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(Q 7, 1,T)
P(A), Px(A)
Tnn+1 (X, dy)
Pn(%,y)

O (%, &)
Ty, o

SN

Sy, GV

the additive functional {aillrl) (Xr(llfl) ) — af,N)(X,(,N))} (a gradient)
the Borel o-algebra of a separable complete metric space S
large deviations thresholds, see §7.4
the space of continuous ¢ : R — R with compact support
the mixing constant from Proposition 2.13
the covariance
the circular variance, see §4.3.1
structure constants, see §2.3
structure constants, see §2.3
point mass measure at x (Dirac’s measure)
the contraction coeflicient of a Markov operator r, see §2.2.2
the graininess constant of f, see chapter 4
(usually) the uniform ellipticity constant, see §2.2.1
the expectation operator. E; := E(-|X; = x)
the essential supremum, see chapter 2
additive functionals
an entry of an additive functional f of a Markov chain or array
the normalized log-moment generating function, see chapter 7
the algebraic range, see chapter 4
the essential range, see chapter 4
the balance (of a hexagon), see §2.3.1
the co-range, see chapter 4
the space of level N hexagons at position n, see §2.3.1
the rate function, see chapter 7
(usually) the length of the N-th row of an array, minus one
the natural logarithm (same as In)
hexagon measures, see §2.3.1
a measure with its integration variable
the oscillation, see §2.2.2
a measurable map 7 : Q — Q on a measure space (Q, %, u)
the probability of the event A. P, (A) := P(A|X| = x)
the n-th transition kernel of a Markov chain
(usually) the density of 7, ;41 (x, dy)
characteristic functions, see §5.2.2
positivity thresholds, see §7.4
N fi(Xi, Xis1) (chains), or fo] VM, Xl.(ivl)) (arrays)
the state space of X,, (chains) or of X,(lN ) (arrays)

Xi
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Uy, uﬁlN ), Up structure constants, see §2.3

Var the variance

Vn the variance of Sy

X, X,(,N) an entry of a Markov chain, or a Markov array
X a Markov chain or a Markov array

X the N-th row of a Markov array

N (usually) a real number not too far from E(Sy)
a.e.; a.s. almost everywhere; almost surely

CLT Central Limit Theorem

iid independent and identically distributed

LLT Local Limit Theorem

LHS, RHS left-hand-side, right-hand-side (of an equation)
TFAE the following are equivalent

s.t. such that

w.lo.g. without loss of generality

because, therefore

A, V x Ay :=min{x, y}, x Vy := max{x, y}

1g the indicator function, equal to 1 on E and to 0 elsewhere
axte a quantity inside [a — &, a + €]

e*“a a quantity in [e"?a, e®a]

~ a, ~ b, © a,|/b, — 1
n—oo

= a, < b, © 0 < liminf(a,/b,) < limsup(a,/b,) < o
< a, < b, © limsup(a,/b,) < o
< for measures: y < v means “v(E) = 0 = u(E) =0 for all
measurble E"; For numbers: non-rigorous “much smaller than"
~ non-rigorous shorthand for “approximately equal”
= is defined to be equal to
é, <, L an equality, inequality, or asymptotic that will be justified later
?
;, <, X an equality, inequality, or asymptotic whose veracity is unknown
b
X, 2y convergence in probability
n—oo
X, LN Y convergence in distribution
r
Xn £, Y convergence in L”
n—oo
[Sn > 1] The event that the condition in brackets happens. For example,
if p: S > R, then [p(w) > 1] :={w € S : p(w) > t}
Lx], [x] lx] :=max{n €Z:n<x},[x]:=min{n € Z:n > x}
{x}, (x) {x} := x = |x]; (x) = the number in [-7, 7) s.t. x — (x) € 2nZ

{x};z,[x];z the numbers s.t. x = [x];z + {x};z, [x];z € tZ and {x};z € [0, 1)

The Fourier Transform of an L!-function ¢ : R — R: (&) := fR e % g (u)du.
The Legendre-Fenchel transform of a convex ¢ : R — R: ¢*(n7) := sup[én — ¢(&)].
£



Chapter 1
Overview

Abstract We give an overview of the main results of this work.

1.1 Setup and Aim

N

Our aim is to describe the asymptotic behavior of P[Sy —zn € (a, b)] as N — oo, where Sy = Z Jn (X, Xn41),
n=1

X,, is a Markov chain, and z, are real numbers not too far from E(Sxn ). Such results are called local limit

theorems (LLT). For the history of the problem, see the end of the chapter. The novelty of this work is that we
allow the Markov chain to be inhomogeneous: The set of states of X,,, the transition probabilities, and f,, may
all depend on n.

We will usually assume that f;, are uniformly bounded real-valued functions, and that {X,} is uniformly
elliptic, a technical condition which we will state in Chapter 2, and that implies uniform exponential mixing.
These assumptions place us in the Gaussian domain of attraction. The analogy with classical results for sums of
independent identically distributed (iid) random variables suggests that in the best of all situations, we should
expect the behavior below (in what follows Vy := Var(Sy), Ay ~ By © An/Bn m 1, and the question

marks are there to emphasize that at this point of the discussion, these are conjectures, not assertions):

(1) Local Deviations: If %\/LNSN) — z, then

la — bl

2
—z2/2].
Ty expl—z-/2]

P[Sy — 2n € (a,b)] %

(2) Moderate Deviations: If W — 0, then

) la—bl 1+o0(1) (zy —E(Sy)\?
P[SN—ZNE(“vb)]N\/zﬂ—VNeX T o ( VN )]

(3) Large Deviations: If |%‘ < ¢ with ¢ > 0 sufficiently small, then
la — bl
\/27TVN

b -
X PN ey — B(Sy) X ! f e-@(%}f"’))dt’
Vn la—bl Jg,

B[Sy — 2y € (a.b)] exp| VI (an /)|

where Iy (-) are the Legendre transforms of (&) := % log E(e£5V), and
e pn(1) —0> 1 uniformly in N, and p, () are uniformly bounded away from zero and infinity on [—c, c];
-

o Cl'inl < |En(m)| < Cly| for all 57| < ¢ and N, with C independent of N;
* ¢ &N, pn are independent of 7 and (a, b).

(The asymptotic results in the large deviation regime are more precise than in the moderate deviation case, but
less universal. See Chapter 7 for more details.)

Although the asymptotic formulas (1)—(3) above are true in many cases, they sometimes fail — even when Sy
is a sum of iid’s.



2 1 Overview

The aim of this work is to give general sufficient conditions for (1)—(3), and to provide the necessary asymptotic
corrections when some of these conditions fail. To do this we first identify all the obstructions to (1)—(3), and
then we analyze Sy when these obstructions happen.

1.2 The Obstructions to the Local Limit Theorems

The algebraic range is the smallest closed additive subgroup G < R for which there are @, € R so that
fn(Xn, Xnt1) — @ € G almost surely for all n. We show that the following list is a complete set of obstructions
to (1)-(3):

(D Lattice Behavior: The algebraic range is ¢Z for some ¢ > 0.

(II) Center-Tightness: There are centering constants mpy such that {Sy — mp} is tight. In Chapter 3 we will
see that in this case Var(Sy) must be bounded. We will also see that center-tightness is equivalent to
Var(Sy) £ .

(III) Reducibility: f,, = g, + ¢, where the algebraic range of {g, (X, X,+1)} is strictly smaller than the
N

algebraic range of {f,,(X,, X,+1)}, and where S, (c) := Z cn(Xn, Xn+1) is center-tight (equivalently, its
n=1
variance does not tend to infinity as N — o).

One of our main results is that if these three obstructions do not occur, then the asymptotic expansions (1)—(3)
above hold.

1.3 How to Show that the Obstructions Do Not Occur

While it is usually easy to rule out the lattice obstruction (I), it is often not clear how to rule out (II) and (III).
What we need is a tool that determines from the data of f,, and X,, whether {f, (X}, X,,+1)} is center-tight or
reducible.

In Chapter 2, we introduce numerical constants d, (¢) (n > 3,¢ € R), which are defined purely in terms of
the functions f,, and the transition probabilities

ﬂ'n,n+l(xs E) = IP>()(n+l € E|Xn = )C),

and which can be used to determine which obstructions occur and which do not:

o If D dfl(f ) = oo for all ¢ # 0, then the obstructions (I),(II),(III) do not occur, and the asymptotic expansions
(1)=(3) hold.

o If ) dfl (&) < oo for all £ # 0, then Var(Sy) is bounded (obstruction II).

o If 3 d,zl (&) = oo for some but not all £ # 0, then Var(Sy) — oo but we are either lattice or reducible: (II)
fails, but at least one of (I),(III) occurs.

We call d,,(£) the structure constants of X = {X,,} and f = {f,,}.
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1.4 What Happens When the Obstructions Do Occur
1.4.1 Lattice Case

The lattice obstruction (I) already happens for sums of iid random variables, and the classical approach how to
adjust (1)—(3) to this setup extends without much difficulty to the Markov case.

Suppose the algebraic range is tZ with ¢ > 0, i.e. there are constants «, such that f,(X,, X,+1) —a, € tZ
almost surely for all n. Assume further that Z is the smallest group with this property. In this case Sy € yn +1Z
a.s. for all N, where yny = Zf\il a; mod tZ. Instead of analyzing P[Sy — zn € (a, b)], which may be equal to
zero, we study P[Sy = zny], with zy € yn +1Z.

We show that in case (I), if the algebraic range is #Z, and obstructions (II) and (III) do not occur, then (as in
the case of iid’s):

t 2

") If 26N, 2 and zy € yn +1Z, then P[Sy = zn] ~ e % /2,
(1) N N €YN [Sv = zn] N

_ t 1+0(1) (zn —E(Sn)\?
() Tt =268, 0 and 2y € yn + 1Z, then P[Sy = zn] ~ exp |- ( ) .

Vi N €YN N N o 3 N
3) If )%ﬁ”q < ¢ with ¢ > 0 sufficiently small, and zy € yn + tZ, then

t zn — E(SN)
P[Sn = zn] ~ WCXP[—VNJN(ZN/VN)] X PN (NV—NN)

where Iy and pn have the properties listed in the non-lattice case (3).

The previous results hold for lattice valued, irreducible, non-center-tight additive functionals, that is, when
(D holds and (IT),(III) fail. Here is an equivalent condition in terms of the data of X,, and f,:

2
dr > 0 such that Z dﬁ(f) < oo exactly when ¢ € TﬂZ.

Under this condition, (1°)—(3) hold with the parameter 7.

1.4.2 Center-Tight Case

We show that obstruction (II) happens iff f,, (X}, X;,+1) can be put in the form
fn(Xn» Xn+1) = ane1 (Xns1) — an(Xp) + hpy(Xp, Xps1) + ¢ (1.1)

where a,, (X,,) are uniformly bounded, c,, are constants, &, (X}, X,,+1) have mean zero, and

D Varlhy (Xp, Xus1)] < oo

The freedom in choosing a,(X},) is too great to allow general statements on the asymptotic behavior of
P[Sny — zn € (a, )], see Example 3.1. But as we shall we see in Chapter 3, (1.1) does provide us with some
almost sure control. It implies that

N
Sy = anst(Xnet) = ar(X0) + D ha (X, Xnst) + Y,

n=1

N )
where yy = Z ¢;, and where Z hy(Xn, Xnv1) converges almost surely.

i=1 n=1
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This means that in the center-tight scenario, Sy — E(Sy) can be decomposed into the sum of two terms: A
bounded term, possibly oscillatory, that depends only on X, and a term which depends on the entire past
X1, ..., Xn+1, that converges almost surely.

1.4.3 Reducible Case

In the reducible case, we can decompose

fn(an Xni1) = 80 (X, Xw1) + cn (X, Xpny1) (1.2)

with center-tight ¢ = {c, (X}, X;,+1)}, and where the algebraic range of g = {g,,(X,;, X+1)} is strictly smaller
than the algebraic range of f = { f,,(X},, Xy+1)}-

In principle, it is possible that g is reducible too, but in Chapter 6 we show that one can find an “optimal”
decomposition where g is irreducible, and cannot be decomposed further. The algebraic range of the “optimal”
g is the “infimum" of all possible reduced ranges:

G = ﬂ G- G is the algebraic range of some g
s " which satisfies (1.2) with a center-tight ¢ | °

We call G, the essential range of f. It can be calculated explicitly from the data of f and the Markov chain X,
in terms of the structure constants, see Theorem 4.4.

It follows from the definitions that G5 is a proper closed subgroup of R, so G55 = {0} or tZ or R. In the
reducible case, G.ss = {0} or tZ, because if G.;s = R, then the algebraic range (which contains G.,;) is also
equal to R.

If Gess = {0}, then the optimal g has algebraic range {0}, and g, (X,,, X,,+1) are a.s. constant. In this case f is
center-tight, and we are back to case (II).

If G.ss = tZ with t > 0, then g is lattice, non-center-tight, and irreducible. Split

N N
Sy = Sn(@) + Sn(©), with Sn(9) = D" &n (X, Xns1) » $2(€) = > ea(Xi Xns1)- (13)
n=1 n=1

Then S, (g) satisfies the lattice LLT (1’)—(3’) with parameter ¢, and Var[Sy(c)] = O(1). Trading constants
between g and c, we can also arrange E[Sy (c)] = O(1).

Unfortunately, even though Var[S, (f)] — co and Var[Sy(c)] = O(1), examples show that Sy (c) is still
powerful enough to disrupt the local limit theorem for Sy, lattice or non-lattice (Example 6.1). Heuristically,
what could happen is that the mass of Sy (g) concentrates on cosets of tZ according to (1’)—(3’), but Sy (c)
spreads this mass to the vicinity of the lattice in a non-universal but tight manner.

This suggests that (1)—(3) should be approximately true for intervals (a, b) of length |a — b| > t, but false for
intervals of length |a — b| < ¢t. In Chapter 6 we prove results in this direction.

For intervals with size |a — b| > 2¢t, we show that for all zx € R such that (zy — E(Sy))/VVy — z, for all
N large enough,

1{e??)a - b e /2|q — b
) <P[Sy -2y € (@ b)] <3| —n™
3 ( VZ?TVN N N V27TVN

If |a — b| > L > t, we can replace 3 by a constant C(L, ¢) such that C(L, 1) L/—) 1.
t—o0

For general intervals, possibly with length less than ¢, we show the following: There is a random variable
9 = 9(X1, X7, X3, . ..) and uniformly bounded random variables by = by (X1, Xn+1) so that for every zy € tZ

such that %\/ﬁm — z, and for every ¢ : R — R continuous with compact support,
N
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-z2/2
Jim VUNBIO(Sy = 2y = by (Xt Xyaa)] = = 2, Bl(nr + )1 (1.4)

For ¢ ~ lj4p) With |a — b| > t, the right-hand-side of (1.4) is approximately equal to %ﬂla — ble?/2, in
accordance with (1), see Lemma 6.10. But for |a — b| < ¢, (1.4) depends on the detailed structure of f through #,
by (X1, Xn+1) and 9.

What are by (Xn, Xn+1) and $? Recall that ¢ on the right-hand-side of (1.3) is center-tight. As such,
it can be put in the form (1.1). Namely, ¢, (Xu, Xn+1) = an+1(Xn+1) — an(Xn) + hn(Xn, Xn41) + c,,, where
sup,, (ess sup |ay|) < oo, c;, are constants, E(h, (X, X,+1)) = 0, and } i, converges almost surely. Let yn :=
N

Z ¢, =E(Sn(c)) + O(1) = O(1). The proof of (1.4) shows that

n=1

* by =ans1(Xns1) — a1 (X1) + {yn}iz, where {x};z € [0,1), {x};z = x mod 1Z;

e 9= Z hy (X, Xn41). (It is possible to replace $ by a different random variable ¥ which is bounded, see

n=1
Chapter 6.)
This works as follows. Let zj, := zy — [yn]iz, Where [x];z := x — {x};z € {Z. Then z}, € 1Z, Z;V*f’“ -
iNBONHOM) o ang
N 9
SN —bn —zn = [Sn(9) — zy] + Sn(h). (1.5)

By subtracting by from Sy, we are shifting the distribution of Sy to the distribution of the sum of two terms:
The first, Sy (Q), is an irreducible tZ-valued additive functional; the second, Sy (h), converges almost surely
to 9.

Suppose for the sake of discussion that Sy (g), Sy (h) were independent. Then (1.5), the identity
H= Z hy (X5, Xn+1), and the lattice LLT for Sy (g) say that

n>1
z\llim VWNE[9(Sy — by —2n)] = f ¢(x)m(dx), (1.6)
—00 R
22
where m := e‘/%z myzxmg, mg(E) := P[H € E], myz := t-counting measure of tZ, and * denotes the convolution.

(See §5.2.3.) Calculating, we find that fR ¢dm = right-hand-side of (1.4).

In general, Sy (g) and Sy (h) are not independent. But in Chapter 6 we show that (1.4) and (1.6) remain
valid. There we also discuss other consequences of (1.4), including the asymptotic distributional behavior of Sn
modulo 17Z.

1.5 Some Final Words on the Setup of this Work

We would like to comment on a choice we made when we wrote this work, specifically, our focus on additive
functionals of the form f,, = f,,(Xy, Xn+1)-

This choice is somewhat unorthodox: The theory of Markov processes is mostly concerned with the case
Jn = fn(Xy) (see e.g. [50, 149, 181]), and the theory of stochastic processes is mostly concerned with the case
fn = fu(Xu, Xn+1, - - -), under assumptions on the weak dependence of X; and X,, when |k — n| > 1 (see e.g.
[103, 16]). We decided to study f,, = f,,(Xy, Xu+1) for the following reasons:

e The case f;, = fn(Xp, Xn+1) is richer than the case f;,, = f,,(X,,) because it contains gradients a1 (X,+1) —
a,(X,). Two additive functionals which differ by a gradient with uniformly bounded ess sup |a,| will have
the same CLT behavior, but they may have different LLT behavior, because their algebraic ranges can be
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different. This leads to an interesting reduction theory which we would have missed had we only considered
the case f, = fn(X,).!

e The case f,(Xy, ..., Xn+m) With m > 1 is similar to the case m = 2, and does not require new ideas, see
Example 2.3 and the discussion in §2.4. We decided to keep m = 1 and leave the (routine) extension to m > 1
to the reader.

e The case f,, = fn(Xn, Xn+1,-..) is of great interest, and we hope to address it in the future. At the moment,
our results do not cover it.

We hope to stimulate research into the local limit theorem of additive functionals of general non-stationary
stochastic processes with mixing conditions. Such work will have applications outside the theory of stochastic
processes, such as the theory of dynamical systems. Our work here is a step in this direction.

1.6 Prerequisites

We made an attempt to make this text self-contained and accessible to readers with standard background in
analysis and probability theory. A familiarity with the material of Rudin’s book Real and complex analysis [170,
Ch. 1-9] and Breiman’s book Probability [17, Ch. 1-8] should be sufficient. Appendices A-C supply additional
background material, not in these textbooks.

A few sections marked by (*) contain topics which are slightly off the main path of the book. Some of these
sections require additional background, which we recall, but sometimes without proofs. The material in the
starred sections is not used in other parts of the book, and they can be skipped at first reading.

1.7 Notes and References

The local limit theorem has a very long history. To describe it, let us distinguish the following three lines of
development:

(1) LLT for identically distributed independent (iid) random variables,
(2) LLT for other stationary stochastic processes,
(3) LLT for non-stationary stochastic processes.

Local Limit Theorems for Sums of IID Random Variables. The first LLT dates to de Moivre’s 1738 book
[38], and provides approximations for Pla < §,, < b] when S,, = X; + - - - + X,,, and X; are iid, equal to zero or
one with equal probabilities. Laplace extended de Moivre’s results to the case when X; are equal to zero or one
with non-equal probabilities [124, 125].

In 1921, Pélya extended these results to the vector valued iid which generate the simple random walk on Z¢,
and deduced his famous criterion for the recurrence of simple random walks [162].

The next historical landmark is Gnedenko’s 1948 work [78, 79] which initiated the study of the LLT for sums
of iid with general lattice distributions. He asked for the weakest possible assumptions on the distribution of
iid’s X; which lead to LLT with Gaussian or stable limits. Khinchin popularized the problem by emphasizing its
importance to the foundations of quantum statistical physics [109], and it was studied intensively by the Russian
school, with important contributions by Linnik, Ibragimov, Prokhorov, Richter, Saulis, Petrov and others. We
will comment on some of these contributions in later chapters. For the moment, we refer the reader to the
excellent books by Gnendenko & Kolmogorov [80], Ibragimov & Linnik [103], Petrov [156], and to the many
references they contain.

! We cannot reduce the case f;, (X, X,,+1) to the case f;, (Y,,) by working with the Markov chain Y;, = (X,,, X;,4+1) because {Y}, }
will no longer satisfy some of our standing assumptions, specifically the uniform ellipticity condition (see Chapter 2).
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The early works on the local limit theorem all focused on the lattice case. The first result we are aware of
which could be considered to be a non-lattice local limit theorem is in [80]: Suppose that each of the iid’s X;
have mean zero, finite variance o2, and a probability density function p(x) € L” with 1 < r < 2, then the
density function p, (x) of X + - - - + X, satisfies oVnp,(cVnx) — —e_xz/z.

noe \p

There could be non-lattice iid’s without density functions, for example the iid’s X; equal to (-1), 0, or V2 with
equal probabilities (the algebraic range is R, because the group generated by (~1) and V2 is dense). Shepp [183]
was the first to consider non-lattice LLT in such cases. His approach was to provide asymptotic formulas for
Pla < S, —E(Sy) < b] for arbitrary intervals [a, b], or for /2 Var(Sy)E[¢(Sy — E(Sn))] for all test functions
¢ : R — R which are continuous with compact support. In this monograph, we use a slight modification of
Shepp’s formulation of the LLT. Instead of working with Sy — E(Sn), we work with Sy — zx subject to the
assumptions that z is “not too far" from E(Sy ), and that Sy — z € algebraic range.

Stone proved non-lattice LLT in Shepp’s sense for sums of vector valued iid in [191], extending earlier work
of Rvaceva [174], who treated the lattice case. These works are important not only because of the intrinsic
interest in the vector valued case, but also because of technical innovations which became tools of the trade, see
e.g. §5.2.1 and [17].

Local Limit Theorems for Other Stationary Stochastic Processes. The earliest LLT for non-iid sequences

{X;} is due to Kolmogorov [116]. He considered stationary homogeneous Markov chains {X;} with a finite set of
N

states S = {ay, ..., a,}, and proved a local limit theorem for the occupation times Sy = Z f(X;), where f(x) =
i=1
(1a1 (-x)’ ) la,,(x))~
Following further developments for finite state Markov chains by Sirazhdinov [185], Nagaev [149] proved
N

very general CLT and LLT for S N:Z f(X;) for a large class of stationary homogeneous countable Markov
i=

chains {X;}, and for a variety of unbounded functions f, both in the gaussian and in the stable case. See Chapter 8.

Nagaev’s paper introduced the method of characteristic function operators (which we call in this work “Nagaev

perturbation operators"), and opened the way for proving LLT for other weakly dependent stationary stochastic

processes, and in particular to time series of probability preserving dynamical systems. Guivarc’h & Hardy

N

[88] proved gaussian LLT for Birkhoff sums Sy = Z f(T"x) for Anosov diffeomorphisms 7 : X — X with
n=1

an invariant Gibbs measure, and Holder continuous functions f. Rosseau-Egele [168] and Broise [20] proved

such theorems for piecewise expanding interval map possessing an absolutely continuous invariant measure,
X =[0,1], and f € BV. Aaronson & Denker [5] gave general LLT for stationary processes generated by
Gibbs-Markov maps both in the gaussian and in the non-gaussian domain of attraction.

These results have found many applications in infinite ergodic theory, dynamical systems and hyperbolic
geometry, see for example [2], [3], [6].

The influence of Nagaev’s method can also be recognized in other works on other asymptotic problems in
dynamics and geometry, see for example [93], [107], [123], [126], [127], [159], [160], [182].

For the connection between the LLT and the behavior of local times for stationary stochastic processes, see
[44, 61].

Kosloff and Volny showed that every ergodic and aperiodic probability preserving system has an observable
whose Birkhoff sums satisfy the lattice LLT [121].

Local Limit Theorems for Non-Stationary Stochastic Processes. The interest in limit theorems for sums of
non-identically distributed, independent, random variables goes back to the works of Chebyshev [196], Lyapunov
[136], and Lindeberg [132] who considered the central limit theorem for such sums.

The study of LLT for sums of independent non-identically distributed random variables started later, in the
works of Prokhorov [163] and Rozanov [169]. A common theme in these works is to assume an asymptotic
formula for P[a < S’\’B_% < b] for suitable normalizing constants Ay, By, and then to ask what extra conditions
imply an asymptotic for Pla < Sy — Any < b].
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An important counterexample by Gamkrelidze [76] pointed the way towards the following phenomenon:
The distribution of Sy may lie close to a proper sub-group of its algebraic range without actually charging it,
and a variety of sufficient conditions which rule this out were developed over the years. We mention especially
the Prokhorov condition in the lattice case [169] (see §8.2), the Mineka-Silverman condition in the non-lattice
case [144], Statulevi¢ius’s condition [190], and conditions motivated by additive number theory such as those
appearing in [146] and [147]. For a discussion of these conditions, see [148].

Dolgopyat proved a LLT for sums of non-identically distributed, independent random variables which also
applies to the reducible case [56].

Dobrushin proved a general central limit theorem for inhomogeneous Markov chains in [50] (see Chapter 3).
Local limit theorems for inhomogeneous Markov chains are considered in [189]. Merlevede, M. Peligrad and

N
C. Peligrad proved local limit theorems for sums Z fi(X;) where {X;} is a ¥-mixing inhomogeneous Markov

chain, under the irreducibility condition of Minekal 82 Silverman [142]. Hafouta obtained local limit theorems for
a class of inhomogeneous Markov chains in [90]. In a different direction, central limit theorems for time-series
of inhomogeneous sequences of Anosov diffeomorphisms are proved in [12] and [30].

An important source of examples of inhomogeneous Markov chains is a Markov chain in random environment,
when considered for a specific (“quenched") realizations of the environment (see Chapter 9). Hafouta & Kifer
proved local limit theorems for non-conventional ergodic sums in [92], and local limit theorems for random
dynamical systems including Markov chains in random environment in [93]. Demers, Péne & Zhang [41] prove
a LLT for an integer valued observable for a random dynamical system.

Comparing the theory of inhomogeneous Markov chains to theory of Markov chains in random environment
studied in [93], we note the following differences (see Chapter 9 for more discussion of this subject):

(a) The theory of inhomogeneous Markov chains applies to fixed realizations of noise and not just to all
realizations in an unspecified set of full measure.

(b) In the random environment setup, a center—tight additive functional must be a coboundary plus a constant,
while in the general case it can also have a component with summable variances.

(c) In the non center-tight random environment setup, the variance grows linearly for a.e. realization of noise.
But for a general inhomogeneous Markov chain it can grow arbitrarily slowly.

The Contribution of This Work. The novelty of this work is in providing optimal sufficient conditions for the
classical asymptotic formulas for P[Sy — zx € (@, b)], and in the analysis of P[Sy — zy € (a, b)] when these
conditions fail.

In particular, we provide simple way to see when the obstructions to the LLT occur (based on structure
constants d,(£)), we derive a new asymptotic formula for P[Sy — zy € (@, b)] in the reducible case, when
Var(Sy) — oo, and we prove a structure theorem for Sy in case Var(Sy) /4 oco. Unlike previous works, our
analysis does not require any assumptions on the rate of growth of Var(Sy ), beyond convergence to infinity.



Chapter 2
Markov Arrays, Additive Functionals, and Uniform Ellipticity

Abstract This chapter presents the main objects of our study. We define Markov arrays and additive functionals,
discuss the uniform ellipticity condition, and introduce the structure constants.

2.1 The Basic Setup
2.1.1 Inhomogeneous Markov Chains

A Markov chain is given by the following data:

 State Spaces: Borel spaces (S,,, Z(S,)) (n > 1), where G, is a complete separable metric space, and %(S,,)
is the Borel o-algebra of G,,. S, is the set of “the possible states of the Markov chain at time n."

* Transition Probabilities (or Transition Kernels): a family of Borel probability measures 7, ,+1(x, dy) on
Sn+1 (x € Sy, n = 1), so that for every Borel E C S,,41, the function x +— 7, ,+1(x, E) is measurable. The
measure 7, ,+1(x, E) is “the probability of the event E at time n + 1, given that the state at time n was x."

« Initial Distribution: 7(dx), a Borel probability measure on ;. n(E) is “the probability that the state x at
time 1 belongs to E."

The Markov chain associated with this data is the Markov process X := {X;,;},>1 such that X, € G, for all
n, and so that for all Borel E; C S;, P(X; € E1) = n(E1) , P(Xp+1 € Ens11Xn = x5) = Mpne1 (Xn, Ent1).
X is uniquely defined, and its joint distribution is given by

P(Xy € Ey,---,X, € E,) 1=f ﬂ(dxl)f ﬂl,z(xl,dxz)'”f Tn-1,n(Xn-1,dx5). 2.1
E E,

E n

Let P, E and Var denote the probability, expectation, and variance calculated using this joint distribution. If 7
is the point mass at x, we write P, and E,.
X satisfies the following important Markov property (see e.g. [17, Ch. 7]):

P(Xi+1 € E| Xk, Xi—1, -+, X1) = P(Xi41 € E|Xi) = mp ps1 (Xi, E), (2.2)
P(X, € Ey, -+, Xis1 € Ex1lXi, -, X1) =P(Xy, € Epye -+, Xiet1 € Eps1|1Xp) (2.3)

= f T k1 (X, dxge1) -« f Tn-1,n(Xn-1,dxy) foralln > k + 1.
Ep41

n

The proofs are a direct calculation. Let %% o, denote the o -algebra generated by X; with i > k. Then an
approximation argument shows that for each A € .7 «,

P((Xks1, X2, -) € Al Xk, -+, X1) = P((Xks1, Xs2, -+ ) € AlXx). 2.4)

If the state spaces and the transition probabilities do not depend on #, that is, S, = S and 7y, p41(x, dy) =
m(x,dy), then we call X a homogeneous Markov chain. Otherwise, X is called an inhomogeneous Markov chain.
In this work, we are mainly interested in the inhomogeneous case.

Example 2.1 (Markov Chains with Finite State Spaces) These are Markov chains X with state spaces S,, =

{1,...,dn}, $(S,) = {all subsets of S, }. In this case the transition probabilities are completely characterized
by the rectangular stochastic matrices with entries ﬂ;ly =Mpaa1({y) (x=1,...,dy; y=1,...,dys1). The
initial distribution is completely characterized by the probability vector 7, := 7({x}) (x = 1,...,d,).
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Then P(Xi=x1, -+, Xp = Xp)=nx, n}cm 71')262)63 e n;’;_ll x, - This leads to the following discrete version of (2.1):
1 -1
P(X1 € B Xn € Ep) = D0 my D myger >0 omel
x1€E; x€Ey xp€E,

Example 2.2 (Markov Chains in Random Environment) Let X denote a homogeneous Markov chain with
state space S, transition probability m(x, dy), and initial distribution concentrated at a point x;. It is possible
to view X as a model for the motion of a particle on S as follows. At time 1, the particle is located at xy,
and a particle at position x will jump after one time step to a random location y, distributed like 7 (x, dy):
P(y € E) = n(x, E). With this interpretation, X,, = the position of the particle at time n. The homogeneity of
X is reflected in the fact that the law of motion which governs the jumps does not change in time.

Let us now refine the model, and add a dependence of the transition probabilities on an external parameter
w, which we think of as “the environment." For example, w could represent a external force field which affects
the likelihood of various movements, and which can be modified by God or some other experimentalist. The
transition probabilities become 7 (x, w, dy).

Suppose the environment w changes in time according to some deterministic rule. This is modeled by a
map 7 : Q — Q, where Q is the collection of all possible states of the environment, and 7 is a deterministic
law of motion which says that an environment at state w will evolve after one unit of time to the state T (w).
Iterating we see that if the initial state of the environment at time zero was w, then its state at time n will be
Wy =T (W)=To---0oT)(w).

Returning to our particle, we see that if the initial condition of the environment at time zero is w, then the
transition probabilities at time n are n,‘;fn (6 dy) =a(x, T (w), dy).

Thus each w € Q gives rise to an inhomogeneous Markov chain X, which describes the Markovian dynamics
of a particle, coupled to a changing environment.

IfT(w) = w, the environment stays fixed, and the Markov chain is homogeneous, otherwise the Markov chain
is inhomogeneous. We will return to Markov chains in random environment in chapter 9.

Example 2.3 (Markov Chains with Finite Memory) We can weaken the Markov property (2.2) by specifying
P(Xn+1 € ElXp, ..., Xnokos1)  1>ko;
P(X,+1 € E|X,, ..., X1) n<kg.

Stochastic processes like that are called “Markov chains with finite memory" (of length k¢). Markov chains
with memory of length 1 are ordinary Markov chains. Markov chains with memory of length ky > 1 can be
recast as ordinary Markov chains by considering the stochastic process X = {(Xn, - .., Xnako-1)}n=1 with its
natural state spaces, initial distribution, and transition kernels.

that for some fixed kg > 1,forall E € Z(S,41),P(Xn41 € E|X,, .. .,X1)={

Example 2.4 (A Non-Example) Every inhomogeneous Markov chain X can be presented as a homogeneous
Markov chain Y, but this is not very useful.

To obtain such a representation, recall that the state spaces of X are complete separable metric spaces S;. As
such, they are Borel isomorphic to R, or to Z, or to a finite set, or to a union of the above sets (see e.g. [187], §3).
In any case the state spaces can be embedded in a Borel way into R. Fix some Borel bi-measurable injections
i+ S = R. LetY, = (¢,(Xy), n). This is a new presentation of X.

We claim that Y is a homogeneous Markov chain.

Let 0¢ denote the Dirac measure at &, defined by 04(E) := 1 when E 3 £ and 64(E) := 0 otherwise. Let
G, mnn+1 and m denote the states spaces, transition probabilities, and initial distribution of X. Let Z be the
homogeneous Markov chain with state space S := R X N, initial distribution 77 := (7 o cle) X 91 (a measure on

&) x {1}), and transition probabilities T((x, ), A X B) = T n+1(9," (x), ¢, 1 (A)) 841 (B), for x € ¢,(S,). A
direct calculation shows that the joint distribution Z is equal to the joint distribution of Y = {(¢,(X,,), n)}n>1-
So Y is a homogeneous Markov chain.

Such presentations will not be useful to us, because they destroy useful structures which are essential for our
work on the local limit theorem. For example, they destroy the uniform ellipticity property, that we will discuss

in §2.2 below.
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2.1.2 Inhomogeneous Markov Arrays

For technical reasons that we will explain later, it is useful to consider a generalization of a Markov chain, called
a Markov array. To define a Markov array, we need the following data:

* Row Lengths: kxn + 1 where ky > 1 and (ky)n > is strictly increasing.

e State Spaces: (S ,(,N ) %’(C(N ) ), (1 <n<ky+1), where S N( )isa complete separable metric space, and
(%’(C,SN)) is its Borel o-algebra.

» Transition Probabilities (or Transition Kernels): {r (N) L(udn)} eov (1 < n < ky), where 7T(N )

xeG,, n+l
&™) so that for every Borel Ec G(T]), the function x — ”,(,I\,JL)H(X’ E) is

are
Borel probability measures on
measurable.

+ Initial Distributions: Borel probability measures 7\ (dx) on G

For each N > 1, this data determines a finite Markov chain of length kn + 1: XNV = (XfN), XZ(N) IEII\\]]L)

called the N-th row of the array. These rows can be arranged in a triangular array

X0, x0

@ ! @)
X(3) X(é+l’ te k%+l
x®, Xk D

X =

Each row XN) comes equipped with a joint distribution, which depends on N. But no joint distribution on
elements of different rows is specified.

We will continue to denote the joint probability distribution, expectation, and variance of XV) by P, E, and
Var. These objects depend on N, but the index N can be suppressed, because it is always obvious from the
context. As always, in cases when we wish to condition on the initial state X I(N ) = x, we will write P, and E,.

Example 2.5 (Markov Chains as Markov Arrays) Every Markov chain {X,,} gives rise to a Markov array

with row lengths ky = N + 1 and rows X™) = (X1,..., Xn+1). In this case GS,N) =G, ﬂff\:lll = Mun+1, and
a®™ =g,
Conversely, any Markov array so that ) = S, nfll\fl )+1 = Tpns1, and 7N) = 1 determines a Markov chain

with state spaces S,;, transition probabilities n(N )+1 = 7Ty, n+1, and initial distributions N =g
Example 2.6 (Change of Measure) Suppose {X,},>1 is a Markov chain with data &,, 7 n+1, 7, and let

(N)(x y) be a family of positive measurable functions on S,, X S, so that f ()D(N) (x, Y) 7y n+1(x, dy) < oo for
all x,n and N. Let

(N) o (x.y)
T (6 dy) = = T, n+1(X, dy).
[ en” ()T (x,dy)
Then the data ky = N + 1, V) := G, 7™ := 1 and ﬂ’(l]\:l )+1 determines a Markov array called the change of

measure of {X,,} with weights ‘Pn

Why study Markov arrays? There are several reasons, and the one most pertinent to this work is the following:
The theory of large deviations for Markov chains, relies on a change of measure which results in Markov
arrays. Thus, readers who are only interested in local limit theorems for Markov chains in the local regime

N —E(S N) . . . . . .
—_— X _) .
VoS z, may ignore the theory of arrays and hmltEt(I;el)r attention to Markov chains. But those who are
IN . N

also interested in the large deviations regime, where ‘ VarSn)
arrays.

is of order 1, will need the theory for Markov
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2.1.3 Additive Functionals

An additive functional of a Markov chain with state spaces S, is a sequence of measurable functions
fn Sy XS4 — R.The pair X = {X,,},f = {f} determines a stochastic process

Sy = fi(X1, X2) + f2(X2, X3) + -+ + [N (Xn, Xn+1) (N 2 1).
We will often abuse terminology and call {Sy}x > an “additive functional" of X.

An additive functional of a Markov array X with row lengths kx + 1 and state spaces G,EN ) is an array of

measurable functions f,(,N ). SELN ) x 6,(111 1) — R with row lengths kp:

&) 1)

WA
@ &) @

I S S

f=1"® fé) fé) 3)
R ST O 55

This determines a sequence of random variables Sszl(N) (XfN), XZ(N))Jer(N) (XZ(N), XéN))I- . +f]§g) (X,EZ), X]gjll,
N > 1, which we also refer to as an “additive functional." But be careful! This is not a stochastic process, because
no joint distribution of S, S2, . . . is specified.
Suppose f, g are two additive functionals on X. For Markov chains X, we define, f + g := {f,, + gn}),
of = {cfu) il == sup (sup | f (% 3) |) and ess sup [f| := sup (ess sup | f (X, Xns1)1).
X,y n

n
Similarly, if X is a Markov array with row lengths kn + 1, then we set

f+g:= (V) + M), efi={cfN), Ifl :=sup sup (sup|f,<,”>(x,y>|),

N 1<n<ky \Xxy
and ess sup [f| := supy Sup; ., <k, (ess sup LAV (x N, Xgl))l .
The notation |f| < K a.s. will mean that ess sup |f| < K ( “a.s." stands for “almost surely"). An additive
functional is called uniformly bounded if there is a constant K such that |[f| < K, and uniformly bounded a.s.
if AK such that |f| < K a.s.

2.2 Uniform Ellipticity
2.2.1 The Definition

A Markov chain X with state spaces &,, and transition probabilities 7, 41 (x, dy) is called uniformly elliptic, if
there are Borel probability measures u, on &, Borel measurable functions p,, : S, X S,4; — [0, o), and an
ellipticity constant 0 < ¢y < 1 such that forall n > 1,

@ mpne1(x,dy) = pu(x, y) a1 (dy);
(b) 0 < p, < 1/e0;

© J5,  Pa)Pus1 (3 Dbns1 (dy) > €.

We call p,+1(dy) background measures. Corollary 2.9 below says that if X is uniformly elliptic with some
background measures, then it is uniformly elliptic with respect to the “natural” background measures p, (E) =
P(X, € E) (n=3).

The integral in (c) is the two-step transition probability P(X, 12 = z|X,, = x), and we will sometime call (c) a
two-step ellipticity condition. For more general y-step ellipticity conditions, see §2.4.
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Example 2.7 (Doeblin Chains) These are Markov chains X with state spaces S, of bounded cardinality
IS < M < co, and with transition probabilities 7y, := 7,,,41(x, {y}) such that

/.

€))] 366 >0s.t.foralln > 1 and (x,y) € S, X S;41, either 7%, =0 or 2%, > €

xy xy 0’
(2) for all n, for all (x, z) € S,, X S,42, there exists y € S,,41 such that ﬂ;’yn;’; I'so0.

Doeblin chains are uniformly elliptic: Take y, to be the uniform measure on S, and p,(x,y) := nﬁy/ Sna1l.
Then (a) is clear, (b) holds with any €9 < 1/M, and (c) holds with €y := (¢;/M )2. Doeblin chains are named
after W. Doeblin, who studied homogeneous countable Markov chains satisfying similar conditions.

Here is the formulation of the uniform ellipticity conditions for Markov arrays. A Markov array X with state
spaces ™) transition probabilities ﬂ,(ll\,]lll (x,dy), and row lengths kp + 1 is called uniformly elliptic, if there

exist Borel probability measures ,ui,N) on S™ | Borel measurable functions pilN) : Gf,N) X Sr(l]fl)

aconstant 0 < €y < 1 as follows: Forall N > 1and 1 < n < kp,
@ 7 (e dy) = pi (e ) @d); )0 < pi" < Ve (© [2 pi (e P (s Dy (dy) > eo.

n,n+

— [0, 00), and

Proposition 2.8 Ifa Markov array X is uniformly elliptic with background measures yﬁf“ and ellipticity constant
€0, then for every3 <n < ky + 1 < oo,

Px\N eE)

€ < <e (E € M.
e T N

Proof We fix arow N, and drop the superscripts (V). Define a probability measure on S, by P, (E) = P(X,, € E),
then for every 1 < n < ky, for every bounded measurable ¢ : S,;2 — R,

f‘PdPnJrZ = E((,D(Xn+2)) =E E(E(‘P(Xn+2)|xn+l, Xn)

= fff«p(z)ﬂnﬂ,mz(y,dz) Tnn+1(x, dy) Py (dx).

So fgadPn+2 = f¢(z) [f(f Pn+1 (Vs 2)pn (X, y)/,t,,+1(dy)) Pn(dx)] HUn+2(dz). The quantity in the square

brackets is bounded below by € and bounded above by € 1. So the measures P,.2, HUn+2 are equivalent, and

dpP, -1
< n+2 <
€= dpnsa = 60 : o

Xa)| = BIEE @) Xa)IXn) | ¢ Markov property)

Corollary 2.9 If a Markov array X is uniformly elliptic, then there are €y > 0 and p,(lN) (x, ¥) so that the uniform

ellipticity conditions (a),(b) and (c) hold with the background measures pﬁlN)(E) = ]P[X,(lN) € Elforn > 3.

Proof 1f X is uniformly elliptic with background measures ,uﬁlN ), then it is also uniformly elliptic with any other
choice of background measures ﬁle ) so that C! < dﬁle)/dpElN) < C, with C positive and independent of n
and N. The corollary follows from the previous proposition. O

Corollary 2.10 Let X be a uniformly elliptic Markov chain with ellipticity constant €y, and suppose Y is a
Markov array obtained from X by the change of measure construction described in Example 2.6. If the weights
satisfy C™! < ¢5,N)(x, y) < C for all n and N, then Y is uniformly elliptic with ellipticity constant €y/C*, and
AM = M (ey, C) > 1 such that for all N and3 < n < N,

PN € E)

M <
P[X, € E]

(2.5)

Proof Let m;, ,41(x, dy) be the transition probabilities of X. By assumption, 7, ,+1(x, dy) = pn(x, ¥) tns1(dy)
where p, (x, y) satisfies the uniform ellipticity conditions. Then the transition probabilities of Y are given by
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Pa(x e (x, )

[ ot (x, 2) 7y ne1 (x, d2) '

(%, ¥) tns1(dy), where ¢V (x, ) :=

g\M (2.6)

Since qﬁlN) (x,¥) = C*2p,(x,), Y is uniformly elliptic with ellipticity constant ey/C*. (2.5) follows from (2.6)
and Proposition 2.8. O

Caution! The Radon-Nikodym derivative of the joint distributions of (X3, ..., Xn) and (Y;N), e YISIN)) need
not be uniformly bounded as N — oo.

2.2.2 Contraction Estimates and Exponential Mixing

Suppose X, ) are complete and separable metric spaces.

A transition Kernel from X to 9 is a family {7 (x,dy)},cx of Borel probability measures on ?) so that
x — n(x, E) is measurable for all EC %) Borel. A transition kernel {7 (x,dy)}ycx determines two Markov
operators, one acting on measures and the other acting on functions. The action on measures takes a probability

measure ¢ on X and maps it to a probability measure on ¥ via m(w)(E) := f n(x, E)u(dx). The action
X
on functions takes a bounded Borel function # : 9 — R and maps it to a bounded Borel function on X via
a(u)(x) = f u(y)m(x,dy). We have a duality:
9

fu(y) m(w)(dy) = fﬂ(u)(X) u(dx). 2.7

Define the oscillation of a function u : ) — R to be
Osc(u) := sup |u(yr) —u(y2)l. (2.8)

y1,y2€%

The contraction coefficient of {7 (x,dy)} cx is
0(m) == sup{|n(xy, E) — m(x2, E)| : x1,x2 € X, E € B(V)}.

The total variation distance between two probability measures uj, (o on X is
1
[le1 = pallvari=sup{|u1 (A) — w2 (A)| : A C X is measurable}zz sup{f w(x) (1 — ) (dx)|w : X - [-1, 1] is measurable}.

Caution! ||p1 — pzllvar is actually one-half of the total variation of ) — up, because it is equal to (u; — p)* (¥)
and to (u; — pp)~(X), but not to

|l (X) = (p1 = )™ (X) + (1 = p2)™ ().

Lemma 2.11 (Contraction Lemma) Suppose X, ) are complete and separable metric spaces, and {n(x, dy)}yex
is a transition kernel from X to ). Then:

(a) 0 <o(m) < 1.

(b) 6(mr) = sup{Osc[r(u)] | u :Y — R measurable, and Osc(u) < 1}.

(c) If 3 is a complete separable metric space, mty is a transition kernel from X to %), and m is a transition kernel
from Y to 3, then 6(my o mp) < 6(my)d(my).

(d) Osc[n(u)] < 6(m) Osc(u) for every u : 9 — R bounded and measurable.

(e) llm(u1) = w(p2)lvar < 6(m)llp1 — pzllvar for all Borel probability measures pi, pz on X.
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(f) Suppose A is a probability measure on X X ) with marginals px, py, and transition kernel {n(x,dy)}, i.e.
A(E x9) = px(E), A(X X E) = py(E), and A(dx,dy) = n(x,dy)ux(dx). Let f € L*(ux), g € L*(uy) be
two elements with zero integral. Then ' f(x)g(y)A(dx, dy)’ S NN N2 ) 181122 (g -

Xx9 N

(g) Let A, ux, g and & be as in (f), and suppose g € L*(uy) has integral zero, then n(g) € L*(ux) has integral

zero, and ||(@)r2(uyy < VOO L2 (-

Proof (a)is trivial. The inequality < in (b) is because for every E € A(?), u := 1 satisfies Osc(u)<1. To see >,
fix some u : 9 — R measurable such that Osc(u) < 1. Suppose first that u is a “simple function:" a measurable
m

function with finitely many values. Then we can write u = ¢ + Z a;la; where c € R, |a;| < % Osc(u), and A;

i=1

measurable and pairwise disjoint. For every pair of points xy, x; € X,

|7 () (x1) = () (x2)| =

D ailx(x, A) - (xs, Ai)]‘
i=1

IA

D ailn(en, A) = wGe Al +| D aile(a, A - ez, 4]

(X1, Ai)>7(x2,Aq) 7(x1,Ai)<m(x2,A;)

IN-—=

%Osc(u)é(ﬂ) + %Osc(u)é(ﬂ) =0(m)Osc(u) < 6(m) (. A; are disjoint).

So Osc[n(u)] < 6(r) for all simple functions u with Osc(u) < 1.

It follows that Osc[x(u#)] < 6(sr) for all measurable u s.t. Osc(u#) < 1. This proves (b).

Clearly, (b) = (d) = (c). To see (e), we restrict to the non-trivial case y; # up. Let u := u; — o, and
decompose u = ut — u~ where p* are singular positive measures (this is the Jordan decomposition). Since
u(¥) =0, u* and u~ have equal total mass, and p*(X) = %(,Lﬁ(%) +u (X)) = %|,u|(¥) = ||up — p2llvar- Let

M1 — 12

myo= = p2livar s B2 0= w0 /g = pollva, fi=a -y = —————.
”,ul _,UZHVar

Note that 177 and 1, are probability measures.
For every non-constant measurable function w : 9 — [-1, 1],

3 fywr(wdy)

_1 f W)@ (dyy) - f W) () (dy2)
le1 = p2llvar 2 Jy 9

] 7 —_
= ELF(W)(XI)NI(dXO—f;ﬂ(w)(xZ)/Jz(d)Q), see (2.7)

1 —~ —~ —~
3 ﬁ L[H(W)(M) — (w)(x2) ] (dx1) pa(dxz), because u;(X) = 1,

IA

1
56(71') Osc(w) < d(m), by (b) and because Osc(w) < 2wl < 2.

Passing to the supremum over all w(y) gives part (e).

Part (f) is the content of Lemma 4.1 in [181]. We reproduce the proof given there.

Consider the o-algebra 4 := {X X E : E C 9 is measurable}, then ¢ represents the information on the
9—coordinate of (x,y) € X X 9.

Let 7, be a measurable family of conditional probabilities given ¢, i.e. 7y, is a probability measure on X X {y},
y f fdm, is Borel for every Borel function f : ¥ X9 — [0,1], A = fogD 7ydA, and for every A-absolutely

integrable f(x,y), Ea(f(x, V)|9)(y) = f fdm, A-ae.
X
We may identify 77, with a probability measure 7(y, dx) on X defined by 7(y, E) = 1, (Ex{y}) (E C X Borel).
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It is useful to think of 7(y, dx) as the transition kernel “which goes the opposite way" to 7 (x, dy). Indeed, if
m(x,dy) is the transition probability of a Markov chain {X,,} from n to n + 1, and A is the joint distribution of
(X1, Xn+1), then 7(y, dx) is the transition probability from n + 1 to n, i.e. 7(y, E) = P(X,, € E|Xp41 = ¥).

The operators 7 : L?>(uy) — L*(ux) and 7 : L*(ux) — L*(uy) are dual to one another, because
Je Fm()()dpx(x) and [y T(f)(y)g(y)dpy (y) are both equal to [[ f(x)g(y)A(dx, dy).

Cramm: Q = o7 : L*>(ux) — L*(ux) is self-adjoint, Q preserves the linear subspace L%(u;) ={f e L?(ux):
f fdux = 0}, and the spectral radius of Q : L% — L% is at most 6(Q).
Proof of the Claim: Q is self adjoint, because Q* = (n7)* = 7*n* = 7 = Q.

It is useful to notice that Q is given by (Qf)(x) = fx f(x)O(x,dx") where Q(x, E) is the probability
measure on X given by Q(x, E) = f 7(y, E)m(x,dy). Q(x,dx’) is a transition probability from X to X. Notice
that Q(ux) = pa:

o) (E) = [ ot Bypsan = [ fy (), dy) 7y (B x ()
- [ mExopadnd) = [ FEXDA = AEXY) = ux(E).
Xx9) Xx9)

Thus, forall f € L2(ux), [ Ofdux = [ fd(Qux) = [ fdux.Itfollows that Q : L?(ux) — L*(ux) preserves
the linear space L(z).
For every ¢ € L% N L™, ||l¢lle < Osc(y). Since Q preserves L% N L™, for every f in this space, we have by
parts (c) and (d) that
10" fll2 < 1Q" flleo < Osc(Q" f) < 6(Q)" Osc(f). 2.9
This implies that the spectral radius of Q : L(Z) - Lé is less than or equal to §(Q). Otherwise there
is an L%-function, part of whose spectral decomposition corresponds to the part of the spectrum outside

{4 € R : 1] < 6(Q) + €} (self-adjoint operators have real spectrum). Any sufficiently close L(2) N L*—function
would have components with similar properties; but the existence of such components is inconsistent with (2.9).
The proof of the claim is complete.

