 0
or m(A) = 1.
Proof of the Step. Fix a cylinder A := [A1, . . . , A`].

By uniform ellipticity, for every cylinder B = [B1, . . . , BN ],

m(A ∩ σ−(`+1) B) = m([A1, . . . , A`, ∗, B1, . . . , BN ]) ≥ ε0m(A)m(B).

Applying this to the cylinders B = [S, . . . ,S,C1, . . . ,Cn], we find that

m(A ∩ σ−(`+k)[C1, . . . ,Cn]) ≥ ε0m(A)m[C1, . . . ,Cn] for all k ≥ 1.

Since this holds for all Ci ∈ B(S), we have by the monotone class theorem that

m(A ∩ σ−(`+k) E) ≥ ε0m(A)m(E) for every F–measurable E and k ≥ 1. (8.14)

Suppose E ∈
⋂

k≥1 σ
−nF , and let A be an arbitrary cylinder of length `. By the assumption on E, E = σ−nEn

with En ∈ F and n > `. So

m(A ∩ E) = m(A ∩ σ−nEn) ≥ ε0m(A)m(En) = ε0m(A)m(E).

We see that m(E |A) ≡ m(A∩E )
m(A) ≥ ε0m(E) for all cylinders A. So

E(1E |X1, . . . , X` ) ≥ ε0m(E) for all `,

and by the martingale convergence theorem, 1E ≥ ε0m(E) a.e. So m(E) = 0 or 1.
Step 2: Identify f with a function f : Ω→ R s.t. f [(xi)i≥1] = f (x1, x2). Then there exist A : Ω→ Rmeasurable
and κ ∈ R s.t. f + A − A ◦ σ + κ ∈ Z almost surely.
Proof of the Step. The assumptions of the proposition say that there exist An : Ω → R measurable and κn ∈ R
s.t.

f ◦ σn + An ◦ σ
n − An+1 ◦ σ

n+1 + κn ∈ Z m-a.e. for every n.

Let wn := e2πiAn and cn := e−2πiκn , then e2πi f ◦σn wn◦σ
n

wn+1◦σn+1 = cn m-a.s. Since m ◦ σ−1 = m, we get
e2πi f wn

wn+1◦σ
=cn m-almost everywhere. So

wn = cne−2πi fwn+1 ◦ σ = cncn+1e−2πi( f+ f ◦σ)wn+2 ◦ σ
2

= · · · = cn · · · cn+k−1e−2πi
∑k−1

j=0 f ◦σ j

wn+k ◦ σ
k .

Dividing the identities for wn and wn+1 (with the same k), we obtain,

wn/wn+1 = (cn/cn+k )(wn+k/wn+k+1) ◦ σk for all k.

Hence wn/wn+1 is σ−kF–measurable for all k. By the zero-one law, wn/wn+1 is constant almost surely. In
particular, there exists a constant c such that A2 − A1 ∈ c + Z m–a.e., and the step follows with A := A1 and
κ := κ1 − c.
Step 3: There exists a : Ω→ R constant on cylinders of length one such that f + a − a ◦ σ + κ ∈ Z m-a.e.
Proof of the Step. The transfer operator of σ : Ω → Ω is the operator L : L1(Ω) → L1(Ω) which describes
the action of σ on mass densities on Ω: σ∗[ϕdµ] = Lϕdµ. Formally, Lϕ := dmϕ◦σ

−1

dm , where mϕ := ϕdm. We
will need the following facts:
(a) If ϕ depends only on the first m-coordinates, then Lϕ depends only on the first (m − 1) ∨ 1–coordinates.

Specifically, (Lϕ)[(yi)i≥1] = Φ(y1, . . . , ym−1) where
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Φ(y1, . . . , ym−1) := E[ϕ(X1, . . . , Xm) |Xi+1 = yi (1 ≤ i ≤ m − 1)];

(b) Lϕ is characterized by the condition
∫
ψLϕdm =

∫
ψ ◦ σϕdm ∀ψ ∈ L∞(S);

(c) L(ϕψ ◦ σ) = ψLϕ ∀ϕ ∈ L1, ψ ∈ L∞;
(d) L1 = 1;
(e) ∀ϕ ∈ L∞, Lnϕ −−−−→

n→∞

∫
ϕdm in L1.

Part (b) is standard. Parts (c) and (d) follow from (b) and the σ-invariance of m. Part (a) follows from (b),
and the following chain of identities:∫

ψLϕdm =
∫

ψdmϕ ◦ σ
−1=

∫
ψ ◦ σ ϕdm = E[ψ(X2, X3, . . .)ϕ(X1, . . . , Xm)]

= E
(
ψ(X2, X3, . . .)E[ϕ(X1, . . . , Xm) |Xi, i ≥ 2]

)
!
= E

(
ψ(X2, X3, . . .)E[ϕ|X2, . . . , Xm]

) !!
=

∫
ψΦdm.

The first marked equality is a standard calculation; the second uses stationarity.
Part (e) can be proved using the following argument of M. Lin. It is enough to consider ϕ ∈ L∞ such that∫
ϕdm = 0.
For such functions,

‖Lnϕ‖1 =

∫
sgn(Lnϕ)Lnϕ dm =

∫
sgn(Lnϕ) ◦ σn · ϕ dm

=

∫
sgn(Lnϕ) ◦ σnE(ϕ|σ−nF ) dm ≤

∫
|E(ϕ|σ−nF ) |dm.

E(ϕ|σ−nF ) is uniformly bounded (by ‖ϕ‖∞), and by the martingale convergence theorem, it converges a.e. to

E *
,
ϕ

����

∞⋂
n=1

σ−nF +
-

!
= E(ϕ|{∅,Ω}) = E(ϕ) = 0.

The marked equality relies on the zero-one law.
Let w := e2πiA where A : Ω → R is as in step 2, and assume w.l.o.g. that κ = 0 (else absorb it into f ). Set

Sn = f + f ◦ σ + · · · + f ◦ σn−1, then e−2πi f = w/w ◦ σ, whence e−2πiSn = w/w ◦ σn. By (c) and (e), for all
ϕ ∈ L1(Ω),

wLn(e−2πiSnϕ) = Ln(e−2πiSnw ◦ σnϕ) = Ln(wϕ)
L1

−−−−→
n→∞

∫
wϕdm.

Since |w | = 1 a.e., ∃m ≥ 2 and ∃ϕ = ϕ(x1, . . . , xm) bounded measurable so that
∫
wϕdm , 0. For this ϕ, we

have

w−1 = lim
n→∞

Ln(e−2πiSnϕ)∫
wϕdm

in L1.

We claim that the right-hand-side depends only on the first coordinate. This is because e−2πi f ϕ is function of
the first m coordinates, whence by (a), L(e−2πi f ϕ) is a function of the first (m − 1) ∨ 1 coordinates. Applying
this argument again we find that L2(e−2πiS2ϕ) = L[e−2πi f L(e−2πi f ϕ)] is a function of the first (m − 2) ∨ 1
coordinates. Continuing by induction, we find that Ln(e−2πiSnϕ) is a function of (m − n) ∨ 1-coordinates, and
eventually only of the first coordinate.

Since w−1 is an L1-limit of a functions of the first coordinate, w is equal a.e. to a function of the first
coordinate. Write w[(xi)i≥1] = exp[2πia(x1)] a.e.

By construction e2πi fw/w ◦ σ = 1, so f (X1, X2) + a(X1) − a(X2) ∈ Z a.s. By stationarity, f (Xn, Xn+1) +
a(Xn) − a(Xn+1) ∈ Z a.s. for all n. �
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We now consider the LLT for large deviations. Given the work done in Chapter 7, what remains to be done
is to determine the large deviations thresholds c±.

Lemma 8.11 Let f be an a.s. uniformly bounded homogeneous additive functional on a uniformly elliptic
stationary homogeneous Markov chain, and assume the asymptotic variance σ2 is strictly positive. Then the
positivity thresholds r± satisfy

r− = lim
N→∞

ess inf[SN − E(SN )]
σ2N

, r+ := lim
N→∞

ess sup[SN − E(SN )]
σ2N

.

Proof Let an := ess sup[Sn − E(Sn)]. By stationarity,

an+m ≤ an + am,

therefore lim(an/n) exists. By Theorem 8.9, VN ∼ σ2N , and the formula for r+ follows. The formula for r−
follows by symmetry, by considering (X,−f). �

Theorem 8.12 Let f be an a.s. bounded homogeneous additive functional on a uniformly elliptic stationary
homogeneous Markov chain. If f is not the a.s. sum of a homogeneous gradient and a constant, then (X, f) has
full large deviations regime: c± = r±.

Proof Let fn := f (Xn, Xn+1). Subtracting a constant from f , we can arrange E[ f (X1, X2)] = 0. By stationarity,
E( fn) = 0 and E(SN ) = 0 for all n, N .

By the assumptions of the theorem, the asymptotic variance σ2 is positive. Without loss of generality, σ2=1.
This can always be achieved by replacing f by f /σ.

We will prove that c+ = r+. The inequality c+ ≤ r+ is always true, so we focus on c+ ≥ r+. By Lemma 8.11,
for every ε > 0, for all sufficiently large M ,

δM := P[SM ≥ (r+ − ε)M] > 0.

Let K := ess sup |f|. S`(M+2) = SM + ( fM+1 + fM+2) +
`(M+2)∑

k=(M+2)+1
fk, so

P[S`(M+2) ≥ `M (r+ − ε) − 2`K]

≥ P

SM ≥ M (r+ − ε ) and

(`−1)(M+2)∑
k=1

f (M+2)+k ≥ (` − 1)M (r+ − ε ) − 2(` − 1)K

.

We now appeal to (8.14): Let σ(Xi, . . . , X j ) denote the σ-field generated by Xi, . . . , X j . If E ∈ σ(X1, . . . , XM+1)
and F ∈ σ(XM+3, . . . , X`(M+2)+1), then P[E ∩ F] ≥ ε0P(E)P(F). Thus by stationarity,

P[S`(M+2) ≥ `M (r+ − ε) − 2`K]
≥ ε0δM × P[S(`−1)(M+2) ≥ (` − 1)M (r+ − ε) − 2(` − 1)K]

≥ (ε0δM )2 × P[S(`−2)(M+2) ≥ (` − 2)M (r+ − ε) − 2(` − 2)K] ≥ · · · ≥ (ε0δM )` .

Rearranging terms, we see that for all ` sufficiently large,

P

[
S`(M+2) ≥ `(M + 2)

(
M

M + 2
(r+ − ε) −

2K
M + 2

)]
≥ [(ε0δM )

1
M+2 ]`(M+2) .

Recall that M is chosen after the choice of ε andK . Sowemay take M so large that
M

M + 2

(
(r+ − ε) −

2K
M + 2

)
≥

r+ − 2ε. Let η := (ε0δM )
2

M+2 , then
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P
[
S`(M+2) ≥ `(M + 2)(r+ − 2ε)

]
≥ η

1
2 `(M+2) .

Next, for all ` sufficiently large, for all N ∈ [`(M + 2), (` + 1)(M + 2)), we have SN ≥ S`(M+2) − K (M + 2).
Therefore, for all N sufficiently large,

P[SN ≥ N (r+ − 3ε) + εVN ] ≥ η
1
2 N

!
≥ ηVN , because VN ∼ σ

2N = N . (8.15)

Theorem 7.26 says that c+ > 0, so r+ ≥ c+ > 0. If ε < r+/4, then by the CLT,

P[SN ≤ N (r+ − 3ε) − εVN ] ≥ P[SN ≤ 0] ∼
1
2
≥ ηVN . (8.16)

Looking at (8.15), (8.16) and Theorem 7.30, we deduce that zN := N (r+−3ε) is admissible. By Theorem 7.8,
P[SN − zN ∈ (a, b)] satisfy the LLT for large deviations, and by Theorem 7.26, r+ − 3ε = limN→∞

zN−E(SN )
VN

∈

[c−, c+]. So r+ ≤ c+ + 3ε. Since ε was arbitrary, c+ ≥ r+. Thus c+ = r+.
By symmetry, c−(X, f) = −c+(X,−f) = −r+(X,−f) = r−(X, f). �

∗8.4 One-Step Homogeneous Additive Functionals in L2

In this work we focus on bounded functionals on two-step uniformly elliptic Markov chains. We will now
deviate from this convention, and consider unbounded homogeneous additive functionals with finite variance,
on stationary homogeneous Markov chains with the one-step uniform ellipticity condition:

π(x, dy) = p(x, y)µ(dy) , ε0 ≤ p(x, y) ≤ ε−1
0 , µ(E) = P[Xn ∈ E].

There is an obvious overlap with the setup of the previous section, but we will give a very different proof of
the local limit theorem. This proof, due to Nagaev, is specific to the homogeneous case. But its ideas are of such
importance, that we decided to include it, despite its definite homogeneous character.

For simplicity, we will restrict our attention to one-step additive functionals f (x, y) = f (x), i.e. SN =

f (X1) + f (X2) + · · · + f (XN ). The “one-step" assumptions on X and f are not essential, but the one-step
theory has special appeal, because it enables a more explicit characterization of the cases when σ2 = 0 or
Gess (X, f) = tZ. Specifically, no gradient terms are needed, as in Theorem 8.9.

Theorem 8.13 (Nagaev) Let f : S → R denote a one-step square integrable homogeneous additive functional,
on a stationary homogeneous Markov chain X with the one-step ellipticity condition.

(1) Asymptotic Variance: The limit σ2 = lim
N→∞

1
N

Var(SN ) exists, and σ2 = 0 iff f is equal a.s. to a constant.

(2) CLT: If σ2 > 0, then SN−E(SN )
√
N

converges in probability as N → ∞ to the Gaussian distribution with mean
zero and variance σ2.

(3) LLT: If σ2 > 0, then one of the two statements holds:

(a) @c, t ∈ R such that f (X1) ∈ c + tZ a.s. In this case, if zN−E(SN )
√
N

→ z, then for every non-empty interval
(a, b),

P[SN − zN ∈ (a, b)] = [1 + o(1)]
e−z2/(2σ2)
√

2πσ2N
(b − a), as N → ∞.

(b) ∃t > 0 maximal and c ∈ R such that f (X1) ∈ c + tZ a.s. In this case, if zN ∈ c + tZ and zN−E(SN )
√
N

→ z,
then for every k ∈ Z,
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P[SN − zN = kt] = [1 + o(1)]
te−z2/(2σ2)
√

2πσ2N
, as N → ∞.

The proof of this theorem is given in the following sections.

Asymptotic Variance and Irreducibility.

Proposition 8.14 Suppose X is a stationary homogeneous Markov chain with the one-step ellipticity condition.
Let f be a one-step square integrable homogeneous additive functional, and set Sn = f (X1) + · · · + f (Xn).

(1) The limit σ2 = lim
N→∞

1
N

Var(SN ) exists, is finite, and

σ2 = Var[ f (X1)] + 2
∞∑
n=1

Cov( f (X1), f (Xn+1)).

(2) σ2 = 0 iff f (X1) is constant almost surely.

Proof Part (1) is proved exactly as in the case of bounded additive functionals, but using (2.13) instead of (2.11).
If f (X1) is constant, then f (Xn) is constant for all n by stationary, and σ2 = 0. We now suppose σ2 = 0, and

prove that f (X1) is constant a.e.
Without loss of generality, E[ f (X1)] = 0 (otherwise subtract a constant from f ).
Let S denote the state space of X, equipped with the (stationary) initial distribution of X1, and define an

operator L : L2(S) → L2(S) by

(Lϕ)(x) :=
∫
S

ϕ(y)p(x, y)µ(dy) = E[ϕ(X2) |X1 = x].

It is not difficult to see, by induction, that (Lnϕ)(x) = E[ϕ(Xn+1) |X1 = x]. Let

ψ(x) :=
∞∑
n=0

(Ln f )(x) =
∞∑
n=0

E[ f (Xn+1) |X1 = x].

The sum converges in L2 by (2.12).
Since L is bounded on L2(S), f (X1) = ψ(X1) − (Lψ)(X1) a.s. Therefore, if σ2 = 0, then by part 1,

0 = σ2 = E
[

f (X1)2 + 2 f (X1)
∞∑
n=1

f (Xn+1)
]

= E
(

f (X1)2 + 2 f (X1)
∞∑
n=1

E[ f (Xn+1) |X1 = x]
)

= E
[(

(ψ − Lψ)2 + 2(ψ − Lψ)Lψ
)
(X1)

]
= E[(ψ − Lψ)(ψ − Lψ + 2Lψ)(X1)]

= E[(ψ2 − (Lψ)2)(X1)] = E
(
ψ(X1)2 − E[ψ(X2) |X1]2

)
= E

(
ψ(X2)2 − E[ψ(X2) |X1]2

)
, by stationarity

= E
[
E

(
ψ(X2)2 − E[ψ(X2) |X1]2����X1

)]
= E

[
Var

(
ψ(X2)��X1

)]
.

Necessarily, Var
(
ψ(X2)��X1

)
= 0 a.s., whence ψ(X2) = E

(
ψ(X2)��X1

)
almost surely. Recalling that f =

ψ − Lψ, we see that

f (X1) = ψ(X1) − (Lψ)(X1) = ψ(X1) − E[ψ(X2) |X1] = ψ(X1) − ψ(X2).

Rearranging terms, we find that
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ψ(X2) = ψ(X1) − f (X1) almost surely.

We claim that ψ(X1) must be equal a.e. to a constant function. Assume the contrary, and choose some (t0, s0)
in the support of the distribution of the random vector ( f (X1), ψ(X1)). Then the support of ψ(X2) contains
s0 − t0.

Since ψ(X1) is not constant a.e., and X is stationary, the support of the distribution of ψ(X2) contains more
than one point. Choose some s1 , s0 − t0 in this support.

Fix 0 < ε < 1
3 |(s0− t0)− s1 |. By the definition of the support of a measure, the following events have positive

probability:

A :=
[
| f (X1) − t0 | < ε, |ψ(X1) − s0 | < ε

]
, B :=

[
|ψ(X2) − s1 | < ε

]
.

By the one-step ellipticity condition, E := A∩ B has positive measure (bounded below by ε0P(A)P(B)). But
on E, ψ(X2) , ψ(X1) − f (X1), because

• ψ(X2) is ε-close to s1,
• ψ(X1) − f (X1) is 2ε-close to s0 − t0,
• dist(s1, t0 − s0) > 3ε.

We obtain a contradiction to the a.s. equality ψ(X2) = ψ(X1) − f (X1).
Thus ψ(X1) = const.. By stationarity, ψ(X2) = const., and f (X1) = 0 a.s. �

Remark. If we replace the one-step ellipticity condition by a weaker condition which implies the convergence in
norm of

∑
Ln (e.g. uniform ellipticity), then we can only claim that σ2 = 0⇔ f (X1) = ψ(X1)−ψ(X2)+ const.

for some ψ ∈ L2.
Next, we calculate the co-range H (X, f) := {ξ ∈ R :

∑
d2
n(ξ) < ∞}. Note that this is well-defined even when

f is unbounded.

Lemma 8.15 Suppose X is a stationary homogeneous Markov chain with the one-step ellipticity condition. Let
f be a (possibly unbounded) homogeneous additive functional of the form f = f (x). Then

H (X, f) = {0} ∪
{

2π
t

: t , 0 and ∃c ∈ R s.t. f (X1) ∈ c + tZ a.s.
}
. (8.17)

Proof It is clear that 0 belongs to both sides.
The inclusion ⊃ is straightforward. To see ⊂, suppose ξ ∈ H (X, f) \ {0} and take t := 2π/ξ. In the stationary

case, dn(ξ) are all equal to d(ξ) = EmHex (|e
2π i
t Γ − 1|2), where Hex is the space of position 3 hexagons and Γ is

the balance of a random hexagon defined by (2.25). So

ξ ∈ H (X, f) ⇔
∞∑
n=3

d2
n(ξ) < ∞ ⇔ d(ξ) = 0⇔ EmHex (|e

2π i
t Γ − 1|2) = 0.

So Γ ∈ tZ mHex -a.e. in Hex (n).
Fix t0, s0 in the support of the distribution of f (X1). By stationarity, t0, s0 are in the supports of the distributions

of f (Xn) for all n. So P[| f (Xn) − r | < ε] > 0 for every ε > 0, n ∈ N, and r ∈ {s0, t0}. By the one-step ellipticity
condition,

mHex

{(
y1

y2
y4

x
y5

y3

)
∈ Hex (n) : | f (yi) − s0 | < ε , | f (x) − t0 | < ε

}
> 0.

The balance of each hexagon in this set is 4ε-close to t0 − s0 (note that while in the case where fn depend on
two variables the balance of each hexagon contains six terms, but in the present case there only four terms since
f (y1) cancels out). Since Γ ∈ tZ mHex -a.e., dist(t0 − s0, tZ) ≤ 4ε, and since ε can be chosen arbitrarily small,

t0 ∈ s0 + tZ.
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We now fix s0 and take t0 to be a general point in the support of the distribution of f (X1). The conclusion
is that the support of the distribution of f (X1) is contained in s0 + tZ. Equivalently, f (X1) ∈ s0 + tZ almost
surely. �

Perturbations of Linear Operators with Spectral Gap. Before continuing the proof of Theorem 8.13 we
collect some definitions and facts from the theory of bounded linear operators. Let (X, ‖ · ‖) denote a Banach
space over C.

• The spectral radius of a bounded linear operator L is ρ(L) := lim
n→∞

n
√
‖Ln‖.

• An eigenvalue of L is a number λ ∈ C such that Lu = λu for some non-zero u ∈ X. An eigenvalue is simple
if dim{u ∈ X : Lu = λu} = 1.

• The spectrum of L is spec(L) := {λ ∈ C : λI − L has no bounded inverse} (here and throughout, I denote
the identity).
Every eigenvalue λ belongs to the spectrum (because ker(λI − L) , 0), but there could be points in spec(L)

which are not eigenvalues (because λI − L could be invertible with an unbounded inverse).
Classical results in functional analysis say that the spectrum is always compact, non-empty, and

ρ(L) = max{|z | : z ∈ spec(L)}.

We will say that a bounded linear operator L : X → X has spectral gap with simple leading eigenvalue λ,
if λ , 0 and L = λP + N, where
(a) P and N are bounded linear operators such that PN = N P = 0;
(b) P2 = P, PL = LP = λP, and dim{Pu : u ∈ X} = 1;
(c) ρ(N ) < |λ |.
The operator P is called the eigenprojection of λ.
Lemma 8.16 Suppose L has spectral gap with simple leading eigenvalue λ and eigenprojection P. Then:
(1) ∃0 < θ < 1 such that ‖λ−nLn − P‖ = O(θn) as n → ∞.
(2) λ is a simple eigenvalue of L, and spec(L) = K ∪ {λ} where K is a compact subset of {z ∈ C : |z | < |λ | − γ}

for some γ > 0 (“the gap").
(3) If L has spectral gap with simple leading eigenvalue λ ′ and eigenprojection P′, then λ ′ = λ and P′ = P.
Proof Ln=(λP+N )n = λnP+Nn (the mixed terms vanish and Pn = P for all n). Thus, ‖λ−nLn−P‖=‖λ−nNn‖.
Since n

√
‖Nn‖ → ρ(N ) < |λ |, ‖λ−nLn − P‖ = O(θn) for every ρ(N )/|λ | < θ < 1.

The number λ is an eigenvalue, because L(Pu) = λPu for every u ∈ X, and there are some u such that Pu , 0.
It is a simple, because if Lu = λu, then

u = λ−nLnu → Pu,

whence u is in the image of P, a space of dimension one.
Since all eigenvalues are in the spectrum, λ ∈ spec(L). To finish the proof,wewill show thatK := spec(L)\{λ}

is contained in {z ∈ C : |z | ≤ ρ(N )}. It is sufficient to show that zI − L has a bounded inverse for all z , λ s.t.
|z | > ρ(N ).

Let X1 := ker(P) := {u ∈ X : Pu = 0} and let X2 := im(P) := {Pu : u ∈ X}. It is not difficult to see that

X = X1 ⊕ X2 and L(Xi) ⊂ Xi .

Indeed, the projections on X1,X2 are, respectively, I − P and P.
Fix z , λ such that |z | > ρ(N ).

• On X1, zI − L = zI − N , and ρ(L |X1 ) = ρ(N |X1 ) < |z |. It follows that z < spec(L |X1 ), and (zI − L) |X1 has a
bounded inverse (zI − N )−1 |X1 .

• On X2, zI − L = zI − λI, so (zI − L)−1 |X2 = (z − λ)−1I, a bounded linear operator.
Thus (zI − L)−1 = (zI − N )−1(I − P) + (z − λ)−1P, a bounded linear operator. �
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The next result says that if we perturb a linear operator with spectral gap “smoothly," then the perturbed oper-
ator has spectral gap for small values of the perturbation. Moreover, the leading eigenvalue depends “smoothly"
on the perturbation parameter. We begin by clarifying what we mean by “smooth."

Let t 7→ Lt be a function from a real open neighborhood U of zero, to the space of bounded linear operators
on X.

• t 7→ Lt is continuous on U, if for all t ∈ U, ‖Lt+h − Lt ‖ −−−−→
h→0

0.

• t 7→ Lt is differentiable on U , if for all t ∈ U , there is a bounded linear operator L′t (called the derivative of
Lt at t) such that







Lt+h − Lt

h
− L′t







−−−−→
h→0

0.

If t 7→ L′t is continuous on U, then we say that t 7→ Lt is C1-smooth, or just C1.
• By induction, t 7→ Lt is calledCr -smooth if t 7→ Lt is differentiable onU, withCr−1-smooth derivative. In this

case, the r th-derivative of Lt is the bounded linear operator L(r )
t obtained inductively from L(r )

t := (L(r−1)
t )′,

L(1)
t := L′t .

Theorem 8.17 (Perturbation Theorem) Fix r ≥ 1 and a > 0. Suppose Lt : X → X is a bounded linear
operator for each |t | < a, and t 7→ Lt is Cr -smooth with r ≥ 1. If L0 has spectral gap with simple leading
eigenvalue λ0 and eigenprojection P0, then there exists some 0 < κ < a such that:
(1) Lt has spectral gap with simple leading eigenvalue for each |t | < κ;
(2) The leading eigenvalue λt and eigenprojection Pt of Lt are Cr -smooth on (−κ, κ);
(3) There exists γ > 0 such that ρ(Lt − λtPt ) < |λt | − γ for all |t | < κ.

For the proof of this theorem, see Appendix C.

Nagaev’s Perturbation Operators. We now return to the discussion of one-step additive functionals on one-
step uniformly elliptic stationary homogeneous Markov chains.

Let X := {u : S → C : u is measurable, and ‖u‖ := sup
x
|u(x) | < ∞}, and define a bounded linear operator

Lt : X → X by

(Ltu)(x) :=
∫
S

eit f (y)u(y)p(x, y)µ(dy) = E(eit f (X2)u(X2) |X1 = x).

Lemma 8.18 Let S′n := f (X2) + · · · + f (Xn+1), then

E[eitS′nu(Xn+1) |X1] = (Ln
t u)(X1) (u ∈ X). (8.18)

Proof This is a special case of Lemma 5.5, with fn(x, y) = f (y). �

Lemma 8.19 If X is uniformly elliptic, then L0 has spectral gap with simple leading eigenvalue λ0 = 1, and
eigenprojection P0u = E[u(X1)]1S.

Proof By definition, (L0u)(x) = E[u(X2) |X1 = x]. Let P0u := E(u(X1))1S and N0 := L0(I − P0). These are
bounded linear operators, and it is straightforward to verify that dim{Pu : u ∈ X} = 1, P2

0 = P0, P0L0 = L0P0 =

P0, L0 = P0 + N0, and N0L0 = L0N0. It remains to check that ρ(N0) < 1.
First, notice that (I − P0)2 = I − 2P0 + P2

0 = I − P0. By induction, (I − P0)n = I − P0. Since L0 commutes
with P0,

Nn
0 = (L0(I − P0))n = Ln

0 (I − P0)n = Ln
0 (I − P0).

For every u ∈ X, (I − P0)u = u − E(u(X1)), and by stationarity, this is the same as u − E(u(Xn+1)). This and
(8.18) (with t = 0) leads to

‖Nn
0 u‖ = ‖E(u(Xn+1) − E(u(Xn+1)) |X1 = x)‖ ≤ Cmixθ

n‖u‖,

where Cmix and 0 < θ < 1 are constants which only depend on the ellipticity constant of X, see (2.11). So
‖Nn

0 ‖ ≤ 2Cmixθ
n, and ρ(N0) ≤ θ < 1. �
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Lemma 8.20 If X has the one-step ellipticity condition and E[ f (X1)2] < ∞, then t 7→ Lt is C2-smooth on R,
and

(L ′0u)(x) = iE[ f (X2)u(X2) |X1 = x] ; (L ′′0 u)(x) = −E[ f (X2)2u(X2) |X1 = x].

Proof Define an operator on X by (L ′tu)(x) = E[i f (X2)eit f (X2)u(X2) |X1 = x]. Clearly, ‖L ′t ‖ ≤ E( | f (X2) |) ≤
‖ f ‖2 < ∞. For every u ∈ X, for every x ∈ S,

�����
1
h

(Lt+hu − Ltu)(x) − (L ′tu)(x)
�����
=

�����
E

(
eih f (X2) − 1 − ih f (X2)

h
eit f (X2)u(X2)

����X1 = x
) �����

≤ E

(�����
eih f (X2) − 1 − ih f (X2)

h2 f (X2)2 h f (X2)2
�����
1[ f (X2),0]

����X1 = x
)
‖u‖ ≤ M |h|E( f (X2)2 |X1 = x)‖u‖,

where M := sup
s∈R\{0}

�����
eis − 1 − is

s2

�����
. By the one-step ellipticity condition, ε0 ≤ p(x, y) ≤ ε−1

0 . So

E( f 2(X2) |X1 = x) =
∫

p(x, y) f (y)2µ(dy) ≤ ε−1
0

∫
f (y)2µ(dy) ≤ ε−1

0 E( f 2).

It follows that 



1
h (Lt+h − Lt ) − L ′t




 ≤ Mε−1
0 ‖ f ‖22 |h| −−−−→h→0

0. So t 7→ Lt is differentiable, with derivative L ′t .

Next we define the operator L ′′t u = −E[ f (X2)2eit f (X2)u(X2) |X1 = x].
By one-step ellipticity, ‖L ′′t ‖ ≤ ε

−2
0 E( f (X2)2) = ‖ f ‖22 < ∞. Fix u ∈ X. Then:

�����
1
h

(L ′t+hu − L ′tu)(x) − (L ′′t u)(x)
�����
=

�����
E

(
i f (X2)

eih f (X2) − 1 − ih f (X2)
h

eit f (X2)u(X2)��X1 = x
) �����

≤ E
(

f (X2)2q(h f (X2))��X1 = x
)
‖u‖, where q(s) :=




���
eis−1−is

s
��� s , 0

0 s = 0.

We now apply the one-step ellipticity condition as before, and deduce that







1
h

(L ′t+h − L
′
t ) − L

′′
t







≤ ε−1

0 E[ f (X2)q(h f (X2))]
!
−−−−→
h→0

0. (8.19)

(To see (!) note that q(h f (X2)) −−−−→
h→0

0 pointwise, q is bounded, and E(| f (X2) |)<∞.) It follows that L ′t is
differentiable, with derivative L ′′t .

To finish the proof of C2-smoothness, we check that t 7→ L ′′t is continuous.

(L ′′t+hu − L ′′t u)(x) = −E
(

f (X2)2[eih f (X2) − 1]eit f (X2)u(X2)
����X1 = x

)
.

As before, this leads to ‖L ′′
t+h
− L ′′t ‖ ≤ ε

−1
0 E

(
f (X2)2 ���e

ih f (X2) − 1���
)
. By the dominated convergence theorem,




L
′′
t+h − L

′′
t




 −−−−→h→0
0. �

Proposition 8.21 If X has the one-step ellipticity condition, and E[ f (X1)2] < ∞, then there exists κ > 0 such
that:

(1) For every |t | < κ, Lt has spectral gap with simple leading eigenvalue λt and eigenprojection Pt .
(2) t 7→ λt and t 7→ Pt are C2 on (−κ, κ).
(3) Let Nt := Lt − λtPt , then there exists γ > 0 such that ρ(Nt ) < |λt | − γ for all |t | < κ.

(4) λ0 = 1, λ ′0 :=
dλt
dt

�����t=0
= iE[ f (X1)], and λ ′′0 :=

d2λt

dt2

�����t=0
= −

[
σ2 + E( f (X1))2

]
, where σ2 = lim

N→∞

1
N

Var(SN ).

(5) Suppose σ2 > 0 and E( f ) = 0. Then there is a constant c > 0 such that for every |t | < κ, |λt | ≤ e−ct2 .
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Proof Parts (1)–(3) follow from the perturbation theorem, and the previous lemmas.
We prove part (4). Given |t | < κ, let λt and Pt be the leading eigenvalue and eigenprojection for Lt . By

Lemmas 8.19 and 8.16(3),
λ0 = 1 and P0u = E[u(X1)]1S .

It is straightforward to show that if two operator-valued functions At, Bt are differentiable, then (At + Bt )′ =
A′t + B′t and(AtBt )′ = A′t Bt + AtB′t .

Differentiating the identity LtPt = λtPt , we obtain L′tPt + LtP′t = λ
′
tPt + λtP′t . Multiplying both sides on

the left by Pt gives

PtL′tPt + λtPtP′t = λ
′
tPt + λtPtP′t (∵ PtLt = LtPt = λtPt , P2

t = Pt ).

Therefore PtL′tPt = λ
′
tPt . Substituting t = 0 and recalling the formulas for P0 and L′0, we obtain that λ

′
0 = iE[ f ].

Next, we differentiate both sides of the identity Ln
t Pt = λ

n
t Pt twice:

(Ln
t )′′Pt + 2(Ln

t )′P′t + L
n
t P′′t = (λnt )′′Pt + 2(λnt )′P′t + λ

n
t P′′t .

Now we multiply on the left by Pt , substitute t = 0, and cancel P0L
n
0 P′′0 = λ

n
0 P0P′′0 :

P0(Ln
0 )′′P0 + 2P0(Ln

0 )′P′0 = (λn0 )′′P0 + 2(λn0 )′P0P′0. (8.20)

Recall that Ln
t u = E(eitS′nu(Xn+1) |X1), where S′n =

n∑
k=1

fk+1(Xk+1). One can prove exactly as in Lemma 8.20

that
d
dt

�����t=0
Ln

t u = iE(S′nu(Xn+1) |X1) ,
d2

dt2

�����t=0
Ln

t u = −E[(S′n)2u(Xn+1) |X1].

Also (λn0 )′ = nλn−1
0 λ ′0 = nλ ′0 = nE[ f ], and

(λn0 )′′ = n(n − 1)λn−1
0 (λ ′0)2 + nλn−1

0 λ ′′0 = n(n − 1)(iE[ f ])2 + nλ ′′0 .

Substituting this in (8.20), we obtain (in the special case u ≡ 1),

−E[(S′n)2] + 2E[S′nP′01] = n(n − 1)(iE( f ))2 + nλ ′′0 + 2nE( f )E[P′01].

By exponential mixing and stationarity, 2E[S′nP′01] = 2nE( f )E[P′01] + O(1). Substituting this in the above,
dividing by n, and passing to the limit, we obtain

λ ′′0 = −E( f )2 − lim
n→∞

1
n

(
E[(S′n)2] − n2E( f )2

)
= −E( f )2 − lim

n→∞

1
n

Var(Sn).

This proves part (4).
Suppose σ2 > 0 and E( f ) = 0. Make κ so small that |λ ′′t − λ ′′0 | <

1
2σ

2 for |t | < κ. Then

λt = λ0 +

∫ t

0

(
λ ′0 +

∫ s

0
λ ′′ηdη

)
ds = λ0 +

∫ t

0

(
λ ′0 +

∫ s

0

(
λ ′′0 + (λ ′′η − λ

′′
0 )

)
dη

)
ds

= 1 + tλ ′0 +
1
2
λ ′′0 t2 +

∫ t

0

∫ s

0
(λ ′′η − λ

′′
0 )dηds.

Thus λt = 1 − 1
2σ

2t2 + ε(t), where ε(t) is the double integral. Clearly, |ε(t) | ≤ 1
4σ

2t2. To get part (5), we
choose κ and c so that 1 − 1

4σ
2t2 < e−ct2 for |t | < κ. �

Lemma 8.22 For every [a, b] ⊂ R \ H (X, f) there exists γ > 0 such that ρ(Lt ) < 1 − γ for all t ∈ [a, b].
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Proof Fix [a, b] ⊂ R \ H (X, f) and t ∈ [a, b] (necessarily, t , 0). Recall the notation {z}tZ = t{z/t}, and define

gt (x) := { f (x)} 2π
t Z
. Then eitgt = eit f . Hence dn(t, f) = dn(t, gt ), and (Ltϕ)(x) =

∫
eitgt (y) p(x, y)ϕ(y)µ(dy).

Notice that ess sup |gt | ≤ |t | ≤ max(|a |, |b|). Therefore Lemma 5.6 applies, and there is a constant ε̃, which
depends only on a, b and the ellipticity constant of X, such that

‖L5
t ‖ ≤ e−ε̃d

2 (t,gt ) = e−ε̃d
2 (t,f) = e−ε̃d

2 (t) .

Here d2(t) is the structure constant of f.
Since t < H (X, f),

∑
d2
n(t, f) = ∞. As dn(t, f) = d(t) for all n, d(t) > 0. So

ρ(Lt ) ≤ exp
[
−

1
5
ε̃d(t)2

]
< 1 − γt for some γt > 0.

Choose some nt such that ‖Lnt
t ‖ < (1 − γt )nt . By the continuity of t 7→ Lt , there is an open neighborhood Ut

of t, where
‖L

nt
s ‖ < (1 − γt )nt for all s ∈ Ut .

Recall that ρ(Ls) = lim
n→∞

n
√
‖Ln

s ‖
!
= inf n

√
‖Ln

s ‖ (because ‖Lkn
s ‖ ≤ ‖L

k
s ‖

n). In particular, ρ(Ls) ≤ nt
√
‖L

nt
s ‖,

and therefore ρ(Ls) ≤ 1 − γt for all s ∈ Ut .
Since [a, b] is compact, we can cover it by finitely many Ut1, . . . ,Utn , and obtain the bound ρ(Ls) <

1 −min{γt1, . . . , γtn } on [a, b]. �

Proof of Theorem 8.13. Throughout this proof we assume that X is a stationary homogeneous Markov chain
with the one-step ellipticity condition, and we let f :S → R be a function such that E[ f (X1)2] < ∞.

We also suppose that f (X1) is not equal a.s. to a constant, and therefore by Proposition 8.14,
1
N

Var(SN ) −−−−−→
N→∞

σ2 , 0.

Proposition 8.23 (CLT) For every a < b,

P

[
SN − E(SN )
√

N
∈ (a, b)

]
−−−−−→
N→∞

1
√

2πσ2

∫ b

a

e−t
2/2σ2

dt .

Proof It is sufficient to prove the proposition in the special case when E[ f (X1)] = 0. In this case, by Lévy’s
continuity theorem, it is sufficient to show that for each t,

E
(
eitSN /

√
N
)
→ e−

1
2σ

2t2
,

the characteristic function of the centered Gaussian distribution with variance σ2.
Fix t and suppose n is large enough so that |t |/

√
n < κ, where (−κ, κ) is the interval of perturbation parameters

which satisfy the conclusions of Proposition 8.21. By stationarity and (8.18),

E
(
eitSn/

√
n
)
= E

(
eitS′n/

√
n
)
= E[(Ln

t/
√
n
1)(X1)] = E

[
(λt/√nPt/

√
n + Nt/

√
n)n(X1)

]

= E
[
(λn

t/
√
n

Pt/
√
n1 + Nn

t/
√
n
1)(X1)

]
= λn

t/
√
n
E[(Pt/

√
n1)(X1)] +O

(
‖Nn

t/
√
n
1‖

)
= λn

t/
√
n

[
1 +O

(
‖Pt/

√
n − P0‖

)
+O

(
|λt/

√
n |
−n‖Nn

t/
√
n
1‖

)]
.

Observe that ‖Pt/
√
n − P0‖ → 0 (because s 7→ Ps is C2); and λ−n

t/
√
n
‖Nn

t/
√
n
1‖ → 0 (because ρ(Ns) < |λs | − γ ≤

(1 − γ) |λs | for all |s | < κ). Thus
E(eitSn/

√
n) = [1 + o(1)]λn

t/
√
n
.
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It remains to show that lim
n→∞

λn
t/
√
n
= e−

1
2σ

2t2
.

Recall that s 7→ λs is C2, therefore λt = λ0 + tλ ′0 +
1
2λ
′′
0 t2 + o(t2) = 1 − 1

2σ
2t2 + o(t2), as t → 0. So

λn
t/
√
n
=

(
1 − t2

2n (σ2 + o(1))
)n !
−−−−→
n→∞

e− 1
2σ

2t2
.

To justify the limit, calculate Log
(
λn
t/
√
n

)
for some branch of the complex logarithm function, which is

holomorphic on a complex neighborhood of 1. �

Proposition 8.24 (Non-Lattice LLT) Suppose there are no t, c ∈ R such that f (X1) ∈ c + tZ almost surely,

then for every a < b and zN, z ∈ R such that zN−E(SN )
√
N

→ z, P[SN − zN ∈ (a, b)] = [1 + o(1)]
e−z2/2σ2

√
2πσ2N

|a − b|.

Proof Without loss of generality, E( f (X1)) = 0, whence E(Sn) = 0 for all n.
As we saw in §5.2.1, it is sufficient to show that

1
2π

∫ L

−L

e−iξzn φ̂(ξ)E(eiξSn )dξ ∼
e−z2/2σ2

√
2πσ2n

φ̂(0) as n → ∞, (8.21)

for every L > 0, and each φ ∈ L1(R) such that supp(φ̂) ⊂ [−L, L].
Choose κ as in Prop. 8.21, and fix R > 0, arbitrarily large. We divide [−L, L] into

[
− R√

n
, R√

n

]
, [−κ, κ] \

[
− R√

n
, R√

n

]
, and [−L, L] \ [−κ, κ], and consider the contribution to the integral from each of these regions.

Contribution of
[
− R
√
n
, R
√
n

]
: This is the part of the integral governed by the CLT.

1
2π

∫ R/
√
n

−R/
√
n

e−iξzn φ̂(ξ)E(eiξSn )dξ =
1

2π
√

n

∫ R

−R

e−iξ zn√
n φ̂

(
ξ
√
n

)
E(eiξ Sn√

n )dξ

∼
1

2π
√

n

∫ R

−R

e−iξz φ̂(0)e−
1
2σ

2ξ2
dξ =

φ̂(0)
2π
√

n

(∫ ∞

−∞

e−iξze−
1
2σ

2ξ2
dξ + oR→∞(1)

)
.

So the contribution of [− R√
n
, R√

n
] is

e−z2/2σ2
φ̂(0)

√
2πσ2n

[1 + on→∞(1) + oR→∞(1)].

Contribution of [−κ, κ] \
[
− R
√
n
, R
√
n

]
: For ξ in this region, by Prop. 8.21(5),

|E(eiξSn ) | = |E(eiξS′n ) | = |E[(Ln
ξ1)(X1)]| = |E[(λnξPt1 + Nn

ξ 1)(X1)]|

≤ |λξ |
n(‖Pξ ‖ + |λξ |−n‖Nn

ξ ‖) ≤ e−cξ
2n[O(1) + o(1)] ≤ const.e−cξ

2n.

Therefore this contribution is O
(
‖φ̂‖∞

∫ κ

R/
√
n

e−cnξ2dξ
)
= 1√

n
oR→∞(1).

Contribution of [−L, L] \ [−κ, κ]: By the assumptions of the proposition, there are no c, t ∈ R such that
f (X1) ∈ c + tZ a.s. By Proposition 8.15, H (X, f) = {0}.

By Lemma 8.22, there is γ > 0 such that ρ(Lξ ) < 1 − γ for all ξ ∈ [−L, L] \ [−κ, κ]. It follows that
���E

(
eiξSn

) ��� ≤



L

n
ξ




 < const.
(
1 − γ

2

)n
. Therefore, the contribution of [−L, L] \ [−κ, κ] is bounded by

1
2π

∫
[κ≤ |ξ | ≤L]

|φ̂(ξ) | |E(eiξSn ) |dξ = O
((

1 −
γ

2

)n)
= o

(
1
√

n

)
.

Collecting all these contributions, we find that for each R > 1,

1
2π

∫ L

−L

e−iξzn φ̂(ξ)E(eiξSn )dξ =
e−z2/2σ2

√
2πσ2n

φ̂(0) [1 + oR→∞(1)] + o
(

1
√

n

)
.
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Taking R→ ∞, we obtain (8.21). �

Proposition 8.25 (Lattice LLT) Suppose t ∈ R is the maximal number such that for some c, f (X1) ∈ c + tZ
almost surely (necessarily t , 0). Then for every zN ∈ tZ such that zN−E(SN )

√
n

→ z, for every k ∈ Z,

P[SN − zN = kt] = [1 + o(1)]
te−z2/2σ2

√
2πσ2N

.

Proof Without loss of generality, E( f (X1)) = 0 and t = 1. As we saw in §5.2.1, it is sufficient to show that for
every k ∈ Z and zn ∈ Z such that zn√

n
→ z,

1
2π

∫ π

−π
e−itzne−iξkE(eiξSn )dξ ∼

e−z2/2σ2

√
2πσ2n

. (8.22)

To see (8.22), we take κ as in Proposition 8.21, split [−π, π] into [−R/
√

n, R/
√

n], [−κ, κ] \ [−R/
√

n, R/
√

n],
and [−π, π] \ [−κ, κ], and consider the contribution of each of these regions to the integral.

Contribution of
[
− R
√
n
, R
√
n

]
: As in the non-lattice case,

1
2π

∫ R/
√
n

−R/
√
n

e−iξzN e−iξkE(eiξSn )dξ ∼
e−z2/2σ2

√
2πσ2n

[1 + oR→∞(1)].

Contribution of [−κ, κ] \
[
− R
√
n
, R
√
n

]
: As in the lattice case, in this region, there exists c′ > 0 such that

|E(eiξSn ) | ≤ const.e−c
′ξ2n,

and therefore the contribution of [−κ, κ] \
[
− R√

n
, R√

n

]
is bounded by 1√

n
oR→∞(1).

Contribution of [−π, π] \ [−κ, κ]: By assumption, t = 1 is the maximal t for which there is a constant c such
that f (X1) ∈ c + tZ a.s. Therefore, by Proposition 8.15, H (X, f) = 2πZ, and [−π, π] \ [−κ, κ] is a compact subset
of H (X, f)c .

By Lemma 8.22, there is a γ > 0 such that

|E(eiξSn ) | ≤ ‖Ln
ξ ‖ < const.(1 − γ)n for all n ≥ 1, ξ ∈ [−π, π] \ [−κ, κ].

It follows that the contribution of [−π, π] \ [−κ, κ] is o(1/
√

n).
Summing these contributions, and passing to the limit as R→ ∞, we obtain (8.22). �

8.5 Asymptotically Homogeneous Markov Chains

A Markov chain X̃ is called asymptotically homogeneous (with limit X), if it has state spaces Sn = S, and
transition probabilities

π̃n,n+1(x, dy) = [1 + εn(x, y)]π(x, dy), where sup |εn | −−−−→
n→∞

0,

and π(x, dy) is the transition probability of a homogeneous Markov chain X on S. An additive functional
f̃ = { f̃n}n≥1 on X̃ is called asymptotically homogeneous (with limit f ), if

sup | f̃n − f | −−−−→
n→∞

0 for some f :S ×S → R.
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Clearly, all homogeneous Markov chains and homogeneous additive functionals are asymptotically homoge-
neous.

If X̃ is uniformly elliptic, then X must also be uniformly elliptic. Conversely, if X is uniformly elliptic, then
some truncation X̃r := {Xn}n≥r is uniformly elliptic. To see this, take r so large that sup |εn | < 1

2 for all n ≥ r .
Suppose X̃ is uniformly elliptic. Then X is uniformly elliptic, and by Lemma 8.8, X has a unique stationary

measure µ. There is no loss of generality in assuming that X itself is stationary, otherwise we change the initial
distribution to µ. By Corollary 2.9, we can write

π̃n,n+1(x, dy) = p̃n(x, y)µ(dy) , p̃n(x, y) := [1 + εn(x, y)]p(x, y),

where µ(dx) is the stationary measure of X, sup |εn | → 0, and where for some constant ε0 > 0, 0 ≤ p ≤ ε−1
0 ,

and
∫

p(x, y)p(y, z)µ(dy) ≥ ε0.
Henceforth, we assume that X̃ is a uniformly elliptic asymptotically homogeneous Markov chain with a

stationary limit X, and f̃ is a uniformly bounded asymptotically homogeneous additive functional on X̃, with
limit f . Let f := { fn}, where fn = f .

Theorem 8.26 Let g := f̃ − f.

(1) If (X, g) is center-tight, then Gess (X̃, f̃) = Gess (X, f).
(2) Otherwise, Gess (X̃, f̃) = R.
(3) In particular, Gess (X̃, f̃) = R whenever it is not true that for some bounded measurable function a(x) and

c, t ∈ R, f (X1, X2) + a(X1) − a(X2) + c ∈ tZ a.s. with respect to the stationary law of X. In this case, (X̃, f̃)
satisfies the non-lattice LLT (5.1).

Proof Let X̃r := {X̃n}n≥r and f̃r := { f̃n}n≥r . Similarly, define Xr, fr . Discarding a finite number of terms does
not change the essential range (since any functional which is identically zero for large n is center-tight). Therefore

Gess (X̃, f̃) = Gess (X̃r, f̃r ) and Gess (Xr, f̃r ) = Gess (X, f̃).

Pick r so large, that
1
2
≤

p̃n(x, y)
p(x, y)

≤ 2 for all n ≥ r . Then X̃r and Xr are related by a change of measure with

bounded weights, and therefore (by Example 4.12),

Gess (X̃r, f̃r ) = Gess (Xr, f̃r ).

It follows that Gess (X̃, f̃) = Gess (X, f̃).
If g is center-tight then Gess (X, f̃) = Gess (X, f + g) = Gess (X, f), and we obtain the first part of the theorem.
Now suppose that g is not center-tight. By Theorem 4.4, to see that Gess (X, f̃) = R, it is sufficient to show

that H (X, f̃) = {0}. Equivalently:
DN (ξ, f̃) −−−−−→

N→∞
∞ for all ξ , 0,

where DN are the structure constants associated to X, see §2.3.2.
Recall also the structure constants dn(ξ, f). Since X is stationary, {Xn}n≥1 is a stationary stochastic process,

and dn(ξ, f) are all equal. Call their common value d(ξ). By Lemma 2.16(2) we have

d
2(ξ) = d2

n(ξ, f) ≤ 8
[
dn(ξ, f̃)2 + dn(ξ, g)2

]
.

Asymptotic homogeneity says that ‖gn‖∞ −−−−→
n→∞

0, therefore d2
n(ξ, g) −−−−→

n→∞
0. So for some n0 = n0(ξ), for

every n ≥ n0, d2
n(ξ, f̃) ≥

d2(ξ)
10

. Hence

D2
N (ξ, f̃) ≡

N∑
n=3

d2
n(ξ, f̃) ≥

(N − n0)d2(ξ)
10

→ ∞, whenever d(ξ) , 0.
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Next we consider the case when d(ξ) = 0 and ξ , 0. In this case for a.e. hexagon P ∈ Hex (n), eiξΓ(f,P) = 1,
where Γ(f, ·) denotes the balance for f. Hence

eiξΓ (̃f, ·) = eiξΓ(g, ·),

and so dn(ξ, f̃) = dn(ξ, g).
Let γN := max

n≥N
ess sup |gn |, and fix τ0 > 0 s.t. |eit − 1|2 ≥ 1

2 t2 for all |t | < τ0. If 0 < |η | ≤ τ0(6γN )−1, then
(4.14) tells us that for every n ≥ N ,

d2
n(η, g) ≥

η2

2
u2
n(g) for all n > N + 3.

By assumption, g is not center-tight, so
∑

u2
n(g) = ∞. It follows that DN (η, g) → ∞ for all 0 < |η | ≤ τ0(6γN )−1.

By assumption, γN → 0, so DN (ξ, g) → ∞, whence

D2
N (ξ, f̃) =

N∑
n=3

d2
n(ξ, f̃) =

N∑
n=3

d2
n(ξ, g) = D2

N (ξ, g) → ∞

also when d(ξ) = 0 (but ξ , 0). This completes the proof that Gess (X̃, f̃) = R, whenever g is not center-tight.
We proved parts (1) and (2) of the theorem. We now prove part (3). Suppose f is not a.s. a homogeneous

gradient plus a constant, modulo some group tZ. By Theorem 8.9, Gess (X, f) = R. If g := f̃ − f is center-tight,
then Gess (X̃, f̃) = Gess (X, f) = R, by the first part of the theorem. If g is not center-tight, then Gess (X̃, f̃) = R by
the second part of the theorem. In both cases Gess (X̃, f̃) = R. �

Lemma 8.27 If f is not the sum of a homogeneous gradient and a constant, then the variance of SN (̃f) with
respect to X̃ satisfies Var[SN (X̃, f̃)] � N as N → ∞.

Proof Choose r so large that sup |εn(x, y) | < 1
2 for all n ≥ r . Then for n ≥ r +3, the hexagon measures of X̃ and

X on Hex (n) differ by a density uniformly bounded away from zero and infinity (see Example 4.12). It follows
that

u2
n(X̃, f̃) � u2

n(X, f̃).

Next, by the assumption sup | f̃n − fn | −−−−→
n→∞

0, |u2
n(X, f̃) − u2

n(X, f) | → 0. Therefore

1
N

N∑
n=3

u2
n(X̃, f̃) �

1
N

N∑
n=3

u2
n(X, f̃) �

1
N

N∑
n=3

u2
n(X, f) + o(1).