Q : L§ — L} is a self-adjoint, with spectral radius at most 5(Q), so for all f € Lj(ux), (Q(f), iz <
6(Q)”f”iz» and
0

I 2y = FTEN 12009 = QU Py < SN,

We can now prove (f). Fix f € L§(ux), g € L3(uy), then

ﬁ \nf(X)g(y)l(dx,dy)‘ = U;) M*y(dy)j;f(y, dX)f(X)g(y)‘ =(T(f) 8) L2 (uy)
< I7T(Hl2llgl < VS fI2llgll2, as stated in (f).

If ¢ € Lg(uy), then fﬂ(g)dux =ffg(y)use(dX)7r(x,dy) =ffg(y)/l(dx, dy) =fg(y)u~y(dy) = 0.

Substituting f := n(g) in (f) and noting that fﬂ(g)(x)g(y)/l(dx, dy) = f(n(g))z(x)dygg(dx) = ||7r(g)||§,

we obtain (g). |

We now return to the setup of Markov arrays and consider the following two-step transition probabilities

(N) — (N) (N)
nn,n+2(x’ E):= f To+ln+2 (» E) T+l (x, dy),
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definedfor 1 <n <ky—-1,x € Gf,N), and E € # (Sflfz)). The uniform ellipticity condition gives the following
(N) .
):

uniform bound for & (7)) i

Lemma 2.12 Let X be a uniformly elliptic Markov array with ellipticity coefficient €y. Thensup sup 9§ (ﬂ,(l]\;)Jrz) <
N 1<n<kn ’

1 — €. Similarly for Markov chains.

Proof We fix N and drop the superscripts V).

Uniform ellipticity implies that 7, ,42(x,dy) < p,4+2(dy) and that the Radon-Nikodym density is bounded
from below by €p. This allows us to find a transition kernel 7, 5,11 (x, dy) such that

Tpn2(x, dy) = €opns2(dy) + (1 — €0) 7Ty ns2(x, dy). (2.10)

Note that the first term does not depend on x.
Letu : S,,4» — R be a measurable function with Osc(uz) < 1, then we can write u(-) = ¢ + w(-), where c is a
constant and ||w]|e < % A direct calculation shows that

ﬁ M(Z)ﬂn,n+2(xla dZ) _ﬁ M(Z)ﬂn,n+2(x27 dZ)

j; "V(Z)7Tn,}1+2(xlydz)_~[;~ W(Z)ﬂ'n,n+2(x2’dz) =

(1-€0) < (1-€0) [Wlloo [T n+2(X1, Sha2 Hn, na2 (X2, Span) | <l—€p.0

ﬁ W(D) T ne2(x1,d2)— | wW(2)Ty a2 (x2, dz)

©n

Proposition 2.13 Let X be a uniformly elliptic Markov array with row lengths kn + 1. Then there exist 6 € (0, 1)
and Cyix > 0, which only depend on the ellipticity constant €, as follows. Suppose hle) (x,y) are measurable
functions on G,(lN) X Gr(llj]) and let hElN) = hﬁlN)(X,(,N), X,(llfl)), then:

(1) If '\ is bounded and E(hN) = 0, then forall 1 < m < n < ky,
IEGM XN oo < Cnin™ ™ 18 Nl @2.11)

(2) If Var(h\M), Var(hiN)) < 00 and E(hV), BE(hM)) = 0, then forall 1 <m < n < ky,

NEGRN X < Conin®™ ™ 1A 123 (2.12)
IEGRA) BN < i @™ A 12BN . (2.13)

The analogous statements hold for Markov chains.
Proof We fix N and drop the superscripts ™). Let w, 1 (Xy) := E(h,|Xx) (k < n). Then mi_1 x (Wnx) = W k-1,

because

-1,k Wi i) (Xg-1) = fwn,k(y)”k—l,k(xk—ladJ’) = Elwpk (Xi) [ Xg-1] = EBE(h | Xi) [ Xpe-1]
2 E[E(hn| Xk, Xk-15 - - -» X1) | Xk-1], = E(hp| Xx-1) = wnk-1(Xx-1) (! follows by the Markov property)

Hence Wn,m(Xm) = (ﬂm,m+1 ©---0 ﬂn—l,n)(wn,n)(xm’)y;
By the previous lemmas, Osc[wy, ] < (1 — €p) L5 Osc[wy,,,]. Notice that for every bounded measurable
function v, ||v]le < |E(v)| + Osc(v). Since by assumption E(wy, (X)) = E(h,) =0,

NE (| X lloo = IWnm (X lleo < (1 = €0)L27 Oscw, ).

Since Osc[wp,n] < 2|Winlleo < 2[lhnlle, (2.11) follows.
(2.12) can be proved in the same way, using Lemma 2.11(g).
By the Markov property, E(h,,, hn) =E[E(hmhn| X, X+ 1)1 =E[hmE(hy | Xm+1)]- So
EChn )| < 1hml2 1By X+ 1) |l2, and (2.12)=(2.13), perhaps with a bigger Cyyy;. |
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Lemma 2.14 Suppose f is a uniformly bounded additive functional of a uniformly elliptic Markov array X. There
is a constant C which only depends on the ellipticity constant of X such that V{{y}, if hg) are uniformly bounded

={N)

measurable functions on SANE , and ess sup Ih(N)I < L, then
N N +1 ‘N

Cov (Sn. g (X{N, XM )) < CLess sup .

kN
Proof Write Cov(S, hj")) = Z Cov(fiN, k) and use (2.13). O

n=1

2.2.3 Bridge Probabilities

We would like to define “the distribution of X,(iN ) given X,(f:] 1) = x and Xr(llfl) = 7" for every (not just almost

every) X, z.
Suppose X is uniformly elliptic, and write ﬂr(l]\fl )+1 (x,dy) = pﬁlN )(x, y) /,tg{(dy), with pﬁlN ) and /,L;N ) as in the

definition of uniform ellipticity.

Then ZM (x, 2) := f{m PN (x, y)pg;(y, Z)u;ﬁli (dy) > €¢ > 0, and we can define a measure on Gfl]rl) by
sn+l
XM = x 1 N N
P2 ¥ 2 1) = e [ o o, (2.14)
X =2/ zM (e Je" ! !

Lemma 2.15 Let g (x, z) denote the right-hand-side of (2.14), then

wE(XN, XMy = P(Xflfl) e E|x\™, Xr(lilz)) P-almost everywhere.

n+2

Proof We fix N and drop the superscripts V).

Clearly Y g (X, X,+2) is measurable with respect to the o-algebra generated by X,,, X,,+2. To prove the
lemma, we need to check that for every bounded measurable function ¢ on S, X S,12, E[(¢¢¥E)(Xn, Xn+2)] =

Elo(Xpn, Xn42)1E(Xpi1)].
Let P,, denote the measure P, (E’) = P(X, € E’), then

257D D 15O e (dY)
EL (W) (X, Xns2)]= f f ﬂv(x,z)fp LYo ;fxf)y K 6, YDt (3 2) P () s () s ().

Afterintegrating out y, we are left with the triple integral ffﬁo(x, DY) p(x, y)pn (Y, 2) Pr(dx) t 41 (dy”) p2(d2),
which equals E[@(X,, Xy+2) 1 £(Xns1)]- o

The lemma does not “prove" (2.14): Conditional probabilities are only defined almost everywhere; but the
point of (2.14) is that it makes sense for all x, z.
Motivated by Lemma 2.15, we call (2.14) the bridge distribution of X g 1) given that X ,(LN ) = xand Xy(llfz) =z
The “bridge" x — E — zin (2.14) has length 2. It is easy to extend the definition to bridges of length m > 3.
Suppose 1 <n<n+m< ky +1,and let
SN =M x. . x ) (2.15)

n+m»

N
wihy = N xcx (2.16)
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m—1
N

P Cens s Xmam) = [ ] PN G i), .17

i=0

N
(N) (xn - xn+m) f”") pn m(xn, §n+1, e §n+m—l’ xn+m)d/1;+i’m_2 s (218)
Sn+l,m-2
where the 1ntegrat10n isover (£n41s -« -5 Entm—1)-

Note that pn (xn — Xp4m) iS the densny of ]P’[X,(f:f,z1 = dxn+m|X,(lN ) = X, ] with respect to yiﬁ)n By uniform

ellipticity, p,, )(xn = Xp+m) < € ™ and

(N)(xn —)xn+m) - E’z]:—]i m-3 [P;}Q_z(xm §n+la B ‘fn#—m—Z)X
,.(N)
“n+l,m-2
N
x f o PEnsm, Enem-0)PEnvmts Xnem) Ky, (Wnemt) | 2 €. 2.19)

n+m-—1

Since pLN) (xn = Xp+m) # 0, we can define the bridge distribution of Xr(llfl) given that X,(lN) = x, and

X,(IT,L = Zp+m 10 be the measure on G' +1) m—2» given by
XM = x 1
P ( E ‘ (N) ! = N) fpﬁf\,]ﬁ X Ensts -+ s Enem—15 an)d#ﬁi m—2’ (2.20)
Xpam = Zntm w (Xn = Zn+m) ’

where the integration is over (£,41, - . . Entm—1)-
Again, this agrees a.s. with E(1 EIX,(IN ) X,(llf,il)(xn, Zn+m). But unlike the conditional expectation, (2.20)

makes sense globally, and pointwise, and is not just an L'-equivalence class.

2.3 Structure Constants

Throughout this section we assume that f is an additive functional on a uniformly elhptic Markov array X with

row lengths ky + 1, state spaces 6( , and transition probabilities 7r + ((x,dy) = )(x, y) u;ﬁ’i (dy), as in the

ellipticity condition. By Corollary 2.9, we may assume that y(N)(E) =Py(E) := P(Xle) € E) forn > 3.

2.3.1 Hexagons

Xn-1_ Xn

Yooty s Yn+1 | Where x;, y; € b( ) . A hexagon
n—1 n

A Level N hexagon at position3 < n < ky is 6-tuple | x,,_»;

is admissible if

P ns XD oty X)) Gy Y1) £ 0, pN) Gy YD) Gt Y PN s Y1) # 0.

Admissible hexagons exist because of uniform ellipticity. The hexagon spaces are the spaces of level N
admissible hexagons at position n. We denote them by Hex (N, n) or, in the case of Markov chains, by Hex(n).
The hexagon measure myex = mﬁ’e”(’ is the probability measure on Hex(N, n) arising from the following

) Xpno1 X
sampling procedure for {x,_p; =" "; ",yn+1)

Yn-1Y
e Let {X,(,N)} and {Y,,(N)} be two independent copies of X;

* (xp-2, xp—1) is sampled from the distribution of (X:;Nz)’ X(N))
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*  (Vn> Yn+1) is sampled from the distribution of (¥, (N) Y (N)) (so it is independent of (x,, x,,+1));
* x, and y,_; are conditionally independent given the previous choices, and are sampled using the bridge
distributions

P(xn € Elxp-t, yue) = P (XY € EIXY) = xt, X3 = ynnn)
P(yn-1 € Elxua,yn) =B (L) € EY ") = x, 01N = y,) .

Xn-1, Xn

To write this explicitly in coordinates, we let P = (xn 25 Yot’ Y
n—1 n

; yn+1) and set:

n+l

Mprod (AP) = mA-" (dP) 1= Py (dxsm2) ]_[ pM () [T ™ dyo)

i=n—1 i=n—1
¢"(P) = ¢iy n(P) := pM) (xn2, )P ) et XD (s Y1) (2.21)
¢ (P) = ¢n n(P) = PN (tn2, Y- 0)P) Ot y) P s Y1)

Z4(P) = Z§, ,(P) = f M) s PN €y ) (0E)
Z7(P) = Z3,,(P) = f M) (0, PN E ™) (d8).

We will drop the indices N, n when they are clear from the context. It is not difficult to see that the following
identity holds:
e (P~ (P)

Myex (dP) = WmProd(dP)- (2.22)

The hexagon measure is asymmetric in the following sense: mpex © 1 # mpyex, Where 1 is the involution

Xnol X . .
v [y Yart | & [ xn22; Yn-1 ; Yn : Yn+1 | - There is another natural measure on Hex (N, n) which
Yn-1 Yn Xn-1 Xn

is invariant under 1.
This measure, which we will denote by mj,, , is the result of the following sampling procedure for P :=

e PPN
n— n+l |-
,yn—l’yn,

e Let{X, (N )} and {Y,, (N )} be two 1ndependent coples of X;
* Xx,—p is sampled from the distribution of Xn 55
*  y,+1 is sampled from the distribution of Y( ) (so it is independent of x,,);

e conditioned on x,_, X,,+1, the pairs (x,-1, xn) and (y,,-1, yn) are independent, and identically distributed like

the bridge distribution of (Xr(;}—vl) , X,(,N)) given Xr(l]—vz) = X;-2, Xn]:’ | = Xn+1-
Equivalently, if Z(P) = Zn.,(P) = p" (Xn_2 = yns1) (see (2.18)), then

¢ (Pl (P)

Myex (dP) = Z(P)Z

Mprod (AP). (2.23)

Recall that Z*(P) € [eo, €,'] and Z(P) € [eo, €;°], see (2.18) and (2.19). Therefore:

€< — % < g (2.24)

Because of (2.24), we could have chosen either myex or mil as the basis for our work. The reason We prefer

the asymmetric mpex to the symmetric mj; . will become apparent in §2.3.3. There we will see that {m } can
be coupled in a natural way.
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2.3.2 Balance and Structure Constants

Xn-1, Xn

The balance of a hexagon P := [ x,_7; ;
Yn-1 Yn

; Yu+1 | € Hex (N, n) is

rp) := fr(,l_vz) (Xn-2, Xp-1) + f,(ll_vl) (Xn-1, Xn) + f;(tN) (Xns Yn+1) — f,(,]yz) (Xn-2, Yn-1) — f,(ll_vl) n-1yn) — y(lN) n> Yn+1)-

(2.25)
The structure constants of f = { ,(lN )} are
Ut = uf (@) = B OO dN(©) = dV (&0 = B, wn (€670 1)1,
kn kn (2.26)
Uy = Un () = 3 )2, Dy (@) = ) dM )2,
n=3 n=3

where the expectation is over random PeHex (N, n). If X is a Markov chain, we write un:u;N) andd, (¢ ):df,N) ).
The significance of these quantities was mentioned briefly in §1.3, and will be explained in later chapters.

At this point we can only say that the behavior of Uy determines if Var(Sy) — oo, and the behavior of Dy (£)

determines “how close" f is to an additive functional whose values all belong to a coset of the lattice (27/¢)Z.

Lemma 2.16 Suppose f, g are two additive functionals of on a uniformly elliptic Markov array X, and let &, be
real numbers, then

(@) dYV (& + 1,02 < 8(d(£,02 +dN (7, D),
(b) dYV (£, £+ 9)* < 8N (£, +dN (£,9)%);
(c) A (&9 < 1Eu ();

(@) ui™ (f+ )% < 2[5 + uM (9)%].

Proof For any z,w € C such that |z|, [w| < 2, we have ! [zw + z + w|> < 8(|z|? + [w|?). So if P € Hex (N, n)
and &p := €T°(P), np = nl'(P), then

leiEPFP) _ 112 = |17 — 1) (e — 1) + (€7 — 1) + (7" — 1)|> < 8(|e's” — 11> + |77 — 11?). (2.27)

Part (a) follows by integrating over all P € Hex(n, N). Part (b) has a similar proof which we omit. Part
(c) is follows from the inequality |e'? — 1]? = 4sin2§ < |6|>. Part (d) follows from the general inequality
(a + b)? < 2(a® + b?). O

Lemma 2.17 Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic Markov chain X.
Fix x € G4, and let d,, (&, x) denote the structure constants of f on X conditioned on X1 = x. Then there exists
0 < 6 < 1 such that |d* (¢, x) — d> ()| = O(8") for all £ € R.

The proof is given in §2.3.3.

Example 2.18 (Vanishing Structure Constants) Suppose f;,(x,y) = an+1(¥) — a,(x) + ¢, for all n, then the
balance of each hexagon is zero and u,,, d,,(£) are all zero. For more on this, see §3.2.1.

Suppose f,(x,y) = an+1(¥) —an(x) +c, mod %”Z for all n. Then e¢T(") = 1 for all hexagons P, and d,,(¢)
are all zero. For more on this, see §4.3.1.

Example 2.19 (Sums of Independent Random Variables) Let Sy = X + - - - + Xy. where X; are independent
real valued random variables with non-zero variance. Let us see what u,, measures in this case.

Proposition 2.20 u? = 2(Var(X,,_1) + Var(X,)) and Uy := 3, u% < Var(Sy) (i.e ANy such that the ratio of
the two sides is uniformly bounded for N > Ny).

Lzw+z4w)2 = 22w2+ 22+ w2 +2(22w+zw?+zw), and |22w?| < 4|zw| < 2|z2+2|w |, |22w] < 2|z]2, 2]zw]| < |z|*+ 1w,
lzw?| < 2|w|?.
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Proof Let {Y,} be an independent copy of {X,}, and let X := X; — ¥; (the symmetrization of X;). A simple
Calculatlon shows that the balance of a position n hexagon is equal in distribution to X, _, + X}, . Clearly E[X/] = 0
and E[(X})?] = 2Var(X;). Consequently,

ui(€) = B[(X:_)* + (X;)*] = 2Var(X,,_1) + 2Var(X,,).

Summing over n we obtain >N =< Var(Sy). |

n?n

We remark that the proposition also holds for Markov arrays satisfying the one-step ellipticity condition (see
§2.4 and §3.1).

Now we describe the meaning of d,,(¢) for sums of independent random variables, and relate it to the distance
of X,,_; and X,, from cosets of 2£Z.

Given a real-valued random variable X, let

1/2
DX.§) =minE [dmﬁ (X, 0+ 2?”2)] : (2.28)

The minimum exists because the quantity we are minimizing is a periodic and continuous function of 6.

Proposition 2.21 For every & # 0, d, (&) = O iff there are constants 0; such that X; € 0; + %”Z as. (i=n-1,n).
In addition, there exists C(&) > 1 such that if d,,(¢) and D(X,_1, €)% + D(Xp, &)* are not both zero, then

dn(€)

CO T < SR ot a R

< C(6).

Proof Choose 6; € [0, 2?”] such that D(X;, &) = E[distQ(X,-, 6; + 2?’TZ)]I/Z. There is no loss of generality in
assuming that §; = 0, because the structure constants of f;(x) = x and g;(x) = x — 0; are the same. Henceforth
we assume that

2 172
DX, &) =E [distz (X,-, ?Z)] ) (2.29)

As in the proof of the previous proposition, the balance of a position n hexagon is equal in distribution to
X*_| +X;, where X7 := X; - Y; and {¥;} is an independent copy of {X;}. So d?(¢) = E([e®n-17%n) — 112),
We need the followmg elementary facts:

) — 112 = 4sin* 2 = 4(sin$ cos § +sinJcos $)? (x,y €R) (2.30)
2 dist* (1, nZ) < sin*t < dist®(1,7Z) (1 €R) (2.31)
PIX; € (~35. 35) + FZ] 2 g (= 1) (2.32)

(2.30) is trivial; (2. 31) is because of the inequality2 2¢/x < sinz < ¢ on [0, Z]. To see (2.32), we decompose
R = @izo ([0, 2f) + — + e ), and note that there must be some k € {0, 1, 2 3} such that P[X; € [0, 25) + +
2?"Z] > 41'1' Since Y; is an mdependent copy of X;, P[X;, Y; € [0, %) + ’5 Z] > 16 This event is a subset of
the event [X} € (—%, %) + 2?”2] and (2.32) follows.

Returning to the identity dfl &) = E(Iei(X::—lJrX;) —1]?), we see that by (2.30)

EX . % . %
T’” + % sin(éX,,_,) s1n(§Xn)) .

drzl(f) = E(|e¥Xn1tX0) — 112) = 4E (sln X2 cos? £X " + sin? 92(; cos?
Since X} is symmetric, E[sin(§X])] = 0, and so

d2(&) = 4E (sin2 %) E (cos® £%2) + 4E (sin®> £32) E (cos2 %) . (2.33)

2sint > t/(m/2) by convexity. The inequality sin# < ¢ follows by integrating the inequality coss < I between 0 and 7.
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By (2.32),E (cos2 %) > cos?(§)P[X] € (=35, 35) + £ Z] 2 55. Therefore,
L&) = Ca(d) [E (sin2 %) +E (sin? %)] with G, (¢) & [1,4]. (2.34)
Itremains toboundE(sin%%)) interms of D(X;, £)2. By (2.30),E (sin2 %):E [(sm ‘%;( cos Q—sm Q cos ‘ff ) ] ;

SoE (sm2 £ ) =2E (sin2 %) E (cos2 2.9 ) - 1E (sin(¢X))* < 2E (sin2 ﬁ)
< 2B (dist® (£, 72)) = %E (dist® (X, 2”z)) £ DX, £)7, see (2.29), (2.31).
Next by (2.31) and the definition of D(Xj, &),

E(smzf )_iz (dlst( ﬂZ)) f—ZE(dlst (X; — Yl-,%”Z))

& . 2n ¢
= >E [E (dlstz(X,-,Yi + ?Z)'Yi)] > ;E (DX, €] = 520X, 8%,

The proposition follows from (2.34). O

2.3.3 The Ladder Process

Lemma 2.22 Let X be a uniformly elliptic Markov array with row lengths ky + 1. Then there exists a uniformly
elliptic Markov array L with the following structure:

(a) Each row has entries L(N) = (Z(N) Y( X(N)) B<n<ky+1).
(b) {Zl.(N)} and {Xl.(N)} are independent coples of X.

XMy = (x) XN = 20
(c) Y(N) G(N) are mdependentgzven{X(N)} {Z(N)} and P Y(N) S EJ =P X(N) eE
Proof We denote the state spaces of X by ’”(N ) , and its trahsition pr l{»ﬂ?ﬁ’l)ties by p (x ) ,u,Hl d )X,%{V U= Xn
assume that p(N) z (Ni(ﬁil he u grm elhptlclty condition with ellipticity CO(lStant €. We glsa assume

(itfd ][‘5§§159'ée grralztyytﬁml) fgme%iw & gpsvibuiptNiike g dpng@orphiexagop ) (Egy %Veé’lé:&z y 2.9).

N
LetP (dy,, N ! ) denote the bridge measure on p( ). Define the Markov array L with

+1 = Xn+l

e =M x ™M) x g™,

* State spaces S,
* Rows LV = (Zn 2, Yn- 1,xn) @B<sn<ky+1,N21.

« [Initial distribution 7V (dzy, dy,, dx3) = fP(N)(dz)P(N)(dx)P(

~(N) ~(N)

)

* Transition probabilities 7rn )((z,, 2 Y- 1,xn) E, | XE,XE,) =

= f N (zn-2, 2n-1)P (s Xns 1) P(dyn| 0
En 1 XEpXEp+)

‘? C ) dzae) g ().

The definition of the transition probabilities encodes the following samphng procedure: We evolve z,,_, —
Zp—1 and x,, — x,4; independently according to 7r (zn s, dz), ﬂfl (xp,dx), and then we sample y, using
the relevant bridge distribution. Properties (a)—(c) are 1mmed1ate consequences, and property (d) follows from
(a)—(c) and the definition of the hexagon measure m%’".
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Fig. 2.1 The ladder process (in the case of Markov chains): {Z;}, {X;} are independent copies of X, and Y, are conditionally

independent given {X; }, {Z; }. The marginal distribution of the position n hexagon (Zn,g; 1%::: ; ;,', ;X,Hl) is my o

Note that for n > 5, ,u;cN ) = PIEN ) fork = n — 2,n, and the marginal distribution of L;N ) is the measure
mi (dLWN) given by:
N N
P2 Yu-DOP Ot ) ()

1% 1,y ([@dzn2) il (dyn-D) Y ().

Jom P zne PN G x) Y (dip)
We claim that L is uniformly elliptic with background measures mf,N ). In what follows we fix N, suppose
Xi, Vi 2i € S, and write pf,N ) = p whenever the subscript is clear from the variables. Let P(L,,L, ) :=

P(2n-2, 20-1)P (X, Xn41)- Then mM (L, . L, ) = P(L,,, L., )mns1 (AL, ),
By the ellipticity assumption on X, P(L,, L, , ) < 662. In addition,

[ PL Ly Py Ly (AL,

= fffp(zn—% Zn-1)P(Xn, X4 1) P(Zn-1, Zn) P (Xn+1, Xn42) X

P(Zn-1, Yn)P(Yn> Xna1)
[ PGnet )P, X)) pn (dip)

= ffp(zn—Zs Zn—l)p(xm xn+l)p(zn—l’ Zn)p(xn+l9 xn+2)/1n—l(dzn—l),un+1(dxn+l)

Hn1(dzn- 1) (dyn) tns1(dx,11)

:ﬁ(zn—%Zn—l)p(zn—hZn)/Jn—l(dZn—l) DX, Xne )P (Xnt1, Xne2) Una1 (AXpy1).

The last expression is bounded below by eg. So the ladder process is uniformly elliptic with ellipticity constant

2 o

EO.
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We can now prove Lemma 2.17: Suppose f is an a.s. uniformly bounded additive functional on a uniformly
elliptic Markov chain X. Fix some x in the state space of X, and let dfl (&, x) denote the structure constants of f
on X, conditioned on X; = x. We are asked to show that Idﬁ(f ) — d, (&, x)| decays exponentially in n.

Let L denote the ladder process. By Lemma 2.22 (d), there exists an additive functional I" on L so that
d2 (&) = B(|e¥TEwlar) — 112). By the uniform ellipticity of the ladder process and (2.11), there are constants
C > 0,0 € (0, 1) such that

ess sup E(|eiff<£w£n+l> - 1|2|g1 - .y, x/)) - df,(g)' <co.

.y x")

To complete the proof, we construct a probability measure A such that

drzl(é-‘,x) = fffE(kifF(Ln’Lnn) _ 1|2‘£] — (z',y',x'))/l(dx', dy', dz"),

and integrate both sides of the previous inequality. The measure A(dx’,dy’,dz’) is the measure such that x’ is
equal to x, z’ is sampled from the distribution of X3 conditioned on X; = x, and y’ conditioned on x’, 7" has the
bridge distribution. O

2.4 y-Step Ellipticity Conditions

In this section, we discuss some useful variants of the uniform ellipticity condition. Suppose X is a Markov array
with row lengths kx + 1 and transition probabilities nfﬁlll (x,dy) = pﬁ,N)(x, y) ”511:2 (dy).

The one-step ellipticity condition is that for some ¢y > 0, forall N > 1 and 1 < n < kp, and for every
X € GﬁlN) and y € Sr(l]ffl), €y < ple)(x,y) < 661.

The y-step ellipticity condition (y = 2,3,...) is that for some ¢y > 0, foral N > 1 and n < ky,

0< prN ) < 1/eo; And forall n < ky — v+ 1 and every x € Gle )and z € Sfl]fy), the iterated integral

1
S(N)=(N) !
\"n+lvn+'y—l

y-2
f ﬁ?ffv )(x,y1) ]_[piff,) (is Yir )Py Oy=152) fs1 (A1) -+ -1 (dYy-1)

0
is bigger than €( (with the convention that 1—1 =1).
i=1
The ellipticity condition we use in this work corresponds to y = 2. This is weaker than the one-step condition,
but stronger than the y-step condition for y > 3.
The results of this work could in principle be proved assuming only a y-step condition with y > 2. To do
Xn—y+1 Xn .
e ; with
yn—y+l Vn Yn+1
its associated structure constants, and its associated y-ladder process QIN ) = (sz_V;, Yn(f; )+1, .. .,Yn(ivl), X ,(,N )).
Since no new ideas are needed, and since our notation is already heavy enough as it is, we will only treat the

casey = 2.

this, one needs to replace the space of hexagons by the space of 2(y + 1)-gons | x,—;

*2.5 Uniform Ellipticity and Strong Mixing Conditions

Suppose (€2, .#, P) is a probability space, and let .7, 2 be two sub o-algebras of ¥ . There are several standard
measures of dependence between ./ and Z:
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a(o/, B) = sup{|P(AN B) —P(A)P(B)| : A € o/, B € BY);

2 of 2 B):
Pt 2= sop {'E(f 0 -BE@ S D = } ;

&(t, PB) :=sup {|P(B|A) —P(B)|: A€ &/, B € B,P(A) #0};

P(ANB)

V(. %) := sup {’m

1‘ 1 A € o/, B € # with non-zero probabilities} .

If one of these quantities vanishes then they all vanish, and this happens iff P(A N B) = P(A)P(B) for all
A € o/, B € A.1n this case we say that <7, 9 are independent. In the dependent case, «, p, ¢,  can be used to
bound the covariance between (certain) .27-measurable and Z-measurable random variables:

Theorem 2.23 Suppose X is o7 -measurable and Y is 9-measurable, then

(1) |ICov(X,Y)| < 8a(, e%’)l_ll’_éﬂXIIpIIYIIq whenever p € (1,00], g € (1, 0],
IL)+$<1,X€LP,Y€L‘1.

(2) ICov(X,Y)| < p(o, B)||X — EY|||Y — EY || whenever X,Y € L2,

(3) |ICov(X,Y)| <2¢(, B XY |lo whenever X € LY e L™.

(4) |Cov(X, V)| < (e, B)I X1 Y|y whenever X € LY € L.

See [16, vol 1, ch. 3]. Here are some useful inequalities [16, vol 1, Prop. 3.11]):

Theorem 2.24 If (Q, %, P) is a probability space, and <f, B are sub-o--algebras of F, then a = a(, B),
p:=p(A, B), ¢ = ¢p(A, B), ¥ := (A, B) satisfy

20S¢S%¢,4a§ps2\/$. (2.35)

We can use the measures of dependence to define various mixing conditions. Let X := {X,,},,>1 be a general
stochastic process, not necessarily stationary or Markov.

Let #[" denote the o-algebra generated by X, . .., X,,, and let #,7 denote the o-algebra generated by Xy for
k > m.
(1) X is called @-mixing, if a(n) := sup;, a(Ff, F2 ) — 0.
- n—oo
(2) X is called p-mixing, if p(n) := sup;; p(ﬁlk, Foo,) — 0.
- n—oo
(3) X is called ¢-mixing, if ¢(n) := sup; | ¢(F|, F,) — 0.
(4) X is called y-mixing, if ¢ (n) := sup;s; Y (FF, F, ) — 0.
- n—oo

By (2.35), y-mixing = ¢-mixing = p-mixing = @-mixing. These implications are strict, see [16, vol 1, §5.23].

Let us see what is the relation between uniform ellipticity and these conditions. First we will show that
uniform ellipticity implies exponential -mixing, and then we will give a weak converse of this statement for
finite state Markov chains.

Proposition 2.25 Let X be a uniformly elliptic Markov chain, then for every x € S1, X conditioned on X, = x is
Y-mixing. Moreover, a(n), p(n), ¢(n), y(n) —— 0 exponentially fast, uniformly in x.

Proof We need the following fact:

Cra. There exists a constant K which only depends on the ellipticity constant of X, as follows. For every x € Gy,
k > 2, and for every bounded measurable function hy : S — R, we have the inequality ||Ex (hy (X )| Xg-2)lleo <
KEx (|7 (Xic)1)-

Proof of the Claim. By the uniform ellipticity of X, the transition kernels of X can be putin the form 71, ;1 (x, dy) =
Pn(x, ) n+1(dy), where 0 < p,, < 651 and fpn (X, Y)Pn+1 (Y, 2 n+1(dy) > €p. In addition, Prop. 2.8, applied
to X with the initial distribution 7(dx) = point mass at x, tells us that the Radon-Nikodym derivative of
with respect to the measure P, (X4 € E) is a.e. in [y, 661].
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It follows that for all &,

|Ex (hi+2(Xx+2)| Xk = €)| < ffpk(vK)pk+l(y’ D hie+2(2) | 1 (dy) 2 (dz)
< f a2 (D) a2 (d2) < €5 B (lhisa (X))

We now prove the proposition. Fix x € Sy, and let ¢, denote the ¢y measure of dependence for X conditioned
on X;| = x. Let .%; denote the o-algebra generated by X. Using the Markov property, it is not difficult to see

that ¥, (n) = sup ¥ (Fk, Frn), see [16, vol 1, pp. 206-7].
k>1
Suppose now that n > 2, and fix some x € &, and A € %, B € Fy,, with positive Py-measure. Let

hk = lA(Xk) and hk+n = 1B(Xk+n) - PX(B). Then

IPx(ANB) - P (A)P(B)| = |Ex(hkhk+n)| = |Ex(Ex(hkhk+n|3Zk))|

= |Ex(thx(hk+n|Xk))| < Ex(|hk|)||Ex(hk+n|Xk)”oo = IP)X(A)”E)((E)c(hk-¢—n|Xk+n—2a .. -,Xl)|Xk)||oo
= Px (A ||Ex (Bx (Akrn| Xi+n-2)1 Xk ) I, bY the Markov property

< Py(A) - Cmixen_z||Ex(hk+n|Xk+n,2)||oo, by uniform ellipticity and (2.11).

The constants Cy,,; and 6 are independent of x, because the Markov chains X|X; = x all have the same transition
probabilities, and therefore the same ellipticity constant.
Invoking the claim, we find that

[Py (AN B) = Py (A)Py(B)] < Py(A) - Conin80" % - KEx(|hisn]) < 2K Cpnix 8" Py (A)Py(B).

Dividing by P,.(A)P,(B) and passing to the supremum over A € .#;, B € Fy i, gives Y (n) < 2KCpnix0" 2. So
¥ (n) — 0 exponentially fast, uniformly in x. By (2.35), @ (n), px(n), ¢ (n) — 0 exponentially fast, uniformly
in x. a

Proposition 2.26 Let X be a Markov chain with the following properties:
(1) Ak > 0 such that P(X,, = x) > k foreveryn > 1 and x € S, (so |S,| < 1/«); (2) $(n) —— O.

Then X satisfies the y-step ellipticity condition for all y large enough.

Proof By (1), all state spaces are finite. Define a measure on S,, by u,(E) = P(X,€E), and let p,(x,y) :=

P(X,11 = yI1X, = ..
Xns1 =y *) . This is well-defined by (1), and
P(Xn+1 =)
(a) By construction, 7, +1(x,dy) = pu(x, ¥) ttne1(dy).
(b) By (1), pu(x,y) < 1/P(Xps1 = y) S k'
(c) By (2), for all y large enough, ¢(y) < %K. For such v,

f f pn(x yl) ]_[pnﬂ(yz, yl+l)pn+y l(yy 15 Z) /«ln+l(dyl) ﬂn+y(dyn+y—l)

°n+1vn+y 1

1
= P(Xnﬂ/ =7l Xp=x) 2 P(Xnﬂ/ =2) - ¢(3¢‘n, <g\nﬂ/) > k—=¢(y) > §K~

We obtain the y-ellipticity condition with ellipticity constant 5. O
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2.6 Reduction to Point Mass Initial Distributions

In this section we explain how to reduce limit theorems for general Markov arrays to the special case when the
initial distributions are Dirac measures.

Lemma 2.27 Suppose f is an a.s. uniformly bounded additive functional on a uniformly elliptic Markov array X.
Then there is an a.s. uniformly bounded additive functional g on a uniformly elliptic Markov array Y such that:

1. The initial distributions of Y are point mass measures;
2. Sy (f) and Sn(Q) are equal in distribution, for all N;
3. uN(g) =u™ () and diV) (&,1) = di) (£,9) for all € € R, and 5 < n < ky.

Proof Suppose X has row lengths kn + 1, state spaces G,EN ). initial distributions 7 (dx), and transition
probabilities nfll\flll (x,dy) = p,(lN) (x,y) ﬂiﬁ; (dy), where pS ) and u'N ) satisfy the uniform ellipticity conditions,
with constant €.

Construct a Markov array Y, with the following data:

* Row Lengths: ky + 1.

e State Spaces: SfN) = {xo} (a single point), GéN) = SfN) X 6§N), and é,(lN) = 6,(1N) for3<n<ky+1.
s Initial Distributions: 7N) := point mass measure at xg.

. N N N N
e Transition Probabilities: 7“11,") (x,dy) = ﬁi, )(x, y),lﬁl{mi(dy), where

+1

- AV = Tand 75" (dxi, dx2) 2= p™ (e )™ (dxp ™ (dxa):

2
— PN (k1. x2) x3) = pi) (g, x3) and 7Y o=

- ELN) = pi,N) and /Téﬁi = uiﬁi for3 <n<ky.

Note that (YI(N), .. .,Yk(ilvll) and (xo, (XfN),XZ(N)), XS(N), .. .,X,E:il) have the same joint distribution, and
the initial distributions of Y are point mass measures.

Next construct an additive functional g on Y: ng)(xg, (x1,x2)) := fl(N)(xl,xz), géN)((xl,xz), X3) =
fz(N) (x2, x3), and g,(iN) = f,(,N) for3 <n < ky.

Clearly ess sup |g| < oo, and Sy (f) and Sy (g) are equal in distribution, for all N.

We check that Y is uniformly elliptic. Clearly, 0 < ﬁ;N) <€ ! for all i. Next,

fﬁ;N)(xo, Gt )P (e, x2), 1) Y (dxy, ) =ffpém(xz,xs)p}’v)(xl,xz)ugN)(dxz)fr(N’(dxl) > e,

and f PN ((x1, x2), x3)PSY) (s, x) Y (dxs) = f P (2, x3)pSN) (a3, xa) Y (dx3) > €.

. N N N . .
Fori > 3, fﬁf )(x,-, x,-+])13f+l)(x,-+1,x[+2)ﬁ§+l)(dxi+1) > € is obvious. O

2.7 Notes and References

For a comprehensive treatment of Markov chains on general state spaces, see Doob’s book [62]. For a compre-
hensive account of mixing conditions, see [16].

Uniform ellipticity is one of a plethora of contraction conditions for Markov operators, that were developed
over the years as sufficient conditions for mixing results such as Proposition 2.13. We mention in particular the
works of Markov [137], Doeblin [51, 52], Hajnal [94], Doob [62], and Dobrushin [50] (see also Seneta [179]
and Sethuraman & Varadhan [181]).

We note that in analysis literature the notion of ellipticity has a different meaning. A second order differential
operator D on a d dimensional manifold M is called elliptic if it can be written in local coordinates as
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ZZ“U@ +Zb(>

lj—

where matrix (a;;) is positive definite.

If {X,} is a diffusion process on a compact manifold then considering our process at integer times we obtain the
process which satisfies one step ellipticity condition in our sense. In fact, a weaker condition called hypoellipticity
introduced in [101] is sufficient for this purpose.

However, if the phase space is not compact, then the analytic and probabilistic notions of ellipticity are
different. For example, the Brownian Motion considered in §3.3 is elliptic in the analytic sense but not in the
probabilistic sense. In fact, the Brownian Motion is null recurrent and the theory of this book does not apply to
it. We refer the reader to [195] and [102] for more information about elliptic and hypoelliptic operators.

Proposition 2.8 is similar in spirit to Doeblin’s estimates for the stationary probability vector of a Markov
chain satisfying Doeblin’s condition [51, 52].

The contraction coefficients in section 2.2.2 are also called “ergodicity coefficients." They play a major role in
Dobrushin’s proof of the CLT for inhomogeneous Markov chains [50]. Our treatment of contraction coefficients
follows [181] closely. Lemma 2.11 and its proof are taken from there.

The construction we call “change of measure" is crucial for the analysis of large deviations, see §7.3.1.

The quantities D(X, &) were first used by Mukhin in [148]. They play a central role in the local limit theorem
for sums of independent random variables. For details and additional references, see §§8.2, 8.7.

The balance of hexagon is related to classical constructions in dynamical systems, which we would like to
explain. Consider invertible maps 7, : Q, — €, between metric spaces (Q,, d,,). Given ag € Qo, let

. (Tp-10 -2 %) (ao) n >0,
" (Te 0T ag) n<O.

This has the merit that forall n > min Z, (7, 0 T,—1 0 - - - Tip) (@) = an.

e We say that ag, by € Qg are in the same stable mam'fold, and write ag ~y by, if d,(ay,, b,) — 0 exponentially
as n — +oo.

*  Wessay that ag, by € Qg are in the same unstable manifold, and write ag ~,, by, if d,,(a,, b,) — 0 exponentially
asn — —oo,

(In the classical dynamical setup the equivalence classes are indeed submanifolds, but this is not the case in the
general setup we consider.)

Given a sequence of uniformly Holder functions f,, : ©Q, — R, and points ag, by, co, dy € Qo such that
aop ~s bo, co~sdo, ayp~yudo, by~y cowedefine the periodic cycle functional

A(a, b, c, d)=Z[fn(an) = fu(bn) + fulcn) = fuldn)].

nez
To see that the series converges, use the decomposition A = Y [fu(an) — fu(bu)] + X [fn(en) — fu(dy)] +
n>0 n>0
2 [fn(an) - fn(dn)] + Zo[fn(cn) - fn(bn)]

n<0
To relate this expression to our setting we assume that our Markov chain is defined for all n € Z (if it is not

the case we can extend it to negative n in an arbitrary way so that the ellipticity conditions are satisfied). Let
Q,, be the space of sequences { X} with X; € S,,4¢ and put d,, ({ Xy}, {Zx}) = 2~ max(£:X;=Z; for |71<C) e regard
fn(Xy, Xn+1) as a functions on €, which depend only on coordinates 0 and 1 of a sequence { Xy} from Q,,.

Let 7,, be the shift. Given { Xy}, {Zr} € Qo, Y,,-1, ¥, let

a() = CO = {' . Zn—3’ Zn—2, Zn—17 Yn’ Xn+], Xn+27 e }7
bo=do={...Zn-3,2Zn2 Y 1. Xn, Xpns1, Xpn42, . . . }.

Zn1 1y

Yn | X ’XI’L+1

A direct computation shows that A(ao, by, co, dp) = 2I' ( -2
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In the case where (Q,,7,) = (2,7 ) do not depend on n, A(-) appears in several problems associated to
dynamics of 7~ (see [19, 106]). The relevance to mixing properties is noted in [25], (cf. (6.5) in the present text.)

The application to cancellation properties of twisted transfer operators (called in Chapters 5 and 6 “perturba-
tion operators") appear in [54]. Some of ideas of [54] are employed in Chapter 5, see in particular, Lemma 5.6.
One can also define cycles of length greater than four. Such cycles could often be studied by breaking them into
shorter cycles, cf. the discussion after (9.16).

We end with a warning. It is tempting to speak loosely of the hexagon measure mpex as “the distribution of
pairs of independent paths (x,_1, *, *, x,+1) with the same beginning and end," but this is misleading.

Specifically, if the state spaces of X are discrete (or more generally if the measures /ngN ) are all atomic),
then there is a well-defined measure m;; on Hex (N,n) obtained by taking two independent copies

Hex
XN (V)
n-1 “'n
{X,(,N)}, {Y,,(N)} of X, and looking at the distribution of Xr(gz) Yn(ivl) conditioned on the event
Yy y)
n—-1 “n
{Xfi’z) = Yn(f’z), Xr(l]fl) = Yn(ﬁ)} (this event has positive measure by discreteness and uniform ellipticity). The

. . . .. dmy
measures myex and my; - are quite different, and the Radon-Nikodym derivative dz% does not even have to be
uniformly bounded away from zero and infinity in N. The reader is invited to compare the two measures in the

special case when X, are independent. (We thank E. Solan for this observation.)



Chapter 3

Variance Growth, Center-Tightness, and the Central Limit
Theorem

Abstract We analyze the variance of Sy = f1(X1, X2) + -+ + fn (XN, Xn+1), and characterize the additive
functionals for which Var(Sy) / oo. Then we prove Dobrushin’s theorem: If Var(Sy) — co, then Sy satisfies
the central limit theorem.

3.1 Main Results

kn
Let f be an additive functional on a Markov array X with row lengths kx + 1. We let Sy = Z fi(N )(Xl.(N ) Xl.(ﬁ)).
i=1

N

For Markov chains, ky = N, and Sy = Z fi(Xi, Xiv1).
i=1

3.1.1 Center-Tightness and Variance Growth

We say that f is center-tight if there are constants mp such that for every € > 0, there exists M for which
P[|Sy —mpy| > M] < e forall N.

We shall see in Theorem 3.8 below that f is center-tight iff Var(Sy) # oo. Obviously, in such a situation the
? 8—12/2 la-b|

right hand side in P[Sy — zny € (a, )] ~ v
big, and the asymptotic relation in the “standard" LLT fails. One could hope for a different universal asymptotic
behavior, but this is hopeless:

can be made larger than one by choosing |a — b| sufficiently

Example 3.1 (Non-Universality in the LLT for Center-Tight Functionals) Let X,, be identically distributed
independent random variables with uniform distribution on [0, 1]. Choose an arbitrary sequence of random
variables {Z,},> taking values in [0, 1]. By the isomorphism theorem for Lebesgue spaces, there are measur-
able functions g, : [0,1] — [0, 1] such that go = 0, and g, (X,,) = Z, in distribution. Let f,,(X;;, Xpn41) =
gn+1(Xn+1) — gn(Xy). Then Sy = Zn 41 in distribution, f is center-tight, and P(Sy € (a, b)) = P(Zn+1 € (a, b))
is completely arbitrary.

Every Markov array admits center-tight additive functionals. Here are three constructions which lead to such
examples (in the uniformly bounded, uniformly elliptic case, all center-tight additive functionals arise this way,
see Theorem 3.8 below):

Example 3.2 (Gradients) A gradient f on a Markov chain X is an additive functional of the form f (x,y) :=
an+1(y) — ay(x), where a, : S, — R are measurable, and ess sup |a] < co. Similarly, gradients for Markov
arrays are defined by f,(lN ) (xy) = afgff (y) - ai,N) (x), where af,N ) Sle ) 5 R are measurable and uniformly
essentially bounded. We write

f=Va,

and say that f is the gradient of a and a is the potential of f.!
If f = Va, then Sy(f) is telescopic, and |Sy(f)| < 2ess sup|al. So f is center-tight (take mpy := 0 and
M := 3ess sup |al).

! In the ergodic theoretic literature, f is called a coboundary and a is called a transfer function.

31
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Example 3.3 (Summable Variance) An additive functional f has summable variance, if it is a.s. uniformly
bounded, and V,, < oo, where

Z Var[ f,, (X, Xn+1)] X is a Markov chain
Ve =" . ,
00 X is a Markov array with
sup 3% Varl /M (XM, X)) Y
N n=1 row lengths kn + 1.

If X is uniformly elliptic and |f| < K a.s., then summable variance implies center-tightness. This follows from
Chebyshev’s inequality and the following lemma:

Lemma 3.4 Let f be a uniformly bounded functional on a uniformly elliptic Markov array. Then Var(Sy) <

N
(1 + 2C"”*) where Vy 1= Z Var(f,SN)(X,(lN), X(N))), and Cyix and 0 < 8 < 1 are as in Prop. 2.13.
n=1

n+l

Proof We give the proof for Markov chains (the proof for arrays is identical). Recall (2.13)

Var (Sy) = ZVar( fa) +2 Z Z COV(fos frn) < Vv +2Comix Z Z 0"\ Var(fo) Var(fm),

n=1 m=n+1 n=1 m=n+1

2Cm1x VN

!
- (< uses that ab < (a® + b%)/2). O

N + 2Comix Z 0/ Z \/Var( Fu)Var(furj) < Viy + —mi N

=1 n=1

Example 3.5 Suppose X is uniformly elliptic. Then every additive functional of the form f = g + h, where g is a
gradient and h has summable variance, is center-tight. The proof is a simple union bound, and we omit it.

Henceforth, we assume the following conditions:

E) X={ X,(lN )}isa uniformly elliptic inhomogeneous Markov array with row lengths kx + 1, and ellipticity
constant €y. We denote the state spaces by G,EN ). the initial distributions by 7™, and the transition
probabilities by 7™ (x,dy) = p (x, ) u™) (dy), where pi are as in the definition of uniform ellipticity.

n,n+l n+1

B) f ={ ,EN )} is an a.s. uniformly bounded additive functional on X, satisfying the bound |f| < K almost
surely.

kn
Let Vy := Var(Sy) and Uy = Z(ule))z, where ule) are as in (2.26).

Theorem 3.6 (Variance Growth) There are constants C1, C; > 0 which only depend on €y, K such that for all
N)
C;'Un - Gy < Var(Sy) < CUn + Co.

Corollary 3.7 Suppose X is a Markov chain. Either Var(Sy) — oo or Var(Sy) is bounded. Moreover, Var(Sy )=

N
> u,zl with the u, from (2.26).
n=3

(The the first part of the corollary is clearly false for arrays.) We return to arrays:

Theorem 3.8 Var(Sy) is bounded iff f is center-tight iff f = Va + h where a is a uniformly bounded potential,
and h has summable variance.

Corollary 3.9 f is center-tight iff supy | Un < oo.
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Theorem 3.6 is a statement on the localization of cancellations. In general, if the variance of an additive
functional of a stochastic process does not tend to infinity, then there must be some strong cancellations in Sy .
A priori, these cancellations may involve summands which are far from each other. Theorem 3.6 says that strong
cancellations must already occur among three consecutive terms fr(LI_Vz) + fr(llj ]) + f,(lN ): this is what uj\l,v) measures.
If f depends only on one variable (i.e. f,(,N) (x,y) = f,(,N) (x)), and if we have the one-step ellipticity condition

€ < pi,N)(x, y) < 601, then one can show that there are constants C;, C, such that

Cr' D Var(f, (X)) -G < Vi < G (Z Var(fn(Xn))> +G 3.1)

(see [50, 181] for an even more general statement). See the end of §3.2.2.
The estimate (3.1) does not hold when f,(,N ) depends on two variables. For example, if f,(,N )isa gradient with

N
bounded potential, then Vjy is bounded, but Z Var( f,(lN )(Xn, Xn+1)) could be arbitrarily large.

n=1

3.1.2 The Central Limit Theorem and the Two-Series Theorem

Theorem 3.10 (Dobrushin) Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic
Markov array X. If Var(Sy) — oo, then for every interval,

Sy —E(Sy) 1 f” ey
_ b)) —— — dz.
VVar(Sy) €(a )] N—ooo \27 Ja ¢ !

The proof we give (due to Sethuraman & Varadhan) is based on McLeish’s martingale central limit theorem.
This is recalled in §3.2.3.

Suppose X is a Markov chain, and E(Sy) = 0 for all N. Dobrushin’s Theorem compares Sy to the Gaussian
distribution with variance V. In §3.3 we will state and prove the almost sure invariance principle, which
compares (Sy, Sn+1, - . .) to a path of Brownian motion, at times Vy, Vy 41, . . .. One consequence is the law of
the iterated logarithm

S S
lim sup N 1, liminf N

Now \2VnInInVy Now \2VyInInVy

See §3.3 for precise statements and proofs.
Dobrushin’s CLT implies that if Viy — oo, then for any bounded continuous function ¢ : R — R we have

, Sy — E(Sn) 1 f‘” Y
lim E = .
2o VW ) Var Jo P

We will now discuss the (unbounded) case ¢(x) = x" (r € N):

Theorem 3.11 (Lifshits) Let f be a bounded additive functional of a uniformly elliptic Markov chain such that
E(Sy) =0 forall N. If Var(Sy) — oo, then

- E[S;’V] ~ 0 ris Odd, (3 2)
Now yri2 C|e-D=0 =D =3)--3-1 riseven. |

Recall that the r*#-moment of an L” random variable X is the number E[X"]. The right-hand-side of (3.2) is
well-known to be the r-th moment of the standard normal distribution. Therefore (3.2) is simply the statement
that the moments of Sy /vVxn converge to the moments of the standard Gaussian distribution.