By Theorem 3.6,
1
N

N∑
n=3

u2
n(X, f) �

1
N

[VN + O(1)], where VN is the variance of SN (f) with respect to the

(stationary homogeneous) limit Markov chain X.
By Theorem 8.9(1) and the assumption that f is not a homogeneous gradient plus a constant, VN ∼ σ2N

where σ2 , 0. So
1
N

N∑
n=3

u2
n(X̃, f̃) � 1.

The lemma now follows from the variance estimates in Theorem 3.6. �

Next we discuss the large deviation thresholds for (X̃, f̃) (see §7.4).

Theorem 8.28

(a) If f is not a homogeneous gradient plus a constant, then (X̃, f̃) has full large deviations regime, and c±(X̃, f̃) =
c±(X, f) = r±(X, f).
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(b) If f is a homogeneous gradient plus a constant, and f̃ is not center-tight, then c+(X̃, f̃) = +∞, c−(X̃, f̃) = −∞.

Proof Suppose f is not a homogeneous gradient plus a constant. By the previous lemma, ṼN := Var(X̃, SN (̃f)) �
N , and therefore

‖SN (̃f) − SN (f)‖∞
ṼN

= O
( 1

N

N∑
n=1
‖ f̃n − fn‖∞

)
−−−−−→
N→∞

0.

By Lemma 7.34, (X̃, f̃) and (X̃, f) have the same admissible sequences. So

c±(X̃, f̃) = c±(X̃, f).

Given r , let X̃r := {X̃n}n≥r and Xr := {Xn}n≥r . It is not difficult to see, using Theorem 7.26 with intervals
much larger than r ess sup | f |, that

c±(X̃, f) = c±(X̃r, fr ) and c±(X, f) = c±(Xr, fr ).

By asymptotic homogeneity, we can choose r so large so that sup |εn(x, y) | < 1
2 for all n ≥ r . In this case X̃r

and Xr are related by a change of measure with bounded weights. By Lemma 7.33, c±(X̃r, fr ) = c±(Xr, fr ).
In summary, c±(X̃, f̃)= c±(X̃, f)= c±(X̃r, fr )= c±(Xr, fr )= c±(X, f). Similarly, one shows that r±(X̃, f̃) = r±(X, f).

By Theorem 8.12, c±(X, f) = r±(X, f), and the proof of part (a) is complete.
In the proof of part (b) we may assume that f = 0 and E( f̃n) = 0 for all n, since adding a homogeneous

gradient and centering does not change c±.

Write SN = SN (X̃, f̃), Sn1,n2 =

n2−1∑
k=n1

f̃k (X̃k, X̃k+1), ṼN = Var(SN (X̃, f̃)). Since f̃ is not center-tight, ṼN →

∞.
Divide the interval [0, N] into blocks[

n1, n2
]
∪ {n2 + 1} ∪

[
n3, n4

]
∪ · · · ∪

[
nkN , nkN+1

]
∪ {nkN+1 + 1} ∪

[
nkN+2, N

]
, (8.23)

where for i odd, ni+1 is the minimal n > ni + 1 such that Var(Sni,n) ≥ 1, and for i even, ni+1 := ni + 2. We
denote the maximal odd i with ni + 1 ≤ N by kN .

Since ‖ f̃n‖∞ ≡ ‖ f̃n − fn‖∞ → 0, we have lim
`→∞

lim
N→∞

min{n j+1 − n j : ` ≤ j ≤ kN odd} = ∞. From the

identity Var(Sni,n+1) = Var(Sni,n) +Var( f̃n) + 2Cov(Sni,n, f̃n) and the mixing estimate (2.13), we see that there
is M0 > 1 s.t.

1 ≤ Var(Sni,ni+1 ) ≤ M0 for odd i ≤ kN, and Var(SnkN +2,N ) ≤ M0.

Similarly, as ‖ f̃n‖∞ → 0, lim
j→∞ odd

Var(Sn j,n j+1 ) = 1 and lim
j→∞ odd

Var(Sn j,n j+1+1) = 1.

Next we claim that
lim
N→∞

1
ṼN

∑
j≤kN odd

Var(Sn j,n j+1+1) = 1. (8.24)

Clearly, ṼN =
∑

j≤kN+2 odd
Var(Sn j,n j+1+1) + 2

∑
i< j≤kN+2 odd

Cov(Sni,ni+1+1, Sn j,n j+1+1) (with the convention that

nkN+3 := N − 1). Since Var(SnkN +2,N ) ≤ M0 and ṼN → ∞, to prove (8.24) it suffices to show that

lim
j→∞

j−1∑
i=1

���Cov(Sni,ni+1+1, Sn j,n j+1+1)��� = 0. (8.25)

By Proposition 2.13, the LHS of (8.25) is at most∑
p≤n j,q≥n j

Cmixθ
q−p ‖ fp ‖∞‖ fq ‖∞ ≤

∑
p≤0,q≥0

Cmixθ
q−p sup

p∈N
‖ fp ‖∞ sup

q≥n j

‖ fq ‖∞,
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which tends to 0, since the last term tends to 0. This proves (8.25) and hence (8.24).
Let βN denote the number of blocks in the decomposition (8.23). Since lim

j→∞ odd
Var(Sn j,n j+1+1) = 1, (8.24)

implies that for large N ,
ṼN/2 ≤ βN ≤ 2ṼN .

Let Mj = max
n j ≤l≤n j+1

‖ f̃ l ‖∞, then Mj → 0. Applying Dobrushin’s CLT to the array

f̃ l
/
Mj, n j ≤ l ≤ n j+1, j is odd, j ≥ 1,

we obtain that Sn j,n j+1

/√
Var(Sn j,n j+1 ) is asymptotically normal. So for each z > 0 there exists η(z) > 0 such

that for all j large enough, except perhaps the last one,

P(Sn j,n j+1 ≥ 3z) ≥ η(z). (8.26)

For j = kN + 2 (the last one), P[|Sj,N | ≤ 2] ≥ 3
4 , by the Chebyshev inequality.

An ellipticity argument similar to the one we used in the proof of Theorem 8.12 now shows that as N → ∞,
P(SN ≥ βN z) ≥ cεβN0 ηβN .

(The constant c incorporates the contribution of the blocks (with small j or j = k + 2) where (8.26) fails.)
Recalling that ṼN≤ 2βN , we obtain P(SN ≥ ṼN z) ≥ cεβN0 η(2z)βN . Next, by the CLT for SN , P[SN ≤

ṼN z] ≥ P[SN ≤ 0]→ 1
2 . Theorem 7.30 now tells us that

zN := (z − ε)ṼN is admissible for each ε > 0.

It follows that z − ε := lim zN−E(SN )
ṼN

is inside (c−, c+) for each ε > 0, whence c+(X̃, f̃) ≥ z. Since z is arbitrary,

c+(X̃, f̃) = +∞. Similarly, c−(X̃, f̃) = −∞. �

It is worthwhile to spell out the results of the present section in the special case when the limit f is identically
equal to zero.

Corollary 8.29 (Asymptotically Negligible Functionals) Suppose sup | f̃n | → 0 and E( f̃n) = 0. Then:

• Either (X̃, f̃) is center-tight, and
∞∑
n=1

f̃n converges almost surely;

• or (X̃, f̃) is not center-tight, satisfies the non-lattice LLT (5.1) and (X̃, f̃) has full large deviations regime with
thresholds c±(X̃, f̃) = ±∞.

Proof The non center-tight case follows from the previous results, with f ≡ 0.
In the center-tight case, the results of Chapter 3 tell us that

f̃n(x, y) = an+1(y) − an(x) + hn(x, y) + cn where
∑
n

Var(hn) < ∞.

Moreover, we can obtain such a decomposition with ‖an‖∞ → 0, see (3.6). Changing an if necessary, we may
also assume that E(an) = 0, in which case E( f̃n) = 0 = E(hn + cn). Therefore the additive functional h̃ = h + c
has zero mean and finite variance. Hence by Theorem 3.12,

∞∑
n=1

(hn + cn) converges almost surely.

In summary SN (̃f) − aN + a1 converges almost surely, and hence SN (̃f) − aN converges almost surely. Since
lim
N→∞

aN = 0, the proof is complete. �
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Corollary 8.30 Suppose sup | f̃n | → 0 and E( f̃n) = 0. Then:

• Either SN (̃f) converges a.s. to some random variable S, in which case for each function φ ∈ Cc (R),

lim
N→∞

E(φ(SN )) = E(φ(S));

• or SN (̃f) satisfies a non-lattice LLT, in which case, for every φ ∈ Cc (R),

lim
N→∞

√
VNE(φ(SN )) =

1
√

2π

∫ ∞

−∞

φ(s)ds.

8.6 Equicontinuous Additive Functionals

In this section we examine the consequences of topological assumptions on f and X. We will say that (X, f) is
equicontinuous, if the following three assumptions hold:

(T) Sn are complete separable metric spaces.
(Σ) • πn,n+1(x, dy) = pn(x, y)µn+1(dy) where ε−1

0 ≤ pn ≤ ε0 for some ε0 > 0 independent of n, and
• for every ε > 0 there exists δ > 0 such that for every n, for every ball B ⊂ Sn with radius ε, µn(B) > δ.

(U) For some K < ∞, ess sup |f| < K , and for every ε > 0 ∃δ > 0 such that

sup
{
| fn(x ′, x ′′) − fn(y′, y′′) | : n ∈ N,

x ′, y′ ∈ Sn s.t. d(x ′, y′) ≤ δ
x ′′, y′′ ∈ Sn+1 s.t. d(x ′′, y′′) ≤ δ

}
< ε.

In particular, by (Σ), X is uniformly elliptic (even one-step uniformly elliptic).

Theorem 8.31 Suppose (X, f) is equicontinuous, and Sn are connected. Then either (X, f) is center-tight, or
Gess (X, f) = R, and (X, f) satisfies the non-lattice LLT (5.1).

Proof Assume (X, f) is not center-tight. Choose c1 > 0 such that |eiθ − 1|2 = 4 sin2
(
θ
2

)
≥ c1θ

2 for all |θ | ≤ 0.1.
Fix ξ , 0.

We consider the following two cases:

(I) ∃N0 such that |ξΓ(P) | < 0.1 for every hexagon P ∈ Hex (n) and n ≥ N0.
(II) ∃nk ↑ ∞ and hexagons Pnk ∈ Hex (nk ) such that |ξΓ(Pnk ) | ≥ 0.1.

In case (I), for all n ≥ N0, d2
n(ξ) = E(|eiξΓ − 1|2) ≥ c1E(Γ2) ≡ c1u2

n. By non center-tightness,
∑

u2
n = ∞,

whence
∑

d2
n(ξ) = ∞.

In case (II), for every k there is a position nk hexagon Pnk with |ξΓ(Pnk ) | ≥ 0.1. There is also a position nk

hexagon P′nk with balance zero, e.g.
(
a

b
b

c
c d

)
. We would like to apply the intermediate value theorem to deduce

the existence of Pnk ∈ Hex (nk ) such that 0.05 < ξΓ(Pnk ) < 0.1. To do this we note that:

• Because of (Σ), the space of admissible position nk hexagons is homeomorphic toSnk−2×S
2
nk−1×S

2
nk
×Snk .

• The product of connected topological spaces is connected.
• Real-valued continuous functions on connected topological spaces satisfy the intermediate value theorem.
• The balance of hexagon depends continuously on the hexagon.

So Pnk exists. Necessarily, |eiξΓ(Pnk
) − 1| ≥ c1ξ

2Γ2(Pnk ) ≥ c1ξ
2 · 0.052 =: c2.

By the equicontinuity of f, ∃ε > 0 such that |eiξΓ(P) − 1| > 1
2 c2 for every hexagon whose coordinates are in

the ε-neighborhood of the coordinates of Pnk . By (Σ), this collection of hexagons has measure ≥ δ for some
δ > 0 independent of k. So d2

nk
(ξ) ≥ 1

2 c2δ. Summing over all k, we find that
∑

d2
nk

(ξ) = ∞. Since ξ , 0 was
arbitrary, H (X, f) = {0}, and this implies that Gess (X, f) = R. �
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Theorem 8.32 Suppose (X, f) is equicontinuous, and VN ≥ const.N for some positive constant. Then (X, f) has
full large deviations regime, and

c− = lim sup
N→∞

inf SN − E(SN )
VN

, c+ = lim inf
N→∞

sup SN − E(SN )
VN

, (8.27)

where the infima and suprema are taken over all ofS1 × · · · ×SN+1.

Example 7.36 shows that the equicontinuity assumption on f cannot be removed.

Proof Changing f by constants, it is possible to assume without loss of generality that E(SN ) = 0 for all N .
The inequalities 0 < c+ ≤ r+ ≤ lim inf V−1

N sup SN are always true, therefore to show the identity for c+ it is
sufficient to prove that c+ ≥ lim inf V−1

N sup SN .
Fix z, ε > 0 such that 0 < z + ε < lim inf

N→∞
V−1
N sup SN . For all sufficiently large N there is a sequence

x̃1, . . . , x̃N+1 s.t.
N∑
j=1

f j ( x̃ j, x̃ j+1) ≥ (z + ε)VN .

Let B(x, r) denote the open ball with center x and radius r . By (U) and the fact that VN ≥ const.N , there is

r > 0 such that if X j ∈ B( x̃ j, r) for 2 ≤ j ≤ N + 1, then for all N large enough,
N∑
j=1

f j (X j, X j+1) ≥ (z + ε/2)VN .

By (Σ), all balls in Sn with radius r have µn-measure bounded below by δ, for some positive constant
δ = δ(r). Therefore

P[X2 ∈ B( x̃2, r), . . . , XN+1 ∈ B( x̃N+1, r)]

=

∫
S1

∫
B(x̃2,r )

· · ·

∫
B(x̃N+1,r )

p1(x1, x2) · · · pn(xN, xN+1)π1(dx1)µ2(dx2) · · · µN+1(dxN+1)

≥ εN0 δ
N .

Hence there is 0 < η < 1 such that for all N large enough,

P(SN ≥ (z + ε/3)VN ) ≥ ηN .

Next, by the CLT and the assumptions that E(SN ) = 0 and z > 0, if ε is small enough and N is large enough,
then

P[SN ≤ (z − ε)VN ] ≥ P[SN ≤ 0] =
1
2
+ o(1) ≥ ηN .

By Theorem 7.30, zN = zVN is admissible. In particular (see §7.4.2), z ≤ c+. Passing to the supremum
over z, we obtain that c+ ≥ lim inf V−1

N sup SN , whence c+ = lim inf V−1
N sup SN . The identity for c− follows by

symmetry. �

By (8.27), for each N , there is a finite sequence x±(N ) := (x±1,N, x±2,N, . . . , x±
N+1,N ) such that c± =

lim
N→∞

1
VN

N∑
n=1

(
fn(x±n,N, x±n+1,N ) − E(SN )

)
.

Our next result says that whenSi are all compact, one can choose x±(N ) consistently, i.e. to have a common
extension to an infinite sequence. Such infinite sequences appear naturally in statistical mechanics, where they
are called “ground states."

An infinite sequence x = (x1, x2, . . .) ∈
∏∞

i=1Si is called a maximizer, if ∀N ≥ 3, for all yi ∈ Si ,

N−1∑
n=1

fn(yn, yn+1) + fN (yN, xN+1) ≤
N−1∑
n=1

fn(xn, xn+1) + fN (xN, xN+1). (8.28)
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An infinite sequence x = (x1, x2, . . .) ∈
∏∞

i=1Si is called a and a minimizer, if ∀N ≥ 3, for all yi ∈ Si ,

N−1∑
n=1

fn(yn, yn+1) + fN (yN, xN+1) ≥
N−1∑
n=1

fn(xn, xn+1) + fN (xN, xN+1). (8.29)

Theorem 8.33 Suppose (X, f) is equicontinuous, VN ≥ cN for some positive constant c, and all the state spaces
Si are compact. Then maximizers x+ = (x+1 , x+2 , . . .) and minimizers x− = (x−1 , x−2 , . . .) exist, and satisfy

c− = lim sup
N→∞

1
VN

( N∑
i=1

fn(x−n, x−n+1) − E(SN )
)
, c+ = lim inf

N→∞

1
VN

( N∑
i=1

fn(x+n, x+n+1) − E(SN )
)
.

Proof Let M+N (respectively, M−
N ) denote the space of sequences satisfying (8.28) (respectively, (8.29)) for

fixed N .

Step 1.M±
N are non-empty compact sets, andM±

N ⊃ M
±
N+1 for all N . Thus, the setsM± :=

∞⋂
N=1
M±

N , ∅.

Proof of the Step. By Tychonoff’s theorem,S :=
∏∞

i=1Si is compact, and by equicontinuity, for every x ∈ SN+1,

the map ϕN,x (y1, y2, . . .) :=
N−1∑
i=1

f i (yi, yi+1) + fN (yN, x) is continuous. Therefore ϕN,x attains its maximum

and its minimum onS. It follows thatM±
N are non-empty.

Suppose xj ∈ M+N converge to x ∈ S. We claim that x ∈ M+N . Otherwise there is x = (x1, x2, . . .) such that

xN+1 = xN+1, but
N∑
n=1

fn(xn, xn+1) >
N∑
n=1

fn(xn, xn+1).

Let xj := (x1, . . . , xN, x j
N+1, xN+2, xN+3, . . .). Since x j

N+1 → xN+1 = xN+1, xj
→ x. By equicontinuity, for

all j sufficiently large,
N∑
n=1

fn(x j
n, x j

n+1) >
N∑
n=1

fn(x j
n, x j

n+1). But this contradicts the assumption that xj ∈ M+N .

We see that M+N is closed, whence by the compactness of S, compact. Similarly one shows that M−
N is

compact.
Next we prove the monotonicity ofM±

N . Suppose x ∈ M+
N+1. Choose some arbitrary y ∈ S. Looking at the

sequence y′ := (y1, . . . , yN, xN+1, xN+2, yN+3, yN+4, . . .) and using the defining property ofMN+1, we see that

N−1∑
n=1

fn(yn, yn+1) + fN (yN, xN+1) + fN+1(xN+1, xN+2) ≤
N+1∑
n=1

fn(xn, xn+1).

It follows that
N−1∑
n=1

fn(yn, yn+1) + fN (yN, xN+1) ≤
N∑
n=1

fn(xn, xn+1). So x ∈ M+N .

Similarly, one shows thatM−
N+1 ⊂ M

−
N .

Step 2. ∀x± ∈ M±
N ,

N∑
n=1

fn(x−n, x−n+1) ≤ inf SN + 2K,
N∑
n=1

fn(x+n, x+n+1) ≥ sup SN − 2K .

Proof of the Step.Let (z1, . . . , zN ) be a pointwhere
N−1∑
n=1

fn(zn, zn+1) = max SN−1. Takey := (z1, . . . , zN, x+
N+1, x+

N+2, . . .),

and recall that ess sup |f| < K . Then

N∑
n=1

fn(x+n, x+n+1) ≥
N∑
n=1

fn(yn, yn+1) ≥
N−1∑
n=1

fn(zn, zn+1) − K = max SN−1 − K ≥ max SN − 2K .

The statement for x− has a similar proof, which we omit.
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We can now prove the theorem. By Theorem 8.32, c+ = lim inf
N→∞

sup SN − E(SN )
VN

(this is the only place where
we are using the assumption that VN ≥ const.N).

ByStep 2, sup SN ≤

N∑
n=1

fn(x+n, x+n+1)+O(1) for each x+ ∈ M+. So c+ = lim inf
N→∞

1
VN

*
,

N∑
n=1

fn(x+n, x+n+1) − E(SN )+
-
.

The proof of the identity for c− is similar, and we omit it. �

8.7 Notes and References

Sums of Independent Random Variables. The non-lattice LLT in Theorem 8.3 is due to Dolgopyat [56]. His
proof also applies to unbounded vector-valued random variables, assuming only that supE(‖Xn‖

3) < ∞.
The lattice LLT in Theorem 8.5 is due to Prokhorov. An extension to unbounded integer valued independent

random variables is given by Rozanov [169].
Other conditions for the LLT for sums of independent random variables include the Mineka-Silverman

condition [144], Statulevičius’s condition [190], and conditions motivated by additive number theory such as
those appearing in [146] and [147].

Mukhin [148] gave a unified discussion of some of these conditions, using the quantities D(X, ξ).

Homogeneous Chains. The literature on homogeneous Markov chains is vast. Sufficient conditions for the
CLT, LLT, and other limit theorems in non-Gaussian domains of attraction can be found in [46, 81, 82, 98, 114,
119, 139, 149, 98, 168, 88, 152, 10, 122, 123].

The LLT for local deviations holds under weaker assumptions than those in Theorems 8.9 and 8.13. The
assumption that f has finite variance can be replaced by the assumption that the distribution of f is in the domain
of attraction of the Gaussian distribution [4]; One can allow f to depend on infinitely many Xn assuming that the
dependence of f (x1, x2, . . .) on (xn, xn+1, . . .) decays exponentially in n [88]; and the ellipticity assumption can
be replaced by the assumption that the generator has a spectral gap [149, 98]. In particular, the LLT holds under
the Doeblin condition saying that ∃ε0 > 0 and a measure ζ onS such that π(x, dy) = ε0ζ (dy)+ (1−ε0)π̃(x, dy)
where π̃ is an arbitrary transition probability (cf. equation (2.10) in the proof of Lemma 2.12). There are also
versions of this theorem for f in the domain of attraction of a stable law, see [5].

There are also generalizations of the LLT for large deviations to the case when f (x1, x2, . . .) has exponentially
weak dependence on xk with large k [123, 122, 10]. However, the unbounded case is still not understood. In
fact, the large deviation probabilities could behave polynomially for unbounded functions, see [198, 141].

The characterization of coboundaries in terms of vanishing of the asymptotic variance σ2 is due to Leonov
[129]. A large number of papers discuss the regularity of the gradients in case an additive functional is a gradient,
see [21, 37, 106, 134, 135, 153, 152] and the references wherein. Our approach is closest to [55, 106, 152].

We note that the condition u( f ) = 0 (where u2( f ) is the variance of the balance of a random hexagon), which
is sufficient for f being a coboundary, is simpler than the equivalent condition σ2 = 0. For example, for finite
state Markov chains, to compute σ2 one needs to compute infinitely many correlations E( f0 fn) while checking
that u = 0 involves checking the balance of finitely many hexagons.

Nagaev’s Theorem. Nagaev’s Theorem and the idea to prove limit theorems for Markov chains using perturba-
tion theory of linear operators first appeared in [149]. Nagaev only treated the lattice case. He did not assume the
one-step ellipticity condition, he only assumed the weaker condition that for some k, the k-step transition kernel
of X has contraction coefficient strictly smaller than one (see §2.2.2). This is sufficient to guarantee the spectral
gap of L0, but it does not allow to characterize the cases when σ2 > 0, Gess (X, f) = R, and Gess (X, f) = tZ in a
simple way as in Propositions 8.14 and 8.15. As a result, the LLT under Nagaev’s condition is more complicated
than in our case.

Nagaev’s proof can be generalized even further, to the case when Lt all have spectral gap on some suitable
Banach space. See [87, 88, 98].
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A proof of the perturbation theorem (Theorem 8.17) can be found in [98], and we included it, for completeness
in Appendix C. The expansion of the leading eigenvalue λt follows calculations in Guivarc’h & Hardy [88], see
also [171, 152]. The identities for the derivatives of λ are often stated in the following form (ln λ)′0 = iE( f ),
(ln λ)′′0 = −σ

2/2.We leave it to readers to check that these formulae are equivalent to Proposition 8.21(4). The
proof of Proposition 8.14 uses ideas from [84].

The LLT for stationary homogeneous uniformly elliptic Markov chains in §8.3-§8.4 remain true if we remove
the stationarity assumptions, with the one caveat: The characterization of the cases σ2 = 0 and Gess , R in
terms of an a.s. functional equation for f (X1, X2) must always be done using the stationary law of {Xn}.

To establish these LLT in the non-stationary case, one could either appeal to the more general results on
asymptotically homogeneous chains in §8.5, or make minor modifications in the arguments of §8.3-§8.4. In the
case of Theorem 8.9, it suffices to note that Theorem 5.1 holds for all initial distributions and that Gess (X, f)
does not depend on the initial distribution, because of Lemma 2.17 and Theorem 4.4. In the case of Theorem
8.13, one has to use the fact that Nagaev’s perturbation theory allows to control E

(
eitSN /

√
VN

)
for an arbitrary

initial distribution.
It is interesting to note that the higher order terms in the asymptotic expansion of theCLTandLLTprobabilities

do depend on the initial distribution, see [99].

Asymptotically Homogeneous Chains. Asymptotically homogeneousMarkov chains appear naturally in some
stochastic optimization algorithms such as theMetropolis algorithm. For large deviations and other limit theorems
for such examples, see [48, 47] and references therein.

Asymptotically homogenous systems are standard examples of inhomogeneous systems with linearly growing
variance, cf. [31, 151].

We note that using the results of §2.5 it is possible to strengthen Lemma 8.27 to conclude that Var[SN (X̃, f̃)] =
Var[SN (X, f)] + o(N ) as N → ∞, but the present statement is sufficient for our purposes.

Equicontinuous Additive Functionals Minimizers play an important role in statistical mechanics, where they
are called ground states. See e.g. [184, 164]. In the case the phase spaces Sn are non-compact and/or the
observable f (x, y) is unbounded, the minimizers have an interesting geometry, see e.g. [29]. For finite state
Markov chains, we have the following remarkable result of J. Brémont [18]: for each d there is a constant p(d)
such that for any homogeneous Markov chain with d states for any additive functional we have

r+ = max
q≤p

1
q

max
x1,...xq

[
f (x1, x2) + · · · + f (xq−1, xq) + f (xq, x1)

]
.

This result is false for more general homogenous chains, consider for example the caseS = N and f (x, y) = 1
if y = x + 1 and f (x, y) = 0 otherwise.

Corollary 8.30 was proven in [56] for inhomogeneous sums of independent random variables. In the indepen-
dent case, the assumption that lim

n→∞
‖gn‖∞ = 0 can be removed, since the gradient obstruction does not appear.

Quantitative versions of Corollary 8.30 and Theorem 8.31 have been obtained in [59]. There it is shown that

P[SN − z
√

VN ∈ (aN, bN )] = [1 + o(1)]
e−z2/2
√

2πVN

(bN − aN ), as N → ∞

provided that C ≥ bN − aN ≥ V−k/2N where k is integer such that

• either ‖ fn‖ = O(n−β) and k < 1
1−2β − 1;

• orSn = M-a compact connected manifold, fn are uniformly Hölder of order α and k < 1+α
1−α − 1.

These results are consequences of so called Edgeworth expansions, which are precise asymptotic expansions
for P( SN−E(SN )

√
VN

≤ z). These results improve on Corollary 8.30 and Theorem 8.31, since the length of the target
interval (aN, bN ) is allowed to go to zero. The exponents k given above are optimal.



Chapter 9
Local Limit Theorems for Markov Chains in Random
Environments

Abstract We prove quenched local limit theorems for Markov chains in random environments, with stationary
ergodic noise processes.