34 3 Variance Growth, Center-Tightness, and the Central Limit Theorem

The next result, which describes the case when Var(Sy) /4 oo, is a version of the “two-series theorem" of
Khintchin and Kolmogorov (originally proved for iid’s):

Theorem 3.12 Let f be an a.e. uniformly bounded additive functional of a uniformly elliptic inhomogeneous
Markov chain X.

(1) If Z Var[ f,, (X, Xn11)] < o0, then hm (SN E(Sn)) exists a.s., and is finite.

(2) Var(SN) /> oo iff there exist measurablefuncnons ay : S, = R such that ess sup |a| < oo, and lim (Sy —
n—oo

an+1(Xn+1) —E(Sn)) exists a.s., and is finite.

The theorem makes no sense for Markov arrays. For arrays, Sy live on different uncoupled probability spaces,
and they cannot be evaluated at the same point.

Example 3.13 (Optimality of Theorem 3.12) Let X,, be a sequence of iid random variables taking values +1
with probability 1/2.

Let a,(x) = o,x, and f := Va, then Sy = an+1(Xn+1) — a1(X1), and the a.s. convergence of Sy — E(Sn)
reduces to the a.s. convergence of ay (Xn).

o If o-fl := 1/n, then |ay| < 1/VN and so ay — 0 a.e. Thus lim(Sy — E(Sn)) exists a.s., even though
> Var[f,] = co. This shows that part 1 of Theorem 3.12 cannot be strengthened to an iff statement.

o If a-,z1 := 1, then ay (Xn) = Xn, which oscillates a.s. without converging. So lim(Sy — E(Sy)) does not
exist, even though Var(Sy ) is bounded. However, Sy — an+1(Xn+1) — E(Sy) converges a.s. (to —aj (X1)).
This shows that sometimes, the term ap 41 (Xy+1) in part 2 of Theorem 3.12 is really necessary.

3.2 Proofs
3.2.1 The Gradient Lemma

Lemma 3.14 (Gradient Lemma) Suppose f is an additive functional on a uniformly elliptic Markov array X
with state spaces 6,(,N), and assume ess sup |f| < K. Then

f=f+Va+ec,

where 1, a, ¢ are additive functionals on X with the following properties:

(a) |la| < 2K and a(N)(x) are measurable functions on S ”(N).

(b) |c| < K and c,, ) are constant functions.
(c) Ifl < 6K and £\ (x, ) satisfy | FN N < ulY) forall 3 < n < kyn + 1.

fn a (N) (N)

If X is a Markov chain, we can choose f(N) a, '’ =dap ¢, =cp
Proof for Doeblin Chains: Before proving the lemma in full generality, we consider the simple but important
special case of Doeblin chains (Example 2.7).

Recall that a Doeblin chain is a Markov chain X with finite state spaces &, of uniformly bounded cardinality,
whose transition matrices zr)’}y = 7Ty n+1(x, {y}) satisfy the following properties:

(E1) Je; > 0s.t. foralln > 1 and (x,y) € S, X S;41, either m¢y, = 0orny, > €

(E2) for all n, for all (x,z) € S,, X S;,42, Ay € S;41 such that ﬂxyn;’z’rl > 0.
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We re-label the states in S, so that S,, = {1,...,d,} where d,, < d, and in such a way that ”?1 > (O for all n.
Assumption (E2) guarantees that for every n > 3 and every x € S, there exists a state &,_1(x) € S, s.t.
-2 -1
ﬂﬁ,fnq()c)ﬂgml(x),x > 0. Let
a; =0, a2 =0, anda,(x):= fr2(1,&-1(x)) + fu-1(n-1(x), x) forn > 3
c1:=0, ¢:=0, andc, := fr—2(1,1) forn >3

f:=f-Va-c.

We claim that f, a, ¢ satisfy our requirements. _

To explain why and to motivate the construction, consider the special case u,, = 0. In this ||f|l, = 0 and the
lemma reduces to constructing functions b, : S, — R s.t. f = Vb + c. We first try to solve f = Vb with ¢ = 0.
Any solution must satisfy

a2 3) = bt (3) = ba(). (33)
Keeping x fixed and solving for b,,;(y) we find that
bn(y) = ba(x2) + fa(x2, x3) + -+ + fu2(Xn-2, Xn-1) + frn-1(Xn-1,¥)
for all paths (x2, ..., x,—1, y) with positive probability. The path x, = - -+ = x,,_2 = 1, x,,-1 = &,-1(y) suggests

defining

n-3

by =0, bu(y) := ka(l, D+ fa2(L &n1(3) + fr-1(En-1(3), ¥)-
k=2

This works: for every n > 3, if 7%, > 0 then

xy
et b (= a1 1ot (L En O En (), V) Fr2 (1 nt (Dot Gt (0, 00 Fo (6 B (3, 7)
b () = ba(v) =T, (1 oY y) + ) 2 falo ). (3.4

Here is the justification of L Inthe setup we consider, the natural measure on the level n hexagons is atomic, and
every admissible hexagon has positive mass. So u,, = 0 implies that I,(P) = O for every admissible hexagon,
and L follows.
We proved (3.3), but we are not yet done because it is not clear that ess sup |b| < co.
n-3
To fix this decompose b, (y) = a,(y) + Z fx(1,1). Then |a] < 2K, and a direct calculation shows that

k=2
fn(x,y) = ans1(¥) — an(x) + fr—2(1, 1), whence f = Va + c with a essentially bounded. This proves the lemma

in case u, = 0. _
The general case u, > 0 is done the same way: (3.4) implies that f := f — Va —c = f — Vb is given by

ra _ _ 1 fn(Y)
Fal ) = fal ) = @1 (3) = an () = &0 = =T (1 ey )

If |f| < K, then |T,| < 6K, whence |f| < 6K. Next,

2
rn( 1 &n(Xner) X’M)}

12 <E 1
Ifully < Enr(Xa)  Xn

In the scenario we consider the space of admissible hexagons has a finite number of elements, and each has
probability uniformly bounded below. So there is a global constant C which only depends on sup |S, | and on €,
in (E2) such that
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2
Fn(l 1 &(Xns1) XM)

. fat(X)  Xn

< CE[T(P)?],

where P is a random hexagon in (Hex (n), myex ). So |If~||2 <+C- uf,
(The gradient lemma says that we can choose a and ¢ so that C = 1. The argument we gave does not quite
give this, but the value of the constant is not important for the applications we have in mind.)

The Proof of the Gradient Lemma in the General Case: Recall the ladder process L = {L{M}, LIV =

(zN),x™) xN) from §2.3.3. In what follows we omit the superscripts ™) on the right hand side of identities.

Define F,EN)(L;M) = Fo(L,) = fn2(Zn-2Yo1) + fro1 (Y1, X,,) and

EVLN. L) = DLy L) =T (Zaa 277 0 X ). see 2.25).
n-1 n
Then we have the following identity:
SN XN, XY = Foai (L) = Fa(Ly) + fa2(Zu-2, Zn-1) = Tu(Ly, Ly, - 3.5)
Next define a(N) GLN) — R and c(N) € R by
aM (&) = B(Fa(L,)I1Xn = &) 3 <n<kn), (3.6)
e = Bl fu-2(Zn-2. Zn-1)]. (3.7

By assumption, |f| < K, so |a] < 2K and [c| < K.
Let f := f — Va — c. To prove the lemma, we need to bound fin L™, and in L2.

Cram: For every (£,1) € S, X G414,
Xn+1 =
M =E [E(fn_z<zn_z, Zon| L e )] :
N =

af (&) = B(Fu(L

n+1 'y 77) and a(N)(n) _ ( n+1(Ln+1)|Xn+i; 77)_

Proof of the Claim. We use Lemma 2.22. The identity for chN) is because {Z,} is independent from {X,,}. The
identity for ale ) is because conditioned on X,,, L, is independent of X;,,1. The identity for a;ﬁll) is because
conditioned on X1, L, is independent of X,,.

XM

N
n+l_n’XV(‘ ' =

With the claim proved, we can proceed to bound f. Taking the conditional expectation E( - |
&) on both sides of (3.5), we find that

FNED) = ana (1) = an() + ¢~ B (r,,@,,, T n)’

whence £, (&,1) := —E (Fn(L L.) "+l z 77).

Clearly m < 6K. To bound the L% norm we recall that the marginal distribution of {X,,} with respect to the
distribution of the ladder process is precisely the distribution of our original array. Therefore,

IFANI2 = BE[E(Ta(L,, L,,, ) Xns1, X2)*] < E[Tu(L,, L, )],

!
where < is because conditional expectations contract L2-norms. By Lemma 2.22(d), F,(IN)(L L, 1) is equal in
distribution to the balance of a random level N hexagon at position n, whence || f;(lN) |I§ < E(Fz) (u(N))z. O
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3.2.2 The Estimate of Var(Sy)

We prove Theorem 3.6. Let X and f be as in assumptions (E) and (B), in particular |[f| < K a.s., and the row
lengths are ky + 1. Our aim is to bound Var(Sy) above and below by affine functions of the structure constants
Uy . Henceforth, we fix N, and drop the superscripts (N So X,(LN) X, f(N) fus uf,N) = u, etc.

Preparatory Estimate. Let ©; := f;(X;, X+1) + fr+1(Xe+1, Xe42) + fr42 (Xt 42, Xi43). There is a positive constant
Cy independent of N such that for every 1 <t < ky — 1,

E [Var (D;|X;, X;43)] = Coqu (3.8)

Proof. By uniform ellipticity, 7, n+1(Xn, dy) = pn(Xn, Xn+1) n+1(dxn4+1), with p, (-, -) as in the uniform ellipticity
condition, with ellipticity constant €.

By Corollary 2.9, we may take u, = P, for n > 3, where P,(E) := P(X,, € E). Henceforth integration
variables ranging over subsets of S will be denoted by xi or x;, and we will use the following short-hand for
integrals and densities:

k+e—1 Jo e p(dxy) k>t
P Xiag) 1= Jﬂk P [ eodn _{fg, PGP (dx) k=1

The joint distribution of (X, . .., X;4+3) is p(x¢, . . ., X443)dx; - - - dx43. Therefore:

E[Var(@,X,. X)) = [[[[ var(o,

= ffdxthHS [Var(q)tlxt = x4, X113 = Xt+3) fp(xt, Xr41) (f P(Xp415 Xp42) P (X142, xt+3)dxt+2) dle]

t = Xt

P(Xps ooy Xp43)dxg - - dxggs
X3 = xt+3)

v

€0 ffdxtdxprg [Var((D,|Xt = x4 X3 = x,+3)], by uniform ellipticity.

To continue, we need the following two facts. Firstly, the distribution of (X;, X;+1, X;+2, X;+3) conditioned on
X = x4, Xp43 = Xp43 i

DXty X115 X142, X143)dX11dX 142

Pr(Xr = Xt43)

X 0

Vxi,xeez = 6xt Xt+3

(see (2.18)). Secondly, for any two identically distributed independent random variables W, W’, Var(W) =
SE[(W — W")?]. It follows that

E[Var(®,|X;, X;13)]

p(-xtv Xt+1> X142, xt+3)p(-xt7 x;+1, x;+27 xt+3)
> € dx;dx;y3 X
Pi(xe = x143)?

2 Jr e, Xe01) + fra1 (Xrats Xe42) + frao(Xr42, X143)
= fr(xs X;H) - ft+1(x;+1» X;Jrz) - ft+2(x;+2» X1+3)

2
] dxgpdxy, dxpodx; .

* ps(x; = x443) are bounded above by 553, see (2.18) and recall that p(x,y) < eal

+ The expression in the square brackets is the balance " | x, ALIACE SN
t+1 xt+2
e The density in front of the square brackets is the density of dmj;, from (2.23).

dm
. g < dm““ < 6_8 by (2.24).

Thus
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1 1
E[Var((D,|X,, Xf+3)] > 563[ dem].[ex = 56(9)1’112+2'
Hex (N,t+2)

Lower Bound for the Variance. Let us split Uy = ﬁ 3 u2 into three sums:

kn

Un = Z Un (y), where UN(’)/) = Zuil[nzymodﬂ(n)'
y=0,1,2 n=3

For every N there is at least one yn € {0, 1,2} such that Uy (yn) > %UN. Let ay := yn + 1, and define By
and My by
kn — By +1 =max{n < ky :n=ay mod 3} =3My + apn.
With these choices, an, By € {1,2,3}, and M,, € NU {0}.
kn-BN
We begin by bounding the variance of S}, := Z fi(Xj, Xj4+1) from below. Observe that Sy, = Fy + -+ +

k= =anN
Fpy -1, where

Fr(€1,82,63,€4) = fakran (€1,62) + fakran+1(62, €3) + fakran+2(83, €4).

S} is a function of the following variables:

X(YN+19 X(IN+2» XCXN+47 X(]/,N+5’ T XkN—,BN+1 ’

where we have boxed the terms with indices congruent to ay mod 3. Let %y denote the o--algebra generated
by the boxed random variables. Conditioned on %y, Fj are independent. Therefore,

Mpy-1 My -1
Var(SplZn) = D Var(Fel Zn) = )" Var(Fil Xstrans Xastyran)-
k=0 k=0

By Jensen’s inequality, Var(S},) > E(Var(Sy |.%#n)). It follows that

Mpy-1 Mpy-1

Var(Sy) > Z E(Var(Fk|X3k+(VN’X3(k+l)+(lN)) = Z E(Vaf(%kﬂm|X3k+aN,X3(k+1)+aN))
k=0 k=0
My -1 My -1
(3.8) 2
2 Go “3k+aN+2 Co Z U(styryy AN =YN+]1)
k=0 k=0
kn |
= Z 1t 1 in=y, moa 31(M)=4Co sup{u7} = CoUn (yn)4Cy - (6K) > 2 7CoUn - 200CoK?, by the choice of y.
n=3

Now we claim that Var(Sy) > Var(S]’\,) —const. Let Ay :={jeN:1<j<anyorky - BNy <j<kn}

Sy = Sy + Yjeay £, therefore Var(Sy) = Var(S},) + Var( D f,») +2 ) Cov(Sy. f)-
JEAN JEAN
Since |An| < 6, Var(¥jca, f;j) is uniformly bounded by a constant only depending on K. By Lemma 2.14,
Yjean Cov(Sy, f}) is also uniformly bounded by a constant depending only on K and €.
It follows that Var(Sy) > Var(Sy,) — const. > const.Uy — const., where the constants depends only on K and

the ellipticity constant €.

Upper Bound for the Variance. Write f = f+Va-+casin the gradient lemma. In particular, Var(j’f:1 (Xn-1,Xn)) <
kn kn

kn
u?. Then Var (Z f,,) = Var (Z f,,) + Var (ag, +1 — a1) +2Cov (Z Ss Gk 41 — al) . The first term is smaller
n=1

n=1 n=1
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than const.Uy + const. due to the gradient lemma and Lemma 3.4. The second term is bounded since |a| < 2K.
The third term is smaller than a constant, due to Lemma 2.14. Moreover, looking at these lemmas, we see that
the constants only depend on K and €. O
The Case of One-Step Ellipticity. To prove that the one-step ellipticity condition implies (3.1), we use
XN
quadrilaterals Q;N ) = (Xr(l'i’ 1) Y?N) erivl) ) instead of hexagons. The corresponding structure constants can then
n

be shown to satisfy

@N)? = f £ () = £ ) PN (dyn) ™ (dyn) = 2Var(fIN). 3.9)

Then one proceeds as in the proof of Theorem 3.6 above.

3.2.3 McLeish’s Martingale Central Limit Theorem

A martingale difference array with row lengths kp is a (possibly non-Markov) array A of random variables
A= {A;.N) N > 1,1 < j < ky} together with an array of o-algebras {ﬁj(N) N >1,1<j<kp},sothat:

(1) Foreach N, A(N) A(N) are random variables on the same probability space (Sy, Z#n, Un).
2) ﬁ(N)Cﬁ(N)Cﬁ(N) Cﬂ(N) are sub o- algebrasofﬁZN
3) A(N ) is 9“’ )-measurable, E(|A(N )|) < oo, and B(ALY) 7)) =

We say that A has finite variance, if every A;. ) has finite variance. Notice that E(AJ(.N )) = 0 for all
Jj=2,...,kn+1. If in addition E(AEN)) = 0 for all N, then we say that A has mean zero.

A martingale difference sequence is a martingale difference array such that AEN ) = A; and ﬂi(N ) = Z; for
all N.

Example 3.15 Suppose {S,} is a martingale relative to {%,}, then A := S;, A; := S; — S;_; is a martingale
difference sequence.

The following observation is the key to many of the properties of martingale difference arrays:

. . . . . . (N) (N)

Lemma 3.16 Suppose A is a martingale difference array with finite variance, then for each N, A[™, . .., AkN
kn kn

are uncorrelated, and if A has mean zero, then Var (Z A;N)) = Z E [(ALN))z] .
n=1 =

Proof Fix N and write A(N) Aj, 9’;]\’) =%;.1fi < j, then

E(A;A;) = BIE(A;AiFj-1)] = E[E(AE(A;1.Fj-1))] = E(A; - 0) =0
The identity for the variance immediately follows. O

Theorem 3.17 (McLeish’s Martingale Central Limit Theorem) Let A = {A;N )} be a martingale difference

array with row lengths ky, zero mean, and finite variance, and let Viy = ZkN E[ (AE.N))2]. Suppose:

AN
(1) 1ma;(c | ‘/%l has uniformly bounded L* norm;
<j<kn
(N)
(2) max A —— 0 in probability; and

15.,'5](1\, VVN N—>co
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kn
1
3 —E ANN2 s 1 in probability.
()VNn:1( 0 Y. in probability

Then for all intervals (a, b), P

L) L (" rn
— > AV e (a,b)| — — e /2dr.
VVn ; 1 N—oo \Dr Ja

We make some preparations for the proof.

A sequence of random variables {Y,} on (Q, .Z, u) is called uniformly integrable if for every e, AK such that
E(|Y, 11}y, |>k]) < € for all n. This is strictly stronger than tightness (there are tight sequences of non-integrable
random variables).

Example 3.18 (Bounded Moments and Uniform Integrability) If sup [|Y, ||, < oo for some p > 1, then {¥,,}
is uniformly integrable. To see this, let M), := sup ||Y,|,,, and suppose % + Cll = 1. By Markov’s inequality,

Yol > K] < —M?
ullYal > K] < xr b
and by Holder’s inequality, E(|Y, |1y, |>k1) < Mpu[lY,| > K1Y = O(K~P/9).

L]
Lemma 3.19 Suppose Y,,Y € L'(Q, .7, ), then Y, —— Y iff {Y,,} are uniformly integrable, and Y, — Y
n—oo

n—oo

in probability. In this case, E(Y,,) — E(Y).

Proof The proof is standard, but we include it for completeness.

Proof of (=): Suppose ||¥,, — Y|l — O, then it is easy to see that E(Y,,) — E(Y), and that ¥, — Y in
probability. It remains to check uniform integrability.
Since Y € L!, I}im E(Y|1})y|=k)) = 0. Given & take K so that E(|Y|1[y|>k]) < &. Next choose 6 > 0 so

small that
Ko + E(|Y|1[|y\2k]) <éE&.

For this ¢, E(|Y|1f) < € for all measurable sets F such that u(F) < 6.
By Markov’s inequality, P[|Y,| > L] < L™'sup |[¥,|l; = O(L™"), so there exists L > K such that P[|Y,| >
L] < ¢ for all n. By the choice of J,

f |Yn|dusf |Y|du+f Y = Yldp < e+ Y, =Y.
[1Y, |>L] [1Y, |>L] [1Y, |>L]

Since ||Y, = Y|l; — 0, there exists an N so that E(|Y, |1y, |>2]) < eforalln > N.
Since ¥, € L', for some M > L bigenough, E(|Y,|1jjy, |>m7) < eforalll <n < N=1.SoE(|Y,|1[y, |>a1) <
g for all n.

Proof of (<): Given a random variable Z, let ZK := Z 111z1<Kk)- Since {Y,} is uniformly integrable, for every
€ there is a K > 1 such that ||YnK - Y|l < € for all n. By the dominated convergence theorem, IYX —Y| <€
for all K large enough. Thus for all K large enough, for all n,

1% =Yl < I = YXIh +2e < epllyS =YX < el + 2K ullY,f - Y| > €] +2¢
<3e+ 2K(,;[|Y,, — Y| > €+ ullYy] > K]+ ullY] > K])
<3e+ 2K,u[|Yn - Y| > 6] + 2E(|Yn|1[|Yn|>K]) + 2E(|Y|1|y|>K).

Using the assumption that ¥;, — Y in probability, we obtain

!
lim sup ||Yn - Y”] <3e+ 25upE(|Yn|1[|yn|>K]) + 2E(|Y|1|Y|>K) <Te,

n—oo n
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where the last inequality follows from the choice of K. Now take &€ — 0. O

Lemma 3.20 (McLeish) Ler {W (N) 11 <j<kn,N > 1} be a triangular array of random variables, ? where
kn

WI(N), cees WIEN) are defined on the same probability space. Fixt € Rand let Ty (t) := l_[ (l + 1tW(N)) Suppose
J=1

(1) {Tn (2)} is uniformly integrable and B(Ty) N—> 1;

kn
) Z(W}N )2 ——— 1 in probability;

j=1
3) 1maz IW(N)I —> 0 in probability.
<j< N
(N (N)
Then E(e"™ oW ) ——e -2,
N—ooo

Proof Deﬁne a function r(x) on [~1, 1] by the identity ¥ = (1 +ix)e~2* *"®)_ Equivalently, r(x) = — log(1 +
ix) +ix + 2x = O(|x]?). Fix C such that |r(x)| < C|x|? for |x| < 1.

Substituting Sy := WI(N T Wlig ) in e = (1 + ix)e 2¥* ™ gives (in what follows we drop the
superscripts (M) and abbreviate 7, := T},(1)):

kn

. . k
E(e"SN) = ( 1_[ 1th) = E(TNe_% % I2W-"2+r(twj)) =E(ITnUn), where

kn
Uy = exp[ Z W(N) +r(thfN))].
j=1

Tn and Uy have the following properties:
(@) E(Tn) Fr 1, by assumption.

(b) {Tn} is uniformly integrable by assumption, and [Ty Un| = etV | = 1.
kn

2
(c) Un o T probability, because Z (W;N )) v 1 in probability, and by the assumptions of the
—00 = —00
ky 2 prob
lemma, with asymptotic probability one, Z r(tW(N)) <Clep ( max W(N)|) Z W(N) — 0. O
e 1<j<kn = N—)oo

Let L := e‘%’z, then
|E(e”SV) — L| = |[E(TwUn) = L| < [E(Ty (Un - L))| +LIE(Ty) - 1]
= [E(Ty (Uy — L))| + o(1), by (a). (3.10)

Next, P[|Tny (Uny — L)| > €] < P[|Ty| > K]+ P[|Un — L| > €/K], for all K and &. Therefore by (b) and (c),
Tn(Un — L) N——> 0 in probability. Finally, by (b), |Tny (Uy — L)| < 1 + L|Tyn|, and Ty (Uy — L) is uniformly

integrable. By Lemma 3.19, E(Ty (Uy — L)) — 0, and by (3.10), E(e'"SV) — e, O

Proof of the Martingale CLT ([140]): Let A = {A}N )} be a martingale difference array with row lengths kp,
which satisfies the assumptions of Theorem 3.17, and let

2 Not necessarily a martingale difference array or a Markov array.
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kN kN
Sy = ZA}N) and V := Var(Sy) = ZE [(A;N))Q] (see Lemma 3.16).
Jj=1 j=

It is tempting to apply McLeish’s lemma to the normalized array A(N) /VVn, but to do this we need to check

the uniform integrability of H" (1 + 1tA(N ) /VVn) and this is dlﬂicult It is easier to work with the following
array of truncations:
(N) ._ _1 (N) (N) . _1 (N)
W= \/TNAI s W't = W Ay 1[22;;(A1N))252VN]'

It is easy to check that {W,(lN )} is a martingale difference array relative to ,33,51\’ ), and that {W,(lN )} has zero mean,
kn

and finite variance. In addition, S}, := Z W,(lN ) are close to S '~ /VVy in probability:

n=1

i
P [S}‘V # jTLN] <P|31 <j<kyst Z(A,QN))Z > 2Vy
k=1

& 2 prob
Z (A(N)) BN by assumption.

kN
1
P[Z(A,ﬁ’v)f > zvN] el S e —
j=1

N—o0 ’
J= N

Thus to prove the theorem, it is enough to show that S}, converges in distribution to the standard Gaussian
distribution. To do this, we check that {W(N )} satisfies the conditions of McLeish’s lemma.

j-1
Fix t € R, and let Ty = Ty (f) := ]—[(1 itW™), and Jy = max{2 < j < ky : Z(AW))Z < 2Vl (or
Jj=1 k=1
Jn = 1if the maximum is over the empty set). Writing W; = W; ) and A j = A;.N), we obtain
kn In PA7\1/2 .
_ 2r241/2
Tl = Ja+ewp 2 =T(1+ 2 1) Thus
j=1 J=1
1/2
Incl A2 ! P2 (12 2 NS A3 12 A
Ty | = (1+V—) -(1+ . ) Sexp(FZAj)(l—i- . ) Se(l+|t| max )
=1 N N N 53 N 1<j<knlVy

2
So [[Tx ()l < ez’zE[(l +1]¢] max |A(.N)/\/VN‘)
I<j<kny '/

By the first assumption of the theorem, sup ||Tn (¢)|l» < oo foreach¢. Thus {T (¢)}n>1 is uniformly integrable
NeN

for each ¢ (see Example 3.18). Next, successive conditioning shows that E(Ty) = 1 + ifE (A(IN )) = 1. The first
condition of McLeish’s lemma is verified.

NextP[Z(W(N)) ;eZ( )2} <P[31 <n<kyst Z(A(N)) > 2Vy ]

j=1

Z(A(N)) > 2Vy

n=1

N—>oo

0, because Vn Z(A;N ))? — 1 in probability.

The second condition of McLeish’s lemma now follows from assumption 3 of the theorem. The third condition
of McLeish’s lemma follows for similar reasons.

So McLeish’s lemma applies to (WM, and E(el"Snv) — e 2" forallf € R. By Lévy’s continuity theorem,
S, converges in distribution to the standard Gaussian distribution. As explained above, this implies that Sy

N

converges in distribution to the standard Gaussian distribution. O
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3.2.4 Proof of the Central Limit Theorem

We prove Theorem 3.10.

Let X = {X,(,N)} be a uniformly elliptic Markov array with row lengths kx + 1, and let f = { ,(,N)} be an a.s.
uniformly bounded additive functional on X such that Vi := Var(Sy) — oo.

Without loss of generality, E[f, N)(X(N) X(N))] = 0 and |f, N)I < K for all n, N. Let ﬁ,(,N) denote the

n+l

o -algebra generated by X I(N) X (14:]1) , and let 7 (M) denote the trivial o algebra.

Fix N and write fi = fIEN)(X,iN), XNy and Z = ZNV), then E(fi | Fx) = fi, E(fil Fo) = E(fx) = 0, and
therefore

kn kn kn k
Sy = ;fk = ;(E(fkuk) ~B(fil%0)) = Z‘f D B Z0) = B(fil Fu)).

So Sy = TN SN (B(fil Fn) — E(fil Fu-1)) = ZE¥ ANV, where

AN —Z(E(f,ﬁmlﬁ(’v)) E(fVIFM)).
k=n

AN (V)

The array { 1 < n < ky; N > 1} is a martingale difference array relative to the filtrations .%,"’, with
zero mean and finite variance. To prove the theorem, it suffices to check that {A(N)} satisfies the Condmons of
the martingale CLT.

1AM ’ IAN] - prob
Step 1: max has uniformly bounded L~ norm, and max —> 0.

1<j<ky VYN I<j<ky VN Nooo

Proof. The proof is based on the exponential mixing of uniformly elliptic Markov arrays (Proposition 2.13): Let
K := ess sup |f|, then there are constants C,,;x > 1 and O < 8 < 1 such that for all £k > n, ||]E(f]£N)L@,EN))IIoo <
Crmix K071,

2CixKO™!

(N) . l _
It follows that [A{)] < 2C,i K Z of = =

f=-1

. The step follows, since Vy — oo, by the assumptions

of the theorem.

kn

1 2 . e
StEP 2: — Z (A;N)) o 1 in probability.

N n=1

Proof. We follow [181] closely. Let ¥, := (A"?)?/Viy. We will show that ”ZkN JAE 1” —— 0. and use

the general fact that L?-convergence implies convergence in probability (by Chebyshev’s 1nequahty).

kN

Notice that E( Z Yl.(N) 1, because by Lemma 3.16, this expectation equals 3,— X Var (Zﬁ’;’ { A;N )) =
i=1
%Var(SN) =1.So

2

kn kn 2 kn kn
PR AR -1 YA 2E[ZY}N>] +1=E[Z(Yi<"”)2] +2E[Z)/i<N>Yj(N)] -2+1
i=1 i=1 i=1 i=1 i<j

kn
_ ™y ). N) (N)y(N)
‘O(ISr?i"/fN 1y, ||m) E[ZY |+ 2]y x ™y -1,

t=1 i<j
We saw in the proof of Step 1 that IIAE.N ) llo are uniformly bounded. Thus

max (YNl = O(1/Viy). (.11
1<t<kn
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kN 2
(N) _ (N)y,(N) .
So H E Y- 1“2 = ZE[E ' Yy ] =1+ o(1). It remains to show that
= 1<j

ZE[Z Yl.(N)Yj(N)] — (3.12)

—— N—oo
i<j

Define the oscillation of an L!-element ¢ to be the infimum of the oscillations of all its a.e. versions, see
(2.8). The proof of (3.12) is based on the following claim:

kN
Osc(N) := lg_lgl)(( Osc (E( Z I/J.(N)’ﬁiw))) o 0. (3.13)
<i<kn R —00
J=i+l

Before proving this, we explain why (3.13) implies (3.12).
Henceforth we fix N and drop some of the superscripts V). We start from

sy < 22[3on 3, v] =[S 3 i)

Call the conditional expectation ¢, then ¢ = E(¢) = Osc(N) a.e., where x = y+ e meansthaty—e€ < x < y + €.
Therefore,

2E[Z Yi(N)YJ.(N)] = 2}5[% YiE( kzN: Y])] + 2E[kZN: Y,-]OSC(N) = 2kzN: E(Y;) kZN: E(Y;) + 20sc(N) (- kzN: E(Y) = 1)
i<j i=1 j=i+1 i=1 i=1 j=i+l i=1

= (ZE(Y)) ZE(Y)2+2OSC(N)—1+O( max ||Y||oo)+ZOsc(N) STE®) < Y E®) max %
LY

=1
=1

=1+ 0(Vy") + 0(0sc(N)), see (3.11).

So (3.13) implies (3.12), and with it the step. We turn to the proof of (3.13). First we note that a routine
modification of the proof of Lemma 3.16 shows that for all j, k > i, E(A;jA¢].%;) = 0. It follows that

E(kZN: v|7) = %E(kZN: 23l7) = -5 5" A °|7) = o] S S (B F B P o) 1]
Jj=i+1 Jj=i+1 n=i+1 n=i+1 k=n
- %E[(kilnillamun) —E(fil 1>) 7] = [(kzlll Lfi — ECfel % )]) 7]
- %H HlE[(fk ~ Bl #0) (fe - B(el )| 7]
" k’:ZiH B[ i fo + BUMZDBGAZ) ~ Bl 7)) - 7.
Z [E(fifolF) — B TDE Gl TD)] - (3.14)

Nk[ i+l
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Proposition 2.13(1) applied to {X,(,N)}ng,,gk,vﬂ, shows that there exists Cy > 0 and 0 < § < 1 which only
depend on €g such that for all k£ > i + 1, and for every bounded measurable function u : e x M) LR,

k k+1
Osc[E(u(X™, Xx("\)|.ZM)] < Coo " Osc(u).
This, (2.11), and the inequalities | f;| < K, Osc(u) < 2||u||. and
Osc(uv) < |lullOsc(v) + [[V]loOsc(u)
imply the existence of constants C; > 0 and 0 < 8 < 1 such that forevery N > landi+2 < k < { < ky,
Osc(E(f¢| Z)E(fi] 1)) < Osc(B(fel FONE(fi|- Fi)lloo + IB(fe]. 70l Osc(B(f2|.7:))<C16*'6°~, and
Osc(BLfufel 7i1) = Ose(ELAE(fel F)IFi] ) < Cob™ i Ose(feB(fel. 7))
< Cob'[K - Osc(E(fel- 7)) + Osc(fi) IE(fel i) lls] < C1O 7107

We have stated these bounds for k, £ > i + 2, but in fact they remain valid for k =i+ 1 or £ =i + 1, if we increase
Cj to guarantee that C; 6% > 2K?2.
Substituting these bounds in (3.14), we find that

0

1 . o
Osc(N) € max — Z €089k 4 089 = 0(Vy') —— 0.
tsisky Vv | =4, N=eo

This proves (3.13), and Step 2.

kn

Steps 1 and 2 verify the conditions of the martingale CLT. So ﬁ Sy = ﬁ AN converges in distribution
n=1

to the standard normal distribution. O

3.2.5 Convergence of Moments

We prove Theorem 3.11. It is sufficient to prove the following lemma:

Lemma 3.21 Let f be a centered bounded additive functional of a uniformly elliptic Markov chain such that
VN — oo. Then for each r € N there is a constant C, such that for all N,

[E[sn]] s cviy ™.

Proof of Theorem 3.11 Assuming Lemma 3.21: Suppose r is even. We have already remarked that by Dobrushin’s
CLT, for any bounded continuous function ¢ : R — R,

, Sy —E(Sn) 1 foo -2/
1 E = dz. 3.15
N [¢ ( VVn )] V21 J-wo #(2)e ¢ ©-15)

Let N be a Gaussian random variable with mean zero and variance one. Applying (3.15) to the bounded
continuous function ¢as(x) = x” A M, we obtain

lim E[(%) /\M] —E(N AM).

N—oo

By the dominated convergence theorem and the assumption that r is even,

. . sv-Esa) ) O r _ o
lim lim E[(NTH) /\M] = lim B(N" A M) =EQN) = (r = D!.

M —o00 N—>oo N
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It remains to see that

i, Jim | (S ) 2 m] = pim B (S5 )]. 319

2
By Lemma 3.21,

Sy — E(SN))r Sn—E(Sn) . . .
_ < Cy, for all N. Therefore (=X—=222)" are uniformly integrable. It is
( Vn , r 7 y g

not difficult to see that this implies (3.16). This proves the theorem for even . The proof when r is odd is similar,
except that one has to use ¢y (x) = (x” A M) V (—M), and the identity E(N") = 0. O

The rest of the section is a proof of Lemma 3.21. By the gradient lemma (and the Cauchy-Schwarz inequality),
it is sufficient to prove Lemma 3.21 under the additional assumption that there is some constant C > 0 as follows:

N
D@, < CV, where @, i= || fullgz.

n=3

n;), and by estimating the expectation of each tuple. Consider an r-tuple f,, - - - f, Wwhere n; < np <--- < n,.
Segments of the form [n},n;,1] will be called edges. A marking is a non-empty collection of edges satisfying
the following two conditions. Firstly, each vertex n; belongs to at most one edge. The vertices belonging to an
edge are called bound, the other vertices are called free. Secondly, we require that for every free vertex ny, either

Let fn := fu(Xn, Xn+1). The proof proceeds by expanding Sy, into a sum of r-tuples f, - -+ fp, (np < --- <

(i) there exists aminimal f(/) > [ such that ns( is bound, and forall  <i < f(1), njx1 —n; < npgy+1 —nrwy;
or
(ii) there exists a maximal p(/) < [ such that n, is bound, and for all p(I) <i < I, n; —n;_1 < npe) —Rp)-1-

If (i) holds we will say that n; is associated to the edge [ny (), ny)+1] otherwise it is associated to [n,)-1, np@)]-

Lemma 3.22 There are constants L = L(r) > 0 and 0 < 0 < 1 such that

E“L[ fni] <L Z n (9(n_i+l—nj) ﬁnjgnw).
i=1

markings [nj,njy1]is an edge
Proof If r = 1 then the result holds since E[ f,,] = O (in this case there are no markings, and we let the empty
sum be equal to zero).
If » = 2 then the lemma says that [E [ fy, fn,]| < const.8™7™|| fu, llz21l fn, 2. This is a consequence of
uniform ellipticity, see Proposition 2.25.
For r > 3 we use induction. Take j such that n;,1 — n; is the largest. Then

ﬁfni ﬁfm E ]L[ fni +0(9(nj+l_nj) ﬁfnz
i=1 i=1 i=1

i=j+1
Let K := ess sup [f|, then the second term is less than C i 0+~ )ﬁnj ﬁn,ﬂ K72, Thus this term is controlled
by the marking with only one marked edge [n;, n;,1]. Applying the inductive assumption to each factor in the
first term gives the result. O

E =E

1 )

2 ||li=j+1

Lemma 3.23 3C, > 0 such that for every set C of r-tuples 1 < ny < --- < n, < N,

re= Y B[ ]s]

(ny,...n,)€C i=1

<,

Lemma 3.23 implies Lemma 3.21 since E(S},) is a linear combination of expectations of products along
r-tuples, with combinatorial coefficients which only depend on r. Therefore it suffices to prove Lemma 3.23.
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S
Proof By Lemma 3.22,T¢c < L Z Z 1—[ (it'ejfi[eje(ef i )) where the marked edges are
(ny,...,n,)€C markings (eq,...,es) j=1
of(nl, .. .,I’lr)
ej=le;,eflj=1...5.
Collecting all terms with a fixed set of marked edges (e, . . ., e5), we obtain

re<cry > ﬁ (ﬁe;ize;a(ef‘ef)(e; - e;)r—z) 3.17)

s (er,..es) j=1
where C(r) l_l(e}' - ejf)r_2 accounts for all tuples which admit a marking (e, ... e5). Indeed, for every edge
e=[e,e"] téere are at most 0 < j < r — 2 vertices which may be associated to e, and these vertices are inside
[e"=(r=2)(e" —e),e)U (et e+ (r=2)(et —eT)].

Thus there are at most 2(r — 2)(e* — e7) choices to place each vertex associated to a given edge. This gives

the following bound for the number of possibilities for tuples with marking (ey, . . ., es):
r-2
[T o -2 -e) | <ce) ] [ -er™
e \j=0 e
N-1N-n $
The sum over (e, ...ey) in (3.17) is estimated by ( Z EnﬁnJ,mHmm’_z) . For each m, Z Uplpem =
n=1 m=1 n
N

O(Vy) due to the Cauchy-Schwartz inequality and because Z ﬁ,f < CVy by assumption. Summing over m
n=1
gives I'c < const. Z Vi where the condition 2s < r appears because each edge involves two distinct vertices,

2s<r
and no vertex belongs to more than one edge. The result follows. O

3.2.6 Characterization of Center-Tight Additive Functionals

We prove Theorem 3.8. Suppose f is an a.s. uniformly bounded functional on a uniformly elliptic array X. We
will show that the following conditions are equivalent:

(@) Var(Sy) = 0(1);
(b) fis the sum of a gradient and an additive functional with summable variance;
(c) fis center-tight.

(N)

(a)=(b): By the gradient lemma f = Va + (f+c), where a is a.s. uniformly bounded, ¢, ’ are uniformly bounded
kN

constants, and || fy, ]2 < ug,N). By Theorem 3.6, sup Z(MELN))2<OO’ so f 4+ ¢ has summable variance, proving (b).
n=3

(b)=(c): We already saw that gradients and functionals with summable variance are center-tight. Since the sum
of center-tight functionals is center-tight, (c) is proved.

(c)=(a): Assume by way of contradiction that AN; T oo such that Vi, := Var(Sy,) — co. By Dobrushin’s central
Sn; —B(Sn,)

N7z

limit theorem, converges in distribution to a standard Gaussian distribution, so | exp(itSw, //Vn, )| —



48 3 Variance Growth, Center-Tightness, and the Central Limit Theorem

N;

2 . L SN, —mn; T
e~""/2. But center-tightness implies that there are constants my such that N,me, converges in distribution to

zero, so | exp(itSy, /+/Vn,)| — 1, a contradiction. O

3.2.7 Proof of the Two-Series Theorem

We prove Theorem 3.12.

Part (1). We suppose that f has summable variance, and prove that Sy — E(Sy) converges a.e. to a finite limit.
Let 5 := 0, f := fu(Xn, Xn+1) = E[fn(Xn, Xn+1)], let Fo denote the trivial o-algebra, and let .7, denote
the o-algebra generated by Xj, ..., X,. Then f; is Fy.i-measurable, so f; = E(fi|Zk+1) — B(fi|%0) =

Z E(f7|%n+1) — E(f;|-#). Therefore,
n=0

N N k N N
D 1= 2 BT — BT = D D [BUTne) B 170

k=1 k=1 n=0 n=0 k=n
N o N 0
;ZZ(E(ka«%H) E(fklfn) Z Z (E(fk|%+1) E(ka/n))
n=0k=n n=0k=N+1
N oo o N
éZZ(E(fklean) E(ka?) Z Z E(f]jy‘nﬂ)_E(fﬂyn))
n=0 k=n k=N+1 n=0
N oo
= > (BUiFue) — B F0)) - Z E(f{|-Zn+1). (3.18)
n=0 k=n k=N+1

To justify the marked equalities, we need to show that the infinite sums converge absolutely in L2. By (2.12),

IEC£{ 1 Zne ) o+ IECS 120 < 2Comia/Var(F)ok ! Smcez Var(f,)<eo, ZZ BT B ,<

n=0 k=n
0.
Let Ay = > (BU1Fne) ~E(f Fn)) and Zy = D" B(f{|Fn+). (3.19)
k=n k=N+1

Equation (3.18) leads to the following martingale-coboundary decomposition:3

N
Sy —E(Sy) = Z A, - Zn. (3.20)
n=0

To finish the proof, we show that 3, ; A,, and hrn ZN exist a.s.

N -
N-1

Cram 1. My := Z A, is a martingale relative to {Fy}, and sup ||My |l < oo. Consequently, lim My exists
n=0

and is finite almost surely.

Proof of the Claim. The martingale property is because My — My = Ay, and

N N
3 Indeed, we will soon see that Y, A, is a martingale (Claim 1); and Zy=Zn — Z_1= ), (Z,, — Z,,—1), a sum of “coboundaries”
n=0 n=0

Z,, — Z,—1 which tend to zero. (See Footnote 1 on page 31.)
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E(ANIZN) = ) BESITNnDIZN) — BESTNITN) =0
k=N

To justify ; we note that the series Ay = Z [E(f;:lﬂn“) —]E(f,jL?n)] converges in L?, because
k=N
[IE( f;lﬁnﬂ) - E(fxlZ )l = O(6%™). Therefore, the conditional expectation can be calculated term-by-
term.
Next we show that || My || is uniformly bounded.

oo kAN

||MN+1||2<HZZ(E(fk%H) E(fk|/n>)|| HZZ(EW%H) B,

n=0 k=
'2
=)

- HZ B Fanm)|| < HZ 5
k=0 k=0
N
S\ZIIf;II§+2 DL Covfi D+ D BTNl
k=0

H E(f!1FN+1)
k=N+1

0<k<C<N k=N+1
< \Z I+ 2Cmie D O FfIN e + Coie D, IfE Nl N0
k=0 0<k<l<oo k=N+1
The last expression is uniformly bounded, because ¥ || f{ [l; = ¥ Var(fx) < co,and Z 95_k||f;:||2||f;||2 <
0<k<l<oo
r 2
rZ 0 Z AT E: 5 Z I1££113, by the inequality |ab| < 5 (a? + b?).
CLAIM 2. ZN 7\/——) 0a.s.
Proof of the Claim. In fact we will show that 3 Zzzv < oo almost surely.
1 (o] (o] i . (o]
§E<Z Z%V) <> > BB IPNES 1 FNa] = Y Y BB T
N=1 N=1ky>k>N N=1ky>k>N

@.13) & _ i . @12 - - . - .
< G L L TN LIES PNl S Chy YL DL 0N f - gl

N=1ky>k;>N N=1ky>k;>N

= Crin07 Y0 Y 0 Z 1 Il fi sl where j = ko — ki, k = ki —
j=0 k>0 N=

2 2
Since ab < & zb , the innermost sum is less than }’ || f;; ||%, which is finite by the assumption that f has summable
variance. So E(Y, Z2) < oo, proving the claim.

By Claims 1 and 2 and equation (3.20), lim(Sy — E(Sn)) exists almost surely, and the first part of Theorem
3.12 is proved. O

Part (2). Suppose first that Var(Sy) /> co. By Corollary 3.7 (a direct consequence of Theorem 3.6), Var(Sy ) is
bounded, and therefore f is center-tight. By Theorem 3.8, f = Va + h where h has summable variance.

Trading constants between h and a, we may arrange that E[a, (X,;)] = O for all n. Then E(Sy) = E[Sy (h)],
and since Sy (f) = Sy (Va) + Sy (h), we get Sy — an+1(Xn+1) —E(Sn) = [Sv(h) —E(Sn (h)] — a1 (Xy).

The last expression has a finite a.s. limit, by part (1). This proves the direction (=).
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To see (&), assume that there are uniformly bounded measurable functions a, : S, — R so that Sy —
an+1(Xn+1) — E(Sn) has a finite limit almost everywhere, and assume by contradiction that Vy — oo.
Sy —E(S SN — X - E(S _ dis
Then lim N—(N) = lim N~ an+1(Xn+1) (Sn) =0 a.s., whence Sn—EGSN) ——m——> 0. But this
N —oo VVN N —oo ‘,VN ‘/W N —oo
contradicts Dobrushin’s CLT, which says that if Viy — oo, then SnN—EGN) converges in distribution to the

. VN
Gaussian law. m]

*3.3 The Almost Sure Invariance Principle

The CLT approximates the distribution of Sy by the Gaussian distribution with variance Vx. The next result
approximates (Sn, Sn+1, SN+2, - - .) by a path of standard Brownian motion at times (Vy, Vi1, VN42, - - -)-

We remind the reader that a standard Brownian Motion on a probability space Qisa one-parameter family
of real-valued functions W(¢) : Q - R (¢ > 0) s.t.:

(1) (t,w) — W(t)(w) is measurable;

2) wo)=0

(3) W(t) — W(s) is normally distributed with mean zero and variance |7 — s|;

(4) forall 0 < ¢y <--- < ty, the random variables W (¢;) — W(t;—1) (i =2,...,n) are independent;
(5) fora.e. w € Q, the function ¢t — W (¢) is continuous on [0, o).

Theorem 3.24 Let f be a non center-tight uniformly bounded additive functional of a uniformly elliptic Markov
N

chain X. Let f, := fu(Xn, Xn+1) and suppose that E(f,)) = O for all n. Denote Sy = an and let Vi be
n=1

the variance of Sy. Then there exist a number 6 > 0, a probability space (Q ]P’) and measurable functions

SN,W(I) N: Q>R (N €N, t > 0) such that

o {(Snins>1and {SN} N>1 have the same distribution;
e W(2) is a standard Brownian motion on Q;
e fora.e. a)EQ ISN(w)—W(VN)(w)I <V1/2 5f0rN>N(w)

Corollary 3.25 (Law of the Iterated Logarithm) With probability one,

S S
limsup ——=—— = V2, liminf ——2— = —V2.

N-oo VVyInlnVy N—eo /VyInln Vy

The proof of these results relies on properties of martingales which we now recall, and which can be found
in [95, Theorems A.1 and 2.2]:

Proposition 3.26 (Skorokhod’s Embedding Theorem for Martingales) Suppose that (A, ) is a martingale
difference sequence with mean zero and finite variance, defined on a probability space Q. Then there is a
probability space «Q F, P), a filtration F. C F and measurable functions A,,, W), 1, : Q = R such that

(An, 7—;,) is a martingale difference sequence, W (t) is a standard Brownian Motion, T, is ?‘7,, measurable, and
the following holds withTy =0, Ty =11 + -+ + TN

(a) {~Kn}n21 and {A}n>1 have the same law;

(b) Ay = W(T,) =W (Tyy) = W(To1 + 1) = W(Tpo1)s

(c) E(t|Foct) = EA | Fom): ~

(d) For each p > 1 there is C,, such that E(t?|Fry) < CP]E(AiPITn_l).

Proposition 3.27 (Doob’s Maximal Inequality for Martingales) Let A, be a martingale difference, and let

N P
p
- § ) Pl < £ Py .
SN Ay. Then for each p > I’E(nlel[lﬁ)li/]|sn| ) ( _1) E (ISn|?)

n=1
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Proof of Theorem 3.24. It suffices to prove the result in the case when f}, is a martingale difference sequence, with
respect to the o-algebras ¥, generated by X1, ..., X,;, X,,+1. We can always reduce to this case, by replacing f;,

N N
with the A, defined in (3.19). By (3.20) and Lemma 2.14, Sy = »" A,+O(1) and Var(S) = Var(Z A,,)+0( .
n=1 n=1
N N
So if we can prove the theorem for }; A,, then we can prove it for ), f,.

n=1 n=1
Note that A, is a martingale difference with zero mean and finite variance. The reader can easily verify

using the Markov property that A, has measurable versions of the form A, = A,(X,, X,+1). By (2.11),
supess sup |A,| < oco.

n
Henceforth we assume that f;, is a martingale difference sequence with zero mean. By Lemma 3.16, Vi is
monotonically increasing.
Let {A,}, T, Ty, W(¢) be the objects provided by Skorokhod’s embedding theorem. We claim that W and

—~ N ~
Sy = Y, Ay satisfy the conditions of Theorem 3.24. The proof consists of several steps.
n=1

Lemma 3.28 E(Ty) = Vn, and Var(Ty) < CVy for some positive constant C.

N
Proof E(Ty) = Vi, by Proposition 3.26 and Lemma 3.16. Split Ty —~E(Ty ) = Z [z - A2] +Z [A2-E@AD)].

=1
By the Cauchy-Schwarz inequality, it is enough to show that the variance of each sumis O(VN) By Proposition
3.26(c), the first sum is a martingale, hence by Lemma 3.16,

Var (i AZ]) ZE( T — n ) é const. iE(Zﬁ),
n=1 n=1

where the last step uses the Cauchy-Schwarz inequality, and Proposition 3.26(d) with p = 2. Since A, are
uniformly bounded,

N N
Z EAL) = Z E(A}) < const. Z E(A2) < const.Vy. (3.21)
n=1 n=1 n
N _ N 5
Next, Var(z A2 - E(Az)]> = (Z (A2 - Ea2)] ) < const. Z ( (A2 - Ea2)] ) < const.Vy
n=1
where the first step follows by Prop. 3.26, second follows by Lemma 3 4 and the third follows by (3.21) This
completes the proof. O

Let @y > 1 be a numerical parameter to be chosen later. Let Ny be the smallest number such that Vi, > k.
We denote Vi := Vy, . First, we will prove Theorem 3.24 along the sequence Nj. Then we will estimate the
oscillation of Sy and W (Vy) between consecutive N, and deduce the theorem for Ny < N < Niy1.

Lemma 3.29 Suppose that a, > % Then with probability one, for all large N we have |Ty, — Vi| < (Vkaz.
Proof We saw above that V; = E(Ty, ). By Lemma 3.28 and Chebyshev’s inequality,

P (ITw, = Vil > V) < CVI72 < crn (72,
Since a1 (2ay — 1) > 1, the result follows from the Borel-Cantelli lemma. m|

Lemma 3.30

(a) If as > a3 /2, then with probability one, for all large k, |§Nk - W V)| < (Vk‘”.
(b) If a3 > %(1 - a'fl), then with probability one, for all large k, mr/na()‘s ] (W) - W( V)| < (Vka3.
te

ks Vk+1
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Proof By Lemma 3.29 and the identity S| N = W(Tn,),

P{|§Nk -W V)| = q/k"3 for infinitely many k} < P{ o (Vrr(}gva o2y W) —W( Vi)l = ~’Vk"3 for infinitely many k}.
telVi— e Kkt &

Thus to prove part (a), it suffices to show that Z P max W) — W Vi)l = "V,f” < oo,
T \telVi=V2Vie+ V2]

It suffices to check that ZP( max W) = W(Vi)l 2 (Vk‘”) < oo, the interval [V — V2, Vi]
P 1e[ Vi, i+ V2]

completely analogous.
By the reflection principle, forany a < band 4 >0, P ( n[la)}()][W(t) -W(a)] = h) and P ( II[li[L][W(l‘) -W(a)] < —h)
t€la, tela,
are both equal to 2P (W (b)—W (a) > h) (see [104, property (1.7.4)].) Hence
Pl max W) - WVl 2 VE)| < 4P (W( Vi + V) - W( Vi) 2 Ve®)
te[Vi. Vie+ V21

2

o0 e U /2 " 2asz-a
Z 4f du < 4e” WDV < gemek?t, (3.22)
W;g—(azﬂ) \/ﬂ

where ¢>0 and B1=(2a3 — a2)a; >0. (!) holds since [W (Vi + V™) = W(Vi)1/ V™' is a standard normal, (1)

) ) _h2
is because for 4 > 0, fh e W2y < fh %e‘”z/zdu =¢ ’h 2 Since (3.22) is summable in k, part (a) follows.

To prove part (b) we first claim that

Var(Sn,.,, — Sy )= k4L (3.23)

Indeed Vi;1 = Var(Sn,,,) = Vi + Var(Sn,,, — Sn,) + 2Cov(Sn,, Sni,, — Sn,)- Since Vy is increasing, N is
increasing. By (2.13) and the uniform boundness of f,, there is 0 < 8 < 1 such that

Nk Nt Nk N )
Cov(SN,» SN, — SN,) = Z Z Cov(fu,s fn,) < const. Z Z ™™™ < const. Z m@™ < const.
ni=1ny=Ni+1 ni=1ny;=N+1 m=1

So Var(Sn, ,,—Sn )=Vi+1=Vi + O(1) and (3.23) follows from the definition of Ni.

Now similarly to part (a), we obtain P ( max ] (W) —W(Tn, )| > rvkds) < e_ckﬁz’ where ¢ > 0 and

t€[ Vi, Vicyt
1
ﬁ2=2011a’3—((11—1)=a’1 23+ — — 1| > 0. (3.24)
a
Part (b) can now be proved the same way we proved part (a). O

1-1/a;

Lemma 3.31 If 3 > , then with probability one, for all large k

max |8, — S| < ‘Vk”3.
NE[Nk,Ni+1]

Proof 1t suffices to prove the proposition with Sy in place of Sy. For each p € 2N,
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(D
P max |5, — Sy, | > "Vkm) < E( max  |S, — Sy, |”)/(Vka3p
n€[Ng,Ni+1] n€[Ng,Ni+1]

2
(é) const.E“SNi;(;pSNk ] (%) const. [Var(SNi;/‘(; pSNk)]p/ (;) const.kPP/2,
k k
where 3, is given by (3.24). Inequality (1) is by Markov’s inequality. Inequality (2) is by Doob’s maximal
inequality. Inequality (3) uses the assumption that p is even, and the moment bound in Lemma 3.21. Inequality
(4) uses (3.23).
Thus the lemma follows from Borel-Cantelli lemma after taking p > BLz O

We are now ready to prove Theorem 3.24. Take

a3 > S max(az 1 —ajh). (3.25)

Given N take k suchthat Ny < N < Niy1. Then [Sy =W (Va)| < [Sn, =W (Vi) I+IW (Vi) =W (Vi) | +|Sn =S, |-
We claim that with probability one, each term is less than or equal to V™, for all k large enough. For the
first term, this follows from Lemma 3.30(a). For the second term, this follows from Lemma 3.30(b) and the
monotonicity of Vy . For the last term, this follows from Lemma 3.~3 1.
Thus, for every a4 > a3, with probability 1, for all large N, |Sy — W(Vy)| < 3V < V™ < Vi*. Since

1+1/ay
2

@y can be taken arbitrary close to , we conclude from (3.25) that @4 could be taken arbitrary close to

L+{/a) 1-d/ap)) 1

min max , = —. This shows that the theorem holds for any § < % - % = é.
a>1 4 2 3

We note for future reference that in this proof, the final choice of constants is a; | 3, a2 | % as | %,and
ay %, where @ | ¢ means that @ > ¢, and « can be taken arbitrary close to c. |

Proof of the Law of the Iterated Logarithm (Corollary 3.25). The law of the iterated logarithm for the
W(t
Brownian Motion [68, Theorem 8.5.1] says that with probability one, lim sup # = V2. It follows that

- Vilnlnt

with probability one:

. W (1) , W (Vi) . 1
V2 = lim sup ——— = limsup ———= by Lemma 3.30 with a3 = =
t—oo VtInlnt koo VViInln Vg -3
= lim sup L by Theorem 3.24
k—o00 V(Vk Inln (Vk
Sn 1
= lim sup ——— by Lemma 3.31 with a3 = —.
N—>oop VVn Inln Vy Y 73
By Theorem 3.24, {Sy} and {§N} are equal in law. Therefore, with probability one, lim sup ﬁ =12.
By the symmetry f <> —f, the liminf is a.s. —V2 as well. O

3.4 Notes and References

The connection between the non-growth of the variance and a representation in terms of gradients is well-known
for stationary stochastic processes. The first result in this direction we are aware of is Leonov’s theorem [129].
He showed that the asymptotic variance of a homogeneous additive functional of a stationary homogeneous
Markov chain is zero iff the additive functional is the sum of a gradient and a constant. Rousseau-Egele [168]
and Guivarc’h & Hardy [88] extended this to the context of dynamical systems preserving an invariant Gibbs
measure. Kifer [112], Conze & Raugi [31], Dragicevi¢, Froyland & Gonzélez-Tokman [64] have proved versions
of Leonov’s theorem for random and/or sequential dynamical systems (see §9.4).
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The connection between center-tightness and gradients is a central feature of the theory of cocycles over
ergodic transformations. Suppose 7 : X — X is an ergodic probability preserving transformation on a non-
atomic probability space. For every measurable f : X — R, {f o T"} is a stationary stochastic process, and
Sv=f+foT+---+ foTN ! are called the ergodic sums of the cocycle f. A coboundary is a function of
the form f = g — g o T with g measurable. Schmidt characterized cocycles with center-tight Sn as those arising
from coboundaries [178, page 181]. These results extend to cocycles taking values in locally compact groups,
see Moore & Schmidt [145] and Aaronson & Weiss [8]. For more on this, see Aaronson [1, chapter 8], and
Bradley [16, chapters 8,19]. We also refer to [83] for an analogous result in the continuous setting.

The characterization of center-tightness for inhomogeneous Markov chains in Theorem 3.8 seems to be
new. The inhomogeneous theory is different from the stationary theory in that there is another cause for
center-tightness: Having summable variance. This cannot happen in the stationary homogeneous world, unless
fi =const.

We have already commented that if X satisfies the one-step ellipticity condition and f; = fx(Xx), then the
variance estimate in Theorem 3.6 can be replaced by the simpler estimate (3.1), see [50],[181],[56]. Theorem
3.6 for fi = fi(Xk, Xr+1) seems to be new.

Theorem 3.10 is a special case of a result of Dobrushin [50], which also applies to some unbounded additive
functionals. Our proof follows the paper of Sethuraman & Varadhan [181] closely, except for minor changes
needed to deal with additive functionals of the form fj (Xx, Xx+1), instead of fi (Xx).

McLeish’s lemma, the martingale CLT, and their proofs are due to McLeish [140]. We refer the reader to Hall
& Heyde [95] for the history of this result, further extensions, and references.

Theorem 3.12 extends the Kolmogorov-Khintchin “two-series theorem" [117]. There are other extensions
to sums of dependent random variables, for example for martingales (Hall & Heyde [95, chapter 2]), for sums
of negatively dependent random variables (Matula [138]) and for Birkhoff sums of expanding maps (Conze &
Raugi [31]). The proofs of theorems 3.10 and 3.12 use Gordin’s “martingale-coboundary decomposition" [81],
see also [95],[120].

Theorem 3.11 is due to B.A. Lifshits [131]. Actually, he proved a more general result which also applies to
the unbounded additive functionals considered in Dobrushin’s paper. For an extension to ¢-mixing processes,
see [143, Theorem 6.17].

The first results on the law of the iterated logarithm (LIL) were obtained by Khinchin [108] and Kolmogorov
[115], in the setting of bounded i.i.d. random variables. Kolmogorov’s result also applies to certain sequences
of non-identically distributed but independent and bounded random variables, and this was further extended to
the unbounded case by Hartman and Wintner [96].

The almost sure invariance principle (ASIP) for independent identically distributed random variables and its
application to the proof of the LIL are due to Strassen [193]. He used Skorokhod’s embedding theorem [186].
Komlés, Major and Tusnady found an alternative proof, which gives better error rates [118].

In the stationary case, a classical application of ASIP is the functional central limit theorem, which says that

arandom function Wy : [0, 1] — R obtained by linear interpolation of the points WN(%) = % converges

in law as N — oo to a Brownian Motion. In the inhomogeneous case, such results are only available after a
random time change, so they are more complicated to state. See [95] for the precise statements.

Skorokhod’s embedding theorem was extended to martingales in [36, 66, 194], and Stout extended the ASIP
to martingales differences in [192]. Philipp & Stout [157] gave a further extension to weakly dependent random
variables, including Markov chains. Cuny and Merlevede [35] proved the ASIP for reverse martingale differences.
The martingale methods can be used to prove the ASIP for time-series of dynamical systems, homogeneous and
inhomogeneous, see e.g. [43], [63], [97] (this is a very partial list).

For an alternative approach to the ASIP, based on perturbation operators, see [86]. This was applied in the
inhomogeneous setup in [65].



Chapter 4
The Essential Range and Irreducibility

Abstract The local limit theorem may fail for additive functionals whose range can be reduced by subtracting
a center-tight functional. In this chapter we study the structure of such functionals, and calculate the smallest
possible algebraic range which can be obtained this way.

4.1 Definitions and Motivation

Let f = {f,} be an additive functional of a Markov chain X := {X,}. The algebraic range of (X,f) is the
intersection G4, (X, ) of all closed groups G such that

Vn dep € R 8.t P[ (X, Xns1) — cn € G] = 1. A.1)

Later (Lemma 4.15), we will see that G (X, f) itself satisfies (4.1), therefore G;q (X, f) is the smallest closed
group satisfying (4.1).

Example 4.1 (The Simple Random Walk) Suppose {X,,} are independent random variables such that P(X,, =
+1) = % and let f,,(x,y) = x. Then §,, = X; + - - - + X,, is the simple random walk on Z. The algebraic range in
this case is 27Z.

Proof: Gaig C 2Z, because we can take ¢, := —1. Assume by contradiction that G4;, & 27Z, then G, = tZ
for + > 4, and the supports of S, are cosets of Z. But this is false, because daj, ar s.t. |a; — az| < t and
P(S,, = a;) # 0: For n odd take a; = (—1)’, and for n even take a; = 1 + (1)’ O

The lattice case is the case when G, (X,f) = tZ for some ¢t > 0. The non-lattice case is the case
when Gg¢(X,f) = R. This distinction appears naturally in the study of the LLT for the following reason. If
Guig(X,f) =tZand yy :=c; + -+ + cn, then

P(Sy € yny +1tZ) = 1forall N.

In this case, P[Sy — zn € (@, b)] = 0 whenever |a — b| < t and zx + (a, b) falls inside the gaps of yn + 1Z,

2
and P(Sy — zn € (a, b)) 3 %‘/%b' fails. This is the lattice obstruction to the local limit theorem.
There is a related, but more subtle, obstruction. An additive functional f is called reducible on X, if there is
another additive functional g on X such that f — g is center-tight, and G 414 (X, 9) & Gaig (X, f). In this case we say
that g is a reduction of f, and that G ;4 (X, g) is a reduced range of f. An additive functional without reductions

is called irreducible.

Example 4.2 (Simple Random Walk with Continuous First Step) Suppose {X}},>1 are independent real
valued random variables such that X; has a continuous distribution § with compact support, and X5, X3, . .. are
equal to =1 with equal probabilities. Let f,,(x, y) = x,then S,, = X; + X2 +- - - + X,,. Because of the continuously
distributed first step, G (f) = R. But if we subtract from f the center-tight functional ¢ with components

cn(x,y) =xwhenn =1and c,(x,y) =0whenn > 1,

then the result g := f — ¢ has algebraic range 2Z. So f is reducible.
The reduction g satisfies the lattice local limit theorem (see Chapter 1), because it generates the (delayed)
simple random walk. But for a general distribution &, f = g + ¢ does not satisfy the LLT, lattice or non-lattice.

55
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This can be seen by direct calculations, using the fact that the distribution of S,, is the convolution of § and the
centered binomial distribution. See chapter 6 for details.

Here we see an instance of the reducibility obstruction to the LLT: A situation when the LLT fails because the
additive functional is a sum of a lattice term which satisfies the lattice LLT and a non-lattice center-tight term
which spoils it.

The reducibility obstruction to the LLT raises the following questions:

(1) Given a reducible additive functional f, is there an “optimal" center-tight functional ¢ such that f — ¢ is
irreducible?

(2) What is the algebraic range of the optimal reduction?
Motivated by these questions, we introduce the essential range of f:
Gess (X, ) = ﬂ {Galg X,g):f—gis center—tight} .

This is a closed sub-group of Gui¢(X,f). In this language, f is irreducible iff G.ss(X,f) = Gaio(X, 1), and an
optimal reduction is g such that f — g is center-tight, and G4 (X, 9) = Gegs(X,9) = Gess (X, ).

4.2 Main Results
4.2.1 Markov Chains

The questions raised at the end of the last section can be answered using the structure constants d,, (£) introduced
in (2.26).

Assume henceforth that f is an a.s. uniformly bounded additive functional on a uniformly elliptic Markov
chain X. Define the co-range of f to be the set

H(X.f) = {g ER: Y du(6) < oo}.
n=3
Theorem 4.3 If f is center-tight then H(X,f) = R, and if not then either H(X,f) = {0}, or H(X,f) = tZ for some
t > n/(3esssup|f]).

Theorem 4.4 (a) If H(X,f) = 0, then G 55(X,f) = R.
(b) If H(X.f) = tZ with t # 0, then Gy (X, f) = ZZ.
(c) If HOX,f) = R, then Gess (X, f) = {0}.

Theorem 4.5 There exists an irreducible uniformly bounded additive functional g such that f — g is center-tight,
and Galg (X,9) = Gess (X, 9) = Gess (X, 1).

Corollary 4.6 If G.ss(X,f) = tZ witht # 0, then |t| < 6esssup [f|.

The corollary follows directly from Theorems 4.3 and 4.4(b).

4.2.2 Markov Arrays

Let f be an additive functional on a Markov array X with row lengths kx + 1, then we can make the following
definitions:
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* The algebraic range G.;¢(X,f) is the intersection of all closed subgroups G of R such that for all N and

1<k <ky, 3V eRsit. P[f(N)(X(N) XNy =) e G] =1.

¢ The essential range G55 (X, f) is the intersection of the algebraic ranges of all additive functionals of the
form f — h where h is center-tight.

« The co-range is H(X,f) := {£ e R : sup 2 d(N)(f)2 < oo}.
¢ An additive functional f is called 1rreduc1ble if Gegs (X, 1) = Garg (X, 1).

This is consistent with the definitions for Markov chains, see Corollary 4.8 below.

Theorem 4.7 The results of Theorems 4.3, 4.4, 4.5 and of Corollary 4.6 hold for all a.s. uniformly bounded
additive functionals on uniformly elliptic Markov arrays.

Corollary 4.8 Suppose f = { f,} is an a.s. uniformly bounded additive functional on a uniformly elliptic Markov
chain X = {X,}. Let f =~{~,5N)} be an additive functional on a Markov array X = {X,(,N) s.t. f(N) fn and
X,V = Xy Then Gaig (K1) = Garg(X,1), Gess (K1) = Gegs (X 1), HOXT) = H(X, D).

Proof The equality of the algebraic ranges and of the co-ranges is trivial, but the equality of the essential ranges
requires justification, because some center-tight functionals on Markov arrays are not of the form h,(iN ) =hy,.
However, since the co-ranges agree, the essential ranges also agree, by the version of Theorem 4.4 for arrays. O

4.2.3 Hereditary Arrays

Some results for Markov chains do not extend to general Markov arrays. Of particular importance is the following
fact, which we will need for the proof of the LLT in Chapter 5. Recall the definition of Dy (&) from (2.26).

Theorem 4.9 Suppose f is an a.s. uniformly bounded additive functional on a uniformly elliptic Markov chain
X, then
Dy (&) N—> oo uniformly on compact subsets of H(X, )€. “4.2)

Proof Suppose & € R\H (X, f), then sup Dy (&) = 00,50 Dy (€)= Z di(é)? — Z de(é)* = sup Dy (&)=c0

The convergence is uniform on compacts because in the case of Markov chains, DN (5) is non- decreasmg, and
& = Dy (&) are continuous. |

Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic Markov array X. We call (X, f)

¢ hereditary, if Dy (£) N——> oo for all & € H(X, f)¢; and

« stably hereditary, if Dy (£) oo uniformly on compacts in H(X, f)€.

By Theorem 4.9, every a.s. uniformly bounded additive functional on a uniformly elliptic Markov chain is stably
hereditary. But as the following two examples show, this is not the case for arrays.

Example 4.10 (Irreducible but Not Hereditary) Let X,, be a sequence of independent uniform random variables
with mean zero and variance one. Let

X(N)— Xk ISkSN'i'l, Nodd,
o 1<k<N+1, Neven

Let f(N)(x y) := x. Then for every ¢ € H(X,f)¢, Dy (&) 4> oo.
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Xn-1 X,

Proof. Suppose P = X,,_ZY" ! Yn’Y"+1) is a random level 2N + 1 hexagon at position n, then I'(P) =
n-1 In

Xy + X, = Y1 — Y, where X, Y; are independent random variables, each having uniform distribution with

mean zero and variance one. The distribution of I'(P) is independent of n and N, and as a result,
a0 (@)? = B(eET P — 117) = e(é),
where c(¢) is independent of n. In addition, c(£) > 0 for £ # 0, because the distribution of I'(P) is continuous.
So Dyn+1(€) = 2N = 1)c(€) ~ow eoon R\ {0}. Thus H(X,f) = {0} and G 55(X,f) = R. But Dy (&) A o0
for & # 0, because Dy (€) = 0. O
Example 4.11 (Hereditary but Not Stably Hereditary) Suppose X,, are a sequence of independent identically
distributed random variables, equal to +1 with probability % Form an array with row lengths N + 1 by setting
1 1
XNV = X, and let £V (X, Xpp1) = 5 (1 + \3/—_) X, (1 <n < N+1). Then Dy(&) — oo on H(X, )¢, but
VN
the convergence is not uniform on compact subsets of H(X, ).

+1 +1
1-1
+1 +1
+1 -1

Proof. T (+l + 1) = 1 + N~'/3. Since Hex(N, n) consists of 2° hexagons with equal probabilities, the

1 1+ N1
= — sin? —f( A ).

h +1
exagon ( >

+ 1) has probability 27°. Hence d™ (¢) > 276|eis AN 2

N-2 o é(0+ N7y [167'Nsin?§ £¢ 272

Therefore, D > s ~ We see that D — oo for all
(&) = 2 642N & €2l N(E) = e

¢ # 0, whence H(X,f) = {0}, and Dy (&) — oo on H(X, ). But the convergence is not uniform on any compact

neighborhood of 27k, k # 0, because Dy (¢x) = 0 for & = 2nk(1 + N~1/3)71 and én — 27k O

These examples raise the problem of deciding whether a given (X, f) is (stably) hereditary or not. We will
discuss this now.

We begin with a simple class of examples, which will be important for us when we analyze the local limit
theorem in the regime of large deviations:

Example 4.12 (“‘Change of Measure'') Let Y be an array obtained from a uniformly elliptic Markov chain X
using the change of measure construction (Example 2.6). Let gp(N ) denote the weights of the change of measure.
If for some constant C > 0,

C' < oM < Cforalln, N,

then for every a.s. uniformly bounded additive functional f on X, f, (N) . fn satisfies H(Y,f) = H(Xf),
Gess (Y, ) = Gegs (X, ), and (Y, f) is stably hereditary.
Proof. Let mge;’ be the hexagon measures of Y, and let my_, be the hexagon measures of X. It is not difficult
N,n

dm
to see that there is a constant C, such that C;! < TMhiex < C.forall N > 0and 5 < n < N, see Corollary 2.10

mh
. Hex
and its proof.

Thus d,(&,Y) < d,(&,X) and D, (£,Y) < D, (4,X)+0(1).So H(Y,f) = H(X,f), and G55 (Y, f) = Gess (X, f).
By Theorem 4.9, Dy (¢, X) — oo uniformly on compacts in H (X, f)°. So Dy (&, X) — oo uniformly on compacts
in H(Y,f)“. ]

The hereditary property can be understood in terms of the behavior of sub-arrays. Let X be a Markov array
with row lengths k. A sub-array of X is an array X’ of the form {X(Nf) 1 <k <ky,+1,¢ > 1} where
N¢ T co. The restriction of an additive functional f on X to X’ is flx = f,EN”) 1<k <kn,C2>1}

Theorem 4.13 Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic Markov array X.
The following conditions are equivalent:
(1) (X, 1) is hereditary; (2) for all &, 11m1nfDN(§) < co = lim sup Dn (&) < ooy

N-
(3) HX , flx) = H(X, f) for all sub-arrays X’; (4) Gess (X, flx)) = Gess (X, f) for all sub-arrays X'.
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The equivalence of (1) and (4) is the reason we call hereditary arrays “hereditary." Next we characterize the
stably hereditary arrays:

Theorem 4.14 Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic Markov array X.

(1) If Goss (X, f) = R, then (X, 1) is stably hereditary iff G.ss(X’,dlx’) = R for all sub-arrays X’ and all additive
Sfunctionals g = {(1 + sN)f,(lN)}, where ey — 0.
(2) If Geoss (X, f) # R, then (X, 1) is stably hereditary iff (X,f) is hereditary.

For a hereditary array which is not stably hereditary, see Example 4.11.

4.3 Proofs
4.3.1 Reduction Lemma

Lemma 4.15 Let f be an additive functional on a Markov array X with row lengths kx + 1. For every N > 1 and

1 < n < ky, there exists a constant c,(,N) such that f,(lN)(X,(,N), Xr(fjl)) - cﬁlN) € Gaig (X, 1) almost surely.

Proof Gai4(Xf) is the intersection of all closed subgroups G such that

YNV <n < ky,3eM st (N XV, X)) = ¢V € G almost surely. 4.3)
This is a closed subgroup of R. The lemma is trivial when G, (X, f) = R (take c,(lN ) = 0), so we focus on the

case Ggrg(X,f) # R.
In this case (4.3) holds with some G = tZ with t > 0, and f,(,N)(X,SN), X (N)) is a discrete random variable.

n+l1

Let Af,N ) denote the set of values attained by f,(,N )(X,(lN ), Xg 1) ) with positive probability. Since G = Z satisfies

4.3), A;N) are subsets of cosets of tZ, and DE,N) = A,(,N) - A;N) C tZ. Let Gy denote the group generated by
Unz1 Ut<n<iy D,(,N). Then Gy is a subgroup of ¢Z. In particular, Gy is closed.

By the previous paragraph, Go C tZ for any group ¢Z which satisfies (4.3). So Go C G4 (X,f). Next, we
fix n, N and observe that all the values of f,(LN ) (X,(,N ), X,(llf])) belong to the same translate of A;N ) - A;N ), and
therefore to the same coset of Gy. So Gy satisfies (4.3), and Gy O Gue(X,f). So G44(X, ) = Gop. Since Gy
satisfies (4.3), Gaiq (X, f) satisfies (4.3). |

Lemma 4.16 (Reduction Lemma) Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic

kn
Markov array X, with row lengths kyx + 1. If ¢ # 0 and sup Z d,((N) (€)? < oo, then there is an additive functional
N k=3
g on X such that

2
g — f is center-tight, ess sup |g] < oo, and Gaig(X.9) ?HZ. (4.4)

If X,(,N) =X, and f,(lN) = fn (as in the case of additive functionals of Markov chains), then we can take g such
that gilN) = gn.

Proof for Doeblin Chains: As in the case of the gradient lemma, there is a simple proof in the important
special case of Doeblin Markov chains (Example 2.7). Recall that Doeblin chains have finite state spaces S,,.

Let 7y := 7pn+1(x, {y}), and relabel the states S, = {1,...,dy,} in such a way that 7f}, = 7, 541(1,{1}) # 0
for all n. The Doeblin condition guarantees that for every x € S,, there exists a state &,(x) € S, such that
) g > 0

Define, as in the proof of the gradient lemma,
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a = O’ a = 07 and an(x) = fn—2(19 gn—l(x)) + fn—l(gn—l(x)v )C) forn >3
c1:=0, ¢»:=0, andcy:= fuo(lL)forn>3 f:=f-Va-c.

En(y)

Then f(6,7) = fu(:) = (@ni1 () = an(x) = en = =Tu 1, ="

of a position n hexagon, see (2.25).

For Doeblin chains, there are finitely many admissible hexagons at position n, and the hexagon measure
assigns each of them a mass which is uniformly bounded from below. Let C ~! be a uniform lower bound for this
mass, then [/ ) — 1|2 < CE,,,. (147" = 11*) = Cd%(¢).

Decompose f,,(x,y) = g,(x,y) + h,(x,y) where g,(x,y) € %”Z and K, (x,y) € [—’f—r, %). Clearly
lgl < Ifl +|Val + [c| + |h| < 6]f| + /&, and G414(X,9) C %”Z.

We show that f — g is center-tight. We need the following inequality:

y), where I',, denotes the balance

4x2 ix 2 2
— < e = 1|7 < x” forall x| < 7. 4.5)
T

2 . 2 Py 2
By (4.5), |l (x, y)|* < @m'fhn(x’y) -1 = 4#?|e'ffn<w 12 < c;f?df,(g), whence

Cn?

2, Var(n (o Xoet) + e0) = ) Var(ha (X Xos1)) < 27

PAGEES
n=3 n=3 n=3

So h + ¢ has summable variance. Therefore f — g = Va + (h + ¢) is center-tight. |

Preparations for the Proof in the General Case.
Lemma 4.17 Suppose E\, ..., En are measurable events, and let W denote the random variable which counts

N
1
how many of E; occur simultaneously, then P(W > t) < " Z P(Ey).
k=1

Proof Apply Markov’s inequality to W = }’ 1g, . O

The expectation of an L? random variable W can be characterized as the constant 4 € R which minimizes
E(|W — u|?). The variance is Var(W) = miIIRJ E(|W - ,u|2).
HE

Similarly, we define a circular mean of a random variable W to be any real number 6 € [, ) which
minimizes the quantity E(|e! =9 — 1]?), and we define the circular variance to be the minimum

CVar (W) := 961[152”) E(leW-9 — 12) = 961[112}”) 4E (sin’ %).

Circular means always exist, but they are not always unique. Existence is because the function 6 + E(|e!V =9 —
11?) is continuous and 27r-periodic. Non-uniqueness can be seen, for example, when W is uniformly distributed
on [, ]. In this case, every 6 € [—nx, ) is a circular mean.

For every x € R, let

(x) := the unique element of [—x, ) s.t. x — (x) € 27Z. 4.6)

It is not difficult to see using (4.5), that for every circular mean 6,

%VaI(W —0) < CVar (W) < Var(W). “.7

! Proof of (4.5): y = sin % is concave on [0, ], so its graph lies above the chord y = f and below the tangent y = % So

~ <sinF < 3 on [0, x]. Since le* —1|% = 4sin? 7, we have (4.5).
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Lemma 4.18 For every real-valued random variable W, we can write W = W| + Wy where W € 2nZ almost
surely, and Var(W;) < ”TZCVar (W).

Proof Take a circular mean 6, and let Wy := (W — 60) — (W - 0), Wy:=(W —6) + 6. |

Proof of the Reduction Lemma in the General Case: Suppose f is an a.s. uniformly bounded additive functional
kn
on a uniformly elliptic Markov array X, with row lengths kn + 1, and fix £ # O such that sup Z dﬁlN )(£)? < 0.
N

n=3
Let L denote the ladder process associated with X (see §2.3.3). Recall that this is a Markov array with entries

LM=zMN) y ™) XM) (3 < n < ky) such that

@) (XM}, (zM)} are two independent copies of XV
) Y, N are conditionally independent given {X (N)} and {Zl.(N )}; and
(c) the conditional distribution of ¥, (N) given {Z(N )} and {Xl.(N )} is given by

ply™ ¢ g {Z(N } = {[(N)} _ the bridge probability for X that X,(ﬁl) EE
n-1 € V) Ny = (N) _ #(N) (N) _ #(N)
{X; ={&7} giventhat X,y = ¢, yand X,, " =&, .

Recall see (2.25), (4.6). We need the following (uniformly bounded) additive functionals on L:

F(N)(L(N)) - f(N) Zr(lNz)’Y(N))+f(N)(Y( X(N))

7 (N) (7 (N) 7 (N) w ZN Ny (N) ._ G(N) 77 (N)

H, (L, ,Ln+1):=<§l"(2 e Y?N% X Xn+1)> H," :=H," —E[H,"].
n—1

Sometimes we will abuse notation, and write L, = (Z,-2, ¥,-1, X;;) and

FM@NYy=FL,) , BN LN, LY =H(L, L), £V = fo. (4.8)

By construction, H, = &r (Zn_z o Xn+1) mod 27Z, and therefore,

Hy = & fu2(Zn-2. Zu-1) + EVF = € fu (X, Xp1) mod 27Z.
Dividing by ¢ and rearranging terms, we obtain the decomposition

something taking
values in 277

1 —~
P X = 2 [ ] +|[VF = 7] + faa(Zua Zuo). (4.9)

Step 1 below says that H has summable variance. So VF — £l His center-tight.

By the structure of the ladder process, f,-2(Z,-2, Z,—1) is independent from f,, (X}, Xp+1). Fix some possible
array of values ¢ of Z. If we condition both sides of (4.9) on X,,, X;,+1 and Z = £, then the left hand side remains
fn(Xn, Xnt1), but fr,_0(Zy-2, Z,,—1) is replaced by the constant f,—>({n-2, {n-1).

The idea of the proof is to construct { so that the conditional expectation of the RHS on {X,,} and Z = { can

something taking center-tight
£ | values in 277 ] [(Wl‘t X) ] In-2(Gn-2, En-1)-

The main difficulty is that the conditional expectation is an average and the average of a 2nZ-valued quantlty
is not necessarily 27Z-valued. We will address this difficulty by using “approximate conditional circular means,"
see Step 3.

still be put in the form —

Step 1: H has summable variances. In addition, E[(ﬁ,(,N))z] < ”Tzdg,N)(f)z, ]E(H,(lN)) =0
EI(HM) < 24N (6)2, and sng[(Hgm +oo+ HVY < oo,

Proof of the Step. We fix N and drop the superscripts V).
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* E(H,) = E(H,) - E(H,) = 0. )
* By 4.5), E(Hﬁ) < ”TZE(IeiH" —1%). By Lemma 2.22(d), elfn is equal in distribution to el¢TP) where T'(P)

2 2
is the balance of a random hexagon in Hex (N, n). So E(H,zl) < %E’”ch (|el§F(P) - 1|2) = %dn(.f)z. By our

kn
assumptions, sup Z dn(£)? < c0. So H has summable variations.
N n=3
» B(HY) = B(H}) ~E(H,)* < B(H}) < % du(€)?.
e L is uniformly elliptic, by Lemma 2.22. So Lemma 3.4 applies, and

kN 2 kN kn kn
Z H, = Var Z H, | < const. Z Var(H,) < const. Z d,l(g)2 < const.
k=3 k=3 k=3 k=3

This completes the proof of Step 1.
Fix a constant D such that

E

kn
supZd,ﬁM(g)z +supE +4<D. (4.10)
N 3 N

kn 2

S
n

n=3

Step 2 (Croick oF £): A¢™N) = (K](N), s ,Ellzll) € 6](N) X e X 6}(2’11 s.t.

kN
ZE(H'(IN)(L;N),égl/:r/;)zy{zlgN)} =£<N)) <D, E

n=3

2
kN
(Z H,EN)(L;N),A;’X})) () = £<N>] <7°D,

n=3

Ex <D, |fM M, Ny <esssup|f] V3 <n < ky.

n+l

kn
> CVar (gF,EN@;N))’{sz} =™, X;N))
n=3

(Here and throughout L;N) = (Zr(l]:]z), Yn(ivl), X,(lN)), and Ex = averaging on {Xi(N) }).

Proof of the Step. We fix N, drop the superscripts V), and use convention (4.8). Let

kn
Q= {£ ZE(H,ZLHZL'} ={) < ”ZD}-
n=3

By Step 1,

Ez

S 2 n? S (N) [ 2 n?
(Z)=¢ =;E<Hn>s7nzz3dn &7 < 7D,

kn
E| > Hy
n=3
(N)

where Ez = integration over { with respect to the distribution of {Zl.(N )} (recall that {Z"}
Markov’s inequality, P[{Z"} € ;] > 3.

dist

(X", By

2
kn
Let O, := {£ :E (Z Hy(L,, Ln+1)) {Z;} = 5] < nzD}. As before, by Markov’s inequality, P[{Zl.(N)} €
n=3
Qlz1-4.

Let Q3 := {g : EX[kZI“V CVar (¢F(L,)I{Zi} = ¢, Xn)] < 7T2D}, and let
S = L

‘9*(£n’ Xn+1, Zn-1) = _";:fn—Z(Zn—Z» Zn-1) + é:F(Ln) + é:fn(xns Xn+1)-
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Then expliH, (L,,L,, D] =expliéF(L,, ) —i6"(L,, Xni1, Zn-1)].
Given X,,;1 and {Z;}, L, is conditionally independent from L, , {X;}izn+1. SO

Bz (CVar (€F (L, N1 Zi) X)) = B(CVar (6F (L, 1L, 122), (X0

é E(E(|ei§F(Ln+1)*if)*(Ln’XnH,Zn—]) _ 1|2|£n’ {Xt }’ {Zl}))’

!
where < is because 6" is conditionally constant, and by the definition CVar. Thus,
By x (CVar (6F (L, )1 Zi), Xpi1))=B(€ €7 L= — 112) = B(leifr — 12)=8, . (€7 P) = 1)=dy (£)2.
Hex

Summing over 3 < n < ky — 1 and adding the trivial bound 4 for n = 2, we obtain after shifting the index that
Ez [Bx (ZLY, CVar (6F(L,)|{Zi)}, X)) | < D. By Markov’s inequality, P({1Z{"} € Q3) 2 1 - .
Finally, let Q4 = {{ : | fu({n {ne1)] < ess suplf}, then P({Z{V)} € Qu) = 1.
2 1
U Q7| < — + 7 < 1. Necessarily Qi N Q, N Q3N Qy # @. Any { = (™) in the
x ST 5

1<i<4 4
intersection satisfies the requirements of Step 2.

In summary P

SteP 3 (CHOICE oF 0): 1 measurable functions HLN) : Gle) — [—nr, 1) such that

kN
ZE(|ei§F,(lN)(LEIN))_iG;N)(Xr(IN)) — 1Pz ™) = éV(N)) <2722D.

n=3

Remark: As most of the summands must be small, many of the Gle ) (X,gN )) could be considered as “approximate
circular means" of £F(L,,), givenZ = {, X,,.

Proof of the Step. We fix N and drop the superscripts (V).

For every random variable W, 6 — E(|e!™~?-1|?) is continuous, and therefore CVar (W)=in& E(lei" =9 —1)?).
qe
In particular, CVar (¢F,|{Z;} = {, X, = 1) = ingEQeif”én)-iq —1PHZy = ¢ Xn = 1).
S e S

For each ¢, the expectation can be expressed explicitly using integrals with respect to bridge distributions,
and its dependence on 7 is measurable. Passing to the infimum over g € Q, we find that n — CVar (¢F,|[{Z;} =
{, X, = 1) is measurable.

Fix N and ¢ = ™). We say that (7, ¢) € S’ x R has “property P,(n,¢)," if

. ) D
E(|e'¢ Earid —1121{Z,} = £, X = 1) SCVar (§Fu(L,) 1 Z0} = £ X = )+
- - n

By the previous paragraph, {n : P, (1, g) holds} is measurable, and for every 7 there exists ¢ € Q N (—m, )
such that P, (5, ¢) holds. Let 6,,(n) = 0N (57) := inf {g : ¢ € QN (=7, 7) s.t. P,(17, ¢) holds} . Again, this is a
measurable function, and since for fixed 5, P, (7, q) is a closed property of g, 6’£,N)(n) itself satisfies property
Pa(n,0")(£)). So, by choice of ¢

kN kN 2
Ex | ) E(leF &m0 X0 _12)(7,) = £,X,) | < Bx | ) CVar (an(L,,) Za) = ¢, Xn) + %D <27°D.
n=3 n=3

Step 4 (THE REDUCTION). Let { = {(N), 0, = G;N), Jn = f,(,N), F, = F,EN), X, = X,(,N), Z, = Z,(,N). Define
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SN = fuca(Gumz Gno) — € BAHMN),

) (x) = é(enm +E(EFAL,) = 0aX1Zi) = £ X = )] (x € SV,
-~ 1 ' —
=E<§(f—Va—c)>, g:=f-Va-c-f.

Then a,c,1, g are uniformly bounded, and G 414(9) C %Z

Proof of the Step. By the choice ofé(N), |c|] < ess sup |f|+m/|£], and by the definition ofHLN) and (-), |a| < 2m/|€|
~ 1
and [f| < mr/|€]. So |g| is a.s. uniformly bounded. Next, g = —(f(f —Va-c)—(&({f-Va-c))).

By the definition of (-), G (9) C Z Notice that g — f = —Va — ¢ — f. Gradients and constant functionals
are center-tight, so to complete the proof of the reduction lemma, it remains to show:

StEP 5: f is center-tight.
Proof of the Step. We fix N, drop the superscripts V), and use convention (4.8).

Zu1 Y, Y,
Let {Z;} = {gt} and P, .= |Z,» Ynn_ll ;n Xn+1) (gn 2 f/n 11 X, Xus1]-So

_F(Pn) = _fn—Z({n—% gn—l) - Fn+1(£n+1) + Fn(én) + fn(Xn: Xn+1)
=f—c—¢ 'B(H,) - VF=(f-Va-c)- ¢ 'B(H,) +V(a-F).
It follows that, conditioned on Z = £, we have the following equalities mod 27Z:
&= ¢(f— Va—c)mod 2aZ = —¢T(P,) + E(H,) + £V(F — a) mod 27Z
= —(H, -E(H,)) + EV(F —a)mod2nZ = —H + £V(F — a) mod 2#Z. 4.11)

Define a new additive functional of L by W,(,N)(QEN)) =(EF(L,)—0,(Xn))-E ((fF(Ln) -0, (X HZ:i} = ¢, Xn) .
By (4.11) and the definition of a, fTE —H + VW mod 2nZ. Since §?takes values in [—n, 1), (57) = f?, and so

Efu(Xns Xpi1) = (W(L,, ) = W(L,) = H(L,, L, ). (4.12)

CrLam. Fix N, and given 6 > 0, let Ty := 1172D/§. Then there exists a measurable set Qx of {X;} such that
P(Qx) > 1 -6, and for all§ € Qyx,

kn
(1) Y (W 3z = ¢ xin =€) <

n=3

kn .
(2) ZP(IH(L,,,L,,H)I > §|{zi} = LX) =€) <T,

3 &l Z H(Ly Ly (Z2) = £ 1X0) = €) < Ts.

Proof of the Claim. L, is conditionally independent of {X;};+, given {Z;}, X,,. So

kN kN

T T
;P(IW(L,JI > 21z =g %0 =€) = Z_;P(IW(L,,)I > 21z =g X% = &)
—22Var(<§F(L ) = 0, (X)) Zi) = —SZN) E(EF(L,) = 0n(Xn))*[{Zi) ={, Xn)
n=3
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kn
< 4ZE(|ei§F(£n)_i9n(xv1) _ 1|2|{ZL} — é’ Xn), see (45)
n=3

Integrating over {X;}, and recalling the choice of Q;N)(Xn) (Step 3), we find that
kn

Dr(we,l = gz =z 1x0)

n=3

Ex < 87°D.

kn
Hence by Markov’s inequality, the set Q) (T) := {‘i ZP(IW(LH)I > g‘{zz} =X} = ﬁ) < T} has
n=3

probability P[Q;((T)] > 1 — 87%D/T. Similarly, by Markov’s inequality

Vs _ _ 16 2 N o
21,0 = T|izi) = ¢ (xi) = &) < (82)iz0) = 1%y =€),
kn x
By the choice of ¢, Ex ZP(lHnl > ZIi7) :g,{xi}) < 16D.

n=3

kn
So the set Q2 (T) 1= {g: D B(1H Ly L)1 > 5120 = £ 101 =€) < T} has probability P2 (T)] =

n=3

1-16D/T > 1 -2x°D/T.
Finally, conditional expectations contract L>-norms, therefore

E[( » HLy L )12 = 2050 =€) |20 = ]

n=3
kn 2
< E[(Z H(Ln,gnﬂ)) |{Zl~} = é] < 7% D, see step 3.
n=3

So
Q(T) = {g E( ZH(Ln, Ln+1)|’ =4 (X) = g) < T}

n=3 -
has probability IP[Q (T)]>1-n%D/T?.
Then P[QL(T) N QL (T) N Q3 (T)] > 1 - “” D “and the claim follows.

We can now complete the proof of the Step 5 and show that f is center-tight. Fix § > 0, Qx and T as in the
claim. Fix N and define the random set

T T
AVALEY = {3 < <k s IWCL)1 2 5 or 1Ly L)l 2 5

For all £ € Qx, we have the following bound by Lemma 4.17:

B1anl > 40,|1Z0 = £ (X1 =) < 5.

1
In addition, for allf €Qx, P (|ZH | > 4T5‘ i} =X} = f) < T

The probabilities of these events add up to less than one, so the intersection of their complements is non-empty.
Thus, for every & € Qx, we can find {Yl.(N) (5)}2’ ! such that
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Ly = L&) = (M, v &), &)

has the following two properties:

kn
2 HnLs L)

n=3

. M= #{3 <n<ky: WL > g or |Hy (L5 LE, )] > g} < 475

n

< 4T, and

4 The Essential Range and Irreducibility

Let ny < -+ < npy be an enumeration of the indices n where |W(L,)| > %, or |H,(L;,L,

“4.12),if n; <n <njy —1,

=n’=n

Efn(Ensénet) = W(LE, ) = W(LY) — Ho (L, LY, ),

because (x + y + z) = x + y + z whenever |x|, |y|, |z| < %

+1)| 2 % By

niy1—1 niy1—1
So Z Efnén&nvl) = — Z H,(L,,L,.,) + 6mr, where we have used the bounds |W| < 27 and
n=n; n=n;+1

Ifﬁil < 7. Summing over i we find that for every £ € Qy,

kN
<D Ha(Ly Lyyy)

n=3

kN .
fz.fn(fm é:n+1)
n=3

Setting Cs := 421Ts/|&|, we find that

P(&: FM| > C(s) <1-P(Qx) <6

n=3

for all N, whence the (center-)tightness of .
This proves Step 5. The Lemma follows from Steps 4 and 5.

4.3.2 Joint Reduction

+ 10Mn < 4Ts + 40Tsm < 427Ts.

The gradient lemma in §3.2.1 modifies an additive functional by a gradient, to make the sums of the variances

of its first kK terms comparable to Uy .

The reduction lemma modifies an additive functional by a gradient, so that it can be split into the sum of a

2r 2w
center-tight functional, and a ?-valued functional. But the sum of the variances of the ?-valued functional

may be much larger than Uy.

2
The goal of this section is to achieve a joint reduction, so that the sum of the variances of the ?-valued

functional is of order Uy . This result will be used in Chapter 6.

Lemma 4.19 (Integer Reduction Lemma) Let X be a uniformly elliptic Markov chain, and f an integer-valued

additive functional on X such that |f| < K a.s. For every N,

— (V) (N) (N) (N) —
fn(x’y)_gn (x’y)+an+1(x)_an (y)+cn (n_Ss'--’N)

where

(1) c,(,N) are integers such that Icle)| <K,
(N)

(2) aﬁlN) are measurable integer-valued functions on S, such that |a,, ’| < 2K,
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(3) g,(, are measurable, Z-valued, and ZE[g(N)(Xn, X,H]) ] < 10°K* Z " where uy, are the structure

n=3
constants of f.

Z. 1Y,
Proof Let (Z,lz Y" 11 ; X,,H) be a random hexagon. By the definition of the structure constants,
n— n
N 2 N
Z, 1Y,
E ZE<F (Zn—Z Yn 11 ; Xn+1) Zp-, Zn—l) = Zui
n— n

n=3

n=3

Therefore, for every N there exist z, = z,(N) € S, (n =1,..., N — 2) such that

N Y, 2 N
Z ( ( n-2 Yn 11 X Xn+l) Zn—Z = n-2, Zn—l = Zn—l) < Z urzl'
n n=3

=3

We empha51ze that z,, depends on N.
Let cn = fu-2(Zn-2, 2n-1). Let a(N )(x,,) be the (smallest) most likely value of

fn—Z(Zn—29 Y)+ fn—l Y, xn),

where Y has the bridge distribution of X,,_; conditioned on X,,—» = z,-» and X, = x,. The most likely value

exists, and has probability bigger than 6k := 5;(, because f,-2(zn-2,Y) + fu-1(Y, x,) € [-2K,2K] N Z.

N N N .
Set g (tms Xni1) 3= fu (Ko Xpet) + @i () = agy) (rns) = ). Equivalently,

Zn-1
(N)(xna xn+l) =-T (Zn 2 yn { In xn+l)

n-1 Xn

for the y, which maximize the likelihood of the value fr_1(zx-1,Y) + fx (Y, xr+1), when Y has the bridge
distribution of X} given Xk 1= Zi—1> Xkl = Xka1-

Our task is to estimate Z E[g(N) (X, Xn+1)2]. Define for this purpose the functions hle) 15, XG4 2 R,
n=3

el

) 12
(Xn Xp1) =B Zn-1 Y Xn+1) Zn-2 = Zn=2 Zn-1 = Zn- ] )

I'(Z,.- -
( n-2 Yoo Xu Xn = xp X+l = Xni

The plan is to show that:
N
(a) ZE(h<N>(Xn, Xue)?) < D i,
n=3
b If h“v (X Xns1) < Ok then g5 (X, Xpe1) =
(©) By (X, Xne1)?) < (6K)?PIAS) > 6k] < 36K26;2E[h,&”)<xn, Xue)?1.

Part (a) is because of the choice of z,,. Part (c) follows from part (b), Chebyshev’s inequality, and the estimate
IIg(N) llo < 6K (as is true for the balance of every hexagon). It remains to prove part (b).

Since f is integer-valued, either the balance of a hexagon is zero, or it has absolute value > 1. This leads to
the following inequality.

P [r (Z,,_ Zn-1 Yo Xn+1)

2=Zn2Zn-1 = Zn-1 ]

2 Yo Xu n=%Xn Xn+1 = Xn+1
2
Zn-1Ya Zn-2 = Zn-2 Zn-1 = Zn-1 (N) 2
< =
<EBIT (Zn2 Yoo Xu Xt Xn =x, Xns1 = Xns1 hn (s Xe1)"
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Thus, if 2N (xp, Xns1) < Ok, then

Z, 1 Y,
P[F (Z,,_z Y_ll ¥ X,,+1) =0

Zn2=2n2 Zpn1 = Zn-1
Xn = xp Xnt1 = Xnt1

2
] > 1-0g.
At the same time, by the structure of the hexagon measure, if

~ Zy Yy 1 (Zuct Y + oy Xet) = @) (Xan)
Q= Zn-2 Y, X Xn+1] - (N) P
n-1 n fn—Z(Zn—Z, Yn—l) + fn—l (Yn—l’ Xn) =ay (Xn)

Zn—2 =2n-2 Zn—l = Zn-1 :| > 52
Xy = Xn Xn+1 = Xn+1 K

If the sum of the probabilities of two events is bigger than one, then they must intersect. It follows that there
exist y,—1, yn such that

then P [Qn

° G;N)(xn) = fn-2(zn-2, Yn-1) + fu1(Yn-1, Xn);
o« al (ne) = a1 Guot Yn) + fam Xns1)s
° l—‘(Zn—2 “n=t xn+1) =0.

n—-1 Xn

By the definition of g,(1N), g;,N) (X, Xn+1) = 0, which proves part (b). O

Corollary 4.20 (Joint Reduction) Let f be an additive functional of a uniformly elliptic Markov array X with
row lengths ky, such that |f| < K a.s. If ¢ # 0 and sup Uy < oo, then there is an additive functional g satisfying
N

kn
(4.4), and Z IIg,(,N)Ilg < LUy, with a constant L which only depends on K and &.
n=3

Caution! g,(lN ) depends on N, even if f is an additive functional of a Markov chain.

Proof Apply Lemma 4.16 to f, and then apply Lemma 4.19 to the resulting integer-valued additive functional
£9

3 O

4.3.3 The Possible Values of the Co-range

We prove Theorem 4.3 in its version for Markov arrays: The co-range of an a.s. uniformly bounded additive
functional on a uniformly elliptic Markov array X is equal to R when f is center-tight, and to {0} or tZ with
t > m/(6ess sup |f|) otherwise.

Recall that the co-range is defined by

kn
H := H(X,f) = {£ € R : sup Dy (&) < oo}, where Dy (&) = Z dN) (£)2.
N n=3

Step 1. H is a subgroup of R.

Proof of the Step. H = —H , because d,SN)(—f) = df,N) (£). H contains 0, because dﬁ,N)(O) = 0. H is closed under
addition, because if £, € H, then by Lemma 2.16,

kn kn kn
sup > dMN (& +m)? < 8|sup > M (&)? +sup )" dN ()?| < oo.
N n=3 N n=3 N n=3
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Step 2. If f is center-tight, then H = R.

(N)y2
r )

kn
Proof of the Step. By Corollary 3.9 and the center-tightness of f, sup > (4 < oo. By Lemma 2.16(c),
N k=3

k
sup 3 dM(£)2 < oo forall £ € R.
N k=3
Step 3. If f is not center-tight, then Ity > 0 such that
H N (=to,29) = {0}. (4.13)

Proof of the Step. Let K := ess sup |f|, then |[['(P)| < 6K for a.e. hexagon P.
Fix 79 > O such that | — 1]*> > 1/ forall || < 7, and let #o := 79(6K)~!. Then for all |&| < 1,
|eiT(P) — 1|2 > 1£2T(P)? for all hexagons P. Taking the expectation over P € Hex(N, n), we obtain that

1
dN (&) > 562(ule))2 forall |¢] <to,1 <n < ky,N > 1. (4.14)
vy
Now assume by way of contradiction that there is 0 # & € H N (—tp,tp), then sup ), (4, ') <
N n=3

kn
% sup >, dilN ) (€)? < co. By Corollary 3.9, f is center-tight, in contradiction to our assumption.
i N n=3

SteP 4. If f is not center-tight, then H = {0}, or H = tZ with t > m.

Proof of the Step. By Steps 2 and 3, H is a proper closed subgroup of R. So it must be equal to {0} or Z, where

t>0.Toseethatr > —— assume by contradiction that ¢ = ( ) p with0 < p < 1, and let

T
" 3esssup|f]’ 3esssup|f]
« :=min{le” — 1)*/1y)* : |y| < 27p} > 0.
Then [tT'(P)| < 6t esssup | f| = 2mp for every hexagon P € Hex (N, n), whence

AN (1) = By, (17 = 117) 2 By, (°T?) = k> V).

So Dy (&) > «kt?Uy. But this is impossible: € H so sup Dy < oo, whereas f is not center-tight so by Corollary
N
3.9, supUpy = oo. m]
N

4.3.4 Calculation of the Essential Range

We prove Theorem 4.4 in its version for Markov arrays: For every a.s. uniformly bounded additive functional f on
a uniformly elliptic Markov array X, G.ss(X,f) = {0} when H(X,f) = R; Gess (X, f) = 27”2 when H(X,f) = tZ;
and G,z (X, f) = R when H(X,f) = {0}.