9.1 Markov Chains in Random Environments

A Markov chain in a random environment (MCRE) is an inhomogeneous Markov chain whose transition
probabilities depend on random external parameters Yn which vary in time: πn,n+1(x, dy) = π(Yn, x, dy).1

The noise {Yn} is a stochastic process, which we will always take to be stationary and ergodic. In this case it
is possible and convenient to represent {Yn} as a random orbit of an ergodic measure preserving map, called the
noise process. We proceed to give the formal definitions and some examples.

9.1.1 Formal Definitions

Noise Processes: These are quadruples (Ω,F ,m,T ), where T is an ergodic measure preserving invertible Borel
transformation on a standard measure space (Ω,F ,m).

• “Ergodic" means that for every E ∈ F s.t. T−1E = E, m(E) = 0 or m(Ω \ E) = 0.
• “Measure preserving" means that for every E ∈ F , m(T−1E) = m(E).
• “Invertible" means that there exists Ω1 ⊂ Ω of full measure such that T : Ω1 → Ω1 is injective, surjective,

measurable, and with measurable inverse.2

The noise at time n is Yn := Tnω := (T ◦ · · · ◦ T )(ω) (n times), ω ∈ (Ω,F ,m).
If m(Ω) < ∞ then we will speak of a finite noise process, and we will always normalize m so that m(Ω) = 1.

Every stationary ergodic stochastic process taking values in a polish space can be modeled by a finite noise
process, see Example 9.3. If m(Ω) = ∞, then we will speak of an infinite noise process. In this case, we will
always assume that (Ω,F ,m) is σ-finite and non-atomic. Such processes arise in the study of noise driven by
null recurrent Markov chains, see Example 9.5.

Markov Chains in Random Environment (MCRE): These are quadruples

XΩ :=
(
(Ω,F ,m,T )︸         ︷︷         ︸
noise process

, (S,B)︸ ︷︷ ︸
state space

, {π(ω, x, dy)}(ω,x)∈Ω×S︸                       ︷︷                       ︸
transition kernel generator

, {µω }ω∈Ω︸    ︷︷    ︸
initial distribution

generator

)
(9.1)

made of the following objects:

• The Noise Process (Ω,F ,m,T ), see above.
• The State Space (S,B) is a separable complete metric spaceS, with its Borel σ-algebra B.

1 MCRE should not be confused with “random walks in random environment." In the RWRE model, the transition kernel at time n
depends on a random “environment" Y0 independent of n, and on the position of the random walk at time n, i.e. πn,n+1(x, dy) =
π (Y0, Sn, x, dy).
2 The invertibility assumption can be removed by replacing a non-invertible map by its natural extension, see [33, Ch. 10].

177
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• The Transition Kernel Generator {π(ω, x, dy)}(ω,x)∈Ω×S is a measurable family of Borel probability mea-
sures on (S,B). Measurability means that (ω, x) 7→

∫
ϕ(y)π(x, ω, dy) is measurable for every bounded

Borel ϕ :S → R.
• The Initial Distribution Generator {µω }ω∈Ω is a measurable family of Borel probability measures µω on
S. Measurability means that for all bounded Borel ϕ :S → R, ω 7→

∫
ϕ(x)µω (dx) is measurable.

Fix ω ∈ Ω. The quenched MCRE with noise parameter ω is the inhomogeneous Markov chain Xω =
{Xω

n }n≥1 with
• state spaceS; • initial distribution µTω; • transition kernels πω

n,n+1(x, dy) = π(Tnω, x, dy).
Remark. Note that the initial distribution of Xω is µTω , not µω . Similarly, π1,2(x, dy) = π(Tω, x, dy). These

choices are consistent with the convention that whatever happens at time n depends on Tnω.
We denote by Pω , Eω the probability and expectation associated with Xω . These are sometimes called the

quenched probability and expectation (for the noise value ω). By contrast, the annealed probability and
expectation are given by m(dω)Pω (dXω) and

∫
Ω
Eωm(dω).

Additive Functional Generator: fΩ := f , where f : Ω ×S ×S → R is a measurable function. This generates
the additive functional fω on Xω given by

f ωn (x, y) = f (Tnω, x, y). (9.2)

We let SωN :=
N∑
n=1

f ωn (Xω
n , Xω

n+1) ≡
N∑
n=1

f (Tnω, Xω
n , Xω

n+1).

9.1.2 Examples

Let (S,B) be a compact metric space, fix a countable set S, and let {πi (x, dy)}i∈S be some family of transition
kernels onS.

Example 9.1 (Bernoulli Noise) Consider the noise process (Ω,F ,m,T ) where

• Ω = SZ = {(· · · , ω−1, ω0, ω1, · · · ) : ωi ∈ S}.
• F is generated by the cylinders k[ak, . . . , an] := {ω ∈ Ω : ωi = ai, k ≤ i ≤ n}.
• {pi }i∈S are non-negative numbers such that

∑
pi = 1, and m is the unique probability measure such that

m(k[ak, . . . , an]) = pak
· · · pan for all cylinders.

• T : Ω→ Ω is the left shift map, T[(ωi)i∈Z] = (ωi+1)i∈Z.

(Ω,F , µ,T ) is ergodic and probability preserving, see [33].
Define π(ω, x, dy) := πω0 (x, dy). Notice that π(Tnω, x, dy) = πωn (x, dy), and ωn are iid random variables

taking the values i ∈ S with probabilities pi . So XΩ represents a random Markov chain, whose transition
probabilities vary randomly and independently in time.

Example 9.2 (Positive Recurrent Markovian Noise) Suppose (Yn)n∈Z is a stationary ergodic Markov chain
with state space S and a stationary probability vector (ps)s∈S . In particular, (Yn)n∈Z is positive recurrent. Let:
• Ω := SZ; •F is the σ-algebra generated by the cylinders (see above);
• m is the unique (probability) measure such that for all cylinders, m(k[ak, . . . , an]) = P[Yk = ak, . . . ,Yn = an];
• T is the left shift map (see above).

Define as before, π(ω, x, dy) := πω0 (x, dy). The resulting MCRE represents a Markov chain whose transition
probabilities at time n = 1, 2, 3, . . . are πYn (x, dy).

Example 9.3 (General Stationary Ergodic Noise Processes) The previous construction works verbatim with
any stationary ergodic stochastic process {Yn} taking values in S. The assumption that S is countable can be
replaced by the condition that S is a complete separable metric space, see e.g. [62].
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Example 9.4 (Quasi-Periodic Noise) Let (Ω,F ,m,T ) be the circle rotation: Ω = T1 := R/Z; F is the Borel
σ-algebra; m is the normalized Lebesgue measure; and T : Ω→ Ω is the rotation by an angle α, T (ω) = ω + α
mod Z. T is probability preserving, and it is well-known that T is ergodic iff α is irrational, see [33].

Take a measurable (possibly continuous) 1-parameter family {πω (x, dy)}ω∈T of transition kernels on S,
and form the generator π(ω, x, dy) = πω (x, dy). Then Xω are inhomogeneous Markov chains whose transition
probabilities vary quasi-periodically: πn,n+1(x, dy) = πω+nαmodZ(x, dy). More generally, let Ω := Td = Rd/Zd

with the Haar measure m, and consider T (ω) := ω + αmodZd . This is a probability preserving map, and
if {α1, . . . , αd, 1} are linearly independent over Q, then T is ergodic [33]. Next, take a measurable (possibly
continuous) d-parameter family of transition kernels {πω (x, dy)}ω∈Td onS, and form the generator π(ω, x, dy) =
πω (x, dy). Then Xω has transition probabilities which vary quasi-periodically:

πn,n+1(x, dy) = π(ω1+nα1,...,ωd+nαd )modZd (x, dy).

Example 9.5 (Null Recurrent Markovian Noise) This is an example with an infinite noise process. Suppose
(Yn)n∈Z is an ergodic null recurrent Markov chain with countable state space S, and stationary positive vector
(pi)i∈S . Here pi > 0 and (by null recurrence)

∑
pi = ∞. For example, (Yn)n∈Z could be the simple random walk

on Zd for d = 1, 2, with the stationary measure, pi = 1 for all i ∈ Zd , (the counting measure). Let
• Ω = SZ; •F is the σ-algebra generated by the cylinders;
• m is the unique (infinite) Borel measure s.t. ∀ cylinder m(k[ak, . . . , an]) = pak

P[Yi = ai (k ≤ i ≤ n) |Yk = ak];
• T : Ω→ Ω is the left shift map T[(ωi)i∈Z] = ωi+1.

(Ω,F ,m,T ) is an infinite ergodic measure preserving invertible map, see [1]. As in Example 9.2, one can
construct MCRE with transition probabilities πYn (x, dy) which vary randomly in time according to (Yn)n∈Z. For
each particular realization of ω = (Yi)i∈Z, Xω is an ordinary inhomogeneous Markov chain (on a probability
space). We shall see that some additive functionals on XΩ may exhibit slower variance growth than in the case
of finite noise processes (Example 9.16).

Example 9.6 (Transient Markovian Noise: A Non-Example) The previous construction fails for transient
Markov chains such as the random walk on Zd for d ≥ 3, because in the transient case, (Ω,F ,m,T ) is not
ergodic, see [1].

We could try to work with the ergodic components of m, but this does not yield a new mathematical object,
because of the following general fact [1]: Almost every ergodic component of an invertible totally dissipative
infinite measure preserving map is concentrated on a single orbit {Tnω}n∈Z. Since MCRE with such noise
processes have just one possible realization of noise up to time shift, their theory is the same as the theory of
general inhomogeneous Markov chains.

9.1.3 Conditions and Assumptions

We present and discuss the conditions on XΩ and fΩ that will appear in some of the results in this chapter. In
what follows, (XΩ, fΩ) are as in (9.1) and (9.2). We begin with conditions on XΩ:

(S) Stationarity: µTω (dy) =
∫
S

µω (dx)π(ω, x, dy), i.e. for every ϕ : S → R bounded and Borel,∫
ϕ(y)µTω (dy) =

∫
S

(∫
S
ϕ(y)π(ω, x, dy)

)
µω (dx).

The following consequences of (S) can be easily proved by induction:
(S1) Pω (Xω

ninE)=µT nω (E) for all E ∈ B and n ≥ 1; (S2) ∀k {Xω
i+k
}i≥1 is equal in distribution to

{
XT kω
i

}
i≥1

.
(E) Uniform Ellipticity: There is a constant 0 < ε0 < 1 such that

(a) π(ω, x, dy) = p(ω, x, y)µTω (dy), with p : Ω ×S ×S → [0,∞) Borel; (b) 0 ≤ p ≤ 1/ε0;
(c)

∫
S

p(ω, x, y)p(Tω, y, z)µTω (dy) > ε0∀ω, x, z.
This implies that Xω are all uniformly elliptic, and the ellipticity constant is uniformly bounded away from
zero. In particular, Xω satisfies the exponential mixing estimates in Prop. 2.13 uniformly in ω.
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(G) Global Support: µω (dy) is globally supported onS for all ω.3 The essence of this assumption is that the
support of µω is independent of ω. If supp(µω) =S′ for all ω, then we can get (G) by replacingS byS′.

(C) Continuity: Ω andS are separable complete metric spaces equipped with the Borel structure, and:
(C1) T : Ω→ Ω is a homeomorphism; (C2) (ω, x, y) 7→ p(ω, x, y) is continuous;
(C3)ω 7→

∫
S
ϕdµω is continuous∀ bounded continuous ϕ :S → R; (C4) (ω, x, y) 7→ f (ω, x, y) are continuous.

(D) Discreteness:S is finite or countable. This is an alternative to (C).

Example 9.7 It is fairly easy to get examples which satisfy (E),(G),(C) or (E),(G),(D). Take a noise process
compatible with (C) (e.g. Examples 9.1–9.5). Next take a deterministic uniformly elliptic continuous globally
supported transition kernel p(x, y)µ(dy) on a compactmetric (or finite) space. Let ϕ andψ be bounded continuous
functions on Ω ×S and Ω ×S2, respectively, and consider the generators

µω (dy) :=
eψ(ω,y)µ(dy)∫
eψ(ω,η)µ(dη)

, p(ω, x, y) :=
eϕ(ω,x,y) p(x, y)∫

eϕ(ω,x,η) p(x, η)µω (dη)
.

Next we discuss how to obtain, in addition, stationarity (S). The following lemma will be proved in §9.3.1:

Lemma 9.8 Let XΩ be a uniformly elliptic MCRE with a compact metrizable state space (S,B) and an initial
distribution {µω }ω∈Ω. Suppose x 7→ π(ω, x, dy) is continuous in the weak-star topology for each ω. Then:

(1) There exists an initial distribution generator {µ′ω }ω∈Ω which satisfies (S).
(2) µ′ω � µω and there exists C > 0 such that | log dµ′ω

dµω | < C a.e. inS for all ω.
(3) Suppose in addition that Ω is a metric space, T : Ω → Ω is continuous, and (ω, x) 7→ π(ω, x, dy) is

continuous. Then ω 7→ µ′ω is continuous.

Corollary 9.9 Suppose XΩ satisfies conditions (E),(G) and (C) with a compact metrizable state spaceS. Then
there is a MCRE X

Ω satisfying (E),(G),(C) and (S), so that for every ω ∈ Ω and x ∈ S, X
ω conditioned on

X
ω

1 = x is equal in distribution to Xω conditioned on Xω
1 = x.

Proof Let X
Ω
be the MCRE with the noise process, state space, and transition kernel generator of XΩ, but with

initial distribution generator µ′ω from Lemma 9.8. �

Corollary 9.9 and Example 9.7 give many examples satisfying (E),(S),(G),(C). In the special case when S is
finite and discrete, we also obtain (D).

So far we only considered conditions on XΩ. Next we discuss three conditions on fΩ. We need the annealed
measure P(dω, dx, dy) := m(dω)µω (dx)π(ω, x, dy). P represents the joint distribution of (Tω, Xω

1 , Xω
2 ), be-

cause by the T-invariance of m,$
ψ(ω, x, y)dP =

∫
S

∫
S

∫
Ω

ψ(Tω, x, y)m(dω)µTω (dx)π(Tω, x, dy). (9.3)

(B) Uniform Boundedness: | f | ≤ K where K < ∞ is a constant. (B) implies that fω is a uniformly bounded
additive functional on Xω , and that the bound does not depend on ω.

(RC1) fΩ is called relatively cohomologous to a constant if there are bounded measurable functions a :
Ω ×S → R and c : Ω→ R such that f (ω, x, y) = a(ω, x) − a(Tω, y) + c(ω) P-a.e.

(RC2) Fix t , 0, then fΩ is relatively cohomologous to a coset of tZ if there are measurable functions
a : Ω ×S → S1 and λ : Ω→ S1 such that

e(2πi/t) f (ω,x,y) = λ(ω)
a(ω, x)

a(Tω, y)
P-a.e.

We will use (RC1) and (RC2) to characterize a.e. center-tightness and a.e. reducibility for (Xω, fω), see Theorems
9.10 and 9.17, and Proposition 9.24.

3 But π (ω, x, dy) need not have global support, because p(ω, x, y) is allowed to vanish.
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9.2 Main Results

Throughout this section, we assume that (XΩ, fΩ) are as in (9.1) and (9.2), and we let Vω
N denote the variance of

SωN := f (Tω, Xω
1 , Xω

2 ) + · · · + f (TNω, Xω
N, Xω

N+1), with respect to the (quenched) distribution of Xω .

Theorem 9.10 Suppose XΩ has a finite noise process, and assume (B),(E) and (S).

(1) If fΩ is relatively cohomologous to a constant, then ∃C = C(ε0, K ) such that for a.e. ω, Vω
N ≤ C for all N .

(2) If fΩ is not relatively cohomologous to a constant, then there is a constant σ2 > 0 such that for a.e. ω,
Vω
N ∼ Nσ2 as N → ∞.

Thus, under the assumptions of Theorem 9.10, the limit σ2 := lim
N→∞

Vω
N /N exists for a.e. ω, and is a.s.

constant. We call σ2 the asymptotic variance of (XΩ, fΩ).
There is also an asymptoticmean µ such that µ := limEω (SωN )/N for a.e.ω: By (S),Eω[ f (Tn+1ω, Xω

n+1, Xω
n+2)] =

ϕ(Tnω) where ϕ(ω) = Eω ( f (Tω, Xω
1 , Xω

2 )), and by the pointwise ergodic theorem, E(SωN ) =
∑N−1

n=0 ϕ(Tnω) ∼
N

∫
ϕdm m-a.e.

Theorem 9.11 Assume that XΩ has a finite noise process, and suppose (XΩ, fΩ) satisfies (C) or (D), and each of
(S),(E),(G),(B).

(1) Non-Lattice LLT: Suppose fΩ is not relatively cohomologous to a coset of tZ for any t , 0. Then σ2 > 0,
and for a.e. ω, for every open interval (a, b), and for every zN, z ∈ R such that zN−E

ω (SωN )
√
N

→ z,

Pω
[
SωN − zN ∈ (a, b)

]
∼

1
√

N
*
,

e−z2/2σ2

√
2πσ2

+
-
|a − b| as N → ∞.

(2) Lattice LLT: Suppose all the values of fΩ are integers, and fΩ is not relatively cohomologous to a coset of tZ
with some integer t > 1. Then σ2 > 0, and for a.e. ω, for every zN ∈ Z and z ∈ R such that zN−E

ω (SωN )
√
N

→ z,

Pω
[
SωN = zN

]
∼

1
√

N
*
,

e−z2/2σ2

√
2πσ2

+
-
as N → ∞.

Theorem 9.12 SupposeXΩ has a finite noise process, and assume (B),(E),(S). If fΩ is not relatively cohomologous
to a constant, then

(1) There exists a continuously differentiable strictly convex function F : R→ R such that for a.e. ω ∈ Ω,

F (ξ) = lim
N→∞

1
N

logEω (eξS
ω
N ) (ξ ∈ R).

(2) Let F ′(±∞) := lim
ξ→±∞

F ′(ξ), and let IωN (η) and I(η) denote the Legendre transforms of GωN (ξ) :=
1
N logEω (eξSωN ) and F (ξ). Then for a.e. ω, for every η ∈ (F ′(−∞), F ′(∞)), IωN (η) −−−−−→

N→∞
I(η).

(3) I(η) is continuously differentiable, strictly convex, has compact level sets, is equal to zero at the asymptotic
mean µ, and is strictly positive elsewhere.

(4) With probability one, we have full large deviations regime, and the large deviation thresholds and the
positivity thresholds of (Xω, fω) (defined in §7.4) satisfy

c− = r− =
F ′(−∞) − µ

σ2 = lim
N→∞

ess inf[SωN − E
ω (SωN )]

σ2N
, c+ = r+ =

F ′(+∞) − µ
σ2 = lim

N→∞

ess sup[SωN − E
ω (SωN )]

σ2N
.
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Corollary 9.13 (Kifer) Assume the conditions of the previous theorem, and let I(η) := sup
ξ ∈R
{ξη − F (ξ)}. Then

I = I on (F ′(−∞), F ′(∞)), I = +∞ outside (F ′(−∞), F ′(∞)), and for a.e. ω, SωN/N satisfies the large
deviations principle with the rate function I(η):

(1) lim sup
N→∞

1
N

logPω[SωN/N ∈ K] ≤ − inf
η∈K
I(η) for all closed sets K ⊂ R.

(2) lim inf
N→∞

1
N

logPω[SωN/N ∈ G] ≥ − inf
η∈G
I(η) for all open sets G ⊂ R.

Proof Use Lemma A.3 and the Gärtner-Ellis Theorem (Appendix A). �

Theorem 9.14 Suppose XΩ have a finite noise process, and (XΩ, fΩ) satisfies (C) or (D), and each of (S), (E),
(G), (B).

(1) Non-Lattice LLT for Large Deviations: Assume fΩ is not relatively cohomologous to a coset of tZ for any
t , 0. Then for a.e. ω, for every open interval (a, b), and for every zN ∈ R s.t. zN

N → z, if z−µ

σ2 ∈ (c−, c+) then

Pω[SωN − zN ∈ (a, b)] = [1 + o(1)] ·
e−Vω

N I
ω
N (zN /Vω

N )

√
2πσ2N

|a − b|ρωN
(
zN−E

ω (SωN )
Vω
N

)
×

1
|a − b|

∫ b

a

e
−tξωN

(
zN−E

ω (SωN )
Vω
N

)
dt,

with ρωN, ξ
ω
N as in Theorem 7.8(4).

(2) Lattice LLT for Large Deviations: Suppose fΩ is integer valued, and not relatively cohomologous to a coset
of tZ for any integer t > 1. Then for a.e. ω, for every zN ∈ Z such that zN

N → z, if z−µ

σ2 ∈ (c−, c+) then

Pω[SωN = zN ] = [1 + o(1)] ·
e−Vω

N I
ω
N (zN /Vω

N )

√
2πσ2N

ρωN

(
zN−E

ω (SωN )
Vω
N

)
,

with ρωN as in Theorem 7.8(4).

(3) For a.e. ω, for each sequence zN such that lim
N→∞

zN − Eω (SωN )
N

= 0, it holds that

Vω
N I

ω
N

(
zN/Vω

N

)
=

1 + o(1)
2σ2

(
zN − Eω (SωN )

√
N

)2

as N → ∞.

So far we have focused on MCRE with finite noise spaces. We will now address the case of MCRE with
infinite noise spaces. First, here are two examples of the new phenomena which may occur.

Example 9.15 (No Asymptotic Mean) For MCRE with infinite noise spaces, it is possible that E(SωN )/N
oscillates for a.e. ω, without converging.

Proof. Let {Yn}n∈Z be the simple random walk on Z, started from the stationary (infinite) distribution. In
Example 9.5, we built a noise process (Ω,F ,m,T ) such that Ω = ZZ, T is the left shift, and ω = (ωn)n∈Z ∈ Ω
is m-distributed like (Yn)n∈Z.

Let X = {Xn}n∈Z be a sequence of bounded iid random variables with positive expectation c0, and independent
of {Yn}. Let XΩ be the MCRE with noise process (Ω,F ,m,T ), such that Xω = X for all ω (so the generators
π(ω, x, dy) and µω are independent of ω). Let fΩ be the function f (ω, x, y) := 1[0,∞) (ω)x.

For the pair (XΩ, fΩ), Eω[ f ωn (Xω
n , Xω

n+1)] = c01[ωn≥0], and so
1
N
Eω (SωN ) =

c0

N
#{1 ≤ n ≤ N : ωn ≥ 0}.

We claim that the RHS oscillates a.e. without converging. The liminf and limsup of the RHS are T-invariant,
whence by ergodicity, constant. If the claim were false, then WN := 1

N #{1 ≤ n ≤ N : Yn ≥ 0} would have
converged a.e. to a constant. But this contradicts the arcsine law for the simple random walk.



9.2 Main Results 183

Example 9.16 (Pathological Variance Growth) For MCRE with an infinite noise process, it is possible that
Vω
N → ∞ a.e., Vω

N = o(N ) a.e., and that there is no sequence of constants aN > 0 (independent of ω) such that
Vω
N ∼ aN for a.e. ω.

Proof. Let Xn be iid bounded real random variables with variance one and distribution ζ . Let fn(x) = x.
Let (Ω,F ,m,T ) be an infinite noise process, and fix E ∈ F of finite positive measure. Let π(ω, x, dy) :=
ζ (dy) , f (ω, x, y) := 1E (ω)x.

Then SωN =
N∑
n=1

1E (Tnω)Xn , and Vω
N =

N∑
n=1

1E (Tnω).We now appeal to general results from infinite ergodic

theory. Let (Ω,F ,m,T ) be an ergodic, invertible, measure preserving map on a non-atomic σ-finite infinite
measure space. Let L1

+ := {A ∈ L1(Ω,F ,m) : A ≥ 0,
∫

Adm > 0}. Then,

(1)
N∑
n=1

A◦Tn = ∞ almost everywhere for all A ∈ L1
+; (2)

1
N

N∑
n=1

A◦Tn −−−−−→
N→∞

0 almost everywhere for all A ∈ L1;

(3)Let aN be a sequence of positive real numbers, then

either lim inf
N→∞

1
aN

N∑
n=1

A ◦ Tn = 0 a.e. for all A ∈ L1
+; or lim sup

N→∞

1
aN

N∑
n=1

A ◦ Tn = ∞ a.e. for all A ∈ L1
+ (or both).

So @aN > 0 s.t.
N∑
n=1

A(Tnω) ∼ aN for a.e. ω, even for a single A ∈ L1
+. (See [1]: (1) is the Halmos recurrence

theorem (see also Lemma 9.23); (2) follows from the ratio ergodic theorem; and (3) is a theorem of J. Aaronson.)
Specializing to the case A = 1E we find that Vω

N → ∞ a.e.; Vω
N = o(N ) a.e. as N → ∞; and @aN so that

Vω
N ∼ aN for a.e. ω ∈ Ω. �

We continue to present our general results on MCRE with infinite noise spaces.

Theorem 9.17 Suppose XΩ has an infinite noise process, on a non-atomic σ-finite measure space. Assume
(B),(E),(S).

(1) If fΩ is relatively cohomologous to a constant, then Vω
N ≤ C for all N , for a.e. ω, where C = C(ε0, K ) is a

constant.
(2) If fΩ is not relatively cohomologous to a constant then Vω

N → ∞ for a.e. ω.

Theorem 9.18 Suppose XΩ has an infinite noise process, on a non-atomic σ-finite measure space. Assume
(XΩ, fΩ) satisfies (C) or (D), and each of (S),(E),(G),(B).

(a) Non-Lattice LLT: Suppose fΩ is not relatively cohomologous to a coset of tZ for any t , 0. Then
for a.e. ω, for every open interval (a, b), and for every zN, z ∈ R such that zN−E

ω (SωN )
√
Vω
N

→ z,

Pω
[
SωN − zN ∈ (a, b)

]
∼

e−z2/2√
2πVω

N

|a − b| as N → ∞.

(b) Lattice LLT: Suppose that all the values of fΩ are integers, and fΩ is not relatively cohomologous to
a coset of tZ with an integer t > 1. Then for a.e. ω, for every zN ∈ Z such that zN−E

ω (SωN )
√
Vω
N

→ z,

Pω
[
SωN = zN

]
∼

e−z2/2√
2πVω

N

as N → ∞.

Theorem 9.19 Under the assumptions of Theorem 9.18

(1) Suppose fΩ is not relatively cohomologous to a coset of tZ for any t , 0. Then for a.e. ω, (Xω, fω) satisfies
the non-lattice LLT for large deviations (Theorem 7.8 parts (1),(2), and (4)).

(2) Suppose that all the values of fΩ are integers, and fΩ is not relatively cohomologous to a coset of tZ with an
integer t > 1. Then for a.e. ω, (Xω, fω) satisfies the lattice LLT for large deviations (Theorem 7.8 (1),(3),
and (4)).
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9.3 Proofs

9.3.1 Existence of Stationary Measures

We prove Lemma 9.8. We need the following standard fact:

Lemma 9.20 Let Ω be a measurable space, and S be a compact metric space. Let ζω (ω ∈ Ω) be Borel
probability measures onS. If ω 7→

∫
ϕdζω is measurable for all continuous ϕ : S → R, then ω 7→

∫
ϕdζω is

measurable for all bounded Borel ϕ :S → R.