Lemma 4.21 Suppose f,g are two a.s. uniformly bounded additive functionals on the same uniformly elliptic
Markov array. If f — g is center-tight, then f and g have the same co-range.

Proof By Corollary 3.9, if h = g — f is center-tight, then

kn
supZ:ule)(h)2 < oo,
N n=3
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By Lemma 2.16,
kn kn kn
sup > dV(£,9)? < 8sup > AN (€07 + 867 sup > ulN (),
N =3 N 453 N =3
So the co-range of f is a subset of the co-range of g. By symmetry they are equal. O

Proof of Theorem 4.4: As we saw in the previous section, the possibilities for the co-range are R, tZ with ¢ # 0,
and {0}.

CAasE 1: The co-range is R. By Theorem 4.3, this can only happen if f is center-tight, in which case the essential
range is {0} because we may subtract f from itself.

CASE 2: The co-range is tZ with t # 0. We show that G.55(X, ) = 27”2.

By assumption, ¢ is in the co-range, so supy ZI:;Z,% d,(lN )(1)? < oo. By the reduction lemma, f differs by a

center-tight functional from a functional with algebraic range inside ZT”Z. So
2n
Gess(X,f) C TZ.

Assume by way of contradiction that G, (X, f) # 27”2, then there exists a center-tight h such that the algebraic
range of
g:=f-h

is a subset of z’tr—[Z for some integer £ > 1. The structure constants of g must satisfy deN ) (%, g) = 0, and therefore
% is in the co-range of g. By Lemma 4.21, % is in the co-range of f, whence % € tZ. But this contradicts € > 1.

CAasE 3: The co-range is {0}. We claim that the essential range is R. Otherwise, there exists a center-tight h such
that the algebraic range of g := f — h equals 7Z with ¢ € R. But this is impossible:

(a) If r # 0, then dﬁlN)(ZT”, g) =0forall 3 <n < ky, N > 1, so the co-range of g contains 2r/¢. By Lemma
4.21, the co-range of f contains 2x/¢, in contradiction to the assumption that it is {0}.

(b) If t = 0, then the algebraic range of g is {0}, and by Lemma 4.15, the entries of g are all a.s. constant. So
f = h + g is center-tight, and by Theorem 4.3, the co-range of f is R. But this contradicts our assumptions. O

4.3.5 Existence of Irreducible Reductions

We prove Theorem 4.5, in its version for arrays: For every a.s. uniformly bounded additive functional on a
uniformly elliptic Markov array X, there exists an irreducible functional g such that f — g is center-tight and
Galg(x’ 9) = Gess(X,9) = Gess (X 1).

Proof. The essential range is a closed subgroup of R, so Gy, (X,f) = {0}, tZ or R.
(a) If Gess (X, f) = {0}, then H(X,f) = R, and f is center-tight. So take g = 0.

k
(b) If Gess (X, f) = tZwitht # 0,then H(X, ) = éZwith ¢ := 2n/t (Theorem4.4). So sup ﬁ] dle)(f, f)2 < c0.By
N n=3

the reduction lemma, there exists an additive functional g such that f — g is center-tight, and G4 (X, g) C tZ.
Clearly, two additive functionals which differ by a center-tight functional have the same essential range. So
Gess (X 1) = Gegs(X,9) C Galg (X,9) C1Z = Gess (X, 1), and Gegs (X, ) = Gegs (X, 9) = Galg (X, 9).

(©) If Gogs (X, f) = R, take g := f. O
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4.3.6 Characterization of Hereditary Additive Functionals

Proof of Theorem 4.13: Suppose f is an a.s. uniformly bounded additive functional on a uniformly elliptic
Markov array X, and consider the following conditions:

(1) fis hereditary: for all £ ¢ H(X,f), Dy (&) N—> 00;
(2) Forall &, (li}{lninfDN(f) < o0 = limsup Dy (£) < o0);

N —o0

(3) H(X,flx) = H(X,f) for every sub-array X’ of X;
(4) Gess (X, flxr) = Gegs (X, ) for every sub-array X’ of X.

D)=(2): Let Liy(¢) := liminf Dy (&), and Lg,p(€) := limsup Dy (&). Assume (1), and suppose Liyf(€) < oo.
Then Ly, (&) < oo, otherwise sup Dy (&) = oo, whence & ¢ H(X,f), whence by (1), lim Dy (£) = co. But this
contradicts Lips(€) < oo.

2)=>3): If £ H(X, ), then sup Dy (&, flx) <supDpy (&,f) < oo, and € € H(X f|x/).

Conversely, if £ € H(X',flx), then liminf Dy (&) < oo, whence by (2) limsup Dy (&) < oo. Therefore
sup Dy (€) < oo, and & € H(X, ).

(3)=(4) because the co-range determines the essential range (Theorem 4.4).

(4)=>(1): Suppose & ¢ H(X,f), and assume by contradiction that Dy (&) /4 co. Then ANy T oo such that
sup Dy, (€) < co. But this means that & € H (X', flx) for the sub-array X’ = {X,(,N”) 1 <n<ky +1,€2 1},
¢

and we found a sub-array such that H(X’, flx/) # H(X,f). By Theorem 4.4, G5 (X', flx/) # Gess (X, ). |

Proof of Theorem 4.14: Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic Markov
array X.
The first part of the theorem assumes that G.s5(X,f) = R, and asserts that (X, f) is stably hereditary iff

Gess (X', glx') = R for all sub-arrays X’, and all additive functionals g = {(1 + sN)f,(,N) }, where ey — 0.

(¢«): Taking ey = 0, and applying Theorem 4.13, we find that (X, f) is hereditary. So Dy (£) — oo for all £ # 0.
To show that the convergence is uniform on compact subsets of R \ {0}, it is sufficient to check that

gi?li 52 Dn(E) > M. (4.15)

Assume by way of contradiction that (4.15) fails for some ¢ # 0 and M > 0, then 3¢y — & such that
Dn(én)SM. Let

V§¢O,VM>O,3N§,6§ >O(

eN = %’V ~ 1 andg:={(1+en) V).
Let Dy (&,9g) denote the structure constants of (X, g), then supy Dn(&,9) = supy Dy (én) < M, whence
& € H(X,g). Thus H(X,g) # {0}, whence G.55(X,g) # R, a contradiction. (4.15) follows, and (X, f) is stably

hereditary.

(=): Suppose (X,f) is stably hereditary, then Dy (&) — oo uniformly on compact subsets of R \ {0}, so
Dy(£,9) - coforallé 0, g={(1+ey) "), and ey — 0. Thus H(X', glx) = {0}, and Gy (X', glx) = R
for all sub-arrays X" and such g. The proof of the first part of the theorem is complete.

The second part of the theorem assumes that G.s5(X, f) = tZ or {0}, and asserts that f is stably hereditary iff
it is hereditary.

It is sufficient to consider the case Gegs (X, f) = Z: If Gogs(X, ) = ¢Z with r # 0 we work with ¢~f, and if
Gess(X,f) = {0} then H(X,f) = R and the statement that Dy (£) — oo on H(X, f)¢ (uniformly on compacts or
not) holds vacuously.

By Theorem 4.5, we can write f = g — h where G (X, 9) = Gess(X, @) = Gegs (X, 1), and h is a.s. uniformly
bounded and center-tight. By Lemma 4.15, we can modify g and h by a suitable collection of uniformly bounded

constants to arrange for g to be integer-valued: P[gV )(X,(lN), Xr(l]fl) )eZ]=1foralln, N.
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Choose an integer K such that ess sup |g| < K. Then the g-balance I'(P) of every hexagon P € Hex(N, n)
satisfies
I'(P) e ZN[-6K,6K].

Let ma[ef denote the hexagon measure on Hex(N, n) and define for every v € Z N [-6K, 6K],
kN
pn () = ) mi (P € Hex(N,n) : T(P) = ).
n=3

Since |€6Y — 1|2 = 4 sin? ‘%7

6K £y
dy(Eg) =4 ), pn()sin’ .
y=—6K
This expression shows that if Dy (&,9) — oo for some &, then Dy (n,g) — oo uniformly on an open
neighborhood of this &. Thus, if (X, g) is hereditary, then (X, g) is stably hereditary. The converse statement is
trivial.
By Lemma 4.21, H(X,g) = H(X,f). In addition, (X, g) is (stably) hereditary iff (X, f) is (stably) hereditary,
because by Lemma 2.16 and Corollary 3.9,

1 1 1
Dn(£1) 2 DN (£,9) - géﬂ sup Un(h) = <Dy (£,9) - const.£?

1 1 1
Dy (£.9) = gDN(ED) - ggz sup Un(h) = DN (£, - const.&2.

Therefore the equivalence of the hereditary and stable hereditary properties of (X, g) implies the equivalence of
these properties for (X, f). O

4.4 Notes and References

In the stationary world, a center-tight cocycle is a coboundary (Schmidt [178]) and the problems discussed in
this chapter reduce to the question how small can one make the range of a cocycle by subtracting from it a
coboundary. The question appears naturally in the ergodic theory of group actions, because of its relation to the
ergodic decomposition of skew-products [1, Ch. 8],[32],[178], and its relation to the structure of locally finite
ergodic invariant measures for skew-products [7],[165],[175]. In the general setup of ergodic theory, minimal
reductions such as in Theorem 4.5 are not always possible [128], but they do sometimes exist [165],[175].

The reduction lemma was proved for sums of independent random variables in [56]. For a version of Theorem
4.9 in this case, see [148].

The relevance of (ir)reducibility to the local limit theorem appears in a different form in the papers of
Guivarc’h & Hardy [88], Aaronson & Denker [5], and Dolgopyat [56]. There “irreducibility” is expressed in
terms of a condition which rules out non-trivial solutions for certain cohomological equations. We will meet
this idea again when we discuss irreducibility in the context of homogeneous Markov chains (Theorem 8.9(3),
[88]), and in the context of Markov chains in a random environment (Proposition 9.24).

It is more difficult to uncover the irreducibility condition in the probabilistic literature on the LLT for sums of
independent random variable. Prokhorov [163] and Rozanov [169], for example, prove a LLT for independent Z-
valued random variables X assuming Lindeberg’s condition (which is automatic for bounded random variables),
>, Var(Xy) = oo, and subject to an arithmetic condition on the distributions of Xj. For an interpretation of this
condition in terms of the irreducibility conditions in this chapter, see §8.2. Other sufficient conditions such as
those appearing in [144],[148],[190] can be analyzed in a similar way.



Chapter 5
The Local Limit Theorem in the Irreducible Case

Abstract We find the asymptotic behavior of P(Sy — zy € (a, b)), assuming that (zxy — E(Sy))/VVar(Sy)
converges to a finite limit, and subject to the irreducibility condition: The algebraic range cannot be reduced by
a center-tight modification.

5.1 Main Results

5.1.1 Local Limit Theorems for Markov Chains

In the next two theorems, we assume that f is an a.s. uniformly bounded additive functional on a uniformly
elliptic Markov chain X, and we let Sy = f1(X1, X2) +--- + fn (XN, Xn+1) and Vy 1= Var(Sy).

Recall that the algebraic range G, (X, f) is the smallest closed subgroup G with constants ¢, such that
Pl fn(Xn, X11) —cn € G] = 1 for all n. We call f irreducible, if there is no center-tight h such that G4, (X, f—h)
is strictly smaller than G4 (X, ).

Theorem 5.1 (Non-Lattice Case) Suppose f is irreducible, with algebraic range R. Then Viy — co, and for

zn—E(SNn)
every (a,b) Cc R and zy, z € R such that B~ -z

6—12/2

V27TVN

Theorem 5.2 (Lattice Case) Suppose t > 0, f is irreducible with algebraic range tZ, and P[Sy € yn +tZ] = 1
forall N. Then Vy — oo, and for all zy € yn + tZ and z € R such that wEBSy) _, o forall k € Z,

P[Sn —zn € (a,D)] = [1 + o(1)]

(b—a), as N — oo. 6.1

VN
S
P[Sy —zy = kt] =[1 +0(1)] ——, as N — oo. 5.2
[Snv —zn 1=1 ()]m (5.2)

For a discussion of the necessity of the irreducibility assumption, see §6.1.3.
We can check the conditions of the theorems directly from the data of X and f, using the structure constants (2.26):

Lemma 5.3 Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic Markov chain X. Then

(1) f is irreducible with algebraic range R iff 3, d> (&) = oo for all & # 0.

(2) Fix t > 0, then { is irreducible with algebraic range tZ iff ¥, d2 (&) < oo for € € 2n/t)Z and ¥, d%(€) =
for & & 2n/t)Z.

(3) fis irreducible with algebraic range {0} iff there are constants c, such that f,(X,, Xn+1) = cn a.s. for all n.

Proof f is non-lattice and irreducible iff Ges5(X,f) = Ga1o(X,f) = R. By Theorem 4.3, this happens iff f has
co-range {0}, which proves part (1). Part (2) is similar, and part (3) is a triviality. O

5.1.2 Local Limit Theorems for Markov Arrays

Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic Markov array X with row lengths
kny + 1, and set X = (X3}, = (fN), Sy = 2 f (x (™M, xN), and Viy = Var(Sy).

i+1

73
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The LLT for Sy may fail when f|x has different essential range for different sub-arrays X’. To rule this out,
we assume hereditary behavior, see §4.2.3.

Theorem 5.1°. Suppose f is stably hereditary and irreducible, with algebraic range R. Then Viy — oo, and for
zn-E(SNn)
every (a,b) c Rand zn,z € R s.t. o m zZ
e—z2/2

V27TVN

P[Sy —znv € (a,b)] = [1 + 0(1)] (b—a), as N — oo. (5.3)

Theorem 5.2°. Suppose t > 0 and f is hereditary, irreducible, and with algebraic range tZ. Suppose P[Sy €

yN +tZ) =1 for all N. Then Vy — oo, and for all zy € yn + tZ and z € R such that % TV——> z, for
every k € Z,
e 212
P[Sy —zy = kt] =[1 +0(1)] ——, as N — 0. 54
NN V2V

Whereas in the non-lattice case we had to assume that f is stably hereditary, in the lattice case it is sufficient
to assume that f is hereditary. This is because the two assumptions are equivalent in the lattice case, see
Theorem 4.14(2).

Again, it is possible to check the assumptions of the theorems using the structure constants (2.26):

Lemma 5.3’. Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic Markov array X with
row lengths kyx + 1. Then

(1) fisstably hereditary, irreducible, and with algebraic range R iff Dy oo uniformly on compacts in R\ {0}.

(2) Fixt > 0. Then f is hereditary and irreducible with algebraic range tZ, iﬁ”sgp Dn (&) <ooforé e ZT”Z, and
Dy (&) m oo forall ¢ ¢ ZT”Z. In this case f is also stably hereditary.

Proof As in the case of Markov chains, f is non-lattice and irreducible iff its co-range equals {0}. In this case, f

kn
is stably hereditary iff Z dle )(&)? oo uniformly on compact subsets of R \ {0}. This proves part (1).
n:3 —00
Part (2) is proved similarly, with the additional observation that by Theorem 4.14, in the lattice case, every
hereditary additive functional is stably hereditary. O

5.1.3 Mixing Local Limit Theorems

Let f be an additive functional on a Markov array X with row lengths £ + 1, and state spaces G,QN ). Let Sy and
Vi be as in the previous section.

Theorem 5.4 (Mixing LLT) Suppose X is uniformly elliptic, and f is irreducible, stably hereditary, and a.s.

uniformly bounded. Let Wy C S™)  be measurable events such that P[X 151,511 € An] is bounded away from

kn+1
cN)
1

zero. Fix xy € S, and let ¢ : R — R be an arbitrary continuous function with compact support.

(1) Non-lattice Case: Suppose f has algebraic range R. Then for every zy, z € R such that %\/LNSN) -z,

—22/2 [
lim VyE —aIX™ ey, XM =y = 2 '
NE}'})Q VN [¢(SN )| kny+1 € UAn, X, xn] m - ¢(u)du

(2) Lattice Case: Suppose f has algebraic range tZ (t > 0) and P[Sy € yn + tZ] = 1 for all N. Then for every
IN €EyYN ttZand z € Rsuchthat%‘/%m -z
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Z p(tu).

U€eZ

z/2

lim \VNEL#(Sy - aIXM ey, XY = xy

To understand what this means, take ¢ € C.(R) such that [|¢ — 14 1)l < 1.

Remark. The conditioning on X fN ) can be removed, using Lemma 2.27.

In the next chapter, we will use mixing LLT for irreducible additive functionals to study ordinary LLT for
reducible additive functionals. Recall that every reducible additive functional can be put in the form f = g+Va+h,
where h has summable variance, a is uniformly bounded, and g is irreducible. Assume for simplicity that h = 0.
Then Sy (f) = Sn(9) + an+1(Xn+1) — a1(X1). To pass from the LLT for Sy (g) (which we know since g is
irreducible) to the LLT for Sy (f) (which we do not know because of the reducibility of f), we need to understand
the joint distribution of Sy (g), a1 (X1) and an+1(Xn+1). The mixing LLT helps to do that, since conditioned on
Xn+1 and X1, Sy (f) — Sy (g) is a constant.

5.2 Proofs

5.2.1 Strategy of Proof

Our aim is to find the asymptotic behavior of P[Sy — zy € (a,b)] as N — oo, and assuming that %\/%N) - Z.

We will use Fourier analysis.

(I) Fourier-Analytic Formulation of the LLT. P[Sy — zy € (a, b)] can be written in terms of the characteristic
functions @ (&) := E(e'$5V) as follows:

* In the lattice case, say when Sy and zy are integer valued, we write the indicator function 6¢(m) := 1{o)(m)

1 T
in the form &¢(m) := 7 f e™¢d¢ (m € Z). So, by Fubini’s theorem
T J-n

1 T 1 T .
P[SN—zN=k]=E[6o<SN—zN—k)]=E(§ f e‘f“N‘ZN"‘)df):E f e ¥iNeT kN (£)dg,  (5.5)

* In the non-lattice case, we put the indicator function ¢, 5 = 1(4,») in the form

1 e-iaé _ g-ib¢
bab(t) = 5- f &€ $ap(£)dE, for dgp(§) = ————— and 1 £ a, b
T J oo i&

(this follows from the identity f_o;(eipf/f)df = sgn(p)nxi for p € R\ {0}). So

1 o0 —~ 1 o —~
P[SN—zNew,b>]=E[¢a,b<sN—zN>]=E(E f elf“NfN)asa,b(f)df):E f e TN G, p(E)DN(E)E,  (5.6)

provided a, b are not atoms of Sy — zn, for any N. (Such a, b are dense in R.)

To analyze these integrals, we need to control @y (£) as N — oco. The integral (5.6) is much more difficult than
(5.5): To understand (5.5) it is sufficient to control E(e*S¥) on the compact interval [—m, 7]. But to understand
(5.6), we must control E(e'$5V) on all of R, and it is not sufficient for the error to be small in L, it needs to be
small in L'. Getting such control on all of R is not easy.

Luckily, there is a way to circumvent this difficulty. As noted by Charles Stone, instead of calculating the
asymptotic behavior of (5.6) for the specific function ¢, (1), it is sufficient to find the asymptotic behavior of
(5.6) for all L' functions ¢ whose Fourier transforms ¢ have compact supports. We defer the precise statement to
§5.2.3. At this point we just want to emphasize that thanks to Stone’s trick, (5.6) can be replaced by the integral
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1 L
7 f e N G(£)Dp (£)dé (5.7)
-L

where [-L, L] D supp(&), and we are back to the problem of estimating @y (£) uniformly on compacts.

(IT) What Does the CLT Say? In Chapter 3 we proved the CLT, and it is reasonable to ask what does this result
say on the integral (5.7).

The answer is that the CLT gives the behavior of the part of the integral (5.7) located within distance O( V];l/ 2)
from the origin: For every R, no matter how large,

R VvV,
INVN —sz -E(Sn) SN-E(SN)

— | e7i¢2N g = W L £ i RALE VW
3 [ deon @ m ¥ () on (5 ) de=o M #(=)e Be' e
—R/\/W

2

R
22
m_ 1 —igz—(£2/2) 10 @ $(0)e* _R
~N——— | #(0)e d —— (14+0(e™)). (5.8)
27‘[\/ VN ¢ f V27TVN ( )
The first marked identity uses the continuity of ¢/>\, the assumption %\/LNSN) — z, the CLT, and the bounded
convergence theorem. The second marked identity uses the well-known formula fR emi62=8%/ 2d¢ = 2me 2,
—~ ry -z2 -2 _
If ¢ is close to 14, p) in L', then ¢(0) = f¢dxz la — b|, so 4’(\?2);‘/]\]/2 ~ S V;:SNM. Therefore (5.8) gives the

asymptotic predicted by the LLT.

(III) Showing that the Peripheral Contribution is Negligible. To prove the LLT, it remains to show that the
peripheral contribution to (5.7), coming from the integral over {¢ € [-L,L] : |£] > RV l 2} is negligible,
namely, it is V&l/ 20R—e0(1). This is the crux of the matter, the central mathematical difficulty in the proof.

Since q? is bounded, the peripheral contribution is less than a constant times fRL/ M@N(g)mg +

-R/VVN
-L

(1) The Behavior Close to Zero: ®x(0) = 1, therefore |D(&)| must be large on a neighborhood of +R/+/Vy.

|Op (£)]dE. There are two things to worry about:

(2) The Behavior Away from Zero: @y (¢) could be large away from zero, due to approximate arithmetic
structures in the distribution of Sy . For example, if 1 — € of the mass of Sy is located within distance € from
acoset of (2/¢)Z, then | (£)] =1 - O(e).

We address these issues using two key estimates. The first, Proposition 5.7, says that for some positive
constants ¢y, ¢2,

DN (O] < crexp [-2Dn(§)], (5.9)

where Dy (§) are the structure constants from (2.26). The second, Corollary 5.10, says that if |©y (£)] is large at
some value &y then [Oy (.f N+ 1) drops very fast to zero as t moves away from zero. For example, in the special
case &y = 0, Cor. 5.10 says that 36, &, C > 0 such that for every N,

| (&)] < Ce ¥V (18] < 5). (5.10)

-R/NVN 5
In particular, f~ |®n(2)|dr + f |On(1)|dt = 1/20R_>00(1), which takes care of the peripheral
-6 R/NVN

behavior near zero. _
__ Corollary 5.10 also leads to the crucial estimate (5.30): 460 > O so that for each interval I of length at most
80, if An (1) = |log |®n llz(p) . then

const.
IONI1 7 € ———. (5.11)
B AN
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Note that by (5.9), Ay (1) > constsup Dy (&) — const.
&el
For uniformly elliptic Markov chains (and stably hereditary arrays), Dy (§) — oo uniformly on compacts

outside the co-range of (X, f). So for any closed interval I of length at most d¢ outside H (X, f), Ay (1) — oo, and
the right-hand-side of (5.11) is VIQ]/ 20(1) . This takes care of the behavior away from H (X, f).

We now employ the assumption that (X, f) is irreducible: In the non-lattice case H (X, f) = {0}; in the lattice
case, when the algebraic range is Z, H (X, f) = 2xZ — but the domain of integration in (5.5) is [-x, 7r]. In both
cases there can be no problematic &, except for & = 0, with which we have already dealt.

Standing Assumptions and Notation for the Remainder of the Chapter: We fix an additive functional
f={ f,(LN)} on a Markov array X = {X,(,N)} with row lengths kp + 1, state spaces 6le), and transition probabilities
ﬂr(:\:lll (x,dy).

We assume throughout that ess sup |f| < K < oo, and that X is uniformly elliptic with ellipticity constant €.

Recall that this means that 7 )+1 (x,dy) = p{™ (x, y) N (dy), where

n,n n+l
0<pM(x,y) <€ and fpﬁlN)(x, WP (3, pN (dy) > eo.

There is no loss of generality in assuming that ,u,((N )(E) = P(X,EN) € E) for k > 3, see Corollary 2.9.

5.2.2 Characteristic Function Estimates

It is convenient to use the characteristic functions of Sy conditioned on Xi:

Oy (x, &) = By (eifSN) =E (eifSN XN = x) ,
Ex (€5 Tn(Xgh )

+

Po(xN) ea™ )

kN+1 kN+l

Dy (x, £120) = B (VXY e a4, X1V = x) :=

Here x € GfN), EeR E () =E(- IXI(N) =x),and A C Gg\\]’i] are measurable.

We write these functions in terms of Nagaev’s perturbation operators: £
defined for 1 < n < ky and N € N, by

e - e,

N e F) N (£ f(N) (x (N) o (N) N
(£7v) () = f o P G e Oy () T (dy) = BT XDy (XD XN = ).
crL+l

Lemma 5.5 (Nagaev) Let 1(-) = 1, then the following identities hold:

E (eifst(X,ﬁz’ll)‘XfN) = x) = (L LY L) o), (5.12)
Oy (x, &) = (L7 L L)1) (), (5.13)

(L0 LY L 1) (o
P XN €9 ’

kN+1

O (x, £1A) =

(5.14)

Proof @SN v(X(N) IX[Y = x) = BIEEES* v(x (Y ) IX (Y, XM XY = 2]

kn+ kn+
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(N)
f M) (3, )™ g Z% Ay x V) = 3)u (dy).

Proceeding by induction, we obtain (5.12), and (5.12) implies (5.13) and (5.14). O

Let || - || denote the operator norm, i.e. ||.£ || = sup {||_[Z(N)v||<>o vleo < l}.

Lemma 5.6 IILS\Q || < 1, and there is a positive constant € which only depends on € such that for all N > 1
and5 < n < ky,
(N) (N) (N) (N) (N) —gd(N)(f)z
1L e LR e L e L e Ll < e
Proof 1t is clear that ||£(N)|| < 1. We will present the operator LN .= LLNifLLNg,sLLNz),sLLNl)fL(N) as an
integral operator, and study the kernel.
=)

Henceforth we fix N, and drop the superscripts (N). The variables x;, z; will always denote points in S; = =G,

and f ¢(z;)dz; = f @z ™ (dz;). Let

=l
m—1 m—1

PXpy o ooy X)) = l_[pi(xi,xM), Sy ooy X)) = Z Ji(xi, xi41), and

i=k i=k

L(x-4,Zn41) = ffffp(xn—4s in=3s+++s Zn+1)ei§f(x"74’znf3 """ Z"H)dZn—S ~-dzp

Then (Lv)(x,_4) = f[L(xn_4, Zn+1)V(Zn+1) |dza+1, and it follows that

ILvllo < [IVllo  sup f|L(xn—4, Zn+1)|dzn41 (5.15)
Xn-4€S,4
< ”VHOO sup ffdzn—Zderl |:|Kn(zn—27 Zn+l)| X fp(xn—4, Zn-3, Zn—Z)dZn—3 5 (516)
Xn-4€G,-4

where Ky, (2,2, Zns1) 1= ffp(zn—z, Znls Zns Zn+1)ei,ff(znfz,z,rl,zmznn)dzn_ldzn_
CLam: Let p(zp-2 = Zn+1) = ffp(zn-z, Zn—1» Zn» Zn+1)d2n-1d2,, then

€T (X2 370 37 X)) _ 12 X"—ZZY"‘Z:Z"‘Z) (5.17)

1
o 502 22 ,
|Kn(Zn-2, Zn-1)1Sp(Zn-2 = Zns1) 4p(Zn 2 = zn+1)E(le Xpe1=Ys 1=Zns1

where {Y,} is an independent copy of { X, } and T is the balance (2.25).

— K Y
Proof of the Claim. Set K,,(2,-2, Zn+1) = M
in-2 — Zn+1)

Looking at identity (2.20) for the bridge probabilities P( - | X;—2=z2,-2, X+1=2n+1), We find that

E(ei‘f ZZ:n—sz(Xk,XkH) Xn_2 = n-2 ), En(Zn—Z, Zn+l) = E(e_ig Zz:n_sz(yk,YkH) Yn_2 — 2 )
Xn+1 = Zn+ Yir1 = Znn

Kn (Zn—Z’ Zn+1 ) =

If Xn—! = Yn—! and XVH- = YI’H- . then
fg X, X —fg L Jie (e, Xy =e ( n— Y - Yn + )
1 k= 2ﬁ( ks Xk 1)e 1 k= f(l Y 1) lfl Xn-2 1 Xn+1 )

Multiplying the identities for I?n and I?n, denoting P := (Xn,—2 ;("_1’ ;(” Xn+1) and recalling that X, Y are
n-1 n

independent copies, we arrive at the following consequence:
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R o) = BT Gl o) $2 22 7502 ) g fconcercpy |3 2 22 2802
Xn+1 = Yoel = Znsi Xn+1 = Yoe1 = 2us1

=1- lE(|ei§F(P) _ 1|2‘Xn—2 =Y, 0 =2z,2
2

ia _ 1|2
Xns1 = Yos1 = Zns

), because cosa =1 — %|e
Since VI =7 <1 -5 forall0 <7 < 1, (5.17) follows.

Now that we proved the claim, we substitute (5.17) in (5.16). The result is a bound of the form
JILGn-4 zns)dznsn < 1= 11 where

I = ffdznfzdznq,] [p(ZnZ - Zn+l) fp(-xn74, in-3, an)dzn3:|

= f f P(Xn—4, Zn-3, Zn-2: Zn-1> Zn> Zn+1)42n+1d2pd2p-1d2n-2d2n-3;

1

II := Z ff dz,-2dzp41 [P(Zn—z = Zn+1) X fp(xn—4» Zn-3» Zn-2)dzp 3%

X ]E(|ei-§l"(x,,_2 if(:__ll Y Xpa1) 1|2‘Xn—2 =Yu2 =202 )]
Xn+1 = Yoe1 = 2ol

Clearly I = 1. We will now show that II > const. dﬁlN ) (&)2.
First, p(zn-2 = Zn+1) = € by (2.19), and f P(Xn-4, Zn-3, Zn—2)dzn-3 > € by uniform ellipticity. So

2
€ . L Xn-1 Xn x ) 2 X -2 = Yn—2 = 2n-2

s 5o ﬂE( e1§F(X,, 2y v Xn) _ ’ n )dz —2dz,41.
4 | | Xn+1 = Yn+1 = Zn+l n-2tentl

Recalling the definitions of the bridge probabilities, we obtain the following:

2
m> 2 f f ﬂ] €T Gna 3t S ) _ 1|2p(zn-z, Xn—1, X, Zn+1)dXn-1dXn P(Zn-2, Yn-1, Yn» Zn+1)dYn-1dyn dzy oz
4 P(Zn-2 = Zn+1) P(Zn-2 = Zn+1)

6
2.24) €

2 6
(223) € ; ( : €
= 0 f Ielfr(P) _ 1|2mll_lex (dP) S f |61§F(P) _ llzmHeX (dP), > Zod;('LN)(f)z
Hex (N,n) Hex (N,n)

4

In summary, [ |L(xn-4, Zn+)ldzar < T=1 < 1= 2e8aN(6)2 By (5.19), 1£1| < 1 - &V (&), where
t

€:= %68. Since 1 — ¢ < e™?, we are done. o

Proposition 5.7 Let € > 0 be the constant in Lemma 5.6.
(1) AC > 0 independent of N such that for all N,

|y (x, &)] < Ce™ 58PN &), (5.18)

(2) V6 > 03C(S) > 0 such that ifP[Xligll € A > 5, then

D (x, £1)] < C(B)e 3FPNE), (5.19)
kn 4
Proof Dn (&) = Zd;’v)(g)z = Y Djn, where Dj N (&) = Z d™M)(£)%. Applying Lemma 5.6 itera-
n=3 Jj=0 3<n<kn
n=j mod 5

tively, we obtain |®y (x, &)| < CeEmax(Don.---Dan) < Ce_%EDN(f), whence (5.18).

If P(X,ggil €A) > 5 then | Dy (x, £ <5 ||1:{AQ1:§’§> . L;’Ij {flmnm, see (5.14). Continuing as before,
we obtain (5.19). ‘ O
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The next result says that if uﬁlN) is big, then d (-) cannot be small at two nearby points. Recall the standing
assumption ess sup 17 Ml < K.

Lemma 5.8 35 = 6(K) > 0 such that if |6| < 6, then for all 3 < n < ky,
2
V(& +6)° 2 362 M) - 210luM N (©). (5.20)

Proof Fix a hexagon P € Hex(N, n), and let 1,, := ['(P) and d,,(¢) := |el¢"» — 1].

D2(£ +6) = e/ — 112 = 2[1 — cos((£ + 6)u,)] = 2[1 — cos(&u,) cos(Su,) + sin(£u,,) sin(51,)]
= 2[(1 — cos(&uy)) cos(ouy,) + (1 — cos(duy)) + sin(&uy,) sin(ouy,)]. (5.21)

Suppose [6] < 5 < Bk then [6u,| < 7, so cos(ou,) = 0. Make 5 even smaller to guarantee that 0 < |f| <

6KS = 11> <1-cost < 1*. Then,

2 (£ +6) > 2[(1 — cos(duy)) — | sin(&uy) sin(duy)[] > 2(36%1; — |61, |41 — cos?(£uy,))

2( 4673 = 16w, (T = cos (@) (1 + cos(@nn) ) = 2( 562 = 61, V2T - cos(Eu,) )
= 267y = 2|6u, |4 — 1] > 36%u; — 2|6u,[d,(£).

Integrating on P € Hex(N, n), and using the Cauchy-Schwarz inequality to estimate the second term, gives the
result. ]

Proposition 5.9 Ler 8 be the constant from Lemma 5.8. There are &,¢,C, M > 0, which only depend on €y and
K, such that if Vy > M, then for all ¢ and |6| < 6

DN (x. & +6)| < Cexp (~EVi o + 161\/Vw D (€) ) - (5.22)

kn
2

Proof U,,EZ (u,EN) )2 By Lemma 5.8 and the Cauchy-Schwarz inequality, D (§+5)2§62 UNn-2|6|1\/UNDn(£).
k=3

Theorem 3.6 says that there are two constants C1, C, which only depend on € and K such that C 1’1 Un-C; <

U -~
Vn < CiUpy + C,. This implies that Vy > 2C, = % < Vy £ 2C,Up. Thus there are constants g1, c; > 0,
1
which only depend on €( and K, such that for all N such that Viy > 2C,, Dy (¢ +6) > £16*Vy —c116]\/Vw Dy (€).
The proposition now follows from (5.18). O

Given a compact interval / C R, let
An (D) := —logsup{|®n (x, &)| : (x,&) € BNV x 1). (5.23)

Now choose some pair (X, EN) € SfN) x I such that Ay (I) < —log |®n (XN, EN)| < Any(I) +1In2.
So |O(Xn, En)l = Le AN D = Lsup |on () on &™) x 1. Then:

Corollary 5.10 For each & there are constants C,5,¢ > 0 which only depend on € and K, such that for every
compact interval 1 with length |I| < 6, for every measurable set W C &™) with measure p(N) W) = 9, for

kn+1 kn+1
every (x,€) € (5§N) x I, and for all N,

| (x, )] < Cexp (~E Vi (€ = En)* + 1€ — En VAN (D) )
D (x, £100)] < Cexp (-8 Viv(£ = En)* +2lE — EnINVVAN (D) ).



5.2 Proofs 81

Proof Let 5 be the constant from Lemma 5.8. Let / be an interval such that 1] < 5, and fix some (x, &) € GfN) x1.

Choose (X, E ~) as above.
1~

By (5.18), e~ ) < 2|Dp (X, En)| < const.e” 3¢ DN (&N) , therefore there is a global constant C’ such that
DN (&) < C'AN(D) +C'.

Fix M, C, & and ¢ as in Proposition 5.9. Let @ :=max({]1, M&2,2C (2¢/8)%)

Suppose first that Vi (£ — fN)2 < a.|Oy(x, &) and I(DN(x fI‘ZI)I are less thanorequal to 1, and exp(—&Vy (£ -
fN)z) > exp(—&a). Therefore the corollary holds with any &,¢, C > 0 such that C > exp(ga).

Suppose now that Vy (¢ — gN)Z > a. Since |£ — §N| <6, Vy = M, and (5.22) holds. (5.22) with §N instead

of & and with § := ¢ — £ says that |Dy (x,£)| < Cexp (—a Vi (& = &) +Clén - flm) :
e If Ay(I) > 1, then DN(E) <C'AN(I)+C" <2C’"An(I), and

D (x, )] < Cexp (=B Vi (& — En)? + V20 1y — VN AN D) ) -
o If An(I) < 1, then Dy (&y) < 2C’, and

D (x, )] < Cexp (-8 Vi (£ - En)* +EV2C'|EN - £WV)
. _
< Cexp (—EVN@ BT 20W>, V@ - 07 2 Va

< Cexp (—%EVN(f - 'g"N)Z), > 2C'(26/8)2.

Thus the corollary holds with 2.9 g replacing &, ¢ := ¢y2Cy, and C := Ce®®. The second estimate has a similar
proof. O

5.2.3 The LLT via Weak Convergence of Measures

In this section we give the mathematical background needed to justify Stone’s trick from §5.2.1. Let C.(R)
denote the space of real-valued continuous functions on R, with compact support. Such functions are bounded
and uniformly continuous, and they can all be approximated uniformly by piecewise constant functions. It follows
that if the LLT asymptotic expansion (5.1) holds for all intervals (a, b), then

\27VNE[6(Sy — zn)] — e /2 f #(1)dt for all ¢ € C.(R). (5.24)
un (¢) —_—
pz (d)

Conversely, (5.24) implies (5.1): To see this, apply (5.24) with ¢, ,, € C.(R) such that ¢,, < 1{4,p) < ¥, and
S 16n(0) = g (0)ldt — 0.

A Radon measure on R is a positive Borel measure on R, which may be infinite, but which assigns finite
mass to every compact set. By the Riesz representation theorem, uy (¢) = f ¢dun and p, (@) = f ¢du,, for
some Radon measures pp, (.

Let mp and m be Radon measures on R. We say that m,, converges to m weakly (or vaguely) , if f ¢dmy —

f ¢dm for all ¢ € C.(R). In this case we write my Y m.

—00

Since the non-lattice LLT (5.1) is equivalent to (5.24), it can be restated as saying that uy BN MUz, wWith up
and u, as above. The other LLT have similar reformulations. For example, the lattice mixing LLT is equivalent

-22/2
0 uy = piz, where piy (6) = VWNELB(SN = 2n)IX(N )y € U, XM = xyv) and g o= S5t Byer G
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Weak convergence is defined using test functions in C.(R), but we claim that it can also be checked using test
functions in K := {qﬁ R—-C: f |¢(u)|du < oo, 56 C:(R) } , (&5\ := Fourier transform of ¢) (even though
C:.(R)NnK = {0}). We note for future reference that by the Fourier inversion formula, every ¢ € K is uniformly
bounded and continuous.

Lemma 5.11 (Breiman) Let my and m be Radon measures on R. Suppose 3 strictly positive ¢og € K such that
[ podm < 0. If forall ¢ € K, [, ¢pdmy - . #dm, then [ ydmy — [, wdm for all y € Ce(R).

Proof Let ¢g be as in the statement, and suppose f ¢dmy — f ¢dm for all ¢ € K.
If fR ¢odm = 0, then m = 0, and fR ¢odmpy — 0. Since ¢ is positive and continuous, for every ¢ € C.(R)
there exists € > 0 such that || < ¢ on R. It follows that fR ydmpy — 0 forall y € C.(R).
Suppose now that fR ¢odm > 0. Then fR ¢odmpy — fR ¢odm, and fR ¢odmpy > 0 for all N large enough.
podmy $odm

[ ¢odmy [ podm’
Vi € R, ¢ (1) := ™o (u) belongs to K, because ¢; (&) = ¢o(& —1). So f e 1 (du) — f e pu(du).
R — R

Equivalently, the characteristic functions of the random variables Wy with distribution P[Wy < a]
un ((—o0, a)) converge to the characteristic function of the random variable W with distribution P[W < a] :

For such N, we construct the following probability measures: duy :=

H((=o0, a)). By Lévy’s continuity theorem, Wy —di—s—t—> W. It follows that fR Gw)un(du) — fR G (u)u(du) for
n—oo
every bounded continuous function on R.
Looking at the special case G(u) = ¥ (u)/po(u) with y € C.(R), we obtain fz//dmN - fwdm for all
¥ € C:(R). O

To apply the lemma to the proof of the LLT, we will need to find a strictly positive ¢ € K so that f ¢odm is
finite for the measure m which represents the limit. This is the purpose of the next Lemma. Parts (1) and (2) are
needed for the LLT in this chapter, and part (3) will be used in the next chapter.

Lemma 5.12 There exists a strictly positive ¢g € K so that f ¢odm; < oo, fori € {1,2,3}, where

(1) my is Lebesgue’s measure on R; (2) my is the counting measure on tZ;

(3) m3 is the measure representing the functional m(¢) = Y x ez E[¢(kd +F)] on C.(R), where § is a positive
constant, and § is bounded random variable.

Proof Lety,(x) := (%)2, extended continuously to zero by ¥, (0) := 1. This function is non-negative and
absolutely integrable. To see that @a has compact support, we argue as follows: The Fourier transform of 1[_4, 4]
is proportional to sin ax/ax. Therefore the Fourier transform of 1{_, 4] * 1[-4,4] is proportional to y,. Applying
the inverse Fourier transform to ¢, we find that !2/\‘1 is proportional to 1[4 4] * 1[-4,4], @ function supported on
[-2a,2a]. Thus ¢, € K. But ¢, has zeroes at 7k/a, k € Z \ {0}. To get a strictly positive element of K, we
take ¢o = 1 + ¥j5. Since ¢go(x) = O(|x|72) as |x| — oo, [ ¢odm; < oo. o

5.2.4 The LLT in the Irreducible Non-Lattice Case

We give the proof for arrays (Theorem 5.1°). Theorem 5.1 on chains follows, because every additive functional
on a Markov chain is stably hereditary (Theorem 4.9).
We begin by proving that Vi I—V——> oo, Otherwise liminf Viy < oo, and AN, T oo such that Var(Sy,) = O(1).

Let X’ denote the sub-array with rows X’ = X(N¢)_ By Theorem 3.8, f|y is center-tight, whence Gegs (X', flx/) =
{0}. But Gess (X, ) = Gaig(X,f) = R, because f is irreducible and non-lattice. So Gess (X', flx) # Gess (X, 1), in
contradiction to the assumption that (X, f) is stably hereditary, see Theorem 4.13.

Next we fix zy € R such that =258, 7 and show that for every non-empty interval (a, b), for every

VN
choice of xiN) € SfN) (N = 1),
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-z2/2

V27TVN

By Lemma 5.11, we can prove (5.25) by showing that for every ¢ € L'(R) whose Fourier transform 5(5) =
fR e % ¢(u)du has compact support,

P ISy —zn € (a,b)] ~ (b—a), as N — oo. (5.25)
1

-z2/2 co
Jim VNE o0 [(Sw - 2n)] = = = f _pudu (5.26)

Fix ¢ € L' such that supp(a) C [-L,L]. By the Fourier inversion formula, Ex(N’ (@(Sn — zn)) =
1

1 (Es .
o f (DN (2N, £)e74N dg. So (5.26) is equivalent to
TJ-L

) 1 L . (N) —ifZN B 6_22/2 Y
Jim V- f , PO, HETENAE = e (0. (5:27)

Below, we give a proof of (5.27).1
Divide [-L, L] into segments /; so that Iy is centered at zero, and all segments have length less than or equal

~ ~ 1 - )
to 6, where ¢ is given by Lemma 5.8. Let J; v := " f ¢(§)(I)N(xEN), £e e ge,
T I

CLam 1:

1 2n ~
VVnJony —— ——e 2 24(0). (5.28)
NJon ——— NGr ¢

Proof of the Claim. Fix R > 0. Since Iy 3 0, Ay (lp) = 0. By Corollary 5.10, |[On (x, &)| < aexp(—g VN§2) on

-~ N - .
[-6,3]. So given & > 0, there is R > 0 such that |— f ¢(§)<I)N(x§N), §)e_1’52”d§‘ <e.
21 Jigen1g1>RINVR)

. . 3 VVN ~ (N) 2\ amiézn g L (A S is ShEN
Changing variables & = s/vVVy, we get ({)(f)(DN(xl ,§)e dé=— | ¢| —|E.v|e N |ds.
T 2w VW) S

2
[I€I<R/NVVN] [IsI<R]
By Dobrushin’s CLT for arrays (Theorem 3.10), SIJ%N converges in distribution w.r.t. P ) to the normal
1

—isz—s2/2

SN-ZN
15
distribution with mean —z and variance 1. This implies that E_ ) (e VN ) — e uniformly on
1

N—co

compacts. Since 5 is bounded and continuous at zero,
VV, ~ : p(0) (R _
e f FEON N, e ag = 2D f %™ 2ds + oy (1),
-R
|€I<R/NVN

Since this is true for all R, and fR e7152e5°/2ds = V2re 2"/2, we have (5.28).
CLam 2: VW J; N o Oforj +0.

Proof of the Claim. Since 5 is bounded, it is sufficient to show that

\/Wfl 10N, £)ld¢ — 0. (5.29)

! We note for future reference that this proof works for all ¢ such that & is bounded, continuous at zero, and has compact support,
including ¢ (u) = % (whose Fourier transform is proportional to 1{_ 1), which does not belong to L.
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Recall that Ay (I;) = —log sup |®N ()| on S ”(N) x I;, and (X N, EJ-,N) are points where this supremum is
achieved up to factor 2. Set A n := An([}).

~ A;
Take large R and split /; into two regions, I} , := {f €l |E-& NI < R\/‘;—’:}, L'y = [\ 1} . Split

f,j ICD(ng ),f)ldf into two integrals ij’ N j,,N accordingly.

« Onlly, |on (2N, £)] < e 4N and 117yl < 2R‘/A‘ﬁ—’NN, s0 Vi I/ v < 2R\JAj ne V.
On/ J’ ' ,» we have the following estimate, by Corollary 5.10, provided that Re > 2c.

AN ~ g -
o (2™, §)I<CeXp(—8VNI§ &R\ +7le = & vNA,»,N)SCexp(—§|§—§,-,N| Aj,NvN).
1
Hence \/Vn ;N <A WnC f SlslVAjN VN ds=0 ( PN ) Combining these estimates, we obtain that

VNN (N, i) < 2R\JAj N €N +0 (A;ﬁf) =0 (A;%z). (5.30)

We now employ the assumptions of the theorem: Firstly, f is irreducible with algebraic range R, there-
fore the co-range of f is {0} (Theorem 4.4). Secondly, f is stably hereditary, therefore Dy (&) N—>

oo uniformly on compacts in R \ {0}. By (5.18), ®n (xiN), £¢) — 0 uniformly on compacts in R \ {0}, whence
Aj N — o0 as N — oo for each j # 0. Thus (5.30) implies (5.29), and Claim 2.

Remark. Notice that (5.30) does not require the irreducibility assumption or the hereditary assumption. It holds
for all uniformly elliptic arrays.

Claims 1 and 2 imply (5.27), and (5.27) implies (5.25) by Lemma 5.11. This proves the LLT for initial
distributions concentrated at single points.

To deduce the theorem for arbitrary initial distributions, we can either appeal to Lemma 2.27, or prove the

following claim and then integrate:

Cram 3: (5.25) holds uniformly with respect to the choice of {x (N) }.

Proof of the Claim. Otherwise, there exist € > 0 and Ny — oo with y(Nk) such that wak)[SNk -zIn, €
1
(a,b)] /ej/&‘) ¢ [e74, e?]. But this contradicts (5.25) for a sequence {xEN)} such that xEN") = y;N"). O

5.2.5 The LLT in the Irreducible Lattice Case

We give the proof in the context of arrays (Theorem 5.2”). Suppose X is a uniformly elliptic array, and f is an
additive functional on X which is a.s. uniformly bounded, hereditary, irreducible, and with algebraic range Z
with # > 0. Without loss of generality, # = 1, otherwise work with #~!f. By Lemma 4.15, there are constants c(N)

such that an )(X,SN ), X’(l]fl)) (N ) € Z a.s. We may assume without loss of generality that c(N ) = 0, otherwise
we work withf —c. So Sy € Z a s. forevery N > 1.

We will show that for every sequence of integers zn such that ) e (5,(,N ),

w — z, and for every xEN

—22/2
P Sy =2 1+o0(1 , as N — oo, 5.31
x{m( N=2zn) = ( )]\/m (5.31)
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As in the non-lattice case, once we prove (5.31) for all choices of {x(lN) }, it automatically follows that (5.31)
holds uniformly in {xEN) }. Integrating over GfN) gives (5.4) with k = 0. For general k, take z}, := zy + k.

The assumptions on f imply that Vi o o0 see the proof of Theorem 5.1°.

As we explained in §5.2.1, to prove (5.31) it is sufficient to show that

1 4 . 1 2
; (N) —igz — -z°/2
dim VW - ﬂf_n Dy (x|, £)eT €N dg = Ee /2, (5.32)
Notice that (5.32) is (5.27) in the case ¢(u) = %, a(f ) = const.1{_z 1(£). It can be proved in almost exactly
the same way. _
Here is a sketch of the proof. One divides [—, ] into segments I; of length less than the ¢ of Lemma 5.8, so
that one of the intervals contains zero in its interior.

The contribution of the interval which contains zero is asymptotic to —=.

V27Vn

2 .. . .
e~% /2. This is shown as in Claim

1 of the preceding proof.
The remaining intervals are bounded away from 2xZ. Since f is irreducible with algebraic range Z, H(X, f) =
2nZ. Lattice hereditary f are stably hereditary, therefore Dy (§)N——> 0 uniformly on compacts in R \ 27Z.

Arguing as in the proof of Claim 2 of the preceding proof, one shows that the contribution of the intervals which
do not contain zero is o(1/4/Vy). |

5.2.6 Mixing LLT

The proof is very similar to the proof of the previous local limit theorems, except that it uses ®@(x, £|2) instead
of ®(x, £). We outline the proof in the non-lattice case, and leave the lattice case to the reader.

Suppose X is a uniformly elliptic Markov array, and that f is a.s. uniformly bounded, stably hereditary,
irreducible and with algebraic range R. Let Ay € 612511 be measurable sets such that P(X Ig\\/] )+1 eUAy) > 6 >0,

and fix xy € Sl(N). Suppose %\ﬁf“) — z. As before, Viy — oo, and as explained in §5.2.3, it is enough to
show that for every ¢ € L' (R) such that supp(a) c[-L,L],
1 L_ » e e 2
Jim V-5 f | POON (. Ry dE = ——(0).

Divide [-L, L] as before into intervals /; of length < 5, where 6 is given by Lemma 5.8 and where Iy is
1 —~ .
centered at zero. Let J; y := o f P(E)DN(xN, _fI‘JIN)e_‘fZN dé.
T I
Cram 1: VVnJoN N—> (Zﬂ)_%e‘zz/za(O).
Proof of the Claim: Fix R > 0. As before, applying Corollary 5.10 with Ay = 0 we conclude that for each € > 0
s [ BE)DN (o, £y )65 dg
{

£elp:|€|1>R/NVN)
Next the change of variables & = s/4/Vyy gives

there is R > 0 such that <e.

R iSSN_ZN
P(E)D(xn, ENUAn)e N dE = f ¢( o )EXN (e Vv
-R

VNf X(N) G%N)ds
{£elp:|€1<R/NVN )

1IVN kN+l
! fR(E( al )E ( B (x™ ))d (5.33)
= — € A S. .
P(ngll eAy) Jr \VW/) R

We analyze the expectation in the integrand. Take 1<rpn < kp such that ry — oo and r5/vVy — 0, and let
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kN*erl kN
T (N) (3 (N) y(N)y (N) (3 (N) 3 (N)
Sy = Z fi X X0 = Sh - Z Fi & X0
j=1 J=kn-rN

Since ess sup [f| < oo, [|Sy = Sy llo = 0(VVn), and so

S;\]—ZN

N

is SN_zn is SN is S—
EXN(e VW 1QIN(XIEN>+1)):EXN(e Vv 1Q[N(x,§JNV>+1)>+o(1):EXN(e VN E(lQ[N(X,i’,jll)|xl<N>,,,.,X,ﬁiver))+o(1)

. SNEIN

_E,, (els VN E(lgIN (X<N) )|XIEN—)rN )) + o(1) by the Markov property.

kN+l

By (2.11),

[Elay XN D1XNY )P € Ay)||_<const.o"™, where 0 < 6 < 1. Since ry — oo, we get

kn+1

js SN_EN ) isis*NizN V)
Exy e VYV lay (X 00 =By (e VYV |P(X 0 € An) +o(1).

Sy —IN _ Sy -—zN

Since ry = o(VVn), o(1)
N VVn N
By Dobrushin’s CLT (applied to the array with the transition probabilities of X, and the initial distributions

_ SN —E(Sn)

—z+o(1).

N

is SnEn js SN_EN . 2
ﬂ'(N)::(st )’ we get ]ExN € VN ~ ]ExN (e VN ) — e /2. So

N—co

N kn+1

. SyTEN
Exy (e VN 1y, (X,iNll)) = e 55 2p(xN) 2 91) + o(1). Substituting this in (5.33) gives the claim.

CLam 2: VW J; N oo Oforj +# 0.

This is similar to Claim 2 in §5.2.4. Instead of (5.18), use (5.19). m|

5.3 Notes and References

For the history of the local limit theorem, see the end of Chapter 1.

The first statement of the LLT in terms of weak convergence of Radon measures is due to Shepp [183]. Stone’s
trick (the reduction to test functions with Fourier transforms with compact support) appears in [191]. This method
was further developed and clarified by Breiman. Lemma 5.11 and its proof, are taken from Breiman’s book [17,
Chapter 10, §2].

The method of perturbation operators is due to Nagaev [149], who used it to prove central and local limit
theorems for homogeneous Markov chains (see §8.4). Guivarc’h & Hardy used this method to prove LLT for
Birkhoff sums generated by dynamical systems [88]. See also [168] where Rousseau-Egele used similar ideas
in the study of interval maps. Hafouta & Kifer [93], Hafouta [89, 90], and Dragicevi¢, Froyland, & Gonzailez-
Tokman [64], used this technique to prove the local limit theorem in different but related non-homogeneous
settings.

The terminology “mixing LLT" is due to Rényi [166]. Mixing LLT have numerous applications including
mixing of special flows [88], homogenization [60], and the study of skew-products [58, 57]. Mixing LLT
for additive functionals of (stationary) Gibbs-Markov processes in the Gaussian and in the stable domains of
attraction were proved by Aaronson & Denker [5]. Guivarc’h & Hardy noted the relevance of Mixing LLT to
the study of reducible additive functionals, in the homogeneous case [88]. In the next chapter, we will use the
mixing LLT to study the inhomogeneous reducible case.



Chapter 6
The Local Limit Theorem in the Reducible Case

zN—E(SN)
VVar(Sn)
and f is reducible. In the reducible case, the asymptotic behavior of P(Sy — zy € (a, b)) is not universal, and it

depends on f,, (X, Xn+1). The dependence is strong for small intervals, and weak for large intervals.

Abstract We prove the local limit theorem for P(Sy — zy € (a, b)) when converges to a finite limit

6.1 Main Results
6.1.1 Heuristics and Warm Up Examples

Recall that an additive functional is called reducible if f = g+ c where c is center-tight, and the algebraic range of
g is strictly smaller than the algebraic range of f. By the results of Chapter 4, if Var(Sy (f)) — oo, X is uniformly
elliptic, and f is a.s. bounded, then we can choose g to be irreducible. In this case, Sy (f) = Sn(g) + Sy (c), where
Var(Sy(g)) ~ Var(Sy (f)) — oo, Var(Sy(c)) = O(1), and Sy (g) satisfies the lattice local limit theorem. But
the contribution of S, (c) cannot be neglected. In this chapter we give the corrections to the LLT needed to take
S, (c) into account. Before stating our results in general, we discuss two simple examples which demonstrate
some of the possible effects of Sy (c).

Example 6.1 (Simple Random Walk with Continuous First Step) Suppose {X} },,>1 are independent real-
valued random variables, where X has some distribution &, and X; (i>2) are equal to 0, 1 with equal probabilities.
Suppose 0 < F < 1, E[F] = %, the distribution of §§ has a density, and  is not uniformly distributed on [0, 1].
Let ux(dx) denote the probability measure on R associated with the distribution of &.
Let Sy := X1 + -+ + Xy, then Sy = Sy (f), where f,(x,y) := x. Since the distribution of ¥ has a density,
(X, f) has algebraic range R. The following decomposition shows that (X, f) is reducible:

x n=1

0 n=1
f=g+c, where g,(x,y) := and ¢, (x,y) :=
9 gn(x.y) {x n>?2 (x.7) {0 n>2.

Clearly, g is irreducible with essential range Z, and c is center-tight. Sy (g), Sy (c) are independent; Sy (c) ~ &;
S~ (g) has the binomial distribution B(%, N —1); and
SNn=X+---+Xn)+ Xi .
R S— ——
S~ (@) Sn(©)
So Sy has distribution pg * B(%, N —1). This distribution has a density, which we denote by py (x)dx.

(A) The Scaling Limit of p 5 (x)dx is not Haar’s Measure: Fix zn:=E(Sy)=N/2 and let Vjy:=Var(Sy)~N /4.
The measure mpy := py(x)dx determines a positive functional on C, (R), and for every ¢ € C.(R) and N even,

f ¢(x —zn)pn (0)dx = E[¢(Sy — zn)] = E[¢(Sn(9) + Sn(C) —zn)] = Z E[¢(F +m —zn)IP[Sn(9) = m]

mezZ
S IN-1\ 1 1Nl v N
= Z;) ( m )_ZN‘_I El¢(F +m —zn)] = SN Z;) ( m )W(m - %), where y(m) := E[¢(F + m)]

1 Y& Nv-d 1 1
iy m;\//z (m+N/2)w(m) ~ \/mmzezlﬁ(m),~ mn;ZE[qﬁ(i‘} +m)], as N — oo.

87
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This also holds for N odd. Thus the distribution of Sy — z converges weakly to zero, “at a rate of 1/+/Vy," and
if we inflate it by vV then it converges weakly to

A= ug * (the counting measure on Z).

2
By the assumptions on g, the scaling limit A is not a Haar measure on a closed subgroup of R. This is different
from the irreducible case, when the scaling limit is a Haar measure on G5 (X, f).
(B) Non-Standard Limit for \/ZﬂVNP[SN —E(Sn) € (a,b)]: Fix a,b € R\ Z such that |a — b| > 1. Let
zn = E(Sn). The previous calculation with ¢; € C.(R) such that ¢1 < 1(4p) < ¢ gives

V2 VNPISN — zn € (a,D)] oo Z E[1(q,p)(m + F)]. 6.1)

mez

This is different from the limit in the irreducible non-lattice LLT (Theorem 5.1),
\2nVNP[SNy — zn € (a, b)] N—> la — bl; (6.2)
and the limit in the irreducible lattice LLT with range Z (Theorem 5.2):

V2rVNBISy — 2 € (a.0)] —— D Lapy (m). (6.3)

mez,

(C) Robustness for Large Intervals: Although different, the limits in (6.1)—(6.3) are nearly the same, as
|a — b| — oo. This is because all three limits belong to [|a — b| — 2, |a — b| + 2].

Example 6.1 is very special in that S,,(g), Sy (c) are independent. Nevertheless, we will see below that (A),
(B), (C) are general phenomena, which also happen when Sy (g), Sy (h) are strongly correlated.
The following example exhibits another common pathology:

Example 6.2 (Gradient Perturbation of the Lazy Random Walk) Suppose X,,, ¥, are independent random
variables such that X,, = —1,0,+1 with equal probabilities, and Y,, are uniformly distributed in [0, 1/2]. Let
X= {(an Yn)}nzl-

* The additive functional g, ((xp, ¥); (Xn+1, Yn+1)) = X, generates the lazy random walk on Z,
Sn(g) = X; + -+ Xy. Itis irreducible, and satisfies the lattice LLT.

* The additive functional ¢, ((x,, Y1), (Xn+1> Yn+1)) = Yn+1 — Yn is center-tight, and Sy (c) = Yy 41 — 1.

e The sum f = g + c is reducible, with algebraic range R (because of ¢) and essential range Z (because of g). It
generates the process

Sn(H) =Sn(Q) + Yni1 — 1.

Observe that Sy () lies in a “random coset" by + Z, where by = Yy.1 — 1].
Since the distribution of by is continuous, P[Sy — zy = k] = 0 for all zn, k € Z, and the standard lattice
LLT fails. To deal with this, we must “shift" Sy — zn back to Z. This leads to the following (correct) statement:

-z2/2
ZN — — = ~ i
For all z € R and zy € Z such that we % forall k € Z, P[Sy — 2y — by = k] 27rVN' Notice that the

shift by = Yyi1 — Y is random.

6.1.2 The LLT in the Reducible Case

Theorem 6.3 Let X = {X,,} be a uniformly elliptic Markov chain, and let f be a reducible a.s. uniformly bounded
additive functional with essential range 6(f)Z, where 6(f) # 0. Then there are bounded random variables
by = by (X1, Xn+1) and § = F(X1, Xo, . . .) with the following properties:
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(1) For every z € R and zn € 6(f)Z such that % — z, for every ¢ € C.(R),

(e
_— E o(f .
Nor mZZ [¢(ms(H) +F)]

(2) In addition, for every sequence of measurable sets Wy 1CSn+1 such that P[X n+1€Un+1] is bounded below,

lim \VNE [¢(Sy —zv — bN)] =

-z2/2
Alfil)noo VNE [¢(Sn — zv = bN)IX1 = x, X1 € Any1] = % W;Z]E[fﬁ(mé(f) + X1 = x].

(3) 1wl < 96(F), and § € [0, 6(F)).
Remark. We can remove the dependence of by and & on X, and the conditioning on X; = x in (2), using
Lemma 2.27.

Theorem 6.3 may seem abstruse at first reading, and it is worthwhile to explain it in more detail.
e E [¢(Sy — zy — bn)], as an element of C. (R)*, represents the Radon measure

my(E) =PISy — 2y — by (X1, Xn+1) € E]  (E € B(R)).

This is the distribution of Sy, after a shift by zy+bn (X1, Xny+1). The deterministic shift by zx cancels most of
the drift E(Sp); The random shift b brings Sy back to 6(f)Z. To understand why we need by, see Example 6.2.

e The limit

A) =46 Z E[¢(mé(f) + )], (6.4)

mezZ
is also an element of C.(R)*. It represents the Radon measure p1 4 := ug * ms), where ug(E) = P(¥ € E) and
mgr) = 0(f) X counting measure on 6 (f)Z.
e Theorem 6.3(1) says that my — 0 weakly at rate 1/4/Vyy, and gives the scaling limit vVympy TVW——>

2,

ezzﬁ U In particular, for all @ < b such that § has no atoms in {a, b} + 6(f)Z, and for all z € R and z5 € §(f)Z
-Z2/2
zN—E(SN) _ — =
such that BT L we have P[Sy — zy — by € (a,b)] =[1 + 0(1)]mﬂﬂ((a, b)).

e On one hand, ug(a,b) ~ |la — b| as |a — b| — oo (Lemma 6.10). But for small (a,b) c [0,d(f)),
tala,b) =P[F € (a, b) mod §(f)Z], which could be quite different from |a — b|.

In summary, Theorem 6.3(1) gives the necessary “correction” to the classical LLT (5.1) in the reducible
case. This correction is significant for intervals with length < §(f), and becomes less and less significant, as
la = bl/6(f) — co.

Theorem 6.3(2) is a “mixing" version of part (1), in the sense of §5.1.3. Such results are particularly useful
in the reducible setup for the following reason. The random shift by (X, Xn+1) is sometimes a nuisance, and it
is tempting to turn it into a deterministic quantity by conditioning on X1, X 1. We would have liked to say that
part (1) survives such conditioning, but we cannot. The best we can say in general is that part (1) remains valid
under conditioning of the form X; = x1, Xy11 € Un41 provided P(Xn41 € An+1) is bounded below. This the
content of part (2). For an example how to use such a statement, see §6.2.3.

The LLT in this section is only stated for Markov chains. The reason is that to construct ¥, we need the joint
distribution of (Xi, X», . . .), which is not defined for Markov arrays. For (weaker) results for arrays, see §6.2.5.

6.1.3 Irreducibility as a Necessary Condition for the Mixing LLT

We can use Theorem 6.3 to clarify the necessity of the irreducibility condition for the “classical" LLT expansions
in Theorems 5.1 and 5.4. We begin with an example showing that strictly speaking, irreducibility is not necessary:
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Example 6.4 Take Sy = X| + Xz + X3+ - - + Xy where X; are independent, X| = 0, X is uniformly distributed
on [0, 1], and X3, X4, ... = 0, 1 with equal probabilities.

Conditioned on X| and X, Sy is the sum of a constant plus two independent random variables, one, U, is
uniformly distributed on [0, 1], and the other, By, has the binomial distribution B(%, N —2). It is not difficult
to see, using the De-Moivre-Laplace LLT for the binomial distribution, that for every z, zN € R such that

e~2 22 e 2 /2
S 7 Y9 € Co®), Blo(Sy ~EGSVIX, Xnl ~ s ZE}ZEw(m +U)) = f $(u)du.

So the “classical" non-lattice mixing LLT (Theorem 5.4) holds, even though our addmve functional is
reducible, with algebraic range R and essential range Z.

Of course, the identity marked by (!) is a “coincidence," due to the particular choice of X». If we change X,
it need not be valid anymore.

The next result says that irreducibility is a necessary condition for the mixing LLT, provided we impose the
mixing LLT not just for (X, f), but also for all (X’, ") obtained from (X, f) by deleting finitely many terms.

Let f be an additive functional on a Markov chain X. Denote the state spaces of X by S,,, and write X = {X},},,>1,
f={fuln>1. A sequence of events A C Sy is called regular if A are measurable, and P(X,, € U,,) is bounded
away from zero.

e We say that (X, f) satisfies the mixing non-lattice LLT if Vy := Var(Sy) — oo, and for every regular

sequence of events A, € #(S,,), x € Sy, for all z, z € R such that % — z, and for each non-empty
N

-z2/2

interval (a, b), PX(SN —zny € (a,b)|Xn+1 € ‘EINH) =[1+o0(1)] © la — bl as N — co.

‘\/27TVN

e Fix r > 0. We say that (X,f) satisfies the mixing mod ¢ LLT, if for every regular sequence of events
A, € B(S,), x € Sy, and for every non-empty interval (a, b) with length less than ¢,

la — bl

Px(SN S ((,l, b) + [Z|XN+1 S QIN+1) m -

6.5
Theorem 6.5 Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic Markov chain. Given
m, let X, T) 1= X nsms {fnlnsm). The following are equivalent:

(1) f is irreducible with algebraic range R; (2) (X, ) satisfy the mixing non-lattice LLT for all m;

(3) X, 100) satisfy the mixing mod t LLT for all m and t.

6.1.4 Universal Bounds for Prob[Sy — zxy € (a, b)]

So far, we have considered the problem of finding P[Sy — zxy € (a, b)] up to asymptotic equivalence, and
subject to assumptions on the algebraic and essential range. We now consider the problem of estimating these
probabilities up to a bounded multiplicative error, but only assuming that Vy — oo.

We already saw that the predictions of the LLT for large intervals (a, b) are nearly the same in all non
center-tight cases, reducible or irreducible, lattice or non-lattice. Therefore it is reasonable to expect universal
lower and upper bounds, for all sufficiently large intervals, and without further assumptions on the arithmetic
structure of the range. The question is how large is “sufficiently large."

Define the graininess constant of (X, f) to be

t Gess (X, f) = IZ, t>0
6(f) =140 Gess (X, f) =R (66)
o Gess(x’ f) = {0}

By Corollary 4.6, if (X, f) is uniformly elliptic and Vjy — oo, then 6(f) < 6ess sup [f|.
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We certainly cannot expect universal lower and upper bounds for intervals with length smaller than §(f),
because such intervals may fall in the gaps of the support of Sy — zn. However, universal bounds do apply as
soon as |a — b| > 6(f):

Theorem 6.6 Suppose f is an a.s. uniformly bounded additive functional on a uniformly elliptic Markov chain
zn—E(SNn)

X. Then for every interval (a, b) of length L > §(f), for all € > 0 and zp, z € R such that B~ for all
N large enough,
e 2 /2|q — b ( 215(f) )
P(Sy —znv € (a, b)) < 1+ +el, 6.7
Oy av e la bl < — L 6.7)
2
e % /2|a - b ( 5(f) )
P(Sy —zny € (@, b)) > ——————— |1 - —= — €. 6.8
(Sv —zn € (a,D)) e 7 (6.8)
In addition, if 0 < 6(f) < ccand k6(f) £ L £ (k+1)6(f), k €N, then
6_22/2 e—z2/2
—— |ko(f) SP(Sy —2n € (a. D)) < (k + 1)5(f). (6.9)
T f N —ZN W f
Here Ay < By means that limsup(Ay /By) < 1.
N —o0

Notice that the theorem makes no assumptions on the irreducibility of f, although it does become vacuous in
the center-tight case, when §(f) = co. Note also that the bounds in this theorem are sharp in the limit L — oo.

Theorem 6.6 is an easy corollary of Theorem 6.3, see §6.2.4, but this is an overkill. §6.2.5 gives another
proof of similar estimates, for intervals of length L > 25(f), which does not require the full force of Theorem
6.3, and which also applies to arrays. There we will also see that anti-concentration inequalities similar to (6.7)
hold without any assumptions on zy.

6.2 Proofs

6.2.1 Characteristic Functions in the Reducible Case

Throughout this section we assume that X = {X,} is a uniformly elliptic Markov chain with state spaces
Sn, marginals u,(E) := P(X, € E), and transition probabilities 7, ,11(x,dy) = pn(x, ¥)pn+1(dy), with
the uniform ellipticity condition, and ellipticity constant €. Given ¢ € L*(S, X G,11), we let E(p) :=

E[‘p(Xn’ X,+1)] and 0'(90) = VVﬁr(SO(Xn, Xnt1))-

As explained in §5.2.1, it is possible to express the LLT probabilities in terms of

Dy (x, EAna1) = By (€5 [X a1 € Unyr) = w
x Loy )
It will transpire that ®p (x, £|Un+1) decays fast to zero for £ bounded away from the co-range H (X, f). What
matters is the behavior for ¢ within distance O (%) from H(X,f). Our aim in this section is to estimate
Dy (x, E|UApn41) for such £.

We begin with an estimate for arrays. Suppose 6, K >0, e €(0,1) and f is an array of real-valued functions
,(lN) € L¥(S, XS,41) (1 £ n < N) as follows:

@ E(fN) = 0and ess sup|f| < K.
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N
(II) Let Sy := Z FN) (X, Xp41) and Vi := Var(Sy), then

n=1

N
1 —~
Vy >0 and — > o (fM) < C. (6.10)
VN n=1

(II) f=F+ h+ c, where

(a) Ff,N) are measurable, integer valued, and ess sup |F| < K.
N
(b) hﬁlN) are measurable functions such that E(hﬁlN)) =0, ess sup |h| < K and Z o-z(h;N)) <e.

n=1
(c) cﬁl are constants. Necessarily Icn )I < 3K and c(N) ]E(IF‘;N)). Let ¢V = Z c,(lN).
n=1

We are not assuming that E(F;N )y =0: IFS,N ) are integer-valued, and we do not wish to destroy this by subtracting
the mean.

Lemma 6.7 Suppose (1), (II) and (1ll). For every K > 0and m € Z, there are C,N > 0 such that for every
N>N,|s| <K, x€S,and vy € L¥(CSni1) with |[vnsille £ 1
N
PR

n=1

>

1/2

2 S i C C
e Gt B s o)) b (0 where Bl <C <CVe

Proof We will use Nagaev’s perturbation operators, as in §5.2.2.
Throughout this proof, we fix the value of N, and drop the superscripts V). For example c( ) = ¢ and c(M=c.

Define L, s : L®(Sy41) = L¥(S,) by (L eu)(x) = ﬁ P (%, V)EEH Dy () 1 (dy), Ly = Lo
Sn+l

Let & = &é(m, s) :=2mm + L, with m € Z fixed and |s| < K. Since F,, (x, y)€Z,
VN

i i (Fp+cp)+i&hy,
el = exp[2nimPy + E=Fy +iécy +i€hy] = g2ime o Yoy (nren) el

We split e=27imen £, o = Zn,g + fn,g + fn,f, where

(Lngu) (0 = f Pl IR Ty )

(3

(Lneu) (x) = i& f (X, ) (%, Y)u(y) 1 (dy), and

~ §hn+7(]Fn(xa)’)+Cn) (Frn(x,y)+cn) .
(Ln.eu) (X)=f Pn(x,y) [e vy eV —i€hn(x, 9) | u(y) ne1(dy).
Gn+l

PrEPARATORY EsTimMATES 1: AC) (E, m) > 1 such that for every |s| < K andn > 1,

12ne] = [ ne ey <1 6.11)
|Lnell, . < 1K m). (6.12)
[nell = [[£ne] oo <1 (6.13)
| £nell,., < LK m)a(hy), (6.14)
| Znel],_,. < C1(K.m) [GZ(hn) 4 )T (Fn) (6.15)

VW
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Proof of the Step. The first three estimates are trivial.

To see (6.14), we note that fn,g is an integral operator whose kernel has absolute value |ip,, (x, y)h,(x, y)| <
eal|§|lhn(x,y)|. So ||Zn,§||Lm—>L1 < 651|§|||h,,||L1 < 561(27r|m| +EVA_,1/2)||hn|ILz, and (6.14) follows from the
identity ||kl 2 = o (hy,), and the assumption Vy — co.

Similarly, fn £ is an integral operator with kernel E(x, y) such that

s Fn(x,y)+en cFn(x,y)+en

Kyl <e'le’ YN (@4 — 1) —ighy| = 'le. VN (i€hy + O(£2h2)) —iéhy|

s En(x,y)+cn

=e'le’ VN —1|lghy| + O (n2) = O(G 1hn (B + c)l) + O(h2).

The big Oh’s are uniform on compact sets of &.
So, uniformly on compact sets of &,

I Lnelliemrr = OV BBy + c)l) + OUlal2) = OV ) Anll2IEs + calla + Ol hal13).
By II),f=F+h+c,so

I Lnelliomrr = OV Dalbll fr = Balla + O 1IZ) = OV D bl falla + I1all2) + Ol A 112)
Al fnll2 2) (a(hn>a<fn>
TR R ) = 0 | — =
N~ 2 N~

as claimed in (6.15).

o + 0% (hn) |,

PREPARATORY ESTIMATES 2. There is a constant C 1’ (E, m) such that for all k,

-~ = — — h
| Ere Lo Larne—Lant Lern)llgo 1 <Cl (K, m) (:/(V_") (0 (fra)+(frsn) 40 () +o(his)) - (6.16)
N
Next, let ¢ = kakﬂ,gl, then
Elgr(X)] =0, ll@klleo < C[(K, m)*o (hys). (6.17)

Proof. Call the operator on the LHS of (6.16) K. Then (Ku)(x) = fff k(x,y, 2, w)u(W) tg+1(dy) tr+2(dz) pr+3(dw)

V‘T‘—N(FM<y,z>+Fk+z<z,w>+ck+1+ck+z)
(&

where k(x, y, z, w) equals pr (x, Y)pr+1(¥, 2)pr+2(2, w) - ihr(x, y) ( -1].

Recall from (III) that F + ¢ = f — h. Therefore
|k (%, 3, 2,W)| < Cpi(x Y)Prest (3 DPics2 (@ WV i (6 )11 fiert (3 DI+ Fresa (@ W+ it (3, 2|+ iesa (2, w)1),
and the constant depends only on K, K and m.

Clearly, ||K|lpo 1 < ffff |k (x, y, 2, w) | g (dx) g1 (dy) g2 (dz) g 43 (dw). Integrating and applying the

Cauchy-Schwarz inequality, we arrive at (6.16).
‘We continue to (6.17). By definition, (Lxu)(Xx) = E(u(Xr+1)|Xx). So

E(px) = E((fkn,gl)(xkﬂ)) =ié ffpkn(x, W i1 (6 y) i1 (dx) 2 (dy).
Thus E(gr) = i€E(hes1) = 0. Next, by (6.12) and (6.14),

lorlloo < NLillpispoll Lisrelliosr < C1(K,m)? o (hysr).

PREPARATORY EsTimMATES 3: Let £ £ = Ly e — e2™imek £ There is a constant Cl”(f, m) such that for all k,
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1L} el < € (%&) . cr(hk)), 6.18)
1£) ¢ Zrell < Cllorthe) (‘Tf/f;_‘” + cr(hko) . (6.19)
N

Proof of the Step. L}, P is an integral operator with kernel

ime £ (xy)—2rime ime B (fie (6, 3)=hi (6, )+ Ry (%, 9)
I(X, y) = emeckpk(x’y) (elgfk(x,y) 2rimey _ 1) — emeckpk(x’ y) (em 3 Kk k _ 1)

. . is . | fx (x, y)1 )
because by (I), i€ fx—2mimcy = —= —hy)+i€hgmod 2nZ. Thus |[(x, < Cpi(x, = 4 | (x, .
y (), i€ fx k= gy (fk=hi)+i&hy [[(x, y)I < Cpi( y)( W [hx (x, )1
(6.18) can now be shown as in the proof of (6.16).
The bound (6.19) has a similar proof, which we leave to the reader.
PREPARATORY ESTIMATE 4: The following estimates hold uniformly in x € S;:
E(SNIX1 =x) =E(SNy) +0() =0(1), Var(Sy|X; = x) =V +O(1). (6.20)

Proof of the Step. By (2.11), |E(Sy | X1 = x) —E(Sy)| = O(1), and the estimate on E(Sy|X; = x) follows from
the assumption that E( f,,) = O for all n.

Let Y, := (X conditioned on X; = x). These Markov chains are all uniformly elliptic with the ellipticity
constant of X. So, uniformly in x, forall 1 <i < j < N,

Ex(f7) =B(f}) + 0", Ex(fifj) = Ex(fOEL(f;) + 0@~ = [E(fi) + OOHE(f;) + O(8))] + 08/ ™)
2 E(f)E(f;) + 00 = E(fifj) + O (. B(f;) = E(f;) = 0).
Ex(fifj) = E(gij| X1 = x), where g;; := E(fi fi|Xis1,. ... X1)
= E(g;j) + 0(6') = E(fif;) + 0(6") (" gij depends only on X;, X;1).
Therefore |Ex(f; f;) — E(fif;)|=0(min{¢', 6/~'}}) = O(6"/26Y~)/2). Summing over 1 < i, j < N, we obtain
[Ec(S3) —E(S3)I < > Ba(fify) = B(fifp)] = O(1).

Since E(Sy) = 0and E,(Sy) = O(1), Var(Sy|X; = x) = Var(Sy) + O(1).
We are ready to start the proof of the lemma. By (5.12), Ex[e5V vy 1 (Xn41)] = (LieLoe - Lnevne)(X).
The decomposition e "1 £, » = L, ¢ + Ly ¢ + Ly implies that

Ey (€5Vvn i1 (Xnan)) = €7 (D (x,6) + Dy (x,) + Dy (x,€)) (6.21)
where ¢ = ¢™) = ¢ +--- + ¢y, and

D (x,8):= (Z1,g X 'ZN,gVN+1) (x),

N-1
Dy (x, é‘;):=Z:6—271'1m(61+~'+Ck—1) (-El,f ... Lk—l,f-lzk,f-zkﬂ,f R LN,fVNH) (x),
k=1
N-1

Dy (x, &) :=Ze_2”im("‘+"'+ck") (-E1,.§ o Lpre L Lisre 'ZN,fVNH) (x).
=1

We analyze @y, Oy and 51\] separately.
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Cram 1: For every m € Z, |5N(x, &) — e‘sz/zEx(vN+1(XN+1))| TV——> 0 in L' uniformlyinson{s e R: |s| <
K}, and vy € (v € L®(Gny1) : VIl < 1)

SN Fr+e

N
Proof of the Claim: 6N(x, &) =B, (exp (isT) vN+1(XN+1)), and E(; ]Fn> =—c.Fix1 <r<N.
Using the decomposition f = F + h + ¢, we find that

N N-r-1

N
\/1 ( 1 L o (N)
E Fy + c) = SN-r + ( (r) - hk), where Sy_, = E ™,

VN N VVn VN kZ:; s ;

By assumption III(b), the L? norm of the second summand is O(1/+/Vy). Therefore the second term converges
to 0 in probability as N — oo, and

Oy (x, &) = By (GV%SN_rVN+1(XN+1)) +o(1). (6.22)

The rate of convergence to O of the error term in (6.22) depends on r and m, but is uniform when |s| < K and
IVas1lleo < 1. Next, we study the main term:

_is_ g _r _is_ g _r
E, (e\/VTV " VN+1(XN+1)) =E, [eﬂ " Ex (N1 Xn+DIX1, - oo XN—r)

—is_ QN ,
=E, [em N Ex(vN+1(XN+1)|XN_,)] (Markov property)

i

*VE, (eWSTv "B (vt (X)) + 0(9’)1) = By (€SN W) B, (rn 1 (X)) + OF7), (6.23)

and the big Oh is uniform in x and in ||[vy+i|lo (because X conditioned on X; = x has the same ellipticity
constant for all x).
- . . _ Sn_r—Bx (Sn_r) TR
Fix r. By Dobfusllnns. CLT for .X conditioned on X;| = .x? W5 converges in distribution to the
standard normal distribution. Equation (6.20) and another mixing argument shows that

Ex(Sn-r) = E(Sn-r) = O(1) and Vary(Sn—,) = Vi + O(1).

Therefore, conditioned on x, f% converges in distribution to the standard normal distribution. In particular, it
N
; o 2
is tight, and sup [E, (eSN-"/VVN) _e=57/2| = 0as N — oo, for all x.
ls|<K o

The claim follows from this, (6.22), and (6.23), and the observation that a uniformly bounded sequence of
functions which tends to zero pointwise, tends to zero in LY.

Cram 2. There exists Cy(K, m) such that for all |s| < K and |[vysille < 1, [|®n(x, ) < Co(K, m)Ve.
Proof of the Claim: We begin with the obvious estimate

N-1

1O &)l < W Lnelloos [ Lael| - [l + 2 ([£0ell - [ £nmreLuel [Zaone] - [[Zne]])

Suppose |s| < K.By (6.13) and (6.15), the first summand is bounded above by C; (K, n) [o-(hl)2 + %] .

Next, (6.12) and (6.15) give ||£k4,§fk,§” < (f, m)? [a-(hk)2 + %\/%W].The other norms are no larger

than one.
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N-1
~ — h
Therefore ||®n (x, &)1 < C1(K, m)? E [o-(hk)2 + M] . By the Cauchy-Schwarz inequality, and
k=1 VVN

assumptions II and III(b),

_ . N-1 . N-1 1 N-1
1Dn (x, &)l < Ci (K, m)"‘; o(h)? +C (K,mPJ ka ) - o ka o2(fi) < const.(e + Ve).

CLAM 3. There exists C3(K, m) such that for all |s| < K and [vn+1lle < 1, |®n(x, Ol < C3(K, m)Ve.

Proof of the Claim. Fix N, vy4+1 € L (Sn+1) such that [[vy+1]le < 1, and let ¢r (-) := (Zk,f - ~ZN,§)VN+1.
Observe that [|¢ll < 1, and

N
@8 GOl < Y 1L+ Liore Lioedrn . (6.24)
k=1

We will decompose ¢ = {; + {; + 1, and then estimate the contribution to (6.24) from ¢/, {; and .

Step 1 (DECOMPOSITION): We can decompose ¢x = {] + £} +ni so that ng = E(¢x (Xk)) (a constant function),
and for all |s| < K, there exist 50, I?o >0and0 < 50 < 1 such that forallk =1,...,N =2

1Zilleo < G317 0 lle0 + KollZ oI (6.25)
" ~ (i) + o (firr) + 0 (i) + 0 (hyesr)
2
15 M < Co( N ) (6.26)
E({; (Xk)) = E(¢; (Xx)) = 0. (6.27)

Proof of the Step. Let {i := ¢« — nx, a function with mean zero.
By construction, ¢y = (Lk,ngJrLf) @r+2, therefore

Ok = (L L) Mer2 + (L Lir1) Sk + (Zk,.§Zk+l,§ - £k£k+1) k2.
Observe that L1 =1, 50 (Lx Li+1) Tk+2 = Nk+2. This leads to the decomposition

k= (LiLix1) Srar + (Zk,§2k+l,§ - £k£k+1) k2 + Nie+2 — Nk
—_———
' &

Then {x = ] + ¢, and the pieces ¢}, {;’ satisfy the following recursion:

& = (LiLir1) S + (L Lir1) &l

., . (6.28)
&= (Lk,§£k+l,§ - £k£k+1) Bk+2 + Ni+2 — Nk -

Notice that 7, {;” have zero means. Indeed in our setup, u;(E) = P(X; € E), whence by the identities
& = LicLir18iewr and (L) (x) = B((Xpes) 1 Xk = x),

f(,:dﬂk = E(¢; (Xk)) = EE(E(Zks2 (Xi2) | X D1Xi)] = E(Lrr2(Xk42)) = 0,

and (") = E({k) —E(;) =0-0=0.
To prove the estimates on [|{ ||, we first make the following general observations. If Yx+2 € L*(Gg+2), then

(L LinWis2) (x) = [ Plx, 2)Wis2(2) ura2(dz), where p(x, 2) =f Pe(X, Y)Picx1 (Y, 2) He1 (dy).

SOk+1
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By uniform ellipticity, p > €p so we can decompose pr = €o + (1 — €9)gr where g is a probability density.
Hence, if /> has zero mean, then

(L Lir1¥i+2) (x)=€0 l!fk+2dﬂk+2+(1—60)f?k(x,y)d/k+2()’)ﬂk+2(dy)=(1—€0)f G (X, YIWii2(¥) 2 (dy).

Thus || Ly Lis1¥i2lle < (1= €0)ll¥ks2llo. By (6.28),

1glloo = 11 (LkLix1) $in + (L Liw1) Glialleo < (1= €0) 155 p0lloo + 1Lk Lir1 8555 ll00

< (1= €lldisalleo + 1 Lllos ol Licrt IS =185 < (1= €0)Id7 4o lleo + CL(K, MG 11

by (6.11) and (6.12). This proves (6.25).
Next we analyze [|{|l;. Since ;' has zero mean and ng+2 — 1% is constant, we can write ;' =

& - E(Z) with £ = (Lk,_ngn,g - £k£k+1) $r+2. Observe that (Zk,ngH,fu - £k+1£k+214) (x) =
JJ ke, y, 2)u(@) s (dy) pi+2(dz), where
Is|

lk(x,y,2)| < const.pr(x, ¥)Pr+1(3, 2) ——IFi (%, 2) + Frs1(2, y) + ¢k + i1l

VVn

ConSt'pk(x,y)pkn(y, 2) (Lfe (6 D) + | frx1 (o W] + 1 (x, 2| + g1 (z WD),

VVn

because F+c =f—h.

Next, 11l < 2171 < 2 J[] 1kCx, 3, 21 (dx) a1 (dY) a2 (d2) | 62 lloo. The estimate for [k(x, y, 2)|
and the Cauchy-Schwarz inequality now lead to (6.26).

<

SteP 2 (CONTRIBUTION OF {”): For some constant which depends only on K, K, m,

Z ”.ﬁl,g e .Ek_Lgfk,g({,ZH)HLl < const.Ve. (6.29)
k

Proof of the Step. Using (6.25) and (6.26), it is easy to see by induction that for some constant C, || o is
bounded above by

Nek|_
E(GAM#J " L Zzlj : é%r (0 (fr+2r) + O (frr2r+1) + 0 (hps2r) + O'(hk+2r+1)))
0 . o

)

r

0
= ) + O'(hk+r)))-

)

o N-k
< Co;" (93”" + >
r=1

Since L; ¢ are contractions and ||Ek,§” o < C (E, m)o (hy), this implies that

DL LicreLie )l < COIE, m)
k

~ 0 (fx+r) + 0 (hgsr) SNk
0 h + hi)6, .
Zo% o (hi) e Ek o (hi)by }

As in the proof of Claim 2, it follows from the Cauchy Schwartz inequality, (6.10), and assumption III(b) that
the sum over k is O(+/€). Hence (6.29).

SteP 3 (CONTRIBUTION OF 7% ): For some constant which depends only on K, m, K and €,

Z ”131,.5 s LreLegnin ||1 < const.Ve. (6.30)
k
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Proof of the Step. Recall that 1,1 is a constant function, with value E(¢r+1). Since ||@g+1ll0 < 1, [Mr+1] < 1.
Therefore (after possibly rescaling ny) it suffices to prove the step when 1 = 1. Split L, ¢ = eXrimen £+ L;l &
then for all k > 2,

Lig- 'Lk—l,ffk,f(l) = e2nim(c1+~~~+ck71)‘£1 ... Lk—le,é—‘(l)

S 2nim(cjy1+-+Cr-1) ’ I~ (631)
+ Ze st Lyg - Line Ly g Liv - L1 Lig (1),

The first expression on the RHS of (6.31), when k = 1, equals fk,gl, and has norm IIEk,gllll <
C1(K, m)o(hy), by (6.14).
For k > 2, we use (6.17):

||£1-'-£k—1fk,§1||1 =1L1- Liagr-1lli < E(r-1(Xe-DIX1) |-

By (2.11) and (6.17) the last expression is bounded by C6* o (), for some constant C which depends only on
K,m, €9, andsome 0 < 6 < 1 which depends only on eg. Soforallk > 1, ||.£ - - Ly ]£k$1||1 < const. 9k0'(hk)
The second term on the RHS of (6.31) is not zero only for k > 2. If k = 2, it has L' norm ”LI,ELZ‘??I [T <

(& mye () (f/(g_‘)
N

+ a'(hl)) , by (6.19). If k > 3, then it has L'-norm bounded by
Z NLiell- N Ljell - N Lj-rellp g1 L] gl prconst. 0" o ()
< const. Z( Vi) + o (hj )) o (h)0* 7, see (6.11), (6.12), (6.17), (6.18), (2.11).

Thus > [[L1e -+ Le1.e Leg (D], is bounded by
k

Sj— ))ertger)

N . k . f) N = r S
CZ(O'(hk)g +0'(hk)z6‘ j( N +o(h; ))) Zo-l(hk)\ka C;a Z(

k=1 Jj=1 k=1 j=1
N-1 o2(f7) N —
< C\/E+CZ o Z / Zo-z(h ) Zo’z(hj+r) < Ce, and C depends only on K, m, and X.
=0 j=1 7 j=1 ]

Step 4 (CONTRIBUTION OF {}'): For some constant depending only on K,m, K, e,

Z ”.ﬁl,g e .Zk_Lg.Ek,g({,i;l)HLl < const.Ve. (6.32)
k

Proof of the Step. Recall that (/| = (Lk,§-£k+1’§: - £k£k+1) Ok+2 + (Mr+2 — k). The term ngio — 72 is a
constant function with size at most two, and its contribution can be controlled as in the previous step. Let

£k+l = — (Mks2 — 1i), then:

N Lie LicteLe (D S 1 Lue - LicreLie (Do

I Lye - L ellomsr - | L= 1,§||L‘—>L°°||Ek,§(2]2/+])”L°°—>L1
LGB m) - C| (&, m) \/%) (0 (fean) + 0 (fsz) + (st + - (hsn)),

IN=IA
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see (6.11), (6.12), and (6.16).
Now we sum over k, and apply the Cauchy-Schwarz inequality and assumptions II and III. Step 4 follows.

Claim 3 follows from Steps 1-4.

Lemma 6.7 follows from Claims 1-3 and (6.21). O
We now return to the proof of Theorem 6.3. Let f = { f;,} be a non center-tight a.s. uniformly bounded additive

functional on a uniformly elliptic Markov chain X = {X,,} with state spaces &,, and marginals u,(E) = P(X, €

E). In particular, Viy — oco. Without loss of generality, 6(f) = 1, Gess(X,f) = Z, and E(f,,) = O for all n.

By the reduction lemma (Lemma 4.16), f = F+ Va + h + ¢, where G, (X, F) = Z, h has summable variances,
¢ = {c,} are constants, and F, a, h, c are a.s. uniformly bounded. We make the following additional assumptions:

(IV) F, are integer-valued;
(V) E(hn) =0, ¢p = —E(Fp);
(VD a = 0. In particular, f = F + h +c.

Assumptions (IV) and (V) can be arranged using G, (X, F) = Z and E(f,,) = 0, by trading constants with ¢;,.
Assumption (VI) is a genuine assumption. Let

N
c(N) = = > BIFe(Xk, Xe)]- (6.33)
k=1

By Theorem 3.12 and the uniform ellipticity assumption, H(Xi, Xo, . ..) := Z hy, (X, Xn41) converges almost surely.
n=1
Here it is essential that X be a Markov chain and not just a Markov array.

Proposition 6.8 Suppose (1V), (V) and (VI). Let vyy+1 € L™ (Sn+1) be non-negative functions such that
[lvN+1llo # O, and for some 6 > 0, B
E(wn+1(Xn+1)) 2 6llvN+1lo- (6.34)

Then forallm € Z, s € R and x € G,
iQrm+—2=)Sn
B (e v ()

E(vv+1(Xn+1))

as N — oo, where the o(-) term converges to 0 uniformly when |m + is| are bounded, vy are bounded, and

(6.34) holds.

_ eznimc(N)—§Ex (627rmi$5) +o(), (6.35)

Proof Since the LHS of (6.35) remains unchanged upon multiplying vy by a constant, we may assume that
Va+illeo = 1.

Fix € > 0 small and r so large that Z Var(hy) < €. Fix N. Applying Lemma 4.19 to {F, }2_,, we obtain the
k=r
following decomposition:

N N
Fp (X Xne1) = a0 (Gopr) = afM () + ¢+ £ (i, xna1)

where cle ) are bounded integers, and aﬁlN) ), J;ELN)(', -) are uniformly bounded measurable integer-valued

N N
functions such that Z ||f~;(LN) ||§ =0 (Z ui (F)) .

n=r n=r

There is no loss of generality in assuming that agvl\i)l = aﬁN) = 0, otherwise replace fr(N) (x,y) by ]?,(N) (x,y)—

o™ (x), and £V (x,y) by £ (x,y) +a(Y, (). Then
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N

N
DFa= N+ fIV). (6.36)

This and the identity f = F + h + c gives

N N N
Sv=Sr1=) fa= ) [N+ FN 4y cn =) [PV + b = BN + )], E(SN = 8) = 0. (6.37)
n=r n=r n=r

Let g denote the array with rows g(N) : ﬂ,N) + hy,

E( A,(LN) +h,) (n=r,...,N), N > r. We claim that
g satisfies assumptions (I)—(IIT) of Lemma 6.7. (I) is clear, and (III) holds by choice of r and because f,
integer-valued. Next we check (II):

n=1

N N
Za @M=" P (FN +h)=)" [ BN+ +2Cov (7N, 1) [ [ (SN 402 () +20 (FN) o ()]
n=1 n=1

<2

Mz

N
[N + 0 )| O(Z (]F)) +0(1), by choice of f and h.

Since f = F+h+c, u2(F) = u>(f—h—-c) < 2[u(f) + u2(h)], see Lemma 2.16(4). Thus by Theorem 3.7 and
the assumption that h has summable variances,

3
l‘

N N
D@ <2 [u;

2(f) +u2 ()] = O(Var(Sy — 5,)) +O(1) = O(Var(S ~ 5,))

We now apply Lemma 6.7 to g, and deduce that for every K > 0 and m € Z there are C, N > 0 such that for
allN > N + r,|s| < K and vy 41 in the unit ball of L™

Ny _2
= e2rimc™) | —s /ZE(VN+1(XN+1))+T]N_V(XV)’
where ¢V = -3V

LEAN) and [lpn-,Ih <
”T]N—r”oo < 2

2 SN—Sr-
E(el( ﬂm+r)( N—=Sr-1)

Cv/e. Since ||[vy+illo = 1, we also have the trivial bound

We are ready to prove the proposition:

iQrm+—"=)SNn ) s
E, (e Wa VN+1(XN+1)) Cnme s, B (el( mm+ =) (SN ')VN+1(XN+1)|Xr)
=E,|e VN
E(vn+1(XN+1)) ¥ E(n+1(XN+1))
E(wn+1(Xn+1))
i —1
= 2mmcw>_sz/2Ex(ezmmSH+o(1>) +0@ HE (Inn-r (X)), as N = oo
S——————

A B

Summand A: By assumption, f = F + h + ¢ with FF integer valued. Necessarily,

exp(27imS,_) = exp(2rim$, + 2ximc"™V), (6.38)
r—1 r—1

where 9, = Z hix (Xg, Xg41) and ¢ cr=D. Z Ck = —E(Z Fr (Xk, Xr+1)). Substituting (6.38) in A, we obtain
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i (N) g o(r=1)1_42 i
A= e271'1m[c +C ]-s /ZEx(eme@,).

We claim that ¢ + ¢=D = ¢(N) mod Z:

N r—1 N N
c(N) ==Y E@) = - Y EEFD) - > BN - Y ™. by (6.36)
k=1 k=1

k=r =r
N !
=D 4 (N _ Z c](cN) =D 4 ™) mod Z,  because c,iN) eZ.
k=r

The following bound holds uniformly when & varies in a compact domain, by the choice of r, Lemma 3.4,
and the Cauchy-Schwarz inequality:

B (€9) = By (€9 < €1Ex (19 — /1) < €Var( ). b (X X)) = O(VE),
k=r

It follows that A = [1 + o(1)]e>™"<N)=*/2g, (27m9) + O (V) .
Summand B: By the exponential mixing of X, for all N large enough,

B = Ex(Inn-r (X)) = E(Ilpn— (X)) + o(1) = O(Ve).

Thus the left-hand-side of (6.35) equals e2%imc(N)=s*/2F (e2ximd+o(D)y 4 O(+/€). The lemma follows, because e
was arbitrary. O

6.2.2 Proof of the LLT in the Reducible Case

We prove Theorem 6.3.

It is sufficient to prove parts 2 and 3, on E,(¢(Sy — zv — bn)|Xn+1 € Un+1). Part 1, which deals with
E(¢(Sy — zv — bn)), can be deduced as follows: The conditioning on X; = x can be removed using Lemma
2.27; and the conditioning on X1 € An 41 can be removed by taking Ap 41 := Sy41.

Suppose f is an a.s. uniformly bounded additive functional on a uniformly elliptic Markov chain X, and assume
Gess (X, ) = 6(f)Z with 6(f) # 0.

We begin with some reductions. By Theorem 4.5, f has an optimal reduction, and we can write f = F + F
where F has algebraic range 6(f)Z and F is a.s. uniformly bounded and center-tight. Trading constants in ¢ (f)Z
between F,, and F,, we can arrange for F,, to be a.s. 6 (f)Z-valued.

Lett = [t]z + {t}z denote the unique decomposition of ¢ € R into the ordered sum of an integer and a number
in [0, 1). Replacing F by {F}sz and F by F + [F]s(1)z, we can also arrange ess sup |F| < 6(f).

By the gradient lemma (Lemma 3.14), we can decompose

F=Va+f+¢C

where ess sup |a| < 2ess sup |F|,Thas summable variances, and ¢, are constants. Let f;, := %[ fn—Va, -
E(f, — Vay)], then G455 (X, f*) = Z, and
1
ff= —F+h+c, 6.39
50 c (6.39)

where h,, = %[ f,; - E( f;,)] is a centered additive functional with summable variances, and ¢, := %[En +

E(f) — E(fa — Van)].

A Special Case: We begin with the special case when
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§H)=1, E(f,) =0 foralln, and a=0. (6.40)

In this case f = f*, and (6.39) places us in the setup of Proposition 6.8. Given this proposition, the proof of
part (2) of the theorem is very similar to the proof of the mixing LLT in the irreducible non-lattice case, but we
give it for completeness.

N oo
ASin (6:33), let c(N) i= = " BIFK (X, Xicr )L 9 = D in(Xos X1, and
k=1 n=1

by = {c(N))z.

Fix ¢ € L'(R) such that supp(a) C [-L, L], and let v+ denote the indicator function of Ap 1. By the Fourier
inversion formula

Ex(¢(Sn — by — zn)I1Xn+1€ Uns1)

1 (f. Ex (ei’f(sN_bN_ZN)VNH (XN+1))
— f (&)
2r J_L E(vn+1(XN+1))

(6.41)

Our task is to find the asymptotic behavior of (6.41) in case zy € Z, e

Let K := ess sup |f| and recall the constant 5 = o (K) from Lemma 5.8. Split [-L, L] into a finite collection
of subintervals I; of length less than min{6, 7}, in such a way that every I; is either bounded away from 27Z, or
intersects it an unique point 2m exactly at its center. Let J;  denote the contribution of /; n to (6.41).

If I; N 27Z # @, then the center of I; equals 2zm for some m € Z. Fix some large R. Let J ]’ y be the
contribution to (6.41) from {¢ € I; : |€ — 2mm| < RVA_,I/Z}, and let JJT’N be the contribution to (6.41) from
(£ €1 1€ - 2mm| > RVy'?).

Working as in Claim 2 in §5.2.4, one can show that for every R,

—cR?

1 —c 2 0R—>oo(1)
|J; ISCf e YWy < C =
J>N |u|>RV]:,1/2 R*/VN ‘/VN

S

VW

Thus the main contribution comes from J j’ ~- We make the change of variables & = 2rm + .Since zy €Z

and by = {c(N)}z, we have

£(Sn — by — zy) = ESn — 2me(N) — ﬁ(m + {c(N)}z) mod 27.

So J]f,N is equal to

1 R s e~ 2mime(N)E, (eigsN VN+1(XN+1)) _jgINFOWD
f ¢ |2nm + e VN ds.
27V J-r VN E(vn+1(Xn+1))

Fixing R and letting N — oo, we see by Proposition 6.8 that

1~ . .
Wy = 57 $Qrm)E, (e¥mime) f e 5245 4 oy e (1)

|s|<R

1
V2r

Combining the estimates for J j’ Ny ]’ 'v» We obtain that if /; intersects 27Z, then

H2amE, (€77°) /2 + g (1) + Oneo (D).
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—z2/2
hm V VNJ] N =

\ors

If I; N\2nZ = @, then }] d?% (&) = oo uniformly on I; (Theorem 4.9). Thus by (5.19), Oy (x, £) — 0 uniformly
on /;. In this case we can argue as in the proof of (5.29) and show that the contribution of /; to the integral (6.41)
iso (V];] 12

Ey (2) g(27m).

). Hence,

nll_r)r.}o VNEx(¢(Sn — by — zn)IXN+1 € Unsr)

e=2/2 -2%/2

= Ex (eZ”img’)a(Zﬂm) = Ey (e2™2) g(27m)
V2r mEZ;L,L] ";:Z

- ZE;ZE (€25 g(27tm), where § € [0,1), § := $mod Z

= Cxd)(2 , wh Cx =E, R
m%( #)(27tm), where (Cy) (1) [p(t +F)]

| 22 -z2/2

< (Cy E[¢(m + F)].
\/ﬂmzz ) (m) = \/_mZZ d(m + F)

by Poisson’s summation formula.
This proves part (2) of the theorem, in the special case (6.40), and in particular for the additive functional

= %[f—Va E(f — Va)].

Proof of the Theorem in the General Case: f — E(f) = §(f)f* + Va — E(Va), so

Sn(®) —E[Sy(H] = 6(OSn () + an+1(Xn+1) — a1(X1) + Ela1 (X1) — an+1 (Xn+1)]-

Since part (2) of Theorem 6.3 holds for f* with §={}’ &,,} €[0, 1) and by={c(N)}z, it must also hold for f with
o(HF and

by (X1, Xn+1) = 6(D{c(N)}z + an+1 (Xn+1) — ar(Xy) + Elai (X1) — an+1(Xn+1)]-

Clearly |by| < 6(f) + 4ess sup |al. Recalling that ess sup |a|] < 2ess sup |F| < 26(f), we find that ess sup |by| <
96 (f), proving part (3) as well.
As we explained in the beginning of the proof, part (1) of Theorem 6.3 is a special case of part (2). O

6.2.3 Necessity of the Irreducibility Assumption

Suppose f is an a.s. uniformly bounded additive functional on a uniformly elliptic Markov chain X. Recall that
fr = {fulnsr and X, = {X, };>r. In this section we prove Theorem 6.5, which asserts the equivalence of the
following three conditions:

(a) fisirreducible with algebraic range R.
(b) (X, f,) satisfies the mixing non-lattice LLT, for all r.
(©) (X, f,) satisfies the mixing mod ¢ LLT for all » and ¢ > 0.
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(a)=(b): By Theorem 4.4, if (a) holds then H(X,f) = {0}. Clearly, H(X,,f,) = H(Xf) for all r, therefore
H(X,,f,) = {0} for all . By Theorem 4.4, (X,, f,) are all irreducible with essential range R. Part (b) now follows
from Theorem 5.4.