Proof We will show that F := {ϕ : S → R : ω 7→
∫
ϕdζω is measurable} contains all bounded real-valued

measurable functions onS.

(1) F contains K := {1K : K ⊂ S is compact}, because each 1K is the pointwise decreasing limit of a
uniformly bounded sequence of continuous functions.

(2) The collection of compact subsets ofS generates the Borelσ-algebra, and is closed under finite intersections.
(3) F is closed under finite linear combinations, and under bounded increasing pointwise limits.

By the functional monotone class theorem, F ⊃ {bounded measurable functions}. �

Proof of Lemma 9.8:S is compact. Fix ω ∈ Ω. Let C denote the cone of non-negative continuous functions on
S, with the supremum norm. The interior of C is C+, the open cone of strictly positive continuous functions.

Let Lω
k

: C → C denote the operator (Lω
k
ϕ)(x) =

∫
ϕ(y)π(Tkω, x, dy). The right-hand-side is in C, because

of the assumptions on π(ω, x, dy). Observe that

Lωk = LT `ω
k−` (9.4)

SinceS is compact and metrizable, the space of probability measures onS is weak-star sequentially compact.
Using a diagonal argument, we can construct Nk = Nk (ω) → ∞ and Borel probability measures µ′i on S as

follows:
1

Nk

Nk∑
n=1

(LT iω
−n · · · L

T iω
−1 )∗δx −−−−→

k→∞
µ′i weak star, for every i ∈ Z. If T iω = T jω, then µ′i = µ′j , and we

may define µ′
T iω

:= µ′i . By (9.4), for every continuous function ϕ,

µ′i (LT iω
0 ϕ)= µ′i (LT i+1ω

−1 ϕ)= lim
k→∞

1
Nk

Nk+1∑
n=2

(LT i+1ω
−n · · · LT i+1ω

−1 ϕ)(x) = µ′i+1(ϕ). (9.5)

Equivalently,
∫
π(T iω, x, dy)µ′

T iω
(dx) = µ′

T i+1ω
for all i ∈ Z. We obtain (S):

µ′Tω =

∫
π(ω, x, dy)µ′ω (dx). (9.6)

But it is not clear that ω 7→ µ′ω is measurable. We will address this now.
Let Tωn := Lωn Lω

n+1. By (E), for every ϕ ∈ C,

(Tωn ϕ)(x) =
"

ϕ(z)p(Tnω, x, y)p(Tn+1ω, y, z)µT n+1ω (dy)µT n+2ω (dz)

∈

[
ε0

∫
ϕ(z)µT n+2ω (dz), ε−2

0

∫
ϕ(z)µT n+2ω (dz)

]
.

Therefore, the diameter of Tωn (C) with respect to the Hilbert projective metric of C is no larger than 6 log(1/ε0)
(see Appendix B).

Call the projective metric dC and let θ := tanh( 3
2 log(1/ε0)) (a number in (0, 1)). By Birkhoff’s Theorem

(Theorem B.6), for every ϕ ∈ C+,



9.3 Proofs 185

dC (Lω
−2n · · · L

ω
−1ϕ, Lω

−2n · · · L
ω
−11) ≤ θn−1dC (Tω

−2ϕ,T
ω
−21) ≤ 6 log(1/ε0)θn−1.

Since Lω
−2n · · · L

ω
−11 ≡ 1, this implies the existence of positive constants Mω

n (ϕ) and mω
n (ϕ) such that

log
(

Mω
n (ϕ)

mω
n (ϕ)

)
≤ 6 log(1/ε0)θn−1, and mω

n (ϕ) ≤ Lω
−2n · · · L

ω
−1ϕ ≤ Mω

n (ϕ).Therefore

‖mω
n (ϕ)−1Lω

−2n · · · L
ω
−1ϕ − 1‖∞ ≤ δn := exp[6 log(1/ε0)θn−1] − 1. (9.7)

By (9.5), for every continuous function ψ, µ′
T−kω

(LT−kω
0 ψ) = µ′

T−k+1ω
(ψ). So, µ′

T−2nω
(Lω
−2n · · · L

ω
−1ϕ) ≡

µ′
T−2nω

(LT−2nω
0 · · · LT−1ω

0 ϕ) = µ′
T−2n+1ω

(LT−2n+1ω
0 · · · LT−1ω

0 ϕ) = · · · = µ′
T−1ω

(LT−1ω
0 ϕ) = µ′ω (ϕ).

So after integrating mω
n (ϕ)−1Lω

−2n · · · L
ω
−1ϕ with respect to µ′

T−2nω
, (9.7) gives

|mω
n (ϕ)−1µ′ω (ϕ) − 1| ≤ δn → 0. (9.8)

In particular, mω
n (ϕ) −−−−→

n→∞

∫
ϕdµ′ω , whence for every ϕ ∈ C+ and x ∈ S,

(Lω
−2n · · · L

ω
−1ϕ)(x) −−−−→

n→∞

∫
ϕdµ′ω . (9.9)

For fixed x ∈ S, ω 7→ (Lω
−2n · · · L

ω
−1ϕ)(x) is measurable for all ϕ ∈ C+. As C+ − C+ = C(S), ω 7→ µ′ω (ϕ)

is measurable for all continuous ϕ. By Lemma 9.20, ω 7→ µ′ω (ω) is measurable for all bounded Borel functions
ϕ. We proved part (1).

To see part (2), fix ω, and let Y denote the inhomogeneous Markov chain with initial distribution µ′
T−3ω

and
transition kernels πn(x, dy) := π(Tn−3ω, x, dy).

Since XΩ is uniformly elliptic, Y is uniformly elliptic, with the same ellipticity constant, and with background

measures µn := µ′
T n−3ω

. By Proposition 2.8, ε0 ≤
P(Yn ∈ E)
µT n−3ω (E)

≤ ε−1
0 for all E ∈ B(S) and n ≥ 3. By (9.6), Y

satisfies (S), and the numerator equals µ′
T n−3ω

(E). So µ′
T n−3ω

� µT n−3ω for all n ≥ 3, and the Radon-Nikodym
derivative is bounded between ε0 and ε−1

0 . We proved part (2).
We proceed to part (3). SupposeΩ is a metric space, andT : Ω→ Ω and (ω, x) 7→ π(ω, x, dy) are continuous.

By (9.8), for every ϕ ∈ C+, sup
ω∈Ω
|mω

n (ϕ) − µ′ω (ϕ) | ≤
δn‖ϕ‖∞
1 − δn

−−−−→
n→∞

0.

By (9.7), for each fixed x ∈ S, (Lω
−2n · · · L

ω
−1ϕ)(x) −−−−→

n→∞
µ′ω (ϕ) uniformly on Ω. By our assumptions,

(Lω
−2n · · · L

ω
−1ϕ)(x) are continuous in ω. Since the uniform limit of continuous functions is continuous, ω 7→

µ′ω (ϕ) is continuous. �

9.3.2 The Essential Range is Almost Surely Constant

From this point, and until the end of section 9.3, we assume that (XΩ, fΩ) are as in (9.1) and (9.2), and that
(B),(E),(S) hold. Unless stated otherwise, we allow the noise process to be infinite.

The purpose of this section is to prove the following result:

Proposition 9.21 There exist closed subgroups H,Gess ≤ R s.t. for m–a.e. ω, the co-range of (Xω, fω) equals
H , the essential range of (Xω, fω) equals Gess , and

Gess =




R H = {0},
2π
t Z H = tZ, t , 0,
{0} H = R.

We call H and Gess the a.s. co-range and a.s. essential range.
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We need a few preliminary comments on the structure constants of (Xω, fω). Fix an element ω in the noise
space, and let Hex(ω) denote the probability space of position 3 hexagons for Xω . Let mω denote the hexagon
measure, as defined in §2.3.1. Recall the definition of the balance Γ(P) of a hexagon P, and define

u(ω) := E( |Γ(P) |2)1/2, d(ω, ξ) := E(|eiξΓ(P) − 1|2)1/2, (expectation on P ∈ Hex(ω) w.r.t. mω).

By (S), the probability space of position n + 3 hexagons for Xω is (Hex(Tnω),mT nω). Therefore the structure
constants of (Xω, fω) are given by

dn+3(ξ, fω) = d(Tnω, ξ) and un+3(fω) = u(Tnω) (n ≥ 0). (9.10)

Lemma 9.22 u(·), d(·, ·) are Borel measurable, and for everyω, d(ω, ·) is continuous. In addition, if XΩ satisfies
(C), then u(·), d(·, ·) are continuous.

Proof The lemma follows from the explicit formulas for the hexagon measure and the function Γ :S6 → R. We
omit the details, which are routine. �

Proof of Proposition 9.21. Let Hω := H (Xω, fω) be the essential range of (Xω, fω). By Theorem 4.3, Hω is

either R or tZ for some t = t(ω) ≥ 0. By (9.10) DN (ξ, ω) :=
N∑
n=3

dn(ξ, fω)2 ≡

N−3∑
n=0

d(Tnω, ξ)2.

Step 1: U (a, b):={ω ∈ Ω : DN (·, ω) −−−−−→
N→∞

∞ uniformly on (a, b)} is measurable and T-invariant ∀a < b.

Proof. Observe that d2 ≤ 4, therefore |DN (ξ,Tω) − DN (ξ, ω) | ≤ 8. It follows that U (a, b) is T-invariant.

Measurability is because of the identity U (a, b) =
{
ω ∈ Ω : ∀M ∈ Q ∃N ∈ N s.t.

for all ξ ∈ (a, b) ∩ Q, DN (ω, ξ) > M

}
. The

inclusion ⊂ is obvious. The inclusion ⊃ is because if ω < U (a, b) then for some M ∈ Q, for all N ∈ N there
exists some ηN ∈ (a, b) such that DN (ω, ηN ) < M , whence by the continuity of η 7→ DN (ω, η) there is some
ξN ∈ (a, b) ∩ Q such that DN (ω, ξN ) < M . So ω < U (a, b) ⇒ ω < RHS.

Step 2:The setsΩ1 := {ω ∈ Ω : Hω = {0}}, Ω2 := {ω ∈ Ω : Hω = R}, andΩ3 := {ω ∈ Ω : ∃t , 0 s.t. Hω = tZ}
are measurable and T-invariant. Therefore by ergodicity, for each i, either m(Ωi) = 0 or m(Ωc

i ) = 0.

Proof.Recall that for Markov chains, DN → ∞ uniformly on compact subsets of the complement of the co-range

(Theorem 4.9). So Ω1 =

∞⋂
n=1

U
(
1
n
, n

)
, Ω2 =

⋂
0<a<b rational U (a, b)c, Ω3 = Ω

c
1 ∩Ω

c
2 .

By Step 1, Ωi are T-invariant and measurable. Since T is ergodic, these sets are either of measure zero or of
full measure.

By Theorem 4.4, if Ω1 has full measure, then the essential range is a.e. R, and if Ω2 has full measure, then
the essential range is a.e. {0}. It remains to consider the case when Ω3 has full measure.

Step 3: If Ω3 has full measure, then there exist t , 0 such that Ω3(t) := {ω ∈ Ω : Hω = tZ} has full measure,
and then the essential range is a.e. (2π/t)Z.

Proof. For every ω ∈ Ω3 there exists t(ω) > 0 such that Hω = t(ω)Z. We can characterize t(ω) as follows:

t(ω) = sup
{

t ∈ Q ∩ (0,∞) : DN (ω, ·) → ∞ uniformly
on compact subsets of (0, t)

}
.

It is clear from this expression that t(Tω) = t(ω), and that for every A > 0, [t(ω) ≥ A] =
⋂

0<a<b<A rational
U (a, b).

So t(·) is a measurable T-invariant function.
By ergodicity, there is a constant t such that t(ω) = t for a.e. ω. So Hω = tZ a.e. By Theorem 4.4,

Gess (Xω, fω) = (2π/t)Z a.e. �



9.3 Proofs 187

9.3.3 Variance Growth

In this section we prove Theorems 9.10 and 9.17 on the behavior of Vω
N , as N → ∞.

Lemma 9.23 Suppose (Ω,F ,m,T ) is an invertible, ergodic, measure preserving map on a probability space or
a non-atomic infinite measure space. Let A : Ω→ R be a non-negative measurable function. Either A = 0 a.e.,
or

∑
n≥0

A ◦ Tn = ∞ a.e.

Proof If m(Ω) < ∞, then the lemma follows from the pointwise ergodic theorem. If m(Ω) ≤ ∞, then we can
use the following well-known argument [1].

If A is not equal to 0 a.e., then there is an ε > 0 such that E := {ω ∈ Ω : A(ω) ≥ ε} has positive measure.
We claim that ∑

n≥0
1E (Tnω) = ∞ a.e. on E. (9.11)

Since A ≥ ε1E , (9.11) implies that
∑
n≥0

A(Tnω) = ∞ almost everywhere on E, whence (by ergodicity) almost

everywhere on Ω.

Suppose by way of contradiction that (9.11) fails, then there exists N s. t. W := {ω ∈ E :
∞∑
n=0

1E (Tnω) = N }

has positive measure.
The invertibility and measurability of T imply that Tn(W ) are measurable and pairwise disjoint. By non-

atomicity, we can break W = W1 ∪ W2 where Wi are measurable, disjoint, and with positive measure. By
invertibility, Ŵi :=

⋃
n∈Z

TnWi are disjoint T-invariant sets with positive measure. But this contradicts ergodicity.

�

Part 1: Either VωN is Bounded Almost Surely , or VωN →∞ Almost Surely. Recall that | f | < K , and ε0 is
an ellipticity constant for Xω . By Theorem 3.7 and (9.10) there are positive constants Ci = Ci (ε0, K ) (i = 1, 2)

such that for all N , C−1
1

N∑
n=3

u(Tnω)2 − C2 ≤ Vω
N ≤ C1

N∑
n=3

u(Tnω)2 + C2.

If u(ω) = 0 m-a.e., then for a.e. ω, Vω
N ≤ C2 for all N . Otherwise, by Lemma 9.23,

N∑
n=3

u(Tnω)2 −−−−−→
N→∞

∞,

whence Vω
N → ∞ almost everywhere.

Part 2: Linear Growth of Variance when VωN →∞ a.e. and m(Ω) = 1. Suppose m(Ω) = 1 and Vω
N → ∞

almost surely. We claim that
∃σ2 > 0 s.t. Vω

N ∼ Nσ2 a.s. (9.12)

Let σ2
0 :=

∫
Ω

u2dm. This is a finite number, because ‖u‖∞ ≤ 6K by (B), and m(Ω) = 1. This is a positive
number, because as we saw in part 1, if u = 0 a.e., then Vω

N = O(1) a.e. contrary to our assumptions.

By the pointwise ergodic theorem,
N∑
n=3

u(Tnω)2 = [1 + o(1)]σ2
0 N . Hence

Vω
N ≥ [1 + o(1)]C1(ε0, K )−1Nσ2

0 → ∞. (9.13)

Vω
N =

N∑
n=1

Varω (Fn)+2
N∑
n=1

N−n∑
k=1

Covω (Fn, Fn+k ),where Fn := f (Tnω,Xω
n ,X

ω
n+1). By (S), {XT n−1ω

i }i≥1 is equal in

distribution to {Xω
i }i≥n. SoCovω (Fn, Fn+k ) = ψk (Tn−1ω),whereψk (ω) := Covω ( f (Tω, Xω

1 , Xω
2 ), f (Tk+1ω, Xω

k+1, Xω
k+2)).

Thus Vω
N =

N−1∑
n=0

ψ0(Tnω) + 2
N−1∑
n=0

N−n∑
k=1

ψk (Tnω). The next step is to find the limit of (1/N )× RHS as N → ∞.
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By the pointwise ergodic theorem, for a.e. ω, lim
N→∞

1
N

N−1∑
n=0

ψ0(Tnω) =
∫
ψ0dm. Next we recall that ‖ψk ‖∞ ≤

Cmix ‖ f ‖2∞θ
k , with Cmix > 0 and 0 < θ < 1 which depend only on ε0 (Proposition 2.13). Therefore for every M ,

lim
N→∞

1
N

N−1∑
n=0

N−n∑
k=1

ψk (Tnω) =
[

lim
N→∞

1
N

N−1∑
n=0

M−1∑
k=1

ψk (Tnω)
]
+O(θM ),

whence by the ergodic theorem lim
N→∞

1
N

N−1∑
n=0

N−n∑
k=1

ψk (Tnω) =
∞∑
k=1

∫
ψkdm, with the last sum converging expo-

nentially fast. In summary,
1
N

Vω
N −−−−−→N→∞

σ2 :=
∫ (

ψ0 + 2
∞∑
k=1

ψk

)
dm. By (9.13), 1

N Vω
N 6→ 0 a.e, so σ2 > 0,

and (9.12) is proved.

We now show that the following properties are equivalent:
(a) fΩ is relatively cohomologous to a constant; (b) ess sup

ω∈Ω
( sup
N ∈N

Vω
N ) < ∞; (c) m{ω : Vω

N is bounded} > 0.

Part 3: (a)⇒(b)⇒(c): Suppose fΩ is relatively cohomologous to a constant. Then there are uniformly bounded
measurable functions a : Ω×S → R and c : Ω→ R such that for m-a.e.ω, for every n, and with full probability
with respect to the distribution of {Xω

k
}, f ωn (Xω

n , Xω
n+1) = a(Tnω, Xω

n ) − a(Tn+1ω, Xω
n+1) + c(Tnω).

Summing over n, we see that for a.e.ω, ∀N , |SωN −
N∑
n=1

c(Tnω) | = |a(Tω, Xω
1 )− a(TN+1ω, Xω

N+1) | ≤ 2 sup |a |.

Recalling that the variance of a random variable S is inf
c∈R
‖S − c‖22 , we deduce that for a.e. ω, Vω

N ≤ 4 sup a2,
whence (b). Clearly (b)⇒(c).

Part 4: (c)⇒(a): We saw in the proof of part (1) that if (c) holds, then Vω
N = O(1) a.e. and u(ω) = 0 a.e. Since

m is T-invariant,
∑

u2
n(Xω, fω) = 0 a.e. Applying the gradient lemma to Xω , we find bounded functions gωn

and constants cωn such that f ωn (Xω
n , Xω

n+1) = gωn (Xω
n ) − gωn+1(Xω

n+1) + cωn Pω–a.s. Moreover, the proof of the
gradient lemma shows that we can take

cωn = E
ω[ f ωn−2(Xω

n−2, Xω
n−1)], gωn (z) = Eω

(
f ωn−2(Zωn−2,Y

ω
n−1) + f ωn−1(Yωn−1, Xω

n )
����X

ω
n = z

)
,

where Lωn := (Zω
n−2,Y

ω
n−1, Xω

n ) is the n-th element of the ladder process of Xω . By (S), gωn (x) = a(Tnω, x)
and cωn = c(Tnω), where a(·, ·), c(·) are bounded measurable functions. So fΩ is relatively cohomologous to a
constant. �

9.3.4 Irreducibility and the LLT

In this section we prove Theorems 9.11 and 9.18. The main ingredient in the proof is the following criterion for
irreducibility:

Proposition 9.24 Suppose (XΩ, fΩ) satisfies (C) or (D), and each of (S),(E),(G).
(1) fω is irreducible with essential range R for a.e. ω iff fΩ is not relatively cohomologous to a coset tZ for any

t , 0.
(2) Suppose fΩ is integer valued, then fω is irreducible with essential range Z for a.e. ω iff fΩ is not relatively

cohomologous to a coset tZ for any t > 1.

(In this proposition, we allow the noise space to be infinite.)

Lemma 9.25 SupposeW1,W2 are two independent random variables such that for some a, t ∈ R,W1+W2 ∈ a+tZ
with full probability. Then we can decompose a = a1 + a2 so that W1 ∈ a1 + tZ a.s., and W2 ∈ a2 + tZ a.s.
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Proof Without loss of generality a = 0, t = 2π. Then |E(eiW1 ) | · |E(eiW2 ) | = |E(ei(W1+W2)) | = 1. Necessarily,
|E(eiWk ) | = 1 (k = 1, 2). Choose ak such that E(ei(Wk−ak )) = 1, then E(cos(Wk − ak )) = 1, whence
Wk − ak ∈ 2πZ almost surely. Thus a1 + a2 ∈ 2πZ, and there is no problem to adjust a1 to get a1 + a2 = 0. �

Lemma 9.26 Let Ω be a measurable space, S be a separable metric space, and ψ : Ω ×S → R be Borel. If,
for each ω, ψ(ω, ·) is continuous onS and positive somewhere, then there exists a measurable x : Ω→S such
that ψ(ω, x(ω)) > 0.

Proof Fix a countable dense set {xi } ⊂ S. For every ω there exists an i such that ψ(ω, xi) > 0. So i(ω) :=
min{i ∈ N : ψ(ω, xi) > 0} is well-defined and Borel measurable. Take x(ω) := xi(ω) . �

Proof of Proposition 9.24 We begin with part 1 of the proposition.

Proof of (⇒): Suppose Gess (Xω, fω) = R for a.e. ω, and assume by way of contradiction that fΩ is relatively
cohomologous to a coset tZ for some t.

It is easy to see that in this case there are measurable functions g(ω, x, y) and c(ω) so that for m-a.e. ω,

f (Tω, Xω
1 , Xω

2 ) + g(Tω, Xω
1 ) − g(T2ω, Xω

2 ) + c(Tω) ∈ tZ Pω-a.s.

By the T-invariance of m, we may replace ω by Tn−1ω and obtain that for m-a.e. ω,

f (Tnω, XT n−1ω
1 , XT n−1ω

2 ) + g(Tnω, XT n−1ω
1 ) − g(Tn+1ω, XT n−1ω

2 ) + c(Tnω) ∈ tZ a.s.

By (S), (XT n−1ω
1 , XT n−1ω

2 ) is equal in distribution to (Xω
n , Xω

n+1). So

f (Tnω, Xω
n , Xω

n+1) + g(Tnω, Xω
n ) − g(Tn+1ω, Xω

n+1) + c(Tnω) ∈ tZ a.s. for a.e. ω.

Let gω := {g(Tnω, ·)}n≥1 and cω := {c(Tnω)}n≥1, then fω − ∇gω + cω is a reduction of fω to an additive
functional with algebraic range inside tZ, a contradiction.
Proof of (⇐): Suppose fΩ is not relatively cohomologous to a coset tZ for any t , 0. Necessarily fΩ is not
relatively cohomologous to a constant, and by Theorems 9.10 and 9.17, Vω

N → ∞ for a.e. ω.
Assume by way of contradiction that Gess (Xω, fω) , R on a set of positive measure of ω. By Proposition

9.21, Gess (Xω, fω) = Gess a.e., where Gess = {0} or 2π
t Zwith t , 0. The first possibility cannot happen, because

it implies that fω is center-tight, so by Theorem 3.8, Vω
N = O(1), whereas Vω

N → ∞ a.e. So there exists t , 0
such that Gess (Xω, fω) = (2π/t)Z a.e., and Hω := H (Xω, fω) = tZ a.e.

Fix ω such that Hω = tZ. By the reduction lemma, there are measurable functions gωn (x), hωn (x, y) with∑
Varω[hωn ] < ∞, and there are constants cωn , such that

exp
[
it( f ωn (x, y) − gωn (x) + gωn+1(y) + hωn (x, y) − cωn )

]
= 1

almost surely with respect to the distribution of (Xω
n , Xω

n+1). Let λωn = eitcωn , and aωn (x) = eitgωn (x) . Then for
a.e. ω,

eit ( f (T nω,x,y)+hωn (x,y)) = λωn aωn (x)/aωn+1(y) a.e. w.r.t µT nω (dx)π(Tnω, x, dy).

This seems close to a contradiction to the assumption that fΩ is not relatively cohomologous to a coset, but
we are not quite there yet. Firstly, our proof of the reduction lemma does not provide gωn and cωn of the form
cωn = c(Tnω) , aωn = a(Tnω, x) with c(·), a(·, ·) measurable. Secondly, we need to get rid of hωn .

To resolve these issues we look closer at the structure of the hexagon spaces for MCRE (see §2.3.1).
For a.e. ω, Hω = tZ so

∑
d(Tnω, t)2 < ∞ µ-almost everywhere. By Lemma 9.23, this can only happen if

d(ω, t) := d(fω, t) = 0 a.e. Hence

Γ(P) ∈ (2π/t)Z for a.e. hexagon P ∈ Hex(ω), for m-a.e. ω. (9.14)

(Γ is the balance, defined in §2.3.2.)
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Let Lωn = (Zω
n−2,Y

ω
n−1, Xω

n ) denote the ladder process ofXω (see §2.3.3), and Hω (Lωn , Lωn+1) := Γ
(
Zωn−2,

Zω
n−1

Yω
n−1

,
Yωn
Xω
n
, Xω

n+1

)
.

It is a property of the ladder process that the hexagon in the RHS is distributed exactly like a random hexagon
in Hex (ω). So

Hω ∈ (2π/t) Z Pω-a.s., m-a.e. (9.15)

Next we define the octagon balance

Γ

(
Zω1 ,

Zω2
Yω2

,
Zω3
Xω

3
,

Yω4
Xω

4
, Xω

5

)
!

:= Hω (Lω3 , Lω4 ) + Hω (Lω4 , Lω5 ). (9.16)

(The definition requires clarification, because the right-hand-side seems to depend through Lω4 also on Yω3 .

In fact, there is no such dependence: The octagon is obtained by stacking
(
Zω2 ,

Zω3
Yω3

,
Yω4
Xω

4
, Xω

5

)
on top of(

Zω1 ,
Zω2
Yω2

,
Yω3
Xω

3
, Xω

4

)
and removing the common edge Lω4 = (Zω2 ,Y

ω
3 , Xω

4 ). When we add the balances of these

hexagons, this edge appears twice with opposite signs, and cancels out.)

Claim 1. Let Pω denote the distribution of {Lωn }. For each ζ
∗ ∈ S, there is a measurable function ζ̃ (ω) ∈ S

such that for a.e. ω, Γ
(
ζ∗,

ζ̃ (ω)
Yω2

,
ζ∗

Xω
3
,

Yω4
Xω

4
, Xω

5

)
∈ 2π

t Z Pω
*..
,
·

�������

Zω3 = ζ
∗

Zω2 = ζ̃ (ω)
Zω1 = ζ

∗

+//
-
–a.e.

Remark. This is the only point in the proof where we need conditions (G), (C), (D).
Proof of the Claim. By (9.15) and (9.16), Γ ∈ 2π

t Z with full Pω–probability, for a.e. ω. The point it to obtain this
a.s. with respect to the conditional measures.

By the assumptions of the proposition, at least one of (C) and (D) is true. Assume (D). ThenS is countable
or finite, and for fixed ω, the Pω-distribution of (Lω3 , Lω4 , Lω5 ) is purely atomic.

Necessarily, Γ ∈ 2π
t Z for every octagon with positive Pω–probability. So the claim holds for any pair

(ζ∗, ζ̃ ) ∈ S such that Pω
[
(Zω1 , Zω2 , Zω3 ) = (ζ∗, ζ̃ (ω), ζ∗)

]
> 0. For the ladder process, {Zωi } is equal in

distribution to {Xω
i }, therefore such pairs exist by assumptions (E) and (G). Since S is countable there is no

problem to choose ζ̃ (ω) measurably, and the claim is proved, under assumption (D).
Now suppose (D) fails. Then (C) must hold. There is no loss of generality in assuming that m, the measure

on the noise space Ω, is globally supported. Otherwise we replace Ω by supp(m).
By (9.15), (9.16) and Fubini’s Theorem, for a.e. ω ∈ Ω, for a.e. (ζ1, ζ2, ζ3) with respect to the distribution

(ζ1, ζ2, ζ3) ∼ (Zω1 , Zω2 , Zω3 ),

EPω *
,

��e
itΓ

(
Zω1 ,

Zω2
Yω2

,
Zω3
Xω3

,
Yω4
Xω4

,Xω5

)
− 1��2

�����

Zω1 = ζ1
Zω2 = ζ2
Zω3 = ζ3

+
-
= 0. (9.17)

Let P′ denote the (annealed) joint distribution of (ω, Xω
1 , Xω

2 , Xω
3 ). By the Markov property, (G), (E) and (C),

the LHS has a continuous P′-version on

A = {(ω, ζ1, ζ2, ζ3) ∈ Ω ×S3 : p(Tω, ζ1, ζ2)p(T2ω, ζ2, ζ3) > 0}.

Henceforth we replace the LHS of (9.17) by this continuous version.
By (C1) and (C2), A is open, and by (G) and the assumption that supp(m) = Ω, A ⊂ supp(P′). So every open

subset of A has positive P′-measure, and (9.17) holds on a dense subset of A, whence everywhere in A.
To prove the claim it remains to construct a measurable function ζ̃ (ω) such that (ω, ζ∗, ζ̃ (ω), ζ∗)∈A for all ω.

By (E) and (G)
∫
S

p(Tω, ζ∗, ζ )p(T2ω, ζ, ζ∗)µT 2ω (dζ ) is strictly positive, so for every ω there is ζ̃ such that

ψ(ω, ζ̃ ) := p(Tω, ζ∗, ζ̃ )p(T2ω, ζ̃, ζ∗) > 0.
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We now apply Lemma 9.26, and deduce Claim 1.
Henceforth we fix some ζ∗ ∈ S and will apply the claim for that particular point.
Given ω ∈ Ω and a, b ∈ S, construct the bridge distribution Pω

ab
(E) = Pω (Yω2 ∈ E |Zω1 = a, Xω

3 = b) as in
§2.2.3.

Claim 2. For a.e. ω, for a.e. (ξ3, ξ4, ξ5) sampled from the joint distribution of (Xω
3 , Xω

4 , Xω
5 ), the random

variables

Wω
3 := f (Tω, ζ∗,Y2) + f (T2ω,Y2, ξ3), Y2 ∼ P

ω
ζ∗,ξ3

WT 2ω
5 := f (T3ω, ζ∗,Y4) + f (T4ω,Y4, ξ5), Y4 ∼ P

T 2ω
ζ∗,ξ5

are purely atomic, and there are ci = ci (ω, ξi) such thatWω
3 ∈ c3+

2π
t Z andWω

5 ∈ c5+
2π
t Zwith full probability.

Proof of the Claim. By the choice of ζ̃ (ω) and Fubini’s theorem, for a.e. (ξ3, ξ4, ξ5) ∼ (Xω
3 , Xω

4 , Xω
5 ),

Γ

(
ζ∗,

ζ̃ (ω)
Yω2

,
ζ∗

ξ3
,

Yω4
ξ4
, ξ5

)
∈

2π
t
Z Pω

(
·
����
Zω3 = ζ∗ Xω3 = ξ3
Zω2 = ζ̃ (ω) Xω4 = ξ4
Zω1 = ζ∗ Xω5 = ξ5

)
–a.e.

Notice that Γ
(
ζ∗,

ζ̃ (ω)
Yω2

,
ζ∗

ξ3
,

Yω4
ξ4
, ξ5

)
is equal to the independent difference of WT 2ω

5 and Wω
3 , plus a constant

which only depends on (ω, ξ3, ξ4, ξ5). NowLemma 9.25 gives the claim, except that the lemma gives ci depending
on both ξ3, ξ4 and ξ5. However for fixed ω and ξ3 the distribution of Wω

3 is independent of ξ4 and ξ5, whence
c3 is a function of ξ3 only. Likewise, c5 depends only on ξ5.

Claim 3. Given ω and (ξ3, ξ4, ξ5) as in Claim 2, let

g(ω, ξ3) :=
(
the smallest positive atom of Wω

3 if there are positive atoms,
otherwise, the largest non-positive atom of Wω

3

)
c(ω) := − f (Tω, ζ∗, ζ̃ (ω)) − f (T2ω, ζ̃ (ω), ζ∗).

These functions are well-defined, measurable, and for m-a.e. ω, for a.e. (ξ3, ξ4, ξ5) ∼ (Xω
3 , Xω

4 , Xω
5 ),

[ f (T3ω, ξ3, ξ4) + f (T4ω, ξ4, ξ5)] + g(ω, ξ3) − g(T2ω, ξ5) + c(ω) ∈
2π
t
Z. (9.18)

Proof of the Claim. The function g(ω, ξ3) is well-defined for a.e. ω because of claim 2. It is measurable, because
(ω, ξ3) 7→ P(Wω

3 ∈ (a, b)) are measurable, and

[g(ω, ξ3) > a] =



{(ω, ξ3) : Pω (0 < Wω
3 ≤ a) = 0 , Pω (Wω

3 > a) , 0} (a > 0)
{(ω, ξ3) : P(Wω

3 > a) , 0} (a ≤ 0).

The measurability of c(ω) is clear.
The LHS of equation (9.18) is an atom of

−Γ

(
ζ∗,

ζ̃ (ω)
Yω2

,
ζ∗

ξ3
,

Yω4
ξ4
, ξ5

)
, (Lω3 , Lω4 ) ∼ Pω

(
·
�����

Zω3 = ζ∗ Xω3 = ξ3
Zω2 = ζ̃ (ω) Xω4 = ξ4
Zω1 = ζ∗ Xω5 = ξ5

)
.

By Claim 1 and Fubini’s theorem, it takes values in 2π
t Z for a.e. (ω, ξ3, ξ4, ξ5) distributed like the annealed

distribution of (ω, Xω
3 , Xω

4 , Xω
5 ).

By (S), {XT 3ω
i }i≥3 is equal in distribution to {XT nω

i }i≥n, so (9.18) gives a bounded measurable function
α(ω, x) such that for all n,
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f ωn (Xω
n , Xω

n+1) + f ωn+1(Xω
n+1, Xω

n+2) + α(Tnω, Xω
n ) − α(Tn+2ω, Xω

n+2) + c(Tnω) ∈
2π
t
Z.

Fix ω, and let
f ∗n := f (Tnω, Xω

n , Xω
n+1) + α(Tnω, Xω

n ) − α(Tn+1ω, Xω
n+1).

Then f ∗n + f ∗
n+1 + c(Tnω) ∈ 2π

t Z Pω-a.s. So

eit f ∗n = e−itc(T nω)e−it f ∗
n+1 = eit[c(T n+1ω−c(T nω)]eit f ∗

n+2 .

By induction, there are constants λn = λn(ω) such that eit f ∗1 = λ2neit f ∗2n . Then

eit f ∗1 (Xω1 ,X
ω
2 ) = λ2nE

(
eit f ∗2n (Xω2n,X

ω
2n+1) ��Xω

1 , Xω
2
)
= λ2nE

(
eit f ∗2n (Xω2n,X

ω
2n+1) ��Xω

2
)

= λ2n
[
E(eit f ∗2n ) +O(θn)

]
, where 0 < θ < 1, see (2.11).

Choose nk → ∞ so that λ2nkE(eit f ∗2nk ) → λ(ω). Necessarily |λ(ω) | = 1 and

eit f ∗1 = λ Pωa.s.

This argument works for a.e. ω. Since the left-hand-side is measurable in ω, λ(ω) equals a.e. to a measurable
function. Without loss of generality λ(ω) is measurable. Recalling the definition of f ∗n and setting a(ω, x) :=
exp(−itα(ω, x)), we obtain

eit f (Tω,Xω1 ,X
ω
2 ) = λ(ω)

a(Tω, Xω
1 )

a(T2ω, Xω
2 )

.

Thus fΩ is relatively cohomologous to tZ, in contradiction to our assumptions. This contradiction shows that
Gess (Xω, fω) = R for a.e. ω, and proves part 1 of the proposition.

To prove part 2 (⇐), we assume that fΩ is integer valued, but not relatively cohomologous to a coset of nZ
with n > 1, and show that Gess (Xω, fω) = Z a.s. Equivalently, we must show that Hω := H (Xω, fω) = 2πZ for
a.e. ω. Since fΩ is integer valued, 2π ∈ Hω , so if Hω , 2πZ, then Hω = tZ for t = 2π

n and n ∈ {2, 3, 4, . . .}. We
can now repeat the proof of part 1 verbatim, and obtain a relative cohomology to a coset of nZ, a contradiction
to our assumptions. The proof of the implication (⇒) is similar to that in the non-lattice case, and we omit it. �

Proof of Theorem 9.11. In the non-lattice case, fΩ is not relatively cohomologous to a coset of tZ with t , 0. In
particular, fΩ is not relatively cohomologous to a constant, and by Theorem 9.10, ∃σ2 > 0 such that Vω

N ∼ Nσ2.
By Proposition 9.24 (1), for a.e. ω, Gess (Xω, fω) = R and fω is irreducible. The non-lattice LLT in Theorem

9.11 now follows from Theorems 5.1.
The lattice case has a similar proof, except that now we use Proposition 9.24 (2) to check irreducibility. �

Proof of Theorem 9.18 The proof is identical to the proof of Theorem 9.11, except that now, since the noise
process is infinite, we do not know that Vω

N ∼ const.N , we only know that Vω
N → ∞ (Theorem 9.17). �

9.3.5 LLT for Large Deviations

We prove Theorems 9.12, 9.14 and 9.19.

Proof of Theorem 9.12. Let GωN (ξ) := 1
N logEω (eξSωN ).

Part (1):We show that for a.e. ω, GωN (ξ) converges pointwise on R to a continuously differentiable and strictly
convex function F (ξ), which does not depend on ω.

Step 1: Given ξ ∈ R, for every ω ∈ Ω and for all n ≥ 1, there are unique numbers pn(ξ, ω) ∈ R and unique
non-negative functions hn(·, ξ, ω) ∈ L∞(S,B(S), µT nω) such that

∫
S

hn(x, ξ, ω)µT nω (dx) = 1, and
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S

eξ f (T nω,x,y) hn+1(y, ξ, ω)

epn (ξ,ω) hn(x, ξ, ω)
π(Tnω, x, dy) = 1. (9.19)

Furthermore, there is a measurable function p(ξ, ω) such that pn(ξ, ω) = p(ξ,Tnω).
Proof of the Step. The existence and uniqueness of hn, pn follow from Lemma 7.13, applied to (Xω, fω) with
an = 0. Writing (9.19) first for (n, ω) and then for (n − 1,Tω), and then invoking uniqueness, we find that
pn(ξ, ω) = pn−1(ξ,Tω). So

pn(ξ, ω) = pn−1(ξ,Tω) = · · · = p1(ξ,Tn−1ω) =: p(ξ,Tnω).

The proof of Lemma 7.13 represents hn(x, ξ, ω) as a limit of expressions which are measurable in (x, ξ, ω), so
(x, ξ, ω) 7→ hn(x, ξ, ω) is measurable. By (9.19), (ω, ξ) 7→ p(ξ, ω) is measurable.

Step 2: Let K := ess sup |f| and let ε0 be the ellipticity constant from (E). For every R > 0 there exists a constant
C(ε0, K, R) such that |p(ξ, ω) | ≤ C(ε0, K, R) for all ω ∈ Ω and |ξ | ≤ R.

Proof of the Step. See the proof of Lemma 7.14.

Step 3:Let PN (ξ, ω) :=
N∑
k=1

p(ξ,Tkω), then for everyω ∈ Ω such thatVω
N → ∞,G

ω
N (ξ) = (Vω

N /N )
[
PN (ξ, ω)/Vω

N +

O
(
1/Vω

N

)]
uniformly on compact sets of ξ in R.

Proof of the Step. It is convenient to work with

F ω
N (ξ) :=

1
Vω
N

logEω (eξS
ω
N ) ≡ (N/Vω

N )GωN (ξ).

Let PN (ξ, ω) := PN (ξ, ω) +
(
Eω (SωN ) − d

dη
��η=0PN (η, ω)

)
ξ. By Lemmas 7.16–7.18,(1) d

dη
��η=0PN (η, ω) exists,

(2) |PN (ξ, ω) − PN (ξ, ω) | = O(1) uniformly on compact sets of ξ,
(3) |F ω

N (ξ) − PN (ξ)/Vω
N | = O(1/Vω

N ) uniformly on compact sets of ξ.

Step 3 follows.

We can now prove the a.s. convergence of GωN (ξ). By the assumptions of the theorem, fΩ is not relatively
cohomologous to a constant. Therefore, by Theorem 9.10, there exists σ2 > 0 such that Vω

N ∼ σ
2N as N → ∞

for a.e. ω.
Fix a countable dense set {ξ1, ξ2, . . .} ⊂ R. For each i, ω 7→ p(ξi, ω) is bounded and measurable. By Fact 3,

for a.e. ω,

lim
N→∞

GωN (ξi) = σ2 lim
N→∞

1
Vω
N

N∑
k=1

p(ξi,Tkω) = lim
N→∞

1
N

N∑
k=1

p(ξi,Tkω)

=

∫
Ω

p(ξi, ω)m(dω), by the pointwise ergodic theorem.

This shows that for all i there exists G(ξi) ∈ R such that lim
N→∞

GωN (ξi) = G(ξi) for a.e. ω, with G(ξi)

independent of ω. Let Ω′ denote the set of full measure of ω where this holds for all i ∈ N.

If K := ess sup |fΩ |, then |(GωN )′(ξ) | ≤
������

|ξ |Eω ( |SωN |e
ξSωN )

NEω (eξSωN )

������
≤
|ξ |K N

N
= K |ξ |. Therefore, the functions

ξ 7→ GωN (ξ) are equicontinuous on compacts.
If a sequence of functions on R is equicontinuous on compacts and converges on a dense subset of R, then it

converges on all of R to a continuous limit. So there is a continuous function F ω (ξ) such that

lim
N→∞

GωN (ξ) = F ω (ξ) for all ξ ∈ R and ω ∈ Ω′.

In fact F ω (ξ) does not depend on ω, because by virtue of continuity,
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F ω (ξ) = lim
k→∞

F ω (ξik ) = lim
k→∞

G(ξik ), whenever ξik −−−−→
k→∞

ξi,

and the RHS is independent of ω. We are therefore free to write F ω (ξ) = F (ξ).
It remains to show that F (ξ) is continuously differentiable and strictly convex on R. Fix ω ∈ Ω′. Applying

Theorem 7.3 to (Xω, fω) we find that for every R > 0 there is a C = C(R) such that C−1 ≤ (F ω
N )′′ ≤ C on

[−R, R]. So F is continuously differentiable and strictly convex on (−R, R), because of the following fact:

Lemma 9.27 Suppose ϕn : R → R are twice differentiable convex functions such that C−1 ≤ ϕ′′n ≤ C with
C > 0, on (−R, R). If ϕn −−−−−→

N→∞
ϕ pointwise on (−R, R), then ϕ is continuously differentiable and strictly convex

on (−R, R).

Proof Recall that a pointwise limit of convex functions is convex, and convex functions have one-sided deriva-

tives ϕ′±(ξ) := lim
h→0±

ϕ(ξ + h) − ϕ(ξ)
h

.
Differentiability: For all |ξ | < R,

|ϕ′+(ξ) − ϕ′−(ξ) | = lim
h→0+

�����
ϕ(ξ + h) − ϕ(ξ)

h
−
ϕ(ξ − h) − ϕ(ξ)

h

�����

= lim
h→0+

lim
n→∞

�����
ϕn(ξ + h) − ϕn(ξ)

h
−
ϕn(ξ − h) − ϕn(ξ)

h

�����
= lim

h→0+
lim
n→∞

|ϕ′n(ξn) − ϕ′n(ηn) | for some ξn, ηn ∈ (ξ − h, ξ + h)

≤ lim
h→0+

lim
n→∞

2Ch = 0, because |ϕ′′n | ≤ C on a neighborhood of ξ.

We find that ϕ′+(ξ) = ϕ′−(ξ), whence ϕ is differentiable at ξ.
Strict Convexity: Suppose −R < ξ < η < R, then

ϕ′(η) − ϕ′(ξ) = ϕ′+(η) − ϕ′−(ξ) = lim
h→0+

ϕ(η + h) − ϕ(η)
h

−
ϕ(ξ − h) − ϕ(ξ)

h

= lim
h→0+

lim
n→∞

ϕn(η + h) − ϕn(η)
h

−
ϕn(ξ − h) − ϕn(ξ)

h
= lim

h→0+
lim
n→∞

ϕ′n(ηn) − ϕ′n(ξn) for some ξn ∈ [ξ − h, ξ], ηn ∈ [η, η + h]

≥ lim
h→0+

lim inf
n→∞

C−1 |ηn − ξn | = C−1(η − ξ), because ϕ′′n > C−1 on (−R, R).

It follows that ϕ′ is strictly increasing on (−R, R), whence the strict convexity of ϕ.
The Derivative is Lipschitz Continuous: The same calculation as before shows that if −R < ξ < η < R, then
|ϕ′(η) − ϕ′(ξ) | ≤ C |ξ − η |. �

Part (2): We show that for a.e. ω, the Legendre transforms of GωN converge to the Legendre transform of F .
Again, the proof is based on general properties of convex functions.

Lemma 9.28 Suppose ϕn(ξ), ϕ(ξ) are finite, convex, and differentiable on (−R, R). If ϕn(ξ) −−−−→
n→∞

ϕ(ξ) on
(−R, R), then ϕ′n(ξ) −−−−→

n→∞
ϕ′(ξ) on (−R, R).

Proof Fix ξ ∈ (−R, R). By convexity, for every h > 0 sufficiently small,

ϕn(ξ) − ϕn(ξ − h)
h

≤ ϕ′n(ξ) ≤
ϕn(ξ + h) − ϕn(ξ)

h
. (9.20)

This is because the LHS is at most (ϕn)′−(ξ), the RHS is at least (ϕn)′+(ξ), and by differentiability, (ϕn)′±(ξ) =
ϕ′n(ξ). Passing to the limit n → ∞, we find that
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lim sup ϕ′n(ξ), lim inf ϕ′n(ξ) ∈
[
ϕ(ξ) − ϕ(ξ − h)

h
,
ϕ(ξ + h) − ϕ(ξ)

h

]
for all h > 0.

We now invoke the differentiability of ϕ, pass to the limit h → 0+, and discover that lim sup ϕ′n(ξ) and
lim inf ϕ′n(ξ) are both equal to ϕ′(ξ). �

Lemma 9.29 Let ϕn(ξ), ϕ(ξ) be finite, strictly convex, C1 functions on R, s.t. ϕn(ξ) → ϕ(ξ) for all ξ ∈ R. Let
ϕ′(±∞) := lim

ξ→±∞
ϕ′(ξ). Let ϕ∗n, ϕ∗ denote the Legendre transforms of ϕn, ϕ. Then for all η ∈ (ϕ′(−∞), ϕ′(+∞)),

for n sufficiently large, ϕ∗n is well-defined on a neighborhood of η, and ϕ∗n(η) → ϕ∗(η).

Proof Fix η ∈ (ϕ′(−∞), ϕ′(+∞)). By assumption, ϕ′ is continuous and strictly increasing. Therefore, there
exists some ξ such that ϕ′(ξ) = η.

Fix two constants ε0, M0 > 0 such that |ϕ′ | ≤ M0 on [ξ − ε0, ξ + ε0], and choose 0 < ε < ε0 arbitrarily
small. Choose ξ1 < ξ < ξ2 such that |ξ1 − ξ2 | < ε. Then ϕ′(ξ1) < η < ϕ′(ξ2). Choose δ > 0 such that
ϕ′(ξ1) < η − δ < η + δ < ϕ′(ξ2). By Lemma 9.28, ϕ′n(ξi) → ϕ′(ξi), and therefore there exists N such that for
all n > N ,

−M0 − 1 < ϕ′(ξ1) − 1 < ϕ′n(ξ1) < η − δ < η + δ < ϕ′n(ξ2) < ϕ′(ξ2) + 1 < M0 + 1. (9.21)

Iη := (η − δ, η + δ) ⊂ (ϕ′n(ξ1), ϕ′n(ξ2)) and ϕ′n is continuous and strictly increasing. Therefore, for every η ′ ∈ Iη
there exists a unique ξ ′n ∈ (ξ1, ξ2) so that ϕ′n(ξ ′n) = η ′. So ϕ∗n is well-defined on Iη .

Let ξn be the solution to ϕ′n(ξn) = η. Then ϕ∗n(η) = ξnη − ϕn(ξn). Similarly, ϕ∗(η) = ξη − ϕ(ξ). So

|ϕ∗n(η) − ϕ∗(η) | ≤ |ξn − ξ | · |η | + |ϕn(ξn) − ϕ(ξ) |
≤ |ξ1 − ξ2 | · |η | + |ϕn(ξn) − ϕn(ξ) | + |ϕn(ξ) − ϕ(ξ) |
!
≤ ε |η | + (M0 + 1) |ξn − ξ | + |ϕn(ξ) − ϕ(ξ) |, ∵ |ϕ′n | ≤ M0 + 1 on (ξ1, ξ2) by (9.21)
≤ ε(M0 + 1 + |η |) + o(1), as n → ∞.

Since ε is arbitrary, ϕ∗n(η) → ϕ∗(η). �

Let IωN be the Legendre transforms of GωN , and let I be the Legendre transform of F . By the last lemma, for
a.e. ω, IωN is eventually defined on each compact subset of (−F ′(−∞), F (∞)), and converges there to I.

Part (3): We analyze the function I(η). Fix ω such that ϕN (ξ) = 1
N logEω (eξSωN ) converges pointwise to F .

By Lemma 9.29, ϕ∗N converges pointwise to I. Since ϕ′′N is uniformly bounded away from zero and infinity on
compacts (see the first part of the proof), (ϕ∗N )′′ is uniformly bounded away from zero and infinity on compacts,
see Lemma 7.23. By Lemma 9.27, I = lim ϕ∗N is strictly convex and continuously differentiable.

By Lemma 9.28, (ϕ∗N )′(η) −−−−−→
N→∞

I ′(η) for all η in the interior of the range of ϕ′, and ϕ′N (ξ) −−−−−→
N→∞

F ′(ξ)

for all ξ ∈ R. The convergence is uniform on compacts, because (ϕ∗N )′′, ϕ′′N are bounded on compacts.
It is easy to verify that ϕN is twice differentiable. Therefore by Lemma 7.23, ϕ∗N is twice differentiable and

(ϕ∗N )′(ϕ′N (ξ)) = ξ for all ξ. Passing to the limit as N → ∞ we obtain the identity

I ′(F ′(ξ)) = ξ for all ξ ∈ R. (9.22)

F ′ is strictly increasing, because it is the derivative of a strictly convex function. Since I ′(F ′(ξ)) = ξ,
I ′(η) −−−−−−−−−→

η→F ′(±∞)
±∞. By convexity, I is continuous where it is finite, and therefore has compact level sets.

Substituting ξ = 0 in (9.22), we obtain I ′(F ′(0)) = 0, so η = F ′(0) is a critical point of I(·). By strict
convexity, I attains its global minimum at F ′(0). In addition,

I(F ′(0)) = 0 · F ′(0) − F (0) = 0.

We conclude that I(η) = 0 when η = F ′(0), and I(η) > 0 for η , F ′(0).



196 9 Local Limit Theorems for Markov Chains in Random Environments

It remains to see that F ′(0) is equal to the asymptotic mean µ. In part 1 we saw that for a.e. ω, F (ξ) =
lim(GωN )(ξ) on R, and GωN and F are differentiable. By Lemma 9.28, for a.e. ω, F ′(0) = lim(GωN )′(0) =
limEω (SωN )/N = µ.

Part (4): We calculate the large deviations thresholds.
Without loss of generality, σ2 = 1, otherwise we work with f̃Ω := fΩ/σ and notice that the thresholds,

asymptotic mean, and the asymptotic log-moment generating function associated to f̃Ω are related to those of f
by c̃± = σc±, r̃± = σr±, µ̃ = µ/σ, and F̃ (ξ) = F (ξ/σ). Since σ2 = 1, for a.e. ω, Vω

N ∼ N , and for all ξ ∈ R,

F (ξ) = lim
N→∞

F ω
N (ξ), where F ω

N (ξ) =
1

Vω
N

logEω (eξS
ω
N ).

Step 1. For a.e. ω, c+(Xω, fω) ≥ F ′(+∞) − µ and c−(Xω, fω) ≤ F ′(−∞) − µ.
Proof of the Step. Fix η ∈ (F ′(−∞) − µ, F ′(+∞) − µ), and choose η± such that

F ′(−∞) − µ < η− < η < η+ < F ′(+∞) − µ.

Take ξ± such that F ′(ξ±) − µ = η±. By Lemma 9.28 and the definition of µ,

lim
N→∞

(F ω
N )′(ξ±) −

Eω (SωN )
Vω
N

= η± a.s.

In particular, if zN−E(SωN )
Vω
N

→ η, then for all large N ,

zN − Eω (SωN )
Vω
N

∈

[
(F ω

N )′(ξ−) −
Eω (SωN )

Vω
N

, (F ω
N )′(ξ+) −

Eω (SωN )
Vω
N

]
,

and {zN } is admissible. So for a.e. ω, every η ∈ (F ′(−∞) − µ, F ′(+∞) − µ) is reachable (recall that by our
assumption lim

N→∞
VN/N = 1). Since c+ is the supremum of reachable points, c+ ≥ F ′(+∞) − µ. Similarly, one

shows that c− ≤ F ′(−∞) − µ.

Step 2. For a.e. ω, c+(Xω, fω) ≤ F ′(+∞) − µ and c−(Xω, fω) ≥ F ′(−∞) − µ.

Proof of the Step. Fix ω such that Vω
N /N→σ2=1, E(SωN )/N → µ, and (F ω

N )′ → F ′ on R (a.e. ω is like that).
Take η > F ′(∞) − µ, and assume by way of contradiction that η is reachable. Let zN be an admissible sequence
such that zN−E(SωN )

Vω
N

→ η.
By admissibility, for some R, for all N large,

zN − Eω (SωN )
Vω
N

∈

[
(F ω

N )′(−R) −
Eω (SωN )

Vω
N

, (F ω
N )′(R) −

Eω (SωN )
Vω
N

]
.

Necessarily, η ≤ F ′(R) − µ, whence by convexity, η ≤ F ′(∞) − µ. But this contradicts the choice of η.

Step 3. r+(ω):= lim
N→∞

ess sup[SωN − E(SωN )]
Vω
N

, r−(ω):= lim
N→∞

ess inf[SωN − E(SωN )]
Vω
N

exist a.e., and are a.e. constant.