(b)=(a): Without loss of generality, E(f,,(X,, X,+1)) = 0 for all n.

If G.55 (X, f) = Rthen fis irreducible with algebraic range R, and we are done. Assume by way of contradiction
that Gss (X, f) # R, then G55 (X, f) = Z for some ¢. If t were equal to zero, then (X, f) would have been center-
tight, and Vy would have been bounded (Theorem 3.8). By the definition of the mixing non-lattice LLT, Viy — oo,
so ¢t # 0. There is no loss of generality in assuming that# = 1. So

Gess(X,f) = Z and H(X, f) = 27Z.

Let SO = fr (X, Xpa1) + -+ fn(Xn, Xna1) and V) = Var(S\)). Clearly, E(S) = E(Sy) = 0. Next,
by the exponential mixing of X (Proposition 2.13),

r—1 oo
Vi = V| = Voot +2Cov(SY), Sl < Vy + 22 Z ICov(f;. fi)l = O(1).
j=1k=r

Therefore, for fixed r, Vy/ Vlfjr) ~o 1.

By the reduction lemma,
f=F+Va+h+c,

where F is irreducible with algebraic range Z, a,(x) are uniformly bounded, h has summable variances,
E(a,) = 0, E(h,) = 0, and c are constants.

Let & := hy (X, Xne1), & = Z hy, (X, Xn41) (the sums converge a.s. and in L? by Theorem 3.12).

n=1 n=r

N
Next, set ,85\?) = {— Z E(Fr (Xk, Xk+1 ))} (where {-} denotes the fractional part), and define
k=r

b9 (X, Xy+1) = ane1 (Xna1) = ap (X)) + B

- v —E(SY
IfLE(S]V)_)O’thenN—(IV)_)O_
Vv v
N

By Theorem 6.3 and its proof, if lil\r]n inf P(X,, € ‘lI,(lr) ) > 0, then the following holds for all ¢ € C.(R) and
X, € G,

lim \27V B [0S = b = 2n) Xnvar € U 1= ) By, [00m + 5] (6.42)

mez
Here and throughout, we abuse notation and write for x, € ,, Ey, := E(:|X, = x,) and Py, := P(:|X, = x,).
The plan is to choose r, x,, ‘lll(\;ll, zn and ¢ in such a way that (6.42) is inconsistent with the mixing LLT.

Choice of r: Let K € N be a bound for ess sup |a|, and fix y := 107%(4K +2)™*. Since & —— 0 almost surely,
r—oo

we can choose r such that
P(|F,| < 0.2) > 1 —y2.

Let u, denote the marginal distribution of X,.. We claim that
e xr €S 1Py, (1T <02) > 1 -y} >1—7. (6.43)

To see this, let p,(x;) := Py, (I&-] < 0.2) and @ := u,[p, > 1 -], then
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1-9* <P(|§|<02) = f prduy = f prduy + f prduy
[pr>1-y] [pr<1-y]
<a+(l-ao)(l-y)=1-y(d-a).Soa>1-vy

Choice of x,. Divide [-2K — 1, 2K + 1] into a family I of 10? (4K +2) pairwise disjoint intervals of equal length
1073, There must be some J/ € I such that P(a,(X,) € J/) > |I|~! > y. Then

welxy € Gt ar(xy) € Y+ p{xy € S 1 Py, (I&] <0.2) > 1 -y} > 1.
Choose x, in the intersection of the last two events. Then

Py (1] <0.2) > 1 —y and a,(x;) € J,.

Choice of U : Choose J5, € I such that P[ay 1 (Xn+1) € J5] > 1717

Let Jy = J}, = J! +,3<” i={a—b+BY) 1 a e, be J). Thisis aninterval of length |y | = |5, | +|J}] <
0.01, and Jy C [ 4K - 3,4K + 3]. Define

ALY, = {y € Sy 1 Y (5, 0) € In).

We claim that A is regular, i.e. 11m 1nf P[Xn+1 € alr 1>0:

N+1

P[Xn+1 € AL 12 Py [Xyar € U0 T = CruixN™", with 0 < 6 < 1, see (2.11)
=P, [b;?(xr, Xn+1) € InT = CriON ™"

= Py [ans1(Xn+1) = ar (x) + BY €y = I+ BR] = ConinN

> Py [an+1(Xn+1) € Iy ] - Cpix0N™", because a,(x,) € J!

> Plan+1(Xn+1) €] - 2Cix0N ™" > |I|71=0(1), by the choice of Jy, (2.11).

Choice of zn: Let { := —center of Jy, then |{n| < 2K + 1. Let zy := [{n]z (the integer part of {x). Then
)

ZNy € Zand —/———=—~ — 0.
v
Choice of Ny and ¢: Choose a sequence Ny — oo such that {, — a.Let I := —a + [0.4,0.6], and choose

¢ € C.(R) such that 1[0_3,0_7] <¢ < 1[0.2,0.8]~
The Contradiction. With these choices, if (b) holds but G,z (X, f) = Z, then

1= lim 27V By, (S — zn € | Xn41 € AL))), by (b)

klim 2”V1£/2)er(51(\2 - IN, €I|b o (Xr, XNy +1) € Jn, ), by choice of x,, A (r)

N+1
1igg1f,/2nv,<v’k Py, (Sy) = bY) — zn, €10.3,0.71[bY) € Jn,),

IA—

|JNk Ny |

JINg + ")

” ) and £y, — a, 50 for k > 1, 1-bY) c

because I — by C I —Jn, C I+ |{n, —
I+(a—-0.1,a+0.1) c[0.3,0.7]. Hence

1] < lim 27V By, (6(Sy) - by, = 2no) [U)). because ¢ > 10307

= > B [pn+§)1 < ). Py, (m+Gr €[02,0.8]) <Py, (I3 2 0.2) <y

mez mez

by (6.42) and the choice of r, x,, and A But [I| =0.2and y < 1076,

N+1°
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(a)=(c): Fix r, t > 0, x € &,, and some sequence of measurable events %, C S, such that P(X,, € U,,) is
bounded below. We need to show thatif 0 < b — a < t, then

: ja— bl
Pr(Sy € (@ b) +1ZIXn+1 € Anst) —— ——.

By standard approximation arguments, it suffices to show that for every continuous periodic function ¢(x)
with period ¢,

1 t
Ex (SN X1 € Unar) —— — fo $(x)dx. (6.44)

By the Stone-Weierstrass theorem, it is sufficient to do this for trigonometric polynomials ¢(u) =
ini<L €n€*™ /1 For such ¢, we have the following:

()
B (@S Xns1 € Unin) = D uBa(@ SN/ Xy € Uy )
|n|<L
=co + Z Dy (x, Z2[2Uy,1), with Dy asin §5.2.2.
O<|n|<L

As we saw in the proof of (a)=(b), (a) implies that (X,, f,) are non-lattice and irreducible for all . Therefore
Gess (X, 1) =R, and H (X, f,) = {0}. It follows that the structure constants Dg\;)(f) of (X, f,) tend to infinity
for all £ # 0, and in particular for & = 2”7”, n # 0.By (5.19), On (x, 2"7” |An+1) — 0. (6.44) follows.

(c)=(a): We need the following lemma.

Lemma 6.9 Fix a regular sequence of sets Uy, x, and t > 0, and suppose that ]P’x(SI(\;) € (a,b) +tZ|Xn41 €
An+1) N—> la — b|/t for all intervals (a, b) such that 0 < b—a < t. Then the convergence is uniform in (a, b).

Proof Without loss of generality, (a, b) C [0, ). Given € > 0, we need to find an Ny such that
[Py (SN € (a.b) +1ZIXn 11 € Anya) = 42| < forall N > Ny and a < b.

Choose 6 > 0 such that 45
7 +0 <e€,

and divide [0, ¢] into finitely many equal disjoint intervals {/;} with length |/;| < 6. Choose Ny so that for all
N > Ny, for all I;,

) |1j|
Px(Sy” € 1; +1Z|XN+1 € Un+1) — <<

o|1;]

; (6.45)

I := (a, b) can be approximated from within and from outside by finite (perhaps empty) unions of intervals
I; whose total length differs from |a — b| by at most 26.
Summing (6.45) over these unions we see that for all N > Nj,

-bl+25 6(la—b|l+20
Px(sg>e1+tZ|XN+1e*er+l)s'“ |+26 , d(a=bl+29)

t t
—b-25 6Sla-b
Po(SY) € 1+ 1Z1Xna1 € Unsy) 2 la t' - 'at 5
By choice of 6, [Px (8% € I +1Z|Xn41 € Any) — L2 < e O

We can now prove that (c)=(a). Suppose (X, f,) satisfies the “mixing mod ¢ LLT" for all r and ¢. This
property is invariant under centering, because of Lemma 6.9. So we may assume without loss of generality that
E[fn(Xn, Xn+1)] = O for all n.

First we claim that (X, f) is not center-tight. Otherwise there are constants ¢y and M such that P(|Sy — cn| >
M) < 0.1 forall N. Take t := SM and N — oo such that ¢, IH—W> ¢ mod tZ, then by the bounded convergence



6.2 Proofs 107
theorem and (c),

09 < klim P(Sn, € [c—2M,c +2M]) < ]\}im P(Sy € [c —2M,c +2M] +1tZ)
. . 4M
= I\l]ln’l PX(SN €lc—2M,c+2M] +tZ|XNn+1 € ‘ON_H)/Jl(d)C) = T =0.8.

Thus (X, f) is not center-tight, and Vy — oo.
Assume by way of contradiction that Gss(X,f) # R, then Gs5(X,f) = tZ for some ¢, and ¢ # 0 because
Vi — oo. Without loss of generality ¢ = 1, otherwise rescale f. By the reduction lemma, we can write

Sn(y) +an(x) — ans1(y) = Fu(x,y) + hy(x,y) +cn

where ay, Fr, hy, cx are uniformly bounded, F,, are integer valued, ¢, are constants, 4,, have summable variances,
and E(h,) = 0.
Then § := Z hy, (X, Xn+1) converges a.s., and &, := Z hy (X, Xne1) — 0 almost surely. Working as
r—00

n>1 nzr
in the proof of (b)=(a), we construct r > 1, x, € S,, measurable sets Uy, C Sy+1, and intervals Jy with the

following properties:

o |E,, (e7™8)| > 0.9,
» Jy are intervals with lengths less than 107 and centers {n = O(1),

* yE€UN+1 = ar(xy) —an+1(Y) € Iy,
e and li]{]nian[XNH € Any41] > 0.

If X, = x, and Xn 41 € A1, then |a, (X)) — ani1(Xn+1) — vl < [N, s0
sq(r sog(r)
Eyx, (CZHISN)|XN+1 € 91N+1)' > ‘Ex, (eXFISN Far=an1=EN) | X e Any)| = 0.1

! .
> |E,, (e*™8)| — 0.2 for N > 1, by (6.35) for (X,,f, — Va) with s = 0, m = 1
> 0.7, by the choice of x,..

Lo(r) 1 2 ..
But by (c), E,, (€SN | Xn11 € Ans1) ~ 2 fo e“du = 0, a contradiction. O

6.2.4 Universal Bounds for Markov Chains

The aim of this section is to prove Theorem 6.6. We begin with two simple lemmas.
Lemma 6.10 Suppose § is a real random variable. If b —a = L > 0, then
22 | b|<6Z]E[1 (ms +§)] < 142 la — b
- —]la- m —|la—b|.
L mez ) L

Proof By the monotone convergence theorem,

5]5(2 La.py(m6 + g)) =6 -E(#(a,b) N ( + 62)]).

mezZ

For each realization of §, (a, b) N (§ + dZ) contains at least (|a — b|/d) — 1 points, and at most (|a — b|/d) + 1
points. The lemma follows. O



108 6 The Local Limit Theorem in the Reducible Case

Proof of Theorem 6.6: By Lemma 2.27, it is sufficient to consider the case when P[X| = x] = 1 for some x. In
this case P, = P,E, = E.

If 6(f) = oo then there is nothing to prove, and if §(f) = 0 then G55 (X,f) = R, and we can use Theorem 5.1.
It remain to consider the case when 6 := §(f) € (0, ).

Suppose %\/%N) — z. Let & and by (X, Xn) be as in Theorem 6.3.

Upper Bound (6.7): Suppose (a, b) is an interval of length L > §.
Suppose %\/%N) — z, and write zy = zZy + {n, where Zy € 6Z and |{n] < 6.

Fix £ > 0 small and choose ¢ € C.(R) such that

11a=106,b+106] £ @ < 1(4=106-¢,b+105+)-

By Theorem 6.3, |by| < 96, 50 1(4,) (SN — 2nv) < ¢(Sy —Zn — by), and

limsup y27VNP[Sn — zn € (@, b)] < limsup 27VNE[d(Sy —Zn — DN)]

N —o00 N—o0

e P2 Z E[¢(md +F)], by Theorem 6.3

mezZ

2 .
<e /% E E[1l(a-105-&,b+105+£) (M6 + )],  since ¢ < L(4_105-g,b+105+¢)
mez

1) 2
<1 “/2(|a — b| + 206 +2¢), byL 6.10
( +|a—b|+206+28) e (la—b| + + 2¢) y Lemma

216 +2
< (Ja—b| +216 +28)e /% < (1 + TS) e 2|a - bl.

Since ¢ is arbitrary, the result follows.

Lower Bound (6.8): Fix an interval (a, b) with length bigger than some L > §(f). Recall that |b | are uniformly
bounded and that by = by (X, Xny+1). Choose some K so that Pllby]| < K] = 1. Since P[X; = x] = 1,
P.llbnl < K] =1. B

Next, divide [-K, K] into k disjoint intervals / .~ of equal length 271{, with k large. For each N,

1
D, Bdbwelinlzi-o
Px[bn €lj,n]12k2

because to complete the left-hand-side to one we need to add the probabilities of [by € I; ] for the j such that
Pilby € iyl <k and 1< j<k.

Therefore, we can divide {/; 5} into two groups of size at most k: The first contains the /; 5y with Px[by €
Iin] 2 k2, and the second corresponds to events with total probability less than or equal to %

Re-index the intervals in the first group (perhaps with repetitions) in such a way that it takes the form I;
(j=1,...,k)forall N.Foreach 1 < j <k, let

Wi n = {y € Sn41:bn(x,y) € [N}

These are regular sequences of events, because by the assumption P[X; = x] = 1, P[Xy4+1 € Ujn] =
Pelbn (X1, Xn41) € Lin] 2 k72

Let Bj,n := center of I;  and set z; v := zy — Bj n. Every sequence has a subsequence such that z;
converges mod 0Z. We will henceforth assume that z; v = Z; y + {0 + {; v Where Z; y € 6Z and |{; n]| < E/k,
and |{p| < § is fixed.

Recall that |I; n| = Zf/k. Conditioned on A; n, by = B; N + % therefore 7; v + {o + by = zn + 3TK 1t

follows that if Sy — Zjn — by € (a + Zo + 3K, b+ £y — 3K), then Sy — 2y € (a, b).
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There is no loss of generality in assuming that a + o + Q’TK are not atoms of the distribution of &, otherwise
perturb K a little. Since A j,n is aregular sequence, we have by Theorem 6.3(2) and Lemma 6.10 that

111{]ninf 2rVNPx(Sy — zn € (a,D)| XN+t € UjN)
> lim inf 27V Bo(Sy ~Zjnw — by € (a + Lo+ 3K bt o — )| Xns € W n)

— sa-22/2 s 6K \a—2/2
=0 Y Eall 0 % gy M+ 2 (1= 2) (la = bl = §)e =72,

mezZ
We now multiply these bounds by Px[Xx+1 € U; n] and sum over j. This gives

k
lim inf 27V By (IS = 2v € (@ 010 _JiXn11 € Ww])

j=1
> (1-2)(la-bl - K)e =2 (1-1).

Passing to the limit k — co, we obtain

5
li]{,ninf \27VNPy ([Sy — 2N € (@, b)]) = (1 - Z) e 22| - b|.

Proof of Equation (6.9). Let A be the positive functional on C. (R) defined by (6.4), and let u# be the Radon

measure on R which represents A.

0,L
Clearly, u# is invariant under translation by 6 = 6(f). By Lemma 6.10, Llim % = 1. Necessarily, for

each a, ugla,a + 6) =9, and
Yk e N ug(la,a+ ko)) = ko. (6.46)

Given k6 < L < (k+1)¢ and an interval (a, b) of length L, take two intervals I, I" suchthat I~ C (a,b) C I*,
Ha@I7) = pua(@It) =0, |I7| = k6, [I"| = (k + 1)6. Choose ¢, ¢* € C.(R) such that 1;- < ¢~ < 1[4 <
¢+ < 11+.

By Theorem 6.3, for large N, ezz/zv27rVN]P(SN — zn € (a, b)) is sandwiched between A(¢~) and A(¢")
which in turn is sandwiched between ux(I7) = k6 and ug(I*) = (k + 1)5 (see (6.46)). The proof of the
theorem is complete. o

6.2.5 Universal Bounds for Markov Arrays

The proof in the last section uses Theorem 6.3, and is therefore restricted to Markov chains. We will now consider
the more general case of arrays.

Theorem 6.11 Let X be a uniformly elliptic Markov array, and f an a.s. uniformly bounded additive functional
zn—E(SN)

which is stably hereditary and not center-tight.! Suppose r oo ¢ € R. For every L,e > O there is
N —00
Ne(L) > 0 such that for every [a, b] C [-L, L] such that |a — b| > 26(f) + €, and for all N > N¢(L),
2 2
1{eZ2la=b 2 2)1q— b
Z Lal <P(Sy —zn € (a,b)) <3 w
3 V27TVN V27TVN

Remark. Recall that 6(f) < 6ess sup |f|. Hence the theorem applies to every interval with length bigger than
13ess sup |f].

! In particular, the theorem applies to all a.s. uniformly bounded additive functionals on uniformly elliptic Markov chains, assuming
only that Vy — co.
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The upper bound in the Theorem 6.11 holds in much greater generality, for all sequences zx, and without
assuming that f is stably hereditary or non center-tight:

Theorem 6.12 (Anti-Concentration Inequality) For each K, €y and € there is a constant C* = C*(K, €q, {)
such that if f is an additive functional of a uniformly elliptic Markov array with ellipticity constant €y, and if
Ifl < K a.s., then for every N > 1, x € GiN), and for each interval J of length ¢,

*

P, (Sny €J) <

N

Recall that by our conventions, the Fourier transform of an L' functiony : R — R is y(x) = f_”; e ¥y (1)dtr.
Fix some b > 0, and let

sin(bx) )
. )

Yo (t) := %1[—&1)](0, i (x) = zlb (

Lemma 6.13 1 < z,bb(x) < —for x| < — 2b and Iwb(x)l < 1 for |x| > %

Proof The function t,bb (x) is even, with zeroes at z, = nn/b, n € Z \ {0}. The critical points are cp = 0
and +c,, where n > 1 and ¢, is the unique solution of tan(bc,) = bc, in (zn, Zn + 2’;) It is easy to see that
= 2n + 35 —0(1) as n — co, and that sgn[%(cn)] = (=D, |$b<cn>| < 3h Unlen) ~ G asn - oo,
So l//;, attams the global maximum l//;, 0) = at co, and |¢,//b O < 5, everywhere on [n/ b 7T(}’l +1)/b]. In
particular, Ic,lrb (t)l< 1/2 for |t| > 7r/lg\. _ R
On (0,7/b), Y, decreases from ¥, (0) = 7 to ¢ (%) = 0, passing through ¥, (55) = 1. It follows that
1< wb <z 7 on (0, 2b) and |le(¢)| < 1fort > %. The lemma follows, because fﬁb (-t) = Jb(t). O

Lemma 6.14 There exist two continuous functions y1(x),y2(x) such that supp(y;) € [-2,2]; y1(0) > %
¥2(0) < 3; and y1(x) < lj_z 7(x) < 72(x) (x €R).

Proof Throughout this proof, z//*” = ke (n times), and * denotes_the convolutlon Let v, (1) :=
1@ = w32(0)]. Then ¥ (x) = 4[w L (x)* - lﬁ (x)?]. By Lemma 6.13, 1 < wl < % on[-n, 7] and |zﬁ§| <1

2 2
outside [—m, ]. So

) < i G0 =) - l (5 -G)] <

max y(x) < max (y -y ) =
[x|zm yl<

S0 ¥1(x) < lj_g ) (x) forall x € R.
It is obvious from the definition of the convolution that supp(y;) C [-2,2].
Here is the calculation showing that y;(0) > %:

2 2

W2)(t) = @< bl * Lpp)) (1) = 1271 aban) (2B = [2]):
WihH0) = W = y;2)(0)
B 7T4 2b 2. 71_4 2b 2 7T4 (2]9)3 B 71.4
= 2560t )y 0TI T gy GO T g TS T s
Sout(0) = =, U0 = z andy;(0) = (& - 2 >
Next we set yz(t) = (zpl * w )(t) = 72 1—1,11(®) (1 = [¢]). Then supp(y2) = [-1,1] and y»(0) = 7 < 3.

Finally, ¥2(x) > 1|z 1(x), because by Lemma 6.13,
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e Y(t) = (J% )2(x) > 1 forall |x| < 2L1 =, and (trivially)
2

* P20) = (F)*(x) 2 Oforall [x| = . .

Lemma 6.15 For every a > 1, zy € R and xiN) € Sy, we have

2n/a )
Bw(Sy —anlsa) 2 & f E, i (e €ON Ty, (4£) dg, (6.47)
! T J-2rn/a 1
a 2n/a )
P.n(ISy —zyl <a) < = f E v (e 6Ny, (4£) de. (6.48)
1 T J2n/a !
. —~ (7t (7t
Proof Let y;(t) be the functions from Lemma 6.14, and set I := [—a, a], then ¥ (;) < 1;(t) £ (z) .

Therefore, for every choice of xiN ) e 6§N ) (N =>1),

 (7(Sy —z
PX{N)(SN —wvel= ExiN)[ll(SN -zn)] 2 Efo) [71 (—( Na N))

=E.m U e_ig(s”‘z”)m(r)df]zf B v (€7 NN )y (1)

Recalling that supp(y1) C [-2, 2], and substituting t = a&/n, we obtain (6.47). The proof of (6.48) is similar.00

Lemma 6.16 Under the assumptions of Theorem 6.11, if G.ss(X,f) = Z and %\ﬁf”) converges to a real
number z, then for every a > 1

2n/a
v | EX§N>(e—if<SN‘ZN’m(%)dém\/2ne‘%*%(0).
—2n/a

Moreover, the convergence is uniform on compact subsets of a € (1, ).

Proof. In what follows we fix i € {1,2}, and let y(&) :=y; (E) Divide [- £, 2] into segments /; of length at

b4 a’ a

most 3, where ¢ is the constant in Lemma 5.8 and Corollary 5.10, making sure that Ij is centered at zero. Let

Jin = f E, v (€ €N TNy (£)de.
L !

Cram 1. VN Jo.N = V2re %' 2y(0).

Proof of the Claim. The proof is similar to the proof of (5.28), and we use the notation of that proof. Applying
Corollary 5.10 to the interval Iy, and noting that Ay (Ip) = 0 and &y = 0, we find that [E () (e7i€BN-zv)y| <
1

Cexp(—€£2Vy).
N f
[Eelp: &>

SoforR > 1,
Similarly, for all N large enough,

/ R _inSNZN
K f B (e7E VTN 7(§)d§=f B (e K )V(L)dnz
N [Eelylgl<—R=) T ( ) RN N7

VN

. Bam €Oy (6)de = 0.
_R 1
V|

j
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R —in SNESN)Y -y, iNESN) 1 R 2.
f E ) (e VVN )e VN oy (\/]TL) dn = f e 2T 12y (0)dn+0oN (1) uniformly on compacts
N -R
(6.49)

=V27e 727 1(0) + 0R 00 (1) + 0N 00 (1).
Let us justify the equality (6.49). Arguing as in the proof of (6.20), one shows that |[E(Sy)—E ) (Sy)| = O(1)
1
and Var(SNIXl(N) = xiN)) ~ Vpn, therefore
v —E(Sy) v —En(Sn)

R
VW JVar(Snlx™ = x(V)

— Z.

(6.49) follows from Dobrushin’s CLT for Y, := X, conditioned on XN = x§N ),
In summary, \Vy Jony = V2ne_%zzy(0) + 0R>00(1) + 0N (1). Fixing R, we see that lim sup vV Jo ny and
lim inf yViy Jo_v are both equal to V27re 2% y(0) + 0g oo (1).

1
Passing to the limit R — oo gives us that the limit exists and is equal to V2ﬂe‘izzy(0). The convergence is
uniform on compact subsets of a.

Cram 2. VVnJj N o 0 for every j # 0.
Proof of the Claim. Since G4 (X, f) = Z, the co-range is H(X,f) = 2xZ. So

I; C [-2Z&, 25 \ int(/p) C a compact subset of R\ H(X;f).

This implies by the stable hereditary property of f that Dy (&) oo uniformly on /;, whence by (5.18),
|E ) (e 1SN =2y 2 0 uniformly on /;.
1 —00 :

Let A;y := —log{sup [E,(e7$GEN=2N)| ¢ (x,&) € GI(N) x I;}, then A; — and this divergence is

uniform for a ranging over compact subsets of (1, ).
From this point onward, the proof of the claim is identical to the proof of (5.29). We omit the details.

27 2n
a’ a

The lemma follows by summing over all subintervals /; in [ ], and noting that the number of these

intervals is uniformly bounded (by 1+ ‘%”) . O

Proof of Theorem 6.11. If G.;,(X,f) = R then the theorem follows from the LLT in the irreducible case.
Otherwise (since f is not center-tight), Gess(X,f) = ¢Z for some ¢ > 0, and there is no loss of generality in
assuming that G 4 (X, f) = Z.

In this case our interval I := [a, b] has length bigger than 2. Notice that we can always center / by modifying
zn by a constant. So we may take our interval to be of the form I = [—a, a], with a > 1.

Lemma 6.16, (6.47), (6.48), and the inequalities y;(0) > % and y,(0) < 3 imply that for every choice of

{xiN) }n>1, for all N sufficiently large,
L 2p Il —2p
= e " <P mNy—-zvel) L3 e /e, (6.50)
3 VoW AN V2iVn
Thus we have proved the theorem for all Markov arrays with point mass initial distributions. By Lemma 2.27,
the theorem follows for general arrays. O

Proof of Theorem 6.12. It is sufficient to prove the theorem for N such that Vi > 1. If Viy < 1, the theorem
holds (trivially) provided that C* > 1.

It is also sufficient to prove the result for intervals J with length 4, since longer intervals can be covered by
no more than |J|/4 + 1 such intervals. Thus J = ¢ + [-2,2] and { :=center of J. By (6.48) (with a = 2 and

v =),
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2 T
By € ) < Iyl f D (x, )] dé.

To prove the theorem, we need to bound the integral from above.

The argument is similar to the previous proof, except that we cannot assume that G4 (X, f) = Z or Vy — oo,
and we must pay closer attention to the uniformity of the estimates in N (the statement in Theorem 6.12 is for
all N, not just for N > 1).

Recall the notation

An(I) = =logsup {|Oy (x, )] : (x.£) € 8™ x 1},

and let (xn (1), EN(I)) elx GiN) be a pair where

AN (D] < —log |®y (Xn (1), En(D))] + log 2.

By Lelnma 5.8 and Corollary 5.10, there are constants g 5 g,¢ > 0 which depend only on €y and K, so that if
[I] < 6, then for all (x, &) € S{N) xIand N,

D (x, )] < Cexp (—8 Viv(€ = En (D) + €€ = En(DINVNAN (D). 6.51)

We now divide [—x, 7] into no more than 47/ S + 1 intervals of length at most s, /2. We claim that for each
interval [ in our partition, f [D(x, &)|dE < const.VA_,l/ 2,
I
To prove this we consider two cases.

(1) Suppose A(I) < 1,then I C [En(J) — 6/2, En(J) + 6/2], and by (6.51),

o2 B
f(DN(x, &)|d¢ < Cf e—Wzvé,”-rdf\\/de < COHS’[.VA_]I/z,
1 -5/2

with the constant only depending on £ and ¢, whence only on K and €.
2) fAn(I) = 1,then (5.30) (with R = 1) gives f |On(x, &) |d§§c0nst.V]§] /2 with the constant only depending
I
on K and €.

Summing over all intervals I, and recalling that there are at most 47r/g + 1 such intervals, we obtain
f_’; | D (x,8)|dé < const.Vl;l/ 2 with the constant only depending on €y and K. As explained at the begin-
ning of the proof, this implies the theorem. O

It is interesting to note that the anti-concentration inequality could be used to provide a different justification
for Stone’s trick of using ¢ € L! with Fourier transform with compact support in the proof of the LLT (see
§5.2.1).

Namely let f be an irreducible additive functional with algebraic range R, such that E(Sy) = O for all N.
Approximating 1, 5] from above and below by compactly supported functions we see that the LLT follows if
one could show that

1 2
tim \TE @Sy - ) = <=¢ 7 [ g(0ds (6.52)
N—oo V2r R
for each C? compactly supported function ¢ and every sequence z such that I\}im % = z. Fixasmalle > 0
—00 N

and let ¢ be a function such that the Fourier transform of ¢ has compact support, fR ¢ (x)dx = fR ¢(x)dx and 2

2 To find such a function take a large L and define ¢ by the condition that the Fourier transforms of ¢ and ¢ are related by
B(&) = G(&)xr (&) where yy. is smooth, xr.(£) = 1 on —[L, L], 0 < x1.(£) < 1 for [£] € [L, L + 1], and x7.(£) = O for

- 1
& ¢ [-(L+1), L+1]. To verify (6.53) we use the Fourier inversion formula, and the obvious inequality |/ (£)| < ? f [ (x)]dx.
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£
1+ x2

[6(0) = o(x)] < (6.53)

Combining (6.53) and Theorem 6.12 we get

P(Sy —znl € [j.j + 1)

T 72 <2C’e
J

[E (6(Sn = 2n) = 8(Sw = 2w))| < si

j=0

where C* is the constant obtain by applying Theorem 6.12 with £ = 1.

Since ¢ is arbitrary, we see that to prove the LLT, it is sufficient to show (6.52) for all ¢ with compactly
supported Fourier transform. This justifies “Stone’s trick." We will meet this idea again, when we discuss large
deviations, see §7.3.8.

6.3 Notes and References

Theorem 6.3 extends an earlier result for sums of independent random variables, due to Dolgopyat [56]. In this
case, one can take by to be constants, see Theorem 8.3(2b) and the discussion in §8.2.

The connection between the LLT and mixing mod ¢ LLT was considered for sums of independent random
variables by Prokhorov [163], Rozanov [169], and Gamkrelidze [76].

As far as we know, the first paper devoted to the perturbative analysis of non stationary product of transfer
operators is due to Bakhtin [12].

The study of the concentration function An (h) = supP(Sy € [x, x + h]) goes back to works of Paul Lévy
x€R
[130] and Wolfgang Doeblin [53]. The idea to use the characteristic function to study this function is due

to Esseen [71, 72]. We refer the reader to [156, Chapter III] for a detailed discussion, and the history of the
subject. Our proof of the anti-concentration inequality (Theorem 6.12) follows [156, Section III.1] closely. [156]
considers independent random variables, but given the results of §5.2.2, the argument in the Markov case is
essentially the same.

For long intervals, the universal bounds in §6.2.4 and 6.2.5 can be obtained from the a Berry-Esseen Estimate
for the rate of convergence in the CLT. Suppose we could show that AL s.t.

Sy —E(S 1 z
sup P(N—(N) < Z) _ _f e_tz/zd[
VVN V27T —00

zZ€R

L
< —.

VW

Then dM such that for all |a — b] > M, if % — z, then for all N large enough, P[Sy — zny € (a,b)]
e 2la - bl
vV 2 VN

For the additive functionals considered in this monograph the Berry-Esseen estimate has been obtained in
[59] using the results from Chapters 3—5. The Berry-Esseen approach has the advantage of giving information
on the time N when the universal estimates kick in, but it only applies to large intervals (the largeness depends
on the bound on sup || f || but it does not take into account the graininess constant 6(f)). By contrast, the results

k

equals up to bounded multiplicative error.

of §6.2.5 apply to intervals of length larger than 6 (f), which is optimal, but do not say how large N should be for
the estimates to work.



Chapter 7

Local Limit Theorems for Moderate Deviations and Large
Deviations

Abstract We prove the local limit theorem in the regimes of moderate deviations and large deviations. In
these cases the asymptotic behavior of P(Sy — zny € (a, b)) is determined by the Legendre transforms of the
log-moment generating functions.

7.1 Moderate Deviations and Large Deviations

Suppose f is an irreducible and a.s. uniformly bounded additive functional on a uniformly elliptic Markov chain
X. Let

Sy = filX1,X2) +- -+ fn(Xn, Xn+1), Vv i= Var(Sy),

and suppose Vy — oo.

In the previous chapters, we analyzed P(Sy — zy € (a,b)) as N — oo, in the regime of local deviations,
%\/ﬁm — const. In this chapter we consider the following more general scenarios, which include cases when
N *E&N)

VN

(1) Moderate Deviations: zy — E(Sy) = o(Vn),

— 00;

(2) Large Deviations: |zy — E(Sy)| < €V for some € > 0 small enough.

We should explain why we did not define the large deviations regime by the more natural condition that
lzzv —E(Sn)| = €V for some € > 0. We should also explain the role of the upper bound on |z — E(Sn)|/ V.-

The decision not to impose a lower bound on |zy — E(Sy)|/Vy is mainly a matter of convenience; It allows
us to view moderate deviations as a special case of large deviations, and handle the two regimes simultaneously.
The decision to impose an upper bound on |zy — E(Sy)|/Vn reflects a limitation of our methods: We do not
know how to handle the degeneracies which may occur when &)\(]SN) is “too large." Let us indicate briefly
what could go wrong in this case.
The most extreme scenario is when %)\(]SN)NN, where eresswp‘z,ﬂ. In this case, P[Sy —zn € (0, 0)]=0
for all N. A more subtle degeneracy may happen when %ISSN) falls near the boundary of the domain of the

Legendre transform of (1) := % log E(e! SN "E(SNM))) (Legendre transforms are discussed in §7.2.2.). The
following example shows that in this case, the probabilities P[Sy — zny € (a, b)] may be so sensitive to z,, that

M @ Z§ -E(Sn)

N 2N with the same limit lim v

—00

they could have different asymptotic behaviors for z

Example 7.1 Let Sy := X; +- - -+ X, where X; are identically distributed independent random variables, equal
to —1, 0, 1 with equal probabilities.

Here E(Sy) = 0, Vy = 2N/3, and the Legendre transforms of the log-moment generating functions have
domains (-3, 3). Clearly: if zy = N, thenP[Sy—zy € (0,2)] = 0;if zy = N-1,thenP[Sy—zn € (0,2)] =37V,

115
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if zv = N =2, then P[Sy — zny € (0,2)] = 3"V N. In all cases, % - % but the asymptotic behavior of
P[Sny — zn € (0,2)] is completely different.

The assumption that |z — E(Sy)| < €V with £ “small enough" guarantees that %}\(}SN) falls “well inside"
the domain of the Legendre transform of .7, and this prevents these pathologies. A detailed discussion of the
sequences {zy} to which our results apply appears in Section 7.4.

It is instructive to compare the regime of large deviations to the regime of local deviations from the point of
view of universality.

In the regime of local deviations, the asymptotic behavior of P[Sy — zn € (a, b)] does not depend on the
details of the distributions of f, (X}, X,+1). It depends only on rough features such as Var(Sy), the algebraic
range, and (in case the algebraic range is tZ) on the constants cy s.t. Sy € ¢y + Z almost surely.

By contrast, in the regime of large deviations the asymptotic behavior of P[Sy — zn € (a, b)] depends on the
entire distribution of Sy. The dependence is through the Legendre transform of log E(e’SV ), a function which
encodes the entire distribution of Sy, not just its rough features.

We will consider two partial remedies to the lack of universality:

(a) Conditioning: The distribution of Sy — z,, conditioned on Sy — zx > a has a universal scaling limit, see
Corollary 7.10.

(b) Moderate Deviations: If |zy — E(Sny)| = o(Var(Sy)), then P[Sy — zy € (a, b)] have universal lower and
upper bounds (Theorems 7.5 and 7.6).

7.2 Local Limit Theorems for Large Deviations
7.2.1 The Log Moment Generating Functions

Suppose [f| < K almost surely. For every N such that Viy #0, we define the normalized log moment generating
function of Sy to be

1
Fn(€) = WlogE(efsN) (£ €R).

The uniform boundedness of f implies the finiteness of the expectation, and the real-analyticity of Fx (£) on R.

N
Example 7.2 (Sums of IID’s) Let Sy =Z X,, where X,, are iid bounded random variables with non-zero

n=1

variance. Let X denote the common law of X,,. Then Fy (£)=Fx (.f)::Var 59 log E(efX), forall N. Clearly,
(i) Fn(0) = 0, F (0) = E(X)/Var(x) and F,/(0) = 1. (ii) Fy (£) are uniformly strictly convex on compacts.

These properties play a key role in the study of large deviations for sums of i.i.d. random variables. A significant
part of the effort in this chapter is to understand to which extent similar results hold in the setting of bounded
additive functionals of uniformly elliptic Markov chains. We start with the following facts.

Theorem 7.3 Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic Markov chain X, and
assume Vy # 0 for all N > Ny. Then:

(I)VN > Ny, Fn(0) =0, Fn(0) = and £/ (0) = 1. (2) VN = No, Fn (&) is strictly convex on R.
N
(3) The convexity is uniform on compacts: For every R > 0 there is C = C(R) positive such thatforall N > Ny,

E(Sn)

C' <FV(E < Con[-RR].
(4) Suppose Vy — oo. Ve>0 36, Ne>0 such that for all |é] < 6 and N > N, we have e™¢ < F/(€) < e,

2 E 2
and e™€ (%) < FN(E) - %f <ef (%) )
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This is very similar to what happens for iid’s, but there is one important difference: in our setting, Vy may be
much smaller than N. For the proof of this theorem, see §7.3.5.

7.2.2 The Rate Functions

Suppose Vv # 0. The rate functions 7 (7) are the Legendre transforms of Fy (&). Specifically, if ay :=
irglf?}}(f) and by = sup Fy (£), then Iy : (an,by) — Ris
&
In(n) = &n — Fn (&), for the unique & s.t. F (€) = 7.

The existence and uniqueness of & when i € (an, by) is because of the smoothness and strict convexity of F
on R. We call (ay, by) the domain of 7, and write

dom(Zy) := (an, bn).

Equivalently,
dom(Zy) = (F' (=), F'(+0)), where F'(+0) := zEer F'(1).

Later we will also need the sets (aR, bR) c dom(Zy), where R > 0 and
al .= Fy(-R), bR = FL(R). (7.1)

The functions 7 and their domains depend on N. The following theorem identifies certain uniformity and
universality in their behavior.

Theorem 7.4 Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic Markov chain X, and
assume Vy # 0 for all N large enough, then:

(1) dc, N1, R > O such that for all N > Nj,

EGSy) _  EGN) |

dom(7 R bR ,
om(Iy) D [ay, byl D Vn Vn

(2) For each R there exists p = p(R) such that for all N > Nj,

p !t <IY < ponlaX,bR1

(3) Suppose Viy — co. For every € > 0 there exists 6 > 0 and N such that for all n € [w -0, EGn) 4 0]
77 N

VN Vv,
and N > N,

%1( Emez
el _

B\’
2\"T Ty ‘

1
< < €_
<In(m) se (n Vo

2

(4) Suppose Viy — oo and %f”) — 0, then

av) _ L+o() (v —E(Sn))’
VNIN (W) = 3 ( \/W ) as N — oo.

The proof of the theorem is given in §7.3.6.
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7.2.3 The LLT for Moderate Deviations

Theorem 7.5 Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic Markov chain X.
Suppose f is irreducible with algebraic range R. If zy € R satisfy W — 0, then for every non-empty
interval (a, b), when N — oo,

la — bl

P[Sy —zn € (a,b)] = [1 + o(1)] o exp (—VN[N (%)),

—b 1+o(1 —E(Sn) |
P[SN—zNe(a,b)]=[1+o(l)]laﬂvllex - +;()(ZN\/%N))].

Theorem 7.6 Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic Markov chain X.
Assume f is irreducible with algebraic range Z, and Sy € cy +Z a.s. If zy € cN + Z and %)\(]SN) — 0, then

. [+o()] ~ N
P[Sy = zn] = —27TVN exp( VnIn (_VN )) )
[1+o0(1)] 1+0(1) (zy —E(Sn) )
P = = — - — — 00,
[Sy = zn] Ve exp 3 ( o ) } as N

We will deduce these results from the more general Theorem 7.8, below.

Remark. The first asymptotic relation in Theorems 7.5 and 7.6 is not universal, because of the dependence on
Iy . The second asymptotic relation is universal, but it is not a proper asymptotic equivalence because of the
o(1) in the exponent.

The following result provides less information than Theorems 7.5 and 7.6, but requires no irreducibility
assumptions:

Theorem 7.7 Suppose f is an a.s. uniformly bounded additive functional on a uniformly elliptic Markov chain

- E(S
X.IfVN—>oo,thenf0rallo<a/<%andt<>0,iszVJ~KV,:,"asN—>oo,then
N
li log P[S > 0] L2
im 0 - =—=kK".
N—)ooVI&]_h’ & N N = 2K

Proof There is no loss of generality in assuming that E(Sy) = O for all N. Let a, = V)™2? b, = V2,
Wi 1= Sp/bn. Then a, — co, and lim ai log P[S, — 2, > 0] = lim ai log P[W,,/a, > & +o0(1)]. By Theorem
7.3(4), nh_r)lgo t log E(et"r) = r}grgo V,f"?r‘l'N(Vig) = %52. Thus, by the (;'airtner-Ellis Theorem (see Appendix A),
lim L log P[2 > k + o(1)] = - 342,

n—o0

O

7.2.4 The LLT for Large Deviations

Recall that (aR, bR) := (Fy(-R), 7, (R)) € dom(Zy). It is convenient to define

R = E(S E(S
[(Is’bg] = a§ _ ( N)’bg _ ( N)
\%N; Vn

Theorem 7.8 Let f be an a.s. uniformly bounded, irreducible, additive functional on a uniformly elliptic Markov
chain X. For every R large enough there are functions py : [Eﬁ, bg] — RYand &y : [Zig, bﬁ] — Ras follows:
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(1) dc > 0 such that [Zz\llfl, ’l;g] D [—c, c] for all N large enough.

(2) Non Lattice Case: Suppose Ga14(X,f) = R. For every sequence of zy € R such that %}\(]SN) € [aN, ],
and for all finite non-empty intervals (a, b), we have the following asymptotic result as N — oo:
“VNIN(GRD) as ) zN —E(SN))
PSy —zn € (a,D)] =[1 +0(1)] - ————Ia — b| INZON f dr.
N N o (255 |a—m

(3) Lattice Case: Suppose G 15 (X,f) = Z and Sy € cy + Z a.s., then for every sequence of zy € cy + Z such
that 225N ¢ [GR R

1, the following asymptotic relation holds when N — oo:
-VnIN (D)
= € Y v -E(Sn)
BISy = an] = [+ o(D]- — e x py (2752)
(4) Properties of the Error Terms: _
(a) pn (1) are bounded away from 0 and co on [Ziﬁ, bz], uniformly in N, and pn (1) m 1 uniformly in N.

(b) For each R > 0 there exists C = Cr > 0 such that for alln € [52, Zﬁ] and N, C'n| < 1én ()] < Clnl
and sgn(£(n)) = sgn(n).

Warning. pn depends on the initial distribution.
Theorem 7.8 assumes irreducibility. The following coarser result, does not:

Theorem 7.9 Suppose f is an additive functional on a uniformly elliptic Markov chain X such that K :=
ess sup [f| < oo, and suppose Viy — oo. For each €, R > 0 there is D(g, R, K) and Ny such that for all N > Ny,
yf‘z,—’l‘\’] € [Fy (&), Fp (R)], then

D7 vnin() P(Sy = zn) < D vwin(),

V' N7

Theorem 7.8 is proved in §§7.3.1-7.3.7. Theorem 7.9 is proved in §7.3.8.
To assist the reader to digest the statement of Theorem 7.8, let us see how to use it to obtain Theorems 7.5
and 7.6 on moderate deviations.

Proof of Theorems 7.5 and 7.6: Fix R > 0, and suppose “525%) — (. By Theorem 7.8(1), 22580 ¢
[aR, Eﬁ] for all N large enough. By Theorem 7.8(4), pn (%;SN)) — 1, &n (%}\(ISN)) — 0 and
zN—E(SN)

ﬁ fb eV dr — 1. Thus by Theorem 7.8(2), if G414 (X,f) = R, then

a

P[Sy — zn € (a, b)] ~ 17% exp (—VNIN (‘Z/—Z)) .
N

2 2
By Theorem 7.4(4), Vi I (‘Z/_N)~l (M) Hence P[Sy—zn € (a, b)]~ la — b exp (_1 +o(1) (Zn —E(SN)) )
N

AR V2aVn 2 VVn
This proves Theorem 7.5. The proof of Theorem 7.6 is similar, and we omit it. O

Corollary 7.10 Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic Markov chain.
Suppose f is irreducible, with algebraic range R.

(1) I %ﬁs’\’) — 0, then for any finite non empty interval (a, b), the distribution of Sy — zn conditioned on
SN — zn € (a, b) is asymptotically uniform on (a, b).
(2) If liminf %ﬁsm > 0 and there exists R such that %}\(JSN) € [aR bR ] for all sufficiently large N, then

the distribution of &N (%ﬁ/s”)) - (Sny — zn) conditioned on Sy > zy is asymptotically exponential with
parameter 1.
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Remark. Condition (2) holds when lim inf %;SNBO, and lim sup %}\(f”BO is small, see Theorem 7.8(1).

Proof To see part (1), note using Theorem 7.8(4) that if %)\(]SN) — 0, then &y = §N(%§S”)) - 0,
whence I# ff e 'eNdr o 1 for every non-empty interval (e, 8). Thus by Theorem 7.8, for every interval

P[Sy —znv € (c,d)]  |c—d|
d] c [a,b], lim the prefactor
led) < b i e e ] = Ta— By (e PR
To see part (2), note first that our assumptions on zy guarantee that £ = &n
from zero and infinity, and that all its limit points are strictly positive.

Suppose &y, — €. Then arguing as in part (1) it is not difficult to see that for all (a, b) C (0, c0) and r > 0,

pn are identical, and cancel out).

(%)\(]Sm) is bounded away

lim Plén, (Sn, —zny) € (a+1,b+71)|Sh, > zn, ] e
k—co Plén, (Sn, — zny) € (a,D)|Sn, > 2w ] ’

Since this is true for all convergent {¢y, }, and since any subsequence of {£} has a convergent subsequence,

limi PlEN(Sn —zn) € (a+r,b+1)|Sy > zv]
iminf =e
Noowo Py [én(Sn —zn) € (a,D)|SN > zn]

, Plén(Sy —zn) €(a+r,b+71)|Sy > zn]
lim sup =e,
Nooo Plén(Sy —zn) € (a,b)|Sy > zn]

. PlEN(SN —zn) €@+, b+71)|SN > zn]
and so lim

N—eo PlEN(Sn —2zn) € (a,b)|Sh > zn]
is asymptotically exponential with parameter 1. O

=¢™". Thus, conditioned on Sy > zn, En(Sy — ZN)

Corollary 7.11 Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic Markov chain.
Suppose f is irreducible, with algebraic range Z, and cy are constants such that Sy € cy + Z a.s. Suppose
ZIN € ey +2Z (1) If %}\(’S’V) — 0, then for any a < b in Z, the distribution of Sy — zn conditioned on
SN — zn € la, b] is asymptotically uniform on {a,a + 1, . . ., b}.

(2) If lim inf%}ism >0, &y (%)\(]SN)) — &, and there exists R such that M aN, R1 for all

sufficiently large N , then (Sy — zn) conditioned on Sy > zn is asymptotically geometrlc with parameter ™% .

The proof is similar to the proof in the non-lattice case, so we omit it.
It is worth noting the following consequence of this result, which we state using the point of view of §5.2.3.

Corollary 7.12 Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic Markov chain.
Let zny be a sequence s.t. for some R, &A(ISN) € [aR bR] for large N. Let {N be the Radon measure
IN(@P) = B(d(Sn — zn)) Let { be a weak limit of {gn{n} for some sequence qn > 0. If f is irreducible then
has density c1€?" with respect to the Haar measure on the algebraic range of f for some ¢ € Ry, c; € R.

If the restriction %}\(]SN) € [ERX,, Zﬁ] is dropped, then it is likely that £ is either as above, or an atomic measure

with one atom, but our methods are insufficient for proving this.

7.3 Proofs

In this section we prove Theorems 7.3, 7.4 on the behavior of 7, and Iy as N — oo, and Theorems 7.8 and 7.9
on the LLT for large deviations.

We assume throughout that {X,,} is a uniformly elliptic Markov chain with state spaces S, and transition
kernels 7, ,4+1(x, dy), and suppose uy are the measures ux (E) := P(Xy € E). Letf = {f,,} be an a.s. uniformly
bounded additive functional on X. Let €y denote the ellipticity constant of X, and let K = ess sup [f|.
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7.3.1 Strategy of Proof

The proof is an implementation of Cramér’s “‘change of measure'' method.
We explain the idea. Let zy be numbers as in Theorem 7.8. We will modify the transition kernels of X = {X,}

to generate a Markov array X = {3(',(,N)} whose row sums §N = f1 (j('fN), )FK'Z(N)) +o 4 N (X'I(VN), X'IQJN) ) satisfy

+1
lzn — E(§N)| < const. (7.2)

(7.2) places us in the regime of local deviations, which was analyzed in Chapter 5. The results of that chapter
provide asymptotics for P(Sy —zn € (a, b)), and these can be translated into asymptotics for P(Sy —zn € (a, b)).

The array X will have state spaces G\¥) := S,,, row lengths N + 1, initial distributions 7¥)(E) := P[X; € EJ,
and transition probabilities

7N = aENFi(xY) +1 .
nn,n+1 ()C, dy) =€ ePn(fN)hn (X, gN) Tn,n+1 ()C, dy)7 (73)

where the real parameters £ are calibrated to get (7.2), and the positive functions %, h, and the real numbers

pn are chosen to guarantee that f 7??11\2 (xdy) = 1.

The value of &) will depend on %)\(]SN). To construct £ and to control it, we must know that ‘Z/—II‘\’] belong
to a sets where ¥ are strictly convex, uniformly in N. This is the reason why we need to assume that AR s.t.
%)\(f”) € [Zif,, bﬁ] for all N, a condition we can check as soon as IWI < ¢ with ¢ small enough.

We remark that the dependence of £ on N means that {)?le )} is an array, not a chain. The fact that the
change of measure produces arrays from chains is the main reason we insisted on working with arrays in the first
part of this work.

7.3.2 A Parameterized Family of Changes of Measure

Let éx be arbitrary bounded real numbers. In this section we construct functions hf” () = hg(-,€én) and

~(N)
T+

pn(én) € R so that the measures 7" ", (x,dy) in (7.3) are probability measures. In the next section we will

choose specific {£x} to get (7.2).