Proof of the Step. It is enough to prove the statement for r+; the statement for r− follows by considering −fΩ.
Let SN (ω) = ess sup SωN − E

ω (SωN ). By (S), {XT Nω
i }i≥1 is equal in distribution to {Xω

i }i≥N+1. So
Eω (SωN+M ) = Eω (SωN ) + ET

Nω (ST
Nω

M ). It is not difficult to see using (E) and (B) that

ess sup SωN+M ≤ ess sup SωN + ess sup ST
Nω

M − 4K .

Thus the sequence TN (ω) = SN (ω) − 4K is sub-additive, with respect to the noise process (Ω,F ,m,T ). Since
SN (ω) ≥ −K N , the subadditive ergodic theorem implies that the limit
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lim
N→∞

SN (ω)
N

= lim
N→∞

TN (ω)
N

exists, and is independent of ω with probability one. The step follows, since

Vω
N /N → σ2 = 1 a.s.

Step 4. c+ = r+ and c− = r−.
Proof of the Step. By §7.4, c+ ≤ r+ and c− ≥ r−, so it is enough to show that c+ ≥ r+ and c− ≤ r−.

Fix ε > 0. By Step 3, for each sufficiently large N0, there exists γ′ε,N0
> 0 and a set Ω′ε,N0

with measure
bigger than 1 − 1

3ε
2, such that all ω ∈ Ω′ε,N0

,

Pω
(
SωN0
− E(SωN0

) ≥ (r+ −
1
2
ε)Vω

N0
+ 8K

)
≥ γ′ε,N0

. (9.23)

By (E), (B) and (S), for all sufficiently large N0, we can find γ′′ε,N0
> 0 and Ω′′ε,N0

with measure bigger than
1 − 1

2ε
2 such that for all ω ∈ Ω′′ε,N0

,

Pω
(
SωN0
− E(SωN0

) ≥ (r+ −
2
3
ε)Vω

N0

����X
ω
1 , Xω

N0+1

)
≥ γ′′ε,N0

.

Since Vω
N /N → σ2 = 1, by choosing N0 sufficiently large, we can find γε,N0 > 0 andΩε,N0 with measure bigger

than 1 − ε2 such that for all ω ∈ Ωε,N0 ,

Pω
(
SωN0
− E(SωN0

) ≥ (r+ − ε)N0
���� Xω

1 , Xω
N0+1

)
≥ γε,N0, (9.24)

and Vω
N ≥ N/2 for N ≥ N0.

Given M , let j1(ω) < j2(ω) < · · · < jnM (ω) (ω) be all the times 1 ≤ j < M when T jN0 (ω) ∈ Ωε,N0 . Then

Pω
(
SωN0M

− Eω (SωN0M
)≥nM (r+ − ε)N0 − (M − nM )N0K

) !
≥ γnM

ε,N0
≥ γMε,N0

.

To see this, condition on Xω
1 , Xω

N0+1, . . . , Xω
MN0+1 tomake the partial sums of terms involving Xω

`N0+1, . . . , Xω
(`+1)N0+1

independent for different `; then use (9.24) or (B) to control the partial sums; finally take the expectation over
Xω

1 , Xω
N0+1, . . . , Xω

MN0+1.
The pointwise ergodic theorem for TN0 : Ω → Ω says that there is a TN0 -invariant function β(ω) such that

for a.e. ω,
β(ω) = lim

M→∞

nM (ω)
M

and
∫

β(ω)dm = m(Ωε,N0 ) > 1 − ε2

(β(ω) is not necessarily constant, because TN0 is not necessarily ergodic). Clearly β(ω) ≤ 1. Therefore
m[β > 1 − ε] > 1 − ε. So for large M , and on a set Ωε of measure bigger than 1 − ε,

nM

M
> 1 − ε. On Ωε ,

nM (r+ − ε)N0 − (M − nM )N0K ≥ [(1 − ε)(r+ − ε) − εK] N0M .

Thus, for all ε > 0 small, on a set of ω with probability at least 1 − ε − ε2, there is an ηε > 0 and two constants
C1,C2 > 0 independent of ε such that for all N large,

Pω[SωN ≥ E
ω (SωN ) + (r+ − C1ε)N + C2εN] ≥ ηV

ω
N
ε . (9.25)

(In (9.25) we used the inequality Vω
N > N/2, which is valid on Ωε,N0 .)

Next we claim that for all ε > 0 small, on a set of ω with probability at least 1− ε, there is a θε > 0 such that
for all N large,
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Pω[SωN ≤ E
ω (SωN ) + (r+ − C1ε)N − C2εN] ≥ θV

ω
N

ε . (9.26)

Indeed, By Theorem 7.26, r+ ≥ c+ > 0. Choose ε > 0 such that (C1 + C2)ε < r+. Then Pω[SωN ≤ E
ω (SωN ) +

(r+ − C1ε)N − C2εN] ≥ Pω[SωN ≤ E
ω (SωN )]→ 1/2, by Dobrushin’s CLT.

By (9.25) and (9.26), zN:=Eω (SωN ) + (r+ −C1ε)N is admissible for ω in a set of measure at least 1 − 2ε, and
therefore c+ ≥ (1 −O(ε))r+ on a set of ω with probability bigger than 1 − 2ε. Taking ε → 0, we obtain c+ ≥ r+
as required.

By symmetry, c− ≤ r−. �

Proof of Theorems 9.14 and 9.19.By Proposition 9.24, Gess (Xω, fω) = R a.e. in case (1), and Gess (Xω, fω) = Z
a.e. in case (2). Parts (1) and (2) of Theorem9.14 then follow fromTheorem7.26, usingVω

N ∼ Nσ2,E(SωN ) ∼ N µ.
Part (3) follows from Theorem 7.4(4). Theorem 9.19 has a similar proof, using Theorem 7.8. �

9.4 Notes and References

Markov chains in random environment were introduced by Cogburn [27]. Probabilistic limit theorems for MCRE
are given in Cogburn [28], Seppäläinen [180], Kifer [111], [112] and Hafouta & Kifer [93, Ch. 6,7],[92].

In dynamical systems, one studies a setup similar to MCRE, called a “random dynamical system." In this
setup, one iterates a map Tω with ω varying randomly from iterate to iterate. For a fixed realization of noise,
a random dynamical system reduces to a “sequential" (aka “time-dependent" or “non-autonomous") dynamical
system. Limit theorems for random dynamical systems can be found in Kifer [112] Conze, Le Borgne & Roger
[30], Denker & Gordin [42], Aimino, Nicol & Vaienti [9], Nicol, Török & Vaienti [151], and Dragičević,
Froyland & González-Tokman [64] (this is a partial list). For limit theorems for sequential dynamical systems,
see Bakhtin [12], Conze & Raugi [31], Haydn, Nicol, Török & Vaienti [97], Korepanov, Kosloff & Melbourne
[120], and Hafouta [90, 91].

If we set the noise process to be the identity on the one point space, then the LLT in this chapter reduce to
LLT for homogeneous stationary Markov chains, see Chapter 8 and references therein.

The results of this chapter are all essentially known in the case when T preserves a finite measure. Theorem
9.10 was proved in the more general setup of random dynamical systems by Kifer [112],[110]. Corollary 9.13
and the first two parts of Lemma 9.8 are close to results in [110],[111], and the third part is due to Hafouta
(private communication). Theorem 9.11 is close to the results of Dragičević, Froyland &González-Tokman [64],
and Hafouta & Kifer [93, chapter 7, Theorem 7.1.5]. The main difference is in the irreducibility assumptions.
Our condition of not being relatively cohomologous to a coset is replaced in [93] by what these authors call the
“lattice" and “non-lattice" cases (this is not the same as our terminology). In the paper [64], the non-cohomology
condition is replaced by a condition on the decay of the norms of certain Nagaev perturbation operators, and a
connection to a non-cohomology condition is made under additional assumptions.

The results for infinite measure noise processes seem to be new. The reason we can also treat this case, is that
the LLT we provide in this work do not require any assumptions on the rate of growth of VN , and they also work
when it grows sub-linearly. It would be interesting to obtain similar results for more general stochastic processes
(or deterministic systems) in random environment with infinite invariant measure.



Appendix A
The Gärtner-Ellis Theorem in One Dimension

A.1 The Statement

The Legendre-Fenchel transform of a convex function ϕ : R→ R is the function ϕ∗ : R→ R∪ {+∞} given by

ϕ∗(η) := sup
ξ ∈R
{ξη − ϕ(ξ)}.

This is closely related to the Legendre transform, defined by (7.40), see Lemma A.3 below. Our purpose is to
show the following special case of the Gärtner-Ellis theorem:

Theorem A.1 Suppose an → ∞, and let Wn be a sequence of random variables such that E(eξWn ) < ∞ for all
ξ ∈ R. Assume that the limit

F (ξ) := lim
n→∞

1
an

logE(eξWn )

exists for all ξ ∈ R, and is differentiable and strictly convex on R. Let I(η) be the Legendre-Fenchel transform
of F (ξ). Then:

(1) For every closed set F ⊂ R, lim sup
n→∞

1
an

logP[Wn/an ∈ F] ≤ − inf
η∈F

I (η).

(2) For every open set G ⊂ R, lim inf
n→∞

1
an

logP[Wn/an ∈ G] ≥ − inf
η∈G

I (η).

A.2 Background from Convex Analysis

To prove Theorem A.1 we need to recall some standard facts from convex analysis.

Lemma A.1 Suppose ϕ : R → R is a convex function which is differentiable on R. Then ϕ is continuously
differentiable on R.

Proof By convexity, for every h > 0, ϕ(z)−ϕ(z−h)
h ≤ ϕ′(z) ≤ ϕ(z+h)−ϕ(z)

h . So

lim sup
y→x

ϕ′(y)−ϕ′(x)≤lim sup
y→x

[
ϕ(y + h) − ϕ(y)

h
−
ϕ(x) − ϕ(x − h)

h

]
=
ϕ(x + h) − ϕ(x)

h
−
ϕ(x) − ϕ(x − h)

h
−−−−→
h→0

ϕ′(x) − ϕ′(x) = 0. Similarly, lim inf
y→x

ϕ′(y) − ϕ′(x) ≥ 0. Thus lim
y→x

ϕ′(y) = ϕ′(x). �

The derivative of a differentiable convex function is monotone increasing. For such functions we can safely
define ϕ′(∞) := lim

ξ→∞
ϕ′(ξ), ϕ′(−∞) := lim

ξ→−∞
ϕ′(ξ).

Lemma A.2 If ϕ : R → R is strictly convex and differentiable on R, then the Legendre transform ψ of ϕ is
continuously differentiable and strictly convex on (ϕ′(−∞), ϕ′(∞)). In addition, ψ ′ ◦ ϕ′ = id there.

Proof By strict convexity, ϕ′ is strictly increasing. By the previous lemma, ϕ′ is continuous. So the Legendre
transform ψ of ϕ is well-defined on (ϕ′(−∞), ϕ′(∞)). Fix h , 0 and η so that η, η + h ∈ (ϕ′(−∞), ϕ′(∞)). Then
∃!ξ, ξh such that ϕ′(ξ) = η, ψ(η) = ξη − ϕ(ξ), ϕ′(ξh) = η + h, ψ(η + h) = ξh (η + h) − ϕ(ξh).

The following identities hold:

ψ(η + h) − ψ(η)
h

=
[ξh (η + h) − ϕ(ξh)] − [ξη − ϕ(ξ)]

h

199
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=
(ξh − ξ)η + ϕ(ξ) − ϕ(ξh)

h
+ ξh = (ξh − ξ)

[
1
h

(
η −

ϕ(ξh) − ϕ(ξ)
ξh − ξ

)]
+ ξh .

By convexity, the term in the square brackets lies between 1
h (η−ϕ′(ξ)) = 0 and 1

h (η−ϕ′(ξh))=−1. Therefore

it is bounded, and
ψ(η + h) − ψ(η)

h
= ξh +O(|ξh − ξ |).

By strict convexity, ϕ′ is increasing, and by the previous lemma, ϕ′ is continuous. It follows that the inverse
function of ϕ′ is well-defined and continuous. Consequently, ξh = (ϕ′)−1(η + h) −−−−→

h→0
(ϕ′)−1(η) = ξ. It follows

that
ψ(η + h) − ψ(η)

h
= ξh +O( |ξh − ξ |) −−−−→

h→0
ξ = (ϕ′)−1(η).

Thus ψ is differentiable on (ϕ′(−∞), ϕ(∞)), and ψ ′ = (ϕ′)−1 there. Looking at this formula, we recognize
that ψ ′ is continuous and increasing, which shows that ψ is C1 and strictly convex on (ϕ′(−∞), ϕ′(∞)). �

Lemma A.3 Let F : R→ R be a finite, differentiable, and strictly convex function. Let I denote the Legendre-
Fenchel transform of F . Then:

(1) I is convex on R. (2) I = +∞ outside of [F ′(−∞), F ′(∞)].
(3) I agrees with the Legendre transform of F on (F ′(−∞), F ′(∞)). On this interval I is strictly convex,

differentiable, and I ′ ◦ F ′ = id.
(4) I is increasing to the right of F ′(0) and decreasing to the left of F ′(0).

Proof The first statement follows from the sub-additivity of the supremum.
To see the second statement, let ϕη (ξ) := ξη − F (ξ).

• If η > F ′(∞), then ϕ′η (ξ) −−−−→
ξ→∞

η − F ′(∞) > 0, so ϕη (ξ) −−−−→
ξ→∞

+∞.

• If η < F ′(−∞), then ϕ′η (ξ) −−−−−→
ξ→−∞

η − F ′(−∞) < 0, and ϕη (ξ) −−−−−→
ξ→−∞

+∞.

In both cases, I(η) = sup
ξ
ϕη (ξ) = +∞.

Now suppose η ∈ (F ′(−∞), F ′(∞)). By Lemma A.1, F ′ is continuous, and by strict convexity, F ′ is strictly
increasing. So there is exactly one ξ0, where F ′(ξ0) = η. As ϕη (ξ) is concave, this is the point where ϕη (ξ)
attains its global maximum, and we find that I(η) = ϕη (ξ0) = ξ0η − F (ξ0). It follows that I agrees with the
Legendre transform of F at η. The remaining parts of part 3 follows from Lemma A.2.

By part 3, I ′(F ′(0)) = 0, therefore I attains its global minimum at F ′(0), and is decreasing on
(F ′(−∞), F ′(0)) and increasing on (F ′(0), F ′(∞)). At this point it is already clear that I satisfies the
conclusion of part 4 on (F ′(−∞), F ′(∞)). Since I is finite on (F ′(−∞), F ′(∞)) and equal to +∞ outside
[F ′(−∞), F ′(∞)], we just need to check that the values of I at F ′(±∞) do not spoil the monotonicity. Indeed
they do not. For example, for every F ′(0) ≤ ξ < F ′(∞),

I(F ′(∞)) = lim
t→0+

(1 − t)I(F ′(∞)) + tI(F ′(0)) ≥ lim
t→0+
I

(
(1 − t)F ′(∞) + tF ′(0)

)
≥ I(ξ),

where the first inequality holds because I is convex on R and the second holds because I is increasing on
[F ′(0), F ′(∞)).

Similarly, for every F ′(−∞) ≤ ξ < F ′(0), we have I(F ′(−∞)) ≥ I(ξ). �

Lemma A.4 Let ϕ : R → R be a convex function with Legendre-Fenchel transform ϕ∗, and suppose ϕ∗(η0) =
ξ0η0 − ϕ(ξ0). Then the Legendre-Fenchel transform of ϕ(ξ + ξ0) − ϕ(ξ0) is ϕ∗(η) − ϕ∗(η0) + ξ0(η0 − η).

Proof At η, this Legendre transform is equal to

sup
ξ

[
ξη − ϕ(ξ + ξ0) + ϕ(ξ0)

]
= sup

ξ

[
(ξ + ξ0)η − ϕ(ξ + ξ0)

]
+ ϕ(ξ0) − ξ0η

= ϕ∗(η) −
[
ξ0η − ϕ(ξ0)

]
= ϕ∗(η) −

[
ξ0η0 − ϕ(ξ0)

]
+ ξ0(η0 − η).

The lemma follows from the identity ϕ∗(η0) = ξ0η0 − ϕ(ξ0). �
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A.3 Proof of the Gärtner-Ellis Theorem

Proof of the Upper Bound: Suppose η ≥ F ′(0). For every ξ ≥ 0,

lim sup
n→∞

1
an

logP[Wn/an ≥ η] ≤ lim
n→∞

1
an

logE(eξ (Wn−anη)) = F (ξ) − ξη.

This is also true for ξ < 0, because for such ξ, since F (0) = 0,

F (ξ) − ξη = |ξ |
(
η −
F (ξ) − F (0)

ξ

)
≥ |ξ |(η − F ′(0)) ≥ 0 ≥ lim sup

n→∞

1
an

logP[Wn/an ≥ η].

In summary, lim sup
n→∞

1
an

logP[Wn/an ≥ η] ≤ F (ξ) − ξη for all ξ ∈ R. Passing to the infimum on ξ, we obtain

that lim sup
n→∞

1
an

logP[Wn/an ≥ η] ≤ −I(η) for all η ≥ F ′(0). Similarly, one shows that

lim sup
n→∞

1
an

logP[Wn/an ≤ η] ≤ −I(η) for all η ≤ F ′(0).

Every closed set F ⊂ R can be covered by at most two sets of the form (−∞, η1] and [η2,∞) where ηi ∈ F
and η1 ≤ F

′(0) ≤ η2. By Lemma A.3(4), inf
F
I = min{I(ηi)}.

So lim sup
n→∞

1
an

logP[Wn/an ∈ F]
!
≤ − inf

F
I ( ∵ log(A + B) ≤ 2 +max(log A, log B)).

Proof of the Lower Bound: We begin with the special case G = (α, β), where F ′(0) ≤ α < β ≤ F ′(∞). Fix
0 < δ <

β−α
2 arbitrarily close to zero.

Define ξδ, ηδ by
ηδ := α + δ, F ′(ξδ ) = ηδ .

Since I ′ ◦ F ′ = id on (F ′(−∞), F ′(∞)), ξδ = I ′(ηδ ), and since I is increasing to the right of F ′(0), ξδ > 0.
Let µn(dt) denote the probability measures on R given by µn(E) := P[Wn ∈ E]. Construct the change of

measure
µ̃n(dt) =

eξδ t µn(dt)
E(eξδWn )

,

and let W̃n denote the random variables such that P[W̃n ∈ E] = µ̃n(E).

Claim. P[W̃n/an ∈ (α, α + 2δ)] −−−−→
n→∞

1.

Proof of the Claim. Clearly, logE(etW̃n ) = logE[e(t+ξδ )Wn/E(eξδWn )]. Therefore,

lim
n→∞

1
an

logE(etW̃n ) = F̃ (t) := F (t + ξδ ) − F (ξδ ).

By Lemma A.4, the Legendre-Fenchel transform of F̃ is

Ĩ(s) = I(s) − I(ηδ ) + ξδ (ηδ − s).

Note that F̃ ′(0) = ηδ = α + δ. Therefore, by the upper bound we just proved,

lim sup
n→∞

1
an

logP[W̃n/an ≥ α + 2δ] ≤ −Ĩ(α + 2δ)

= −
[
I(α + 2δ) − I(ηδ ) − ξδδ

]
= −δ

[
I(ηδ + δ) − I(ηδ )

δ
− I ′(ηδ )

]
!
< 0,

where the last inequality is because I is strictly convex. It follows that
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P[W̃n/an ≥ α + 2δ]→ 0.

Similarly, working with the random variables −W̃n, one shows that

lim sup
n→∞

1
an

logP[W̃n/an ≤ α] ≤ −Ĩ(α)

= −
[
I(α) − I(ηδ ) + ξδδ

]
= −δ

[
I ′(ηδ ) −

I(ηδ ) − I(α)
δ

]
< 0,

whence, again, P[W̃n/an ≤ α]→ 0. The claim follows.

We now return to the problem of bounding lim inf
n→∞

1
an

logP[Wn/an ∈ G]. Since (α, β) ⊃ (α, α + 2δ) and
ξδ > 0,

lim inf
n→∞

1
an

logP[Wn/an ∈ (α, β)] ≥ lim inf
n→∞

1
an

logP[Wn/an ∈ (α, α + 2δ)]

≥ lim inf
n→∞

1
an

logE
(
1(α,α+2δ) (Wn/an)

eξδ (Wn−(α+2δ)an )

E(eξδWn )
E(eξδWn )

)
= lim inf

n→∞

1
an

log
[
E

(
1(α,α+2δ) (W̃n/an)

)
e−ξδ (α+2δ)anE(eξδWn )

]

= lim
n→∞

1
an

logP
(
W̃n/an ∈ (α, α + 2δ)

)
− ξδ (a + 2δ) + F (ξδ )

= 0 − (ξδηδ − F (ξδ )) − ξδδ = −I(ηδ ) − ξδδ −−−−→
δ→0

−I(α) !
= − inf

(α,β)
I,

because I is increasing on (α, β), by the assumptions on α and β.
Similarly, one shows that whenever F ′(−∞) ≤ α < β ≤ F ′(0), then

lim inf
n→∞

1
an

logP[Wn/an ∈ (α, β)] ≥ − inf
(α,β)
I.

Since I = +∞ outside [F ′(−∞), F ′(∞)], and every open set is a union of intervals, this implies the lower
bound for every open set G which does not contain F ′(0).

Now suppose that G does contain F ′(0). Observe that inf
G
I = 0, because zero is the global minimum of I,

and by Lemma A.3(3), I(F ′(0)) = 0× F ′(0) − F (0) = 0. Since G is open, G ⊃ (F ′(0) − α, F ′(0) + α) with
α positive, and then by the upper bound and the positivity of I(F ′(0)±α) (which follows from Lemma A.3(4))

lim sup
n→∞

1
an

logP[Wn/an < (F ′(0) − α, F ′(0) + α)] < 0.

So P[Wn/an < G]→ 0, and lim
n→∞

1
an

logP[Wn/an ∈ G] = 0. Since, as noted above, inf
G
I = 0, the result follows.

�

A.4 Notes and References

Theorem A.1 is a special case of results by Gärtner [77] and Ellis [69], which apply to vector valued random
variables, and which assume less on F (ξ). The special case discussed above follows (up to minor details) from
the work of Plachky & Steinbach [158]. The proof we gave here is based on Ellis’s book [70, §VII.3]. See [40,
§2.3] and [164, §12.2] for additional discussions of Gärtner–Ellis Theorem and its applications.



Appendix B
Hilbert’s Projective Metric and Birkhoff’s Theorem

B.1 Hilbert’s Projective Metric

Suppose (V, ‖ · ‖) is a normed vector space over R. A cone is a set K ⊂ V such that

(1) K + K ⊂ K ;
(2) λK ⊂ K for all λ > 0;
(3) K ∩ (−K ) = {0};
(4) K is closed, and the interior of K , int(K ), is non-empty.

Necessarily K = int(K ): Suppose x ∈ K and y ∈ int(A); Then x = lim xn, where xn := x + 1
n y, and

xn ∈ int(K ). Indeed, by the assumption on y there is an open ball B ⊂ K such that y ∈ B, and therefore
xn ∈ B′ := x + 1

n B ⊂ K + K ⊂ K .
Every cone determines a partial order on V by x ≤ y ⇔ y − x ∈ K . Sometimes we will write ≤K instead of

≤.
Note that x ≥ 0⇔ x ∈ K , and x ≤ y ⇒ λx ≤ λy for all λ > 0.
Two x, y ∈ K \ {0} are comparable if my ≤ x ≤ My for some M,m > 0. Let

M (x |y) := inf{M > 0 : x ≤ My};
m(x |y) := sup{m > 0 : my ≤ x}.

Clearly, m(x |y) = M (y |x)−1.
Lemma B.1 If x, y ∈ K \ {0} are comparable, then M (x |y),m(x |y) are finite positive numbers. They are the
best constants in the inequality m(x |y)y ≤ x ≤ M (x |y)y.

Proof Choose Mn ↓ M (x |y) such that x ≤ Mny. So Mny− x ∈ K for all n. Passing to the limit and recalling that
K is closed, we obtain M (x |y)y − x ∈ K . So x ≤ M (x |y)y. Necessarily, M (x |y) > 0: Otherwise M (x |y) = 0,
and x ≤ 0, whence −x ∈ K . But this is impossible, since K ∩ (−K ) = {0} and x , 0.

By the symmetry m(x |y) = M (y |x)−1, x ≥ m(x |y)y, and m(x |y) < ∞. �

Hilbert’s projective metric (of K ) is dK (x, y) := log
(

M (x |y)
m(x |y)

)
, (x, y comparable).

Proposition B.2 Any two x, y ∈ int(K ) are comparable. Hilbert’s projective metric is a pseudo-metric on int(K ),
and dK (x, y) = 0 iff x, y are collinear. If x, x ′ are collinear and y, y′ are collinear, then dK (x ′, y′) = dK (x, y).
Proof Let B(z, r) := {x ∈ V : ‖x − z‖ < r }.

Comparability of x, y ∈ int(K ): Choose r > 0 such that B(x, r), B(y, r) ⊆ int(K ), then x−ry/‖y‖, y−r x/‖x‖ ∈
K , whence r

‖y ‖ y ≤ x ≤ ‖x ‖
r y.

Positivity: Fix two comparable x, y and let M := M (x |y), m := m(x |y). We saw that my ≤ x ≤ My, so
x − my, My − x ∈ K , whence

(
M
m − 1

)
x= M

m (x − my) + (My − x) ∈K . Necessarily, M/m ≥ 1, otherwise(
1 − M

m

)
x ∈ K , and K ∩ (−K ) 3

(
M
m − 1

)
x , 0. So dK (x, y) = log(M/m) ≥ 0. In addition, if dK (x, y) = 0 iff

M = m. In this case ±(My − x) ∈ K , so My = x and x, y are collinear.

Symmetry: dK (·, ·) is symmetric, because M (x |y) = m(y |x)−1.

Triangle Inequality: If x, y, z ∈ int(K ), then x ≤ M (x |y)y ≤ M (x |y)M (y |z)z and x ≥ m(x |y)y ≥
m(x |y)m(y |z)z. Since K + K ⊂ K , ≤ is transitive. Therefore M (x |z) ≤ M (x |y)M (y |z) and m(x |z) ≥
m(x |y)m(y |z). The result follows.

Projective Property: If x ′ = λx, then M (x ′ |y) = λM (x |y) and m(x ′ |y) = λm(x |y), so dK (x ′, y) = dK (x, y).
Similarly, if y′ = λ ′y, then dK (x ′, y′) = dK (x ′, y). So dK (x ′, y′) = dK (x, y). �
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Corollary B.3 Hilbert’s projective metric is a proper metric on the “projectivization" of the interior of K ,
PK := int(K )/ ∼ , where x ∼ y iff x, y are collinear.

Proposition B.4 If x ∈ K \ int(K ) and y ∈ int(K ), then x, y are not comparable.

Proof Suppose by contradiction that x, y are comparable; then x − my ∈ K for some m > 0. Let B denote the
open unit ball in V . Since y ∈ int(K ), y+εB ⊂ K for some ε > 0. Therefore x+mεB = (x−my)+m(y+εB) ⊂
K + mK ⊂ K, and x ∈ int(K ). But this contradicts the assumption on x. �

B.2 Contraction Properties

Let Vi be two normed vector spaces, and let Ki ⊂ Vi be cones. A linear map A : V1 → V2 is called non-negative
(with respect to K1, K2), if A(K1) ⊂ K2, and positive (with respect to K1, K2) if A(int(K1)) ⊂ int(K2).
Positivity implies non-negativity, because Ki = int(Ki).

Let ≤i:=≤Ki . Every non-negative linear map satisfies Ax ≥2 0 on K1, and

x ≤1 y ⇒ Ax ≤2 Ay.

Proposition B.5 If A is non-negative, then dK2 (Ax, Ay) ≤2 dK1 (x, y) on int(K1).

Proof If x, y ∈ int(K1) then x, y are comparable, so m(x |y)y ≤1 x ≤1 M (x |y)y. Since A is non-negative,
m(x |y)Ay ≤2 Ax ≤2 M (x |y) Ay, so M (Ax |Ay) ≤ M (x |y) and m(Ax |Ay) ≥ m(x |y). It follows that
dK2 (Ax, Ay) ≤ dK1 (x, y). �

The projective diameter of a positive linear map A : V1 → V2 (with respect to cones K1, K2) is

∆K1,K2 (A) := sup{dK2 (Ax, Ay) : x, y ∈ int(K1)} ≤ ∞.

The hyperbolic tangent function is tanh(t) =
et − e−t

et + e−t
. We let tanh(∞) := 1.

Theorem B.6 (G. Birkhoff) Suppose Ki are cones in normed vector spaces Vi (i = 1, 2), and let A : V1 → V2
be a linear mapping which is positive with respect to K1, K2. Then for all x, y ∈ int(K1)

dK2 (Ax, Ay) ≤ tanh
(

1
4∆K1,K2 (A)

)
dK1 (x, y). (B.1)

In particular, if ∆K1,K2 (A) < ∞, then A is a strict contraction.

Proof in a Special Case. Suppose V1 = V2 = V and K1 = K2 = K , where V = R2, and K := {(x, y) : x, y ≥ 0}.
Let A : R2 → R2 be a linear map such that A(int(K )) ⊂ int(K ). The theorem is trivial when det(A) = 0,

because in this case Ax, Ay are collinear for all x, y, and dK (Ax, Ay) = 0. Henceforth we assume that det(A) , 0.

Write A =
( a b

c d

)
. Since positive maps are non-negative, A(K ) ⊂ K , and this implies that a, b, c, d ≥ 0

(calculate A on the standard basis).
Two vectors x =

(
x1
x2

)
, y =

(
y1
y2

)
belong to int(K ) iff xi, yi > 0. In this case M (x |y) = max

i=1,2
(xi/yi) and

m(x |y) = min
i=1,2

(xi/yi). It follows that

dK (x, y) =
�����
log

(
x1

x2

/
y1

y2

) �����
, and therefore

dK (Ax, Ay) =
���� log

( ax1 + bx2

cx1 + dx2

/ ay1 + by2

cy1 + dy2

) ���� =
�����
log

ax1 + bx2

cx1 + dx2
− log

ay1 + by2

cy1 + dy2

�����
= ��log ϕA(t) − log ϕA(s)�� , where ϕA(ξ) :=

aξ + b
cξ + d

, t :=
x1

x2
, and s :=

y1

y2
.
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As x, y range over int(K ), t, s range over (0,∞). Since ϕ′A(ξ)= det(A)
(cξ+d)2 and det(A),0, ϕA is monotonic, and the

image of log ϕA is an interval with endpoints ϕA(0) = b
d and ϕA(∞) = a

c . It follows that

∆K,K (A) =
�����
log

ad
bc

�����
, (B.2)

with the understanding that | log(zero/non-zero) | = | log(non-zero/zero) | = ∞. (We do not need to worry about
log(zero/zero), because ad − bc , 0.)

By (B.2),∆K,K (A) = ∞whenever some of a, b, c, d are zero. In this case tanh( 1
4∆K,K (A)) = 1, and Birkhoff’s

Theorem follows from Proposition B.5. Henceforth we assume that a, b, c, d > 0.
If x, y ∈ int(K ) are not collinear, then dK (x, y) = log | x1

x2
/
y1
y2
| = | log t − log s | , 0, with t, s as above. This

leads to
dK (Ax, Ay)

dK (x, y)
=

�����
log ϕA(t) − log ϕA(s)

log t − log s

�����
.

By Cauchy’s mean value theorem, there is some ξ between t and s such that

dK (Ax, Ay)
dK (x, y)

=
�����
(log ϕA)′(ξ)

(log)′(ξ)

�����
=

�����
det(A)ξ

(aξ + b)(cξ + d)

�����
≡ eψ(ξ ) | det(A) |, (B.3)

where ψ(ξ) := log ξ − log(aξ + b) − log(cξ + d). Note that ξ ∈ (0,∞).
The task now is to find the global maximum of eψ(ξ ) | det(A) | on (0,∞). Since a, b, c, d , 0, ψ(ξ) −−−−−−→

ξ→0,∞
−∞.

So ψ has a global maximum inside (0,∞). Since there is exactly one critical point, ξ0 =
√

(bd)/(ac), ψ(ξ) and
eψ(ξ ) | det(A) | attain their global maximum at ξ0. Substituting ξ0 in (B.3), we find, after some algebraic work,

that the global maximum of the RHS of (B.3) is θ(A) :=
������

√
ad −

√
bc

√
ad +

√
bc

������
. So

dK (Ax, Ay) ≤ θ(A)dK (x, y) for all x, y ∈ int(K ).

(B.2) and some elementary algebra shows that θ(A) = tanh(∆K,K (A)/4), and Theorem B.6 follows.

Proof for Maps Between General Two-Dimensional Spaces: Suppose V1,V2 are two-dimensional.
By finite dimensionality, the topological properties of Ki do not change if we change the norm of Vi . We

choose for Vi norms coming from inner products. Euclidean geometry tells us that the intersection of Ki with
S1 := {x ∈ V : ‖x‖ = 1} is a circle arc Ai ⊂ S1. Let ∂Ai := {ξi, ηi }. If ξ1 = η1 then int(K1) = ∅. If ξ2 = η2 then
K2 is one-dimensional. In both cases, (B.1) holds in a trivial way.

Henceforth we assume that ξi , ηi (i = 1, 2). Let

Pi : Vi → R2

denote the linear map such that Pi : ξi 7→
(
1
0

)
and Pi : ηi 7→

(
0
1

)
. Clearly Pi (int(Ki)) = int(K ), where K is the

positive quadrant in R2.
Denote the partial orders of K and Ki by ≤ and ≤i . Then for all x, y ∈ int(Ki) and m > 0, x ≤i my ⇔ my− x ∈

Ki ⇔ mPiy−Pi x ∈ K ⇔ Pi x ≤ mPiy. It follows that M (x |y) = M (Pi x |Piy). Similarly, m(x |y) = m(Pi x |Piy),
and we conclude that

dKi (x, y) = dK (Pi x, Piy) for all x, y ∈ int(Ki). (B.4)

Let A′ := P2 AP−1
1 , then A′ is a linear map of R2 such that A′(int(K )) ⊂ int(K ), and (B.4) implies that for all

x, y ∈ int(K1) we have dK2 (Ax, Ay) = dK (P2 Ax, P2 Ay) = dK (A′P1x, A′P1y). So

dK2 (Ax, Ay) = dK (A′P1x, A′P1y) ≤ tanh(∆K,K (A′)/4)dK (P1x, P1y)
= tanh(∆K1,K2 (A)/4)dK1 (x, y) = tanh(∆K1,K2 (A)/4)dK1 (x, y), whence (B.1).
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Proof of Theorem B.6 in the General Case: Suppose Ki are cones in a general normed vector spaces Vi , and
let A : V1 → V2 be a linear map such that A(int(K1)) ⊂ int(K2). We estimate dK2 (Ax, Ay) for x, y ∈ int(K1).

If Ax, Ay are collinear, then dK2 (Ax, Ay) = 0. Henceforth, assume Ax, Ay are not collinear. Necessarily, x, y
are not collinear.

Let V ′1 := span{x, y} and K ′1 := K1 ∩ V ′1 . We claim that the interior of K ′1 as a subset of V ′1 is equal to
int(K1) ∩ V ′1 :

• Suppose z ∈ int(K1) ∩ V ′1 . Let B1 denote the open unit ball with center zero in V1. Then z + εB1 ⊂ K1
for some ε > 0. Let B′1 denote the open unit ball with center zero in V ′1 . Clearly, B′1 ⊂ B1 ∩ V ′1 , so
z + εB′1 ⊂ (z + εB1) ∩V ′1 ⊂ K1 ∩V ′1 = K ′1. Since z + εB′1 is a neighborhood of z, z is in the interior of K ′1 as
a subset of V ′1 .

• Suppose z is in the interior of K ′1 as a subset of V ′1 . Since x ∈ V ′1 , z − αx ∈ K1 for some α > 0. Since
x ∈ int(K1), x + εB1 ⊂ K1 for some ε > 0. So z +αεB1 = (z −αx) +α(x + εB1) ⊂ K1 +αK1 ⊂ K1, whence
z ∈ int(K1) ∩ V ′1 .

Consequently, x, y are in the interior of K ′1 as a subset of V ′1 . As this interior is non-empty, K ′1 is a cone in V ′1 .
Similarly, if V ′2 := span{Ax, Ay} and K ′2 := K2 ∩ V ′2 , then the interior of K ′2 as a subset of V ′2 is equal to

int(K2) ∩ V ′2 , which contains Ax, Ay. So K ′2 is a cone in V ′2 .
Next we claim that dK′i

= dKi on int(Ki) ∩ V ′i (i = 1, 2). This is because if x ′, y′ ∈ K ′i , then the condition
my′ ≤ x ′ ≤ My′ only involves the vectors x ′ − my′, My′ − x ′ (m, M > 0) which all lie in K ′i .

Clearly, A(int(K1) ∩ V ′1 ) ⊂ int(K2) ∩ V ′2 , therefore A : V ′1 → V ′2 is positive with respect to K ′1, K
′
2. As V ′1 ,V

′
2

are two-dimensional, A : V ′1 → V ′2 satisfies (B.1), and

dK2 (Ax, Ay) = dK′2
(Ax, Ay) ≤ tanh( 1

4∆K′1,K
′
2
(A))dK′1

(x, y)

= tanh( 1
4∆K′1,K

′
2
(A))dK1 (x, y).

We claim that ∆K′1,K
′
2
(A) ≤ ∆K1,K2 (A):

∆K′1,K
′
2
(A) = sup{dK′2

(Ax ′, Ay′) : x ′, y′ ∈ int(K1) ∩ V ′1 }, ∵int(K ′1) = int(K1) ∩ V ′1
!
= sup{dK2 (Ax ′, Ay′) : x ′, y′ ∈ int(K1) ∩ V ′1 } ≤ ∆K1,K2 (A),

because A(int(K1) ∩ V ′1 ) ⊂ int(K2) ∩ V ′2 and dK′2
= dK2 on int(K2) ∩ V ′2 .

It follows that dK2 (Ax, Ay) ≤ tanh
(

1
4∆K1,K2 (A)

)
dK1 (x, y). �

B.3 Notes and References

Hilbert’s projective metric was introduced by David Hilbert in [100]. Theorems B.5 and B.6 and the proofs
given here are due to Garrett Birkhoff [13]. For other nice proofs, see [22] and references therein. Rugh [173]
extended Hilbert’s projective metric to complex cones.



Appendix C
Perturbations of Operators with Spectral Gap

C.1 The Perturbation Theorem

Let X be a Banach space over C, and suppose L0 : X → X is a bounded linear operator. Recall that we say that
L0 has spectral gap, with simple leading eigenvalue λ0 and associated eigenprojection P0, when

L0 = λ0P0 + N0,

where λ0 ∈ C, and P0, N0 are bounded linear operators with the following properties:
(1) L0P0 = P0L0 = λ0P0; (2) P2

0 = P0, and dim{P0u : u ∈ X} = 1;

(3) P0N0 = N0P0 = 0, and ρ(N0) < |λ0 |, where ρ(N0) := lim
n→∞

n

√
‖Nn

0 ‖, the spectral radius of N0.
(Necessarily, λ0 , 0.)

By Lemma 8.16, in this case the spectrum of L0 consists of a simple eigenvalue λ0, and a compact subset of
some disk centered at zero with radius r < |λ0 |.

The purpose of this appendix is to prove the following result, from Chapter 8:

Theorem C.1 (Perturbation Theorem) Fix r ≥ 1 and a > 0. Suppose Lt : X → X is a bounded linear
operator for each |t | < a, and t 7→ Lt is Cr -smooth. If L0 has spectral gap with simple leading eigenvalue λ0
and eigenprojection P0, then there exists a number 0 < κ < a such that:

(1) For each |t | < κ, Lt has spectral gap with simple leading eigenvalue λt , and associated eigenprojection Pt ;
(2) t 7→ λt and t 7→ Pt are Cr -smooth on (−κ, κ);
(3) There exists γ > 0 such that ρ(Lt − λtPt ) < |λt | − γ for all |t | < κ.

C.2 Some Facts from Analysis

Let X∗ denote the dual of X. Every bounded linear operator A : X → X determines a bounded linear operator A∗

on X∗ via (A∗ϕ)(x) = ϕ(Ax). It holds that ‖A∗‖ = ‖A‖. Recall the definition of Cr -smoothness from §8.4.

Lemma C.2 Suppose that for each |t | < a we have a scalar c(t) ∈ C, a vector ht ∈ X, a bounded linear
functional ϕt ∈ X∗, and bounded linear operators At, Bt : X → X. If t 7→ c(t), ht, ϕt, At, Bt are Cr -smooth on
(−a, a), then the following objects are Cr -smooth on (−a, a):

(1) A∗t , c(t) At , At + Bt , At Bt ; (2) the operator ϕt (·)ht ; (3) the scalar ϕt (Atht ).

Proof We prove (1) and leave (2) and (3) to the reader.
Suppose r = 1. Since At is C1, At+θ x = At x + θA′t x + εθ (x) where ‖εθ (x)‖ = o( |θ |)‖x‖. So for every

ϕ ∈ X∗,

((A∗t+θ − A∗t )ϕ)(x) = ϕ[At+θ x − At x] = ϕ[At x + θA′t x + εθ (x) − At x]
= θ(A′∗t ϕ)(x) + o(|θ |)‖x‖‖ϕ‖.

So





A∗t+θ−A

∗
t

θ − (A′t )
∗




 −−−−→θ→0

0, and A∗t is differentiable, with derivative (A′t )
∗. Next ‖(A′t+θ )∗ − (A′t )

∗‖ =

‖A′t+θ − A′t ‖ −−−−→
θ→0

0, because At is C1. This proves that A∗t is C1 with derivative (A′t )
∗.

Similarly, one shows that At + Bt , c(t) At and At Bt are C1 with derivatives A′t + B′t , c′(t)At + c(t) A′t , and
A′t Bt + At B′t (the operators need not commute, and the order matters). Part (1) follows, in case r = 1. For higher
r , we argue by induction. �
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Lemma C.3 If ρ(L) < |λ |, then λ−1L − I has a bounded inverse. (I :=identity.)

Proof Let A := −
∑
n≥0

λ−nLn. The sum converges in norm because ρ(λ−1L) < 1, and a straightforward

calculation shows that A(λ−1L − I) = (λ−1L − I) A = I. �

Theorem C.4 (Implicit Function Theorem) Suppose X,Y,Z are Banach spaces, A ⊂ X × Y is open, and
F : A→ Z is C1. Suppose (x0, y0) ∈ A is a point where
(1) F (x0, y0) = 0, and
(2) (∂yF)(x0, y0) : Y → Z, the partial derivative of F with respect to the second variable at (x0, y0), is an

invertible bounded operator with a bounded inverse.
Then there exists an open neighborhood U ⊂ X of x0 and a unique C1 map u : U → Y such that (x, u(x)) ∈ A
for all x ∈ U, u(x0) = y0, and F (x, u(x)) = 0. If F is Cr -smooth on A, then u is Cr -smooth on U.

The proof is a fixed-point argument, see [49, Ch. 10].

C.3 Proof of the Perturbation Theorem

Since dim{P0u : u ∈ X} = 1, P0 must take the form P0u = ϕ0(u)h0, where ϕ0 ∈ X
∗, h0 is a non-zero vector in

X, and ϕ0(h0) = 1. Since L0P0 = P0L0 = λ0P0,

L0h0 = λ0h0 and L∗0ϕ0 = λ0ϕ0.

To prove the perturbation theorem, we will construct for small |t | a scalar λt ∈ C, a bounded linear functional
ϕt ∈ X

∗ and a vector ht ∈ X, all depending Cr -smoothly on t, such that

Ltht = λht, L∗t ϕt = λtϕt, ϕt (ht ) = 1. (C.1)

Then we will show that Lt has spectral gap with simple leading eigenvalue λt , and eigenprojection Ptu :=
ϕt (u)ht .

Construction of ht and λt : Let X0 := ker(P0) = ker(ϕ0). This is a Banach space.
Choose 0 < ε0, κ1 < a so small, that for all |t | < κ1, |ϕ0(Lth0) | > ε0. This is possible, because t 7→ Lt is

continuous, and |ϕ0(L0h0) | = |λ0 | > 0.
It follows that for some ε1 > 0,

ϕ0(Lt (h0 + w)) , 0, whenever |t | < κ1, ‖w‖ < ε1.

Let B1 := {w ∈ X0 : ‖w‖ < ε1}, and define

F (t,w) =
Lt (h0 + w)

ϕ0[Lt (h0 + w)]
− (h0 + w).

F is Cr on (−κ1, κ1) × B1 by Lemma C.2, and F (0, 0) = λ0h0
λ0
− h0 = 0.

We claim that (∂wF)(0, 0) : X0 → X0 is bounded, invertible, and has bounded inverse. Here is the proof. For
every w ∈ X0,

ϕ0(L0(h0 + w)) = (L∗0ϕ0)(h0 + w) = λ0ϕ0(h0 + w) = λ0,

because X0 = ker(ϕ0). Therefore

F (0,w) − F (0, 0) =
L0(h0 + w)

ϕ0(L0(h0 + w)))
− (h0 + w) =

λ0h0 + L0w

λ0
− (h0 + w)

= λ−1
0 L0w − w.
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Therefore (∂wF)(0, 0) = (λ−1
0 L0 − I) |X0 . Since P0 vanishes on X0,

ρ(L0 |X0 ) = ρ(L0(I − P0) |X0 ) = ρ(N0 |X0 ) ≤ ρ(N0) < |λ0 |.

By Lemma C.3, (λ−1
0 L0 − I) |X0 has a bounded inverse.

By the inverse function theorem, there is 0 < κ2 < κ1 and a Cr map t 7→ wt ∈ X0 on (−κ2, κ2) such that
F (t,wt ) = 0.

Equivalently, Lt (h0 + wt ) = ϕ0(Lt (h0 + wt ))(h0 + wt ). Therefore

Ltht = λtht,

where ht := h0 + wt , λt := ϕ0(Lt (h0 + wt )). Since wt ∈ X0, ϕ0(ht ) = ϕ(h0) = 1.
By Lemma C.2, t 7→ λt, ht are Cr -smooth on (−κ2, κ2). By further decreasing κ2, if necessary, we can

guarantee that λt is close enough to λ0 to be non-zero.

Construction of ϕt : Let X∗0 := {ϕ ∈ X∗ : ϕ(h0) = 0}. This is a Banach space. Let

π : X∗ → X
∗
0 , π(ϕ) := ϕ − ϕ(h0)ϕ0.

Note that π |X∗0 = I∗ (the identity on X∗0), and π(X∗) = X∗0, because

π(ϕ)(h0) = ϕ(h0) − ϕ(h0)ϕ0(h0) = 0.

Define G : (−κ1, κ1) × X∗0 → X∗0 by

G(t, ϕ) := π[L∗t (ϕ0 + ϕ) − λt (ϕ0 + ϕ)] !
= π[L∗t (ϕ0 + ϕ)] − λtϕ, ∵ π(ϕ0) = 0.

G is Cr on its domain, and G(0, 0) = 0. Since G is affine in its second coordinate,

(∂ϕG)(0, 0) = π ◦ (L∗0 − λ0I∗) |X∗0 = (πL∗0 − λ0I∗) |X∗0
!
= (L∗0 − λ0I∗) |X∗0 .

To see the marked identity, note that if ϕ ∈ X∗0, then L
∗
0ϕ ∈ X

∗
0, because L0h0 = λ0h0, and therefore π[L∗0ϕ] =

L∗0ϕ on X∗0 .
Clearly, (L∗0 − λ0I∗) |X∗0 is bounded. It has a bounded inverse on X∗0, because P∗0 |X∗0 = 0, and therefore

ρ(L∗0 |X∗0 ) = ρ(L∗0 − λ0P∗0 |X∗0 ) = ρ(N∗0 |X∗0 ) ≤ ρ(N∗0 ) = ρ(N0) < |λ0 |.

We can now apply the inverse function theorem, and construct 0 < κ3 < κ2 and a Cr -smooth function t 7→ ψt

on (−κ3, κ3) so that G(t, ψt ) = 0. Equivalently,

L∗t (ϕ0 + ψt ) − λt (ϕ0 + ψt ) = [L∗t (ϕ0 + ψt ) − λt (ϕ0 + ψt )](h0) · ϕ0. (C.2)

Evaluating the two sides of (C.2) at ht , we obtain

0 = [L∗t (ϕ0 + ψt ) − λt (ϕ0 + ψt )](ht ) = [L∗t (ϕ0 + ψt ) − λt (ϕ0 + ψt )](h0) (C.3)

(The left-hand side of (C.2) vanishes becauseLtht = λtht , the right-hand side of (C.3) reduces to the right-hand
of (C.2) because ϕ0(ht ) = 1). Thus the right-hand-side of (C.2) vanishes. It follows that the left-hand-side (C.2)
vanishes, and

L∗t (ϕ0 + ψt ) = λt (ϕ0 + ψt ).

Since t 7→ (ϕ0 + ψt )(ht ) is smooth, and (ϕ0 + ψ0)(h0) = ϕ0(h0) = 1, there is 0 < κ4 < κ3 such that
(ϕ0 + ψt )(ht ) , 0 for |t | < κ4. Now take
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ϕt :=
ϕ0 + ψt

(ϕ0 + ψt )(ht )
.

Completion of the Proof Define the operators Ptu := ϕt (u)ht and Nt := Lt − λtPt . Then it is straightforward
to verify, using (C.1), that

P2
t = Pt , PtLt = LtPt = λtPt , Pt Nt = NtPt = 0.

Clearly, dim{Ptu : u ∈ X} = Span {ht } = 1, and by Lemma C.2, t 7→ Pt is Cr -smooth on (−κ4, κ4).
We claim that there is 0 < κ5 < κ4 such that

sup
|t |<κ5

ρ(Nt ) < inf
|t |<κ4

|λt |.

By assumption ρ(N0) < |λ0 |, therefore there exists some n0 such that ‖Nn0
0 ‖ < |λ0 |

n0 . Choose some γ > 0 such
that

‖Nn0
0 ‖ ≤ (1 − 2γ)n0 |λ0 |

n0 .

Since t 7→ Pt and t 7→ Lt are continuous at t = 0, t 7→ ‖Nn0
t ‖ is continuous at t = 0. Therefore there exists

0 < κ5 < κ4 such that
‖Nn0

t ‖ ≤ (1 − γ)n0 |λt |
n0 for all |t | < κ5.

Necessarily, ρ(Nt ) ≤ (1 − γ) |λt | for |t | < κ5. �

C.4 Notes and References

For a comprehensive account of the theory of perturbations of linear operators on Banach spaces, see [105]. The
proof we gave here is taken from [98, §XIV.2].

Suppose Lt is a smooth perturbation of an operator L0 with spectral gap. The perturbation theorem provides
smooth solutions to

Ltht = λtht .

In §7.3.2 we considered a similar eigenvector problem, but in the inhomogeneous setup. There the unperturbed
operators are

Ln : L∞(Sn+1) → L∞(Sn) , (Lnϕ)(x) = E(ϕ(Xn+1) |Xn = x),

the perturbations are (Lt
nϕ)(x) = E(et fn+1 (Xn,Xn+1)ϕ(Xn+1) |Xn = x), and the eigenvector problem is to find

smooth families of ht
n and λtn such that Lt

n+1ht
n+1 = λnht

n.
In §7.3.2 we solved the problem, using the contraction properties of linear maps mapping cones into other

cones. It is also possible to solve the problem using “inhomogeneous versions" of the perturbation theorem.
Suppose first that fn are uniformly bounded. Hafouta and Kifer ([93]) proved the sequential complex Ruelle-

Perron Frobenius Theorem1, which provides holomorphic solutions of Ltht = λtht , for t in a small complex
neighborhood of t = 0. By contrast, the methods of §7.3.2 rely on the positivity of the function et fn in a crucial
way, and are therefore limited to real t. To deal with complex t, Hafouta and Kifer use a highly non-trivial
extension of Hilbert projective metric to complex cones, due to Rugh [173] and Dubois [67].

Yeor Hafouta informed us of a different proof of the complex Ruelle-Perron Frobenius Theorem, based on
the approach of [98], which also covers unbounded fn with finite L2 norm.

The analyticity of complex perturbations opens the way to employing perturbative calculations similar to
those done in Lemma 7.17 and Proposition 8.21, but for complex t and inhomogeneous (X, f). For applications to
Edgeworth expansions and Berry-Esseen estimates for inhomogeneous Markov chains, see [59] and the notes to
Chapters 6 and 8. (The homogenous setup can be analyzed using the spectral theorem, see [26, 73, 74, 85, 98, 99].)

1 For the non-sequential case, see [161].
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Hilbert’s projective metric, 279

contraction properties, 167
definition, 166

homogeneous additive functional, 210
homogeneous Markov chain, 14, 210
hyperbolic tangent, 281

independent σ-algebras, 37
infinite ergodic theory, 251
inhomogeneous Markov chain, 14
initial distribution, 13, 16
irreducibility, 76, 77, 259

ladder process, 33
large deviations regime, 157

full, partial, 193, 199
lattice case, 75
law of the iterated logarithm, 46, 68, 74
Legendre transform, 160, 188

convergence, 267
definition, 186
derivatives, 186
differentiability, 274
domain, 160
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reduction, 76
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large deviations, 17, 157
local deviations, 17, 157
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restriction of an additive functional, 80
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simple random walk, 75
Skorokhod embedding, 68
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spectrum, 221
stably hereditary, 78
state spaces, 13, 16
stationary initial distribution, 210, 246, 252

stationary stochastic process, 210
Stone’s trick, 103, 154
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and growth of variance, 45

sub-array, 80
summable variance, 44
a.s. convergence of {SN }N≥1, 47

symmetric multilinear function, 168

tame sequence of random variables, 208
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total variation distance, 21
transfer function, 44
transfer operator, 215
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transition probabilities, 13, 16
two-series theorem, 47
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uniform integrability, 54
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vague convergence, 111
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