Lemma 7.13 Given ¢ € R and a sequence of real numbers {a, },en, there are unique numbers p,(¢) € R, and
unique positive h, (-, &) € L*(S,,, B(S,), un) s.t. fs hy (x, &) py (dx) = exp(a,é) for all n, and for a.e. x

hn (y, f)
Efn(x,y) +1 —
Lnﬂ © ePn(-f)hn(x, f) ﬂ-"’"‘*'l(x’ dy) . 74

We will sometimes write hﬁ(') = hy, (- €).

Remark. 1f {ﬁn(~, &)}, {p, (&)} satisfy the Lemma with a,, = 0, then the unique solution with general {a,} is
given by _
B (&) i= € Ehy (&), pu(é) = Py (€) — ané + api€. (7.5)

Evidently, (4, p,) and (Zn, P,) give rise to the same transition probabilities (7.3). We call {En} and {p,,} the
fundamental solution.

Proof 1t is enough to prove the existence and uniqueness of the fundamental solution, so henceforth we assume
a, = 0. We may also assume without loss of generality that |£| < 1; otherwise we scale f.
Set V,, := L*(S,, Z(S,), un), and define the operators L;, : V,,41 — V,, by
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(Lsh)(x) = f eI (YY) a1 (x, d). (7.6)

Sn+l
Lf’; are linear, bounded, and positive.
For (7.4) to hold, it is necessary and sufficient that hf(~) := hy, (-, &) be positive a.e., and Li hiﬂ = epn(f)hf.

Positivity may be replaced by the weaker property that hﬁ € L>\{0} and hﬁ > 0. For such functions, since |f| < K
a.s. and X is uniformly elliptic, hf(x) =ePn (5)_p"*'(§)(L£L§+1hi+2)(x) > e P (5)_1’"”(f)_ZKegllhirzlll.
So to prove the lemma it is enough to find p,, (¢) € R and non-negative hﬁ € L>*\{0} such that Lﬁ hi =€ "(f)hf.
The existence and uniqueness of such “generalized eigenvectors" can be proved using Hilbert’s projective
metrics. We recall, briefly, what these are, and refer the reader to Appendix B for more details.
LetC,, :={h €V, :h>0a.e.} These are closed cones and Lﬁ(CnH) C C,. Given h, g in the interior of C,,,

let M = M (h|g) and m = m(h|g) denote the best constants in the double a.e. inequality mg < h < Mg, and set

M(hlg)
m(hl|g)

This is a pseudo-metric on the interior of C,,, and d(h, g) = 0 & h, g are proportional. Also, for all 4, g in the
interior of C,,,

dy(h g) = log( ) €[0,00], (hgeCy).

h gH < ednlh) _ |
— = B et (1.7)
Hfh fgl

Denote Tf = Lfo +1 * Gur2 — Gy By the uniform ellipticity assumption and the bounds ess sup |f| < K
and |£] < 1,
e Keollhlly < Tim(x0) < X ePlIhll (h € Cusa). (7.8)

Sod, (Tfh, 1) < 4K + 3log(1/ep), and the diameter of Tf(sz) in C, is less than A := 8K + 61log(1/€p). By
Birkhoff’s theorem (Theorem B.6), every linear map T : C,;» — C, such that the d,,—diameter of T'(C,4;) in
C,, is less than A, contracts d,, at least by a factor 6 := tanh(A/4) = tanh(2K + %10g(1/60)) € (0,1). Hence

du(TS, W TS, 8) < 0dnsa(hg) (hg € Cus2). (7.9)
Since 6 € (0, 1), {LiLi+1 e Likf] lg,,, }k=1 is a Cauchy sequence in C,, with respect to d,,. By (7.7),

LiLin B 'Li+k—1 1o £
T E z - (k > 1) is a Cauchy sequence in L' (S,,). Call the limiting function #,. Clearly
ILn Ly Ly el

hf has integral one, and hﬁ is positive and bounded because of (7.8). It is also clear that Lihi b =€ hf for

some p, € R. So {hf}, {pn} exist.

The proof shows that the d,-diameter of [ ;5 Lf e Li ke

constant. Since f hg = 1, it is unique. O

1 (Cusk) is zero. So h,gl isunique up to multiplicative

The proof has a useful consequence: For every R > 0, there exists Cp > 0 and 6 € (0, 1) (depending on R)
such that for every |£] < R

¢ X ¢ ¢ N/2 3
dy (L§ - L hS, 0 LY - L3 1) < GNPy (RS, 1) (7.10)

The case when N is even follows from (7.9). The case when N is odd is obtained from the even case, by using
the exponential contraction of Lg e Llf\,, and Proposition B.5, that says that (7.9) holds even when A = co and
0=1.

Lemma 7.14 Let h(-, &) be as in Lemma 7.13. If a, is bounded, then for every R > 0 there is C = C(R, sup a,)
such that foralln > 1, a.e. x € S, and || < R,

hp(x,0) =1, pp(0) =0, C' < hy(x,&) <C and C'<elr@® <C.
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Proof 1t is enough to consider the fundamental solution (a,, = 0); the general case follows from (7.5). So
henceforth assume that f h,du, = 1. Itis also sufficient to consider the case |£| < 1; otherwise, we scale f.
The first two statements (4, (-,0) = 1 and p,,(0) = 0) are because h, = 1 solves (7.4) when & = 0, and the
solution is unique.
Let {5} be the fundamental solution, then in the notation of the previous proof, T2 hi Lo = ePn(E) P& .

By (7.8), e 2Ky < ePn@)Pnni@) pé < e*K ;2. Integrating, we obtain e 2K ¢y < ePn@+Pn&) < 2K e 2 S0,
—4K "3 < hf() < e4K 63 (7.11)

Next, e”© = [ePrhidu, = [L4kS, duy = K ([ e Muns1(x,dy)pa(dy). By (7.11), ePn@ =
et(5K+3|log€o\)_ [}

In the next section we will choose & N to guarantee (7.2). As it turns out, the choice involves a condition on
P (&). Later, we will also need to use p;/(£). In preparation for this, we will now analyze the differentiability of
& S and € o pp(&).

The map & — h;, takes values in the Banach space L™, and we will need the machinery of real-analytic
maps into Banach spaces [49]. Here is a brief review. Suppose X, ?) are Banach spaces. Let a, : X" — 9
be a multilinear map. We set ||a,|l := sup{lla,(x1,....,x )|l : x; € X, ||x;|| < 1foralli}. A multilinear
map is called symmetric if it is invariant under the permutation of its coordinates. Given x € X, we denote
anx = au(x,...,x). A power series is a formal expression Z a,x" where a, : X" — 9 are multilinear

n>1
and symmetric. A function ¢ : ¥ — ) is called real-analytic at x, if there is some r > 0 and a power series

>, a,x", called the Taylor series at x¢, such that 3’ ||a,||r" < coand ¢(x) = ¢(x0) + D, ,>1 an(x —x0)" whenever
[lx — xo]| < 7. One can check that if this happens, then:

1 d
an(X1, ..., Xp) = P

=0 dtn

(xo + Zt,x,) (7.12)

Conversely, one can show that if ) a,,(x — x¢)" has a positive radius of convergence with a, as in (7.12), then
¢ is real-analytic, and equal to its Taylor series at xq, on a neighborhood of x.

th=

Example 7.15 Let ¢ : XXX XR — X be the map ¢(x, y, z) := x—y/z. Then ¢ is real-analytic at every (x¢, Yo, 20)

such that zg # 0, and the coefficients of its Taylor series ¢(x, y, z) = ¢(xo, Y0, 20) + Xy @n(X—X0, Y= Y0, 2—20)"

satisfy [lanll = Ollyoll/Izo™*") + O(n/1z0]").

Proof. f |z — 79| < |zol, then x — yz ' = x —yz;! Z(—l)kzg"(z—zo)k. Letx, := (x;, yi» zi) and (t1, . . ., 1,) € R".
k>0

The series

k+1

(x +Ztl )—x0+Zt1xl Z( Ll (yo+Ztly,)(Zt,zl) (7.13)

converges in norm whenever (t1,...,1,) € A, := [| X1, tizil < |z0l].

In particular, on A,,, this series is real-analytic separately in each #;, and can be differentiated term-by-term
infinitely many times.

To find a,(x,,...,x,) we observe that the differential (7.12) is equal to the coeflicient of #; - - -, on the
right-hand-side of (7.13). So for n > 2,

n
— 1 _ —~
(X x,) = (D" yozg ™Yz (D) " Zym e ZiveZn

where the hat above z; indicates that the i-th term should be omitted. It follows that ||, || = O(||yoll/|zo|™*!) +
O/lzol™). ]
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Lemma 7.16 The functions & +— hi, pn (&) are real-analytic. If a, is bounded, then for every R > 0 there is
C(R, supay) > 0 such that for every |£] < Rand n > 1,

62

hn (-, &) pr

< C(R), H hn (-, &)

< C(R).

)

0

o¢
Proof Without loss of generality, R = 1 and hf are the fundamental solutions (a,, = 0), i.c. f hﬁdun = 1. Fix
£l < landletT, := Tf, hp(+) = hy, (-, &) be as in the proof of Lemma 7.13. Define two Banach spaces:

X = {(Sn)neN

Sy 1 LY (G42) = L™(S,) are bounded linear operators,
“and [|S]] := sup,, [|Sqll <

Y .= {(¢n)nen : @n € L¥(G,), llell := sup [[@nllo < oo}

By (7.8), T := (T,) belongs to X. By Lemma 7.14, h := (h,,), en belongs to Y.
STEP 1. There exists some 0 < § < 1 such that for every (S,¢) € X XY, forall |£| < 1, if ||S—-T|| < 6 and
llo = hll < 6, theninf | [ (Sp@ns2)| > 6.

Proof of the Step. Let C := sup ¢ sup,, 145 |lco. By (7.8), T, |l < M where M := e*K€;%, and by Lemma 7.14,

there is a constant &1 > O so that forall n and |£] < 1, &1 < (T hp42)(x) < 81_1.

Soif ||[S—T]| < é and ||¢ — K| < &, then for a.e. x,

Sn90n+2(x) = (Tnhn+2)(x) - (Tn - Sn)hn+2(x) - Sn(hn+2 - (pn+2)(x)
2 e =T = SIAl =S =TI+ ITIDIA - @ll = &1 = C6 = (6 + M)6.

If 6 is small enough, then S, ¢,.> > ¢ a.e. for all n, and the step follows.

Henceforth we fix § asin Step 1. Let Bs(T) :={S € X : ||[S-T|| < d}and Bs(h) :=={¢p €Y : |l¢ — h|| < d}.
Define

Snon
T Bs(T) x Bs(h) = Y, (S, ) := ((pn - ﬁ) .
n¥n+2 nJpeN

This is well-defined by the choice of ¢, and T (T, h) = 0.
StEP 2. T is real-analytic on Bs(T) X Bs(h).

Proof of the Step. T = ®(YD, 1@ 13 with
e O((p, 0, E)ix1) = (@i — E Win1s e TW : X xY -7, TV(S, ) = ¢;
¢ TP X XY =Y, TA(S, 9) = (Sp@ns2Inaw; T : X XY = €2, TS, ) = ([ (Sn@ns2)dptnInen
We claim that for each i, some high-order derivative of TO js identically zero. Let D be the total derivative,
and let D; be the partial derivative with respect to the i-th variable, then:

o D2YW =0, because YU is linear, so its first total derivative is constant.
o D3Y® =0 Starting with the identity T (S, ¢) = (Spen+2)nen, we find by repeated differentiation that
(D1 YP)(S, 9)(S") = (S @n+2Inez , (DY) (S, ) =0

(D2YD)(S, @) (") = (Su),p)nez . (D3T)(S,¢) =0
(D1D2 YD) (S, )(S", ¢") = (Sp ¢, nez.

We see that all second-order partial derivatives of Y® at (S, ¢) do not depend on (S, ¢). Therefore D>T®?
is constant, and D3Y® = (.

e D37 =0, because TY® = L o Y@ where L is a bounded linear map, so D3 (Lo T(z)) = LD3Y® =,

Consequently, T are real-analytic on their domains (with finite Taylor series).
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By Step 1, T .= (r®, @ v3) maps Bs(T) x Bs(h) into
U:={(p, &) eY XY X7 1 lp]l < C+0, ¢l < (C+06)(M +06), inf |&] > 6/2}.

We will show that @ is real-analytic on U.
By Example 7.15, x — % = Z an(x0, 0, 20) (X = X0, ¥ = y0, 2 — 20)", Where a, (x0, yo, 20) : (R*)" — R are
n=0

symmetric multilinear functions_depending on (xo, Y0, 20), and satisfying
llan (x0, yo, z0) 1l = O(yol/Izol™*") + O(n/1zo™*"). So

O, 4, £) = O,y £0) + 3" An(p - 9Oy — g0, £ - £O), (7.14)
n=1

where A, (1, gD, D) (o™ g™ £M)) €Y has i-th entry

an(gf” (0,07 @) (o @ 0. 60 (P @ (). £7)).

A,, inherits multilinearity and symmetry from a,,, and by construction,

lAnll < sup {lla (xo, yo, 201l : 1x0l, [yol < (C + O)(M + 1 +6), 120l > 5} = O(Z2).

So the right-hand-side of (7.14) has positive radius of convergence, proving the analyticity of ® : U — Y. The
step follows from the well-known result that the composition of real-analytic functions is real-analytic, see [49].

Ster 3. (D Y)(T, h) : Y — Y has a bounded inverse.

T,.¢n (T, )d
Proof. A direct calculation gives (D>Y)(T, h) (@) = ¢—Ayp, where (Ag), = $Pn+2 —(f non2)CHn )

f(Tnhn+2)dﬂn f(Tnhn+2)d/Jn
It is sufficient to show that A has spectral radius strictly smaller than one.
Let T,Ek) =T, Thy2 - - - Tusok-1), then we claim that

T gnn ( [ @ gpio)dpn ) ,

(A @), =
[@F hpso)dpn \ [(@F hyao)dpn

(7.15)

To see this, we use T}, h,,42 < h,, and f hyduy, = 1 to note that

f(T,Ek”)hmz(kH))d,un =f(Tnhmz)dHnf(Tn(zhmz(kﬂ))dﬂmz.

With this identity in mind, the formula for A¥ follows by induction.
We now explain why (7.15) implies that the spectral radius of A is less than one.
Fix ¢ € Y. Recall that C™! < h,, < C for all n, and let ¢ := ¢ + 2C||¢@||h. Then ¢ € Y, Aky = AXg for all k
(because Ah = 0), and for all n
Cllellhn < yn < 3ClIgllhn. (7.16)

In particular, if C, is the cone from the proof of Lemma 7.13, and d,, is its projective Hilbert metric,
then ¢, € C,, and d,,(Yp,, hy,) < log3. Since T,, contracts the Hilbert projective norm by a factor 6 € (0, 1),
d, (T,Ek)wnﬂk, T,Ek)hmzk) < ok log 3. This implies by the definition of d,, that for a.e. x € G,

(T W) O] [ (G )

k k
1| <max{3? -1,1-37} = &.
(Tl ()] [ (T Bsar)

The denominator simplifies to &,,. So
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By (7.16), Cll@lT\ hysok < T Wik < 3CNQITY sk therefore

(T W nior)

—n Tt g,
) (TN W2k

< erllhll. (7.17)

0o

[, T Yok

Cllell < < 3Cll¢ll- (7.18)
[, T k)
By (7.15), (7.17) and (7.18),
T(k) T(k) n+2k (k) T(k)'r//n k
||Akl//||=sup n (kl)ﬁnJer _ f r:k)lrll +2, . hn < Sup # — hn sup f(k—*—z < 3C£k||h|| ||‘p||
n | [ 10 bk [ T3 s - [ T %ok [ T3 hpak

In summary, ||Ak<p|| = O(ekllell). Since lim {/e; = 6 < 1, the spectral radlus of A is less than 1. Therefore
D> =1d — A has a bounded inverse.

We can now complete the proof of the lemma. We constructed a real-analytic function T : X XY — Y such that
T(T,h) =0and (D,T)(T, h) : Y — Y has a bounded inverse. By the implicit function theorem for real-analytic
functions on Banach spaces [199], T has a neighborhood W C X where one can define a real-analytic function
h: W — Y sothat T(S,h(S)) =0

Recall that T = T¢ := {Tf}neN and & = {h,(, &) }n>1- It is easy to see using ess sup |f| < co that n +— T7 is
real-analytic (even holomorphic). Therefore the composition  — h(T") is real-analytic.

We will now show that 2(T"7) = k" = {h)},»1, for all || small enough, and deduce real-analyticity with
uniform derivative bounds for 1 — h)! (x). Since h,, (-, &) are uniformly bounded below by a positive constant, we
can choose W so that the functions %4(S),, are uniformly bounded from below for § € W and n € N. In particular,
for all 7 close enough to &, T € W, and h(T™),, are all positive. Next, by construction, Y (7", h(T")) = 0, and
this implies that 7, h(T"),,42 o< h(T™),, and f h(T),du, =1 for all n.

Lemma 7.13 and its proof show that there can be at most one sequence of functions like that. So A(T"7) =
{h,(-,17)}n>1 for all n sufficiently close to &.

Thusn — {hZA}nZI is real-analytic as a function taking values in Y. It follows that  — h,, (-, ) is real-analytic

for all n, and {g’—ljhn(-, Tl)} 1 3"1 9L p(T") € Y for all j. By the definition of ¥,

o7
sup h (-,77)| || R(TM)|| < oo for all j € N. Since  — h(T") is real-analytic on a
n>1 67]] n=¢& o ly=¢
neighborhood of &, this norm is uniformly bounded on compact sets of &. The lemma is proved. O

7.3.3 Choosing the Parameters

Fix & and {a,}, and construct p,, (£¢) and hi (-, &) as in Lemma 7.13. Let Xf denote the Markov chain with the
initial distribution and state spaces of X, but with transition probabilities 7 7rn oy (o dy) = e Cey) nn8)

ePn(f)h"(x g)
Tn,n+1 (x,dy).

Denote the expectation and variance operators of this chain by E¢, V4. We now show that if Viy := Var(Sy) — oo

and %LSN) is sufficiently small, then it is possible to choose &y and a,, bounded such that
~ —EéN(S N
BN (5y) = e+ 0(1), Y220 gand 3 i (0) = B(sw).
A VEN (SN) n=1
- E(S
The construction will show that if ZNV—(N) — 0, then &5 — 0.
N
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Recall that while the choice of {a,, } affects hﬁ = hy, (-, €),itdoes not affect 7?5 ntls Specifically, if Zi = En( 5 &)
and p, (¢) € R is the fundamental solution, then Ei =e ¢ h, (&) and Pn(&) = pu(é) + ané — ans1€, so

I (%, — _ _
7 dy) = e B0 g Let By () =5y (@) + o+ By (©).
ePn & hy(y, &)

Lemma 7.17 ¢ — Py (&) is real-analytic, and for every R > 0 there is a constant C(R) such that for all |£] < R
and N € N,
(1) Py (&) —E£ (Sn)| < C(R); ~
(2) Suppose Viy — oo. Then C(R)™' < VE(SN)/Vn < C(R) forall N and |¢] < R.
Moreoverﬁ;\l,(g)/V‘f(SN) FYE 1 uniformly in |€] < R.

Proof We have the identity ePN (&) = [ (ng e L}f\,ﬁ}f\, L) ()1 (dx). Since & 7 and & — L are real-analytic,
& — Py (&) is real-analytic.
Given x € G (the state space of X1), define two measures on HN *1'&; so that for every E; € B(C))

Ax(Ey X+ X Ent1) =P(Xp € B, ..., XN+1 € Ent1]X) = X),
RU(Ey X - X Eny1) =P (XS € Ea,..., X5, € EnsilX? = ).

dry
LetSy(x, y2,...,yn+1) == fi (x,y1)+z fi(yi, yis1), then a(yz, S YN+1) =€

ESN (xy) —PN(g) (hNH()’NH,f))
i=2

hi(x, &)
By

.., YN+1) is real-analytic. Differentiating, gives

d |azt A7
d¢ [dj;x] [SN(X ) = Py(é) + en(x, yN+1,§)] (7.19)

where en (X, Yn41, &) =

n(x & d (EN+1(yN+1,§)

vt e ) 9\ T 6)
uniformly bounded in N, x, 2 Y and |£] < R.

). By Lemmas 7.14 and 7.16, en (x, yn+1, &) is

=&
Fix N. By the intermediate value theorem and the uniform boundedness of % [3%] on compact subsets of

£+ =
£€eR, % [dnx - i%] is uniformly bounded for 0 < 6 < 1. By the bounded convergence theorem,

dmy
f o LfAmT dm| f i
600 | dmy drmy R drmy d]Tx

So [ & [d”x ] dr, = 0, whence by (7.19), 0 = E5 (Sn) — Py (&) + O(1) (here E; = E£(-|X? = x)). Integrating

dr, =0.

with respect to x we obtain that ﬁ;\, &) = Ef(SN) + O(1) uniformly in |£] < R, as N — oo.
Differentiating (7.19) again gives

d? |dx: d d —
[ } o (Sweny) - PN(§)+eN<x,yN+1,§))}

de2 |dmy |~ dé|d
= BT (500 y) = Py (@) + en (v, £)) — Pre) + 2
dﬂ'x N > ) N NAs YN+1» N d‘f,‘:

By Lemmas 7.14 and 7. 16, &

i dnx —
f €2 dmy dry ng

s d‘f is uniformly bounded in x, yn 1, N and |£| < R. As before,

fd”x drr, = 0. As Py (&) = E¥(Sy) + O(1), we get:
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0=F¢ [(SN _EE(Sn) +0(1))2] “P©) + 01, (7.20)
= VE(Sn) = Pn(&) + O(D)AJVE(SK) + 0(1). (7.21)

The proof shows that the big-Oh’s are uniformly bounded for all N and |£] < R.

If |£] < R, then ﬁin .1 (x,dy) are uniformly elliptic with € replaced by eo/(C*e*®) with the C in Lemma
7.14. Thus by Theorem 3.7, §§(SN) = nN:3 u,% (&) where u,, (¢) are the structure constants of {3('5 ).

Using Corollary 2.10, it is not difficult to show that the hexagon measures associated to X¢ and X on Hex (N, n)
with 5 < n < N < oo are equivalent, and their Radon-Nikodym derivatives are bounded away from zero and
infinity uniformly in n, N. Therefore u, (¢) =< u, (X, f). By Theorem 3.6, V¢ (Sy) =< Viy — oo, uniformly in N

and |€| < R. By (7.21), F;:,(f)/vf(SN) 1—\}——) 1 uniformly on compacts. |

The Choice of apn: Lemma 7.17(1) with £ = O says that ﬁ;\, (0) = E(Sy) + O(1). The error term is a nuisance,
and we will choose a,, to get rid of it. Given N, let

an = E(Su-1) = P,y (0), ap = 0. (1.22)
This is bounded, because of Lemma 7.17(1). Let h‘;f,(x) = e“"‘fﬁn(x, &) and
Pn(&) =P, (§) + (an+1 — an)é. (7.23)

The transition kernel J?f 241 I8 left unchanged, because the differences between hy, and h,, and between DPn
and p, cancel out. But now, Py, (0) = E(Sy), where

Py(£) = pi(&) + -+ + pn(€) = P (&) + (E(Sn) - Py (0)£. (7.24)

Properties of Py (£): Recall that F (&) := % log E(e¥SN), and that V¥ is the variance with respect to the
change of measure X,
Lemma 7.18 Suppose Viy — oo, then £ — Py (£) is real-analytic, and:

(1) P, (0) =E(Sn).  (2)YR>0,3C(R) > 0s.1. [Py (&) —E¢(Sy)| < C(R) forall |£] < R,N € N.

(3) PI’\; (f)/vf(SN) 7V——> 1 uniformly on compact subsets of &.

(4) Pn(&)/ VN = Fn(E) + O(VI;,I) uniformly on compact subsets of £: ¥R > 0,

AN (R) :=sup|VyFn(€) — Pn(€)] = O(1), and sup An(R) —— 0.
I€|<R N R-07

(5) P;\,(g-“)/VN = T]\’,(f) + O(VIQ]) uniformly on compact subsets of &, as N — oo IfZN(R) =
Sup VN T (€) = P (£)

" (6) Pn(- iformly strictl ts: VYR > 0AN(R) such that  inf inf Py (&) > 0.
(6) Pn (+) are uniformly strictly convex on compacts (R) such tha fe[lilR,R]NZHJ:/(R) N (&)

, then sup Ay (R) < oo.
N

Proof The real-analyticity of Py (¢) and parts (1)—(3) and (6) follow from Lemma 7.17, the identity Py (&) =
ﬁN(f) + (an+1 — a1)€&, and the boundedness of a,,.

The proof of part (4) uses the operators Li : L®(5,41) = L®(S,) from (7.6),
(Lam)(x) = [, PO h(p) 1 (x, dy) = Bleh KX h(X,41) X, = x]. Let by = ha(-€) € L2(S,)

SOn+
be the unique positive functions s.t. f hf = e ¢ and Lﬁhirl = ePn (f)hf. Then hg =1, p1(E)+ - +pN(E)=PNn (&)

and

B [eSV A, (Xna)=E[EEESV S (XN )1 XN, -, X)X =x] =E[e8SN A BN WXV pT (X ) [XN)1X1=x]
= E[efsN*I (Li/h}fvﬂ)(XNNXl =x] = ePN(f)Ex [6551\171 hi(XN)] — ePN(f)"’PN—l(f)EX [efstzh}fv_l(XN—l)]

- .= ePN(§)+-~-+P1(§)Ex [hlf(Xl)] — ePN(‘f)hf(x). (7.25)
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By Lemma 7.14, there exists C; = C1(R) > 1 such that Cl_1 < h]f <Cjforj=1,N+1andevery |£| < R
and N > 1. Thus by (7.25), ‘

Ci(R) 2ePN& < R (efSN) < C1(R)2ePN &), (7.26)

Taking logarithms, we deduce that |Fn (&) — Pn(£)/Vn| < 21logCi(R)/Vy for all N > 1 and |£] < R.
Equivalently, supy, Ay (R) < 2log Cy < oo.

By Lemma 7.16 and the identity h(,)l =1, ||h'§, — 1l ﬁ 0 uniformly in N. Returning to the definition
of C1(R) we find that we may choose C;(R) W 1. As before, this implies that sup, Ax (R) R—0> 0. This

proves part (4).
Here is the proof of part (5). Fix R > 0, then

E(SnefSv)  BE(Sy (S /hy,)))
E(ef5) EE(E/hS,,)

VnFu (&) = (7.27)

We have already remarked that X¢ are uniformly elliptic, and that their uniform ellipticity constants are bounded
away from zero for & ranging on a compact set. This gives us the mixing bounds in Proposition 2.13 with the
same Cpix > 0,0 < 6 < 1 for all [£] < R. So B¢ (h§/h%,, ) = BE(hD)EE (1/h5,,,) + O(ON), as N — oo
Similarly, B (Sn (h{/h%,, ) = B (h5)E€ (1/h%,,,) B (Sn) + O(1) as N — co.

The big oh’s are uniform for |£| < R. By (7.27), VNTN({,:):Ef(SN) + O(1) as N — oo, uniformly for |£] < R.
Part 5 now follows from part 2. O

N+1

The Choice of £y : Recall that to reduce the regime of large deviations to the regime of local deviations, we
need a change of measure for which BN (Sy) = zw + O(1). By Lemma 7.18(2) this will be the case for £ such
that P}, (én) = zn.-

The following lemma gives sufficient conditions for the existence of such &y .

Lemma 7.19 Suppose Vy — oo, R > 0, and

[aN,b ]:=

7Ry EOY) E(SN>] |

VN TN (R) - Vy

(1) For each R there are C(R) and N (R) such that if%;s"’) € [52, ’l;g] and N > N(R), then
(@) Aléy € [=(R+ 1), (R + )] such that Py (én) = zn; (b) C(R)™ [R50 < ey | < C(R) |50

(c) sgn(én) = sgn(X258) (a) [BEV (Sy) — zv| < C(R).
(2) For every R > 2 there exists c(R) > 0 such that for all N large enough,

if v BSy) < ¢(R), then N—2N) ¢ E(Sy) € [aR. bR ). (7.28)
VN VN

Consequently, if ‘ %}f}sm

Py (=R) —E(SN) Py (R) —E(SN)
Vn ’ Vn '
Cram: Forall R > 0, for all N large enough,

< c(R), then there exists a unique &y with (a)—(d).

Proof Let [5@,’5’{,] =

[al\h bR] C ["R+1 bR+1] C ["R+2 b§+2]. (729)

Proof of the Claim: By Lemmas 7.17 and 7.18, there exists a 6 > 0 such that for all sufficiently large N,
Py(€)/Vy > 6 on [—(R +2), (R +2)]. By the mean value theorem, bR+ > bR+ 15, pR*1 > pR 45, aR+2 <

~R+1 ~R+1 ~R _
ay -0, ay  <ay 0.
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Next, by Lemma 7.18(5), [bR - bX'| = 0(V—1) and |aR —a’| = O(Vy!) forall R < R +2. For all N large
enough, |O(Vy)| < 6, and aR™* < ak' < af < bR < bR < bR+2

N(f) £Py(0)

We can now prove part (1) of the lemma. Let ¢n (£) := . By Lemma 7.18, for all N large

VN
o , e v — Py (0)
enough, gy (£) is strictly convex, smooth, and Py (én) = zn iff o (En) = e
N
Fix R > 0. By the claim, for all N large enough, if %}f{s’\’) € [671’3,, Zf,], then ZN}Z]N(O) = ZN"iEAgsN) €

[~R+1 bR“] = ¢oy[=(R + 1),(R + 1)]. Since ¢}, is continuous and strictly increasing, there is a unique

En € [-(R+ 1), (R+ D] st ol (én) = 28
This argument shows that for every N suﬁimently large, for every n € [ay

E=£&Mm) € [-(R+ 1), (R + 1)] such that ¢}, (£(n7)) =
By Lemma 7.18(6), 36(R) > 0 so that 6(R) < ¢} <SR T on[-(R+1),(R+ 1)]. Son = &@n)is
-bi-Lipschitz on [a® N D ] By construction, ¢ N(O) 0. So £(0) = 0, whence by the bi-Lipschitz property

So there is a unique [éx| < R + 1 s.t. Py (én) = zn.

aR bR] there exists a unique

5(R)

SRl < 1€()| < 6(R)™"|nl on [aR, BR].

Since ¢ is real-analytic and strictly convex, ¢}, is smooth and strictly increasing. By the inverse mapping
theorem, 7 — £(17) is smooth and strictly increasing. So sgn(é(n7)) = sgn(n7) on [Ziﬁ, Eﬁ]. Specializing to the
casen = %]\(]s"’), gives properties (a)—(c) of &n.

Property (d) is because of Lemma 7.18, which says that zy = P}, (én) = BN (Sny) + O(1). The big oh is
uniform because |éx]| < R+ 1.

This completes the proof of part (1). To prove part (2), fix R > 2. By (7.29), for all N large enough,

[aN, R1> [aR! bR 1= ¢ [-(R=1),(R - 1)]. Since ¢},(0) = 0 and ¢}, > 6(R) on [-R, R], we have that
¢’ (£R) = =(R)¢” (%) for some n* € [—R, R]. Therefore [Ziﬁ, Z)\f,] D [—¢, c], where ¢ := RS(R). |

Corollary 7.20 Suppose Vy — oo and =X _‘;EI\(]SN)
such that Py, (én) = zn. Furthermore, én — 0.

— 0, then for all N large enough, there exists a unique &N

7.3.4 The Asymptotic Behavior of V4 (Sy)

Recall that VI’\S, denotes the variance of Sy with respect to the change of measure X¢ from (7.3).

Lemma 7.21 Suppose Vy oo and define én as in Lemma 7.19.

(1) Suppose R > 0 and 2= E(SN) € [aR bR]for all N, then VfN =< Vyas N — oo.
(Z)U%Ho,thenVﬁvaVNasN%w. ~
(3) Uniformity: Ye > 0 A¢* > 0 and ANy > 1, so that YN > Ny, if || < &%, then V’f/VN € [e7¢, e€].

Proof We assume without loss of generality that E( f% (Xk, Xrs1)) = O for all k; otherwise we subtract suitable
constants from f, and note that this has no effect on ay, bN, Vy or V In particular, E(Sy) = 0 for all N.

If &f”) € [aN, ], then [én] < R+ 1 (Lemma 7.19), and part (1) follows from Lemma 7.17.

— 0, then é5 — 0 (Corollary 7.20), and part (2) follows from part (3). It remains to prove part (3).
To do this we decompose Sy into weakly correlated large blocks with roughly the same X-variances, and we

check that the X¢ -variance of the i-th block converges uniformly in i to its X-variance, as & — 0.
m—1

We denote the entries of X¢ by {)75}, and define form > n+1, S,,,, 1= Z S Xk, Xk+1)s

zNn—E(Sn)
It VN
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m—1
Som = Z FXEXED, Vi = VarSum),  View 1= VarSim),  pam(@) 1= ). pr().
k=n
We claim that for all R > 0, n < m, and |¢] < R,
Pam(0) =0, pl(0) = E(Sum) =0, |l m(€) —E4 (S5l < C(R). (7.30)

The first identity is because hn(-,0) = 1 and P,(0) = 1, by the uniqueness of the fundamental solution. The

second identity is because p;, ,,(0) = P, _,(0) = P,_,(0) = E(Sp-1) — E(S,-1) = 0 — 0 = 0. The third part of

(7.30) can be shown by applying the proof of Lemma 7.18(2) to the truncated Markov chains { X }x>5.
Similarly, applying the proof of Lemma 7.17 to the truncated chain {X} }; >, gives a constant M such that for

alln < mand |£] < R,

C(R)™ < Vi /Vim < C(R)

271 <y () Vi < 2.

StEP 1 (MIXING ESTIMATES). Recall that K = esssup |f|. There are C,,. = C, . (K,R) > 1 andn =n(K,R) €
(0, 1) such thatfor every |é| < Rand k < n < m,
(1) |CoV (fin (X X )y S X, X5, D] < Crpp ™5 2) [BE (S5 mIXE) = BE (S )l <
(3) 1B (g1 Xi) — BE (S5 m)? )||oo < Gy (14 1Ph (.
Proof of the Step: Let ff’: fl(Xt"c, X¢ +1) and f = f[‘f - Ef(ff’:). Then If?I < 2K.
The Markov chains X f are uniformly elliptic with the same ellipticity constant €5(R) > 0 for all |¢] < R. By
Proposition 2.13, there are constants C, . = C, . (K,R) > 0and 5 = (K, R) € (0, 1) such that for all |§] < R
and for every i > k,

Vi > My = { (7.31)

mlx ’

B (FZ1X9) o < C,;u-xni"‘. (7.32)

Thus ||E§(S,§,mIX§) Ef(S,f,m)HOOSZ IIEE (f; |X§)I|oo ”‘”‘ , a constant independent of &. This proves part 2.
Next, BE(fufi) = BE(RES (FulXs, X5,)) = Ef(ff E€ (f5IX5,)): therefore [E€(f5,f)| < 2K -
C’ . ™1 Part 1 follows.

le

Henceforth, we fix & and set E = E¢, f, = f X; X% = = X;. We claim that:

IE(F F31X0) = E(Fif) e < const.p’s ' (el <Rk<i<j). (7.33)
Fix k <i < j. To prove (7.33), we will estimate the LHS in two ways:

. E(flf_[lxk) - E(fzf/) = E(gIXk) with g := E(f,fJ|X,,XH],Xk) - E(flfj) A calculation shows that g
depends only on X; and X1 By (7.32),

IEf; f71X1) = B(fi f)lleo = IIE(g]Xi)llo < const.p’™. (7.34)

¢ Consider the Markov chain Y = (X f, X ..) with initial distribution )? - xi for some fixed x; € Gi. Y

has the same uniform elhptlclty constant as X¢, and therefore Y and X¢ have the same mixing rates. Thus for
every xi € G, |E(flfj|X = Xr) — ]E(fl|Xk = xk)E(flek = xx)| < const.’ " uniformly in x; and k,i, j.
This, (7.32), and i > k lead to ||E(flfj|X]f)||Do < IIfl||o<,||E(f]|Xk)||Do + const.n] i< const.n’ ‘L

Obviously, this implies that [E(f; f;)| < const.p/™" and

IE(fi fi1X5) = E(fif)lleo < constap/™". (1.35)

By (7.34) and (7.35), the RHS of (7.33) is O(mirl{n"‘k, nj:i}). Since min{|a|, |b|} < Vlabl, (7.33) follows.
We can now prove the Step 1(3). Let S, ,, := im and Sy, ;m = Snom — E(Spm)-
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IEGS2, %0 -BEE2 ke <2 Y IEGAIX) -EGlesC Y. 0T sca-g'??=cy.
n<i<j<m n<i<j<m

IS 1 Xi) = E(S7 ) lloo = IBL(Spm +E(Sm)) I X1 = BL(Sp.m +E(Spm)) Tlleo

= E(S3,u1Xk) + 2B(Spm| XOE(Sm) + E(Snm) = E(S ) = E(Spm)llo

< B3, 1 Xe) = E(Sp ) ot 2B S m Xi) oo B (S| < C1 + > MBFIX o (15 (E)] + IESpm) = Pl (1)

n<i<m

< const.(1 + |p},,(€)]), by (7.30) and (7.32).

The constant is uniform for |£| < R, k, n and m. Increasing C ,*m.x, we obtain (3).

StepP 2 (BLock DECOMPOSITION). For every € > 0 small enough, for every R > 1, there exists M > 1 and a
sequence of integers n; T oo such that:

(1) M > IOOO(C;‘m.x)z/e; (2)M < Vyny <2M;

(3) ICOV(Sh py.y Sa )| < CH =™t V] < Rand i < j, where C¥,,

(4) Forall |¢| < R, foralli > 3, for all n € [n;, ni+1],

is independent of M, i, j and &;

_ A
i—1
vé vé
Z Vnk,"kn + Vni,n
k=1

e <ef; (7.36)

(5) M* :=sup sup  sup |p,. ,(€)] < oo;(6) M*:=sup sup sup sup E(efS"i'”|Xn,. = Xp,) < 0.

i neng,niy] |€]<R i n€ngninl |E1SR xn; €Sy,
IOOO(C,*m.x)2 ) C i 8C; . .C(K,R)
Proof of the Step. Fix M > max<{My, ———, 2(K“+ s . Set ny := 1, and define n;
€ 1-n)" e(l-n(K,R))?
inductively by n;+1 := min{n > n; : V,,, »,,, > M}. Such n > n; exist, because V,,, , —— oo:
n—00
ni—1 oo
!
o m Vn—IEVI,nZVLni + Vni,n + ZCOV(Sl,np Sni,n)zvni,n+vl,ni +0 (Z Z |Cov( fim, fni+k)|) = Vni,n+V1,ni +0(1),
m=1 k=0

by Step 1 with & = 0.
By construction, Vy, n,,, > M, and
Vainia < Vania-1 ¥ Wainey = Vaunga-11 £ M+ Vg ney = Va1l (by the minimality of n;41)

*

c.
<M + Var(f; -1 (X =15 Xngy) + 21COV(frp -1 (X =15 X s Snyngy -1 < M+ 2 (K2 + ﬁ) <2M

by the choice of M and . So M <V, .., < 2M, and {n;} satisfies part 2.

nipi—1nj+1-1
Ifi < j, then |COV(S,§,i’ni+l, S,’fj’njﬂ)l < Z Z C;lixn[_k. The last sum is equal to
k:ni €=I’Lj
nici=1 . C* nj—niq Ni+1—1 * nj—njy
* n ix'l it1—k ixl : # . * 2
- =7 = ’""i — pin Tk < "zlf_ T Part 3 follows with C7 . :=C>. /(1 -n)".
k:n,— k:n,— 77

Fix n € [n;, ni+1], then
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V§ Z NNt 1 Vri,n S 2 Z |COV( nk Ni+1° n(” ng+])| + 2 Z |COV( Np 412 Ssi,n) S

1<k<€<i-1 1<k<i-1
~ G L, 4C

o) Z Cﬁlixnn[_nkﬂ +2 Z Cfnixnnl Nkl < 4 Z Cﬁu‘xn[ _4Cfmxz Z nf k-1 < ( mzx)3
1<k<C<i-1 1<k=i-1 1<k<t<i k=1 £=k+1 d

i—1 .

, M-

By (7.31) and part 2, kz_: memn 2 TR ——F——. S0

Ve | ((1—'77’)3)i _ L AGLCR) i e

SCR)MGi-1) M (1-p)® i-172 i-1

Zl : V’i”kﬂ + V’ivn

If i > 3, then the last bound is less than %e, and part 4 follows for all € small.
Part 5 is a uniform bound on |p;; , ()| fori € N, n € [n;,n], || < R. By construction, V,, , < 2M. By
Theorem 3.7, this implies a uniform upper bound on Z"‘l 2 . We have already seen that the structure constants

of {X,} and {X,; X5} are equal up to a bounded multlphcatlve error. So the same theorem, applied to the Markov

chain { f}k >n; » gives a uniform upper bound for Vn n» Whence sup  sup  sup Vnh” < 00,
i nelng,nial |€]<R

A routine modification of the argument used to show (7.20) gives

” = o =E o 2
Pn,-,n(f)—E‘f [(Sfi,n—E‘f(Si,n) + 0(1)) ”SC.
—~ — _, o~ 2 ~
E¢ [(S;’;in - E¢ (S;’;*,.,n) + 0(1)) ] is uniformly bounded because of the bound on Vf,n and the Minkowski

inequality, so part 5 follows.
Given x,, € G,,, let Exn,— () == E(-|X,, = x,,). We have the following variant of (7.25) (with the same

proof): Ex,, (egS"i’"hf(X ) = e”"i"(f)h‘f (xn,;). By Lemma 7.14, there is aconstant C := 5(1(, R) independent
of x,, such that for all n < m and |£] < R, hf h'f € [6‘1, 6]. It follows that Exnl- (eFSnin) < ClePrin(®),

By (7.30) and part 5, |p,,, »(é)| < M*R?> on[-R, R]. SoE,, ,(efsnf’n) < M*, where M* := ézexp(%M*Rz).
SteP 3 (BLock VARIANCE) Fix M and n; as in Step 2. There is £ > 0 such that for all |£| < &%, i € N, and
ni £ N < Ny, IVn o~ Vainl < eM/10.

Proof of the Step. Fix 0 < § < (3M%)~ I'A R, and choose L > 0 so big that 12 < 8911 whenever |¢| > L. Given
X € G, let By, () 1= E(-|X, = x,,) and B () := B€(-|X5 = x,,). By the definition of X¢, for every i € n and
n € [ng,nivl,

B, L5001~ B, (S3,0) = B, [ (650777 "@:iifm)) 1)s2,] (7.37)

We will choose ¢* > 0 so that some of the terms inside the brackets are close to constants, whenever |£] < &*.
1 .

Firstly, by (7.30) and Step 2(5), if £€* < R, then |p,, n(€)] < §M*§*2 for all |£] < €. Next, by Lemma 7.16

and the identity h?l =1, ||h§ — 1]l < c(R)|&]| for some c(R) and all n. Therefore by decreasing &, we can

£
edewe o MnXn) - sere

guarantee that for all |£] < &7, < <e > a.s. Finally (for reasons which will soon
n; (-x n; )

become apparent), we make £* so small that
£ 4 6<R [ LAMETR) | 2 IMETRE <o et

We now return to (7.37), and decompose the RHS into the sum [+II+II, where LII and III are the contributions
to the expectation from [|S,; »| < LI, [Sy,»n > LI, and [S,, » < —L] respectively. Suppose |£] < &%, then
P ()] < §M*E2, 50
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hi (X, . NI
Il <E,, |e‘§S"l n"Pny, ,,(E)# 1|52 A0S, a1<n1| = |eté (L+3M°¢ 2+3°(R))—1|L2 < 1, if & is small enough.
hn, (xn, " v
hy (X ns (X
0| < By, 'efsn n=Pnpn(&) g( n 2 o liSumor1| < B, |[e8Snnpnin (@ ZnoZn) n(Xn) 1|6e55"i’"},
hi (an ) hn, (xn, )

< Exni[e(&wsni,n] eIM EPH3C(RIE 5 Ex,, [eas,,i,n] 5 < sMm* (e%M*§*2+3c(R)§* " 1) <3sM* < 1,
There the second inequality follows by the choice of L and the last one is by the choice of 6, M* and &*.

2

B 1 gt g2 . _
ni,nl[sni,n<_L] S]Exni[e(_f (S)Snim] ez M €7 43c(R)¢ 6+Exni [e 6Snisn:| 5<l1.

X,
|III|<E,, |e‘§Snln —Pn;n(§) n2nJ h (Xn) -1

i, (Xn,)

Thus, |Efn [(§fi,n)2] - Ey, (S; 52 DI <[]+ [II] + I < 3. The same argument also shows that
[ES,, [She.n] = By, (Snn)] <3 < 3Ct

Applying Step 1(3) twice (once for |£] < &, and once for £ = 0), we obtain
[EE LS, n)™) = B(Sp il S3Cia+ 2Csu (14 1P, (D 3Ch (14 MTE) <6C.

Similarly, [E€ (S5, ) ~E(Sn;.n)| < 5C. . Since E(S,, ) = 0, the last estimate gives [E¢ (S, )| < 5C% . . Thus,

~ ~ ~, eM
Viian = Vil < [BELS5, )21 = BSS )| + B (S < 50(C)? < - (7.38)
> M, and by (7.38), for every |£]| < &7,

Ve, < €°. Also by (7.38), for all

PROOF oF PART (3) or THE LEMMA. Fix € > 0 very small. V,,k ”k+1
Vieoea | < (€/10)Vi, ne,,- So for all k, e™¢ < A

| L T NNyl

1 € [ et s Vi = Vienl < (€/10) Vo iy
Fix n so large that V,, > 4M. Then n € [n;, n;+1] with i > 2, and by Step 2(4)

~ i—1
V-f Vf e*( Z nk nep T Vrﬁ',n) e:ZE(kZI Vg + Vain £ %V’H,M)
s =

Vo 0 - i-1
et +
" E( Z nk N+l + Vni,n) e_e(kzl Vnk,nk+1 + Vn,-,n)

The last fraction is e*3€(1 + 15)- If € is small enough, this is inside [e~%€, e*€].
We proved the lemma, with 4€ instead of e. m]

7.3.5 Asymptotics of the Log Moment Generating Functions

Let X, Y be two random variables on the same probability space (€, .%,P). Suppose X has finite variance, and
Y is positive and bounded. Let Var? (X) be the variance of X with respect to the change of measure %dP.
E(X2Y) (E(XY))2

Equivalently, Var’ (X) := EQY) E(Y)

Lemma 7.22 Suppose 0 < Var(X) < oo and C™' <Y < C with C a positive constant, then C~*Var(X) <
Var¥ (X) < C*Var(X).
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1 E[(X| — X2)* 1 V-
Proof Let (X1,Y]), (X2, Y2) be two independent copies of (X,Y), then VarY(X) = 3 I( l]E(Y ;)) 1] =
112

A_E[(X) - X2)?] = C**Var(X). O

Proof of Theorem 7.3 Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic Markov
chain X, such that Viy := Var(Sy) # 0 for N > Np, and let Fx (£) := % log E(e?SV).

Since ||Snlle < oo, we may differentiate under the expectation and obtain that for all k, < 3 E(e‘fSN ) =
E(S%e¥57). A direct calculation shows that denoting Yﬁ := e¢5N | we have
I B(SnefSV) 1 e o _ Var'~ (Sy)

’ _ L BGNe) L v . 1 E(S]zvegsN) B E(SyeéSh) 2
PN =y E@ESv) W, BN (Sw), TN(€) = 3o o

E(e€5N) E(e£5n)

Part 1: Substituting £ = 0 gives Fx(0) = 0, F (0) = ) and Fa'(0) = 1.

f
Part2: 7/({) =0 & VarY ~ (SN) =0 Sy = const

Fn is strictly convex on R for all N > Nj.

)d]P—a 8. © Sy = const P-a.s. © Var(Sy) = 0. So
N

Part 3: V¥(Sy) = Var?N (Sy), where Zf, := €55V “NL (the normalization constant does not matter). Next,
hy

Zf\, = YﬁWf,, where Wi, = h§N+1/hiE' Lemma 7.14 says that for every R > 0 there is a constant C = C(R) s.t.
cl< Wf, < C for all N and |¢| < R. Lemma 7.16 and the obvious identity 49 = 1 imply that Wf] — 1
£-0

uniformly in N. So there is no loss of generality in assuming that C(R) ——0—> 1.

By Lemma 7.22 with the probability measure - ( f -~ ~) ——s—dPandY = Wf

VE(Sy)  Var’ WN(SN)
VWFNE) T var'i (Sy)

e[c®w™ cr?], vigl <R N=1. (7.39)

By Lemma 7.17, vé (Sn) = Vi uniformly on compact sets of £, and by Lemma 7.21 for every € there exists
8,N. > 0st.e € < VE(Sy)/Vn < e€ forall N > N, and |¢] < 6. It follows that for every R there exists
C>(R) > 1 such that C,(R) g land G(R)! < Fa'(£) < C2(R) forall [£] < R.

Part 4: Fix € > 0. Since C,(R) R—O) 1, there exist 6 > 0 and Ne € N such that e™ < F/(£) < e€ for all
€] < 6N > Ne. So F(€) = T (0) + [ (F(0) + [ F/(a)da) dp = B8 g 4 Lexeg?.

7.3.6 Asymptotics of the Rate Functions

The rate functions 7 (1) are the Legendre transforms of Fn (£) = # log E(e#S™). Recall that the Legendre
transform of a continuously differentiable and strictly convex function ¢ : R — R is the function ¢*
(inf ¢’, sup ¢’) — R given by

©*(n) = én — (&), for the unique & such that ¢’(&) = 1. (7.40)

Lemma 7.23 Suppose (&) is strictly convex and twice differentiable on R, and let ¢’ (£o0) := hm @’ (&).

Then the Legendre transform ¢* is strictly convex and twice differentiable on (¢’ (—0), ¢’ (4+00)). In addltlon
for everyt € R,

O (@' (1) = 19" (1) — @(1), (") (" (1)) =1, and (¢")" (¢’ (1)) =

1
) 7.41
(1) (7.41)
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Proof Under the assumptions of the lemma, ¢’ is strictly increasing and differentiable. So (¢”) ™! : (¢’(=0), ¢’ (00)) —
R is well-defined, strictly increasing, differentiable, and ¢*(17) = n(¢") "' (1) — ¢[(¢") ' ()]
The lemma follows by differentiation of right-hand-side. O

Proof of Theorem 7.4. Let Iy := F.

Part 1: Since Fy is strictly convex and smooth, ¥, is strictly increasing and continuous. So ¥ [-1,1] =
[Fr (=1), 7 (D] = [al, bl ], and for every n € [al, b ], there is a unique & € [-1,1] s.t. F (&) = 7. So
dom(Zy) > [ak, bl 1.
By Theorem 7.3 there is C > 0 such that C™' < %/ < C on [-1,1] for all N > Nj. Since F,,(0) = w
E(S E(S
and 7 (p) = Fy (0) + [ F7/(€)dé, we have by = (1) > (On) (VN)
N

+C7' ay = Fh(-1) < -c
N
So dom(Zy) 2 [a}, by] 2 [22) — 71, 288 4 1] forall N 2 No.

Part 2 follows from Lemma 7.23 and the strict convexity of Fx on [—-R, R].

Part 3: Let Jy := [w -Cc, % + C‘l]. In part 1 we constructed the functions én : Jy — [—1, 1] such
that Fy (En (7)) =1
Since C7! < Fn < Con[=1,1],&5,(n) =

lead to

m € [C™!, C] on Jy. This and the identity &y (E(SN)) 0

En ()] = 1én () — En (B2 < Cly — B8 [ for all 5 € Ty, N 2 No.
Fix 0 < € < 1. By Theorem 7.3(4) there are 6, Ne > O such thate™ < ¥/ < €€ on [-9, 6] forall N > Ne. If
|77 - ]%;]v” < 6/C, then |€:N(7])| < 8, and 7:1\7({_-1\](77)) € [e €, e€].
Since 7 (0) = 0 and 7, (0) = ZPX), we have by (7.41) that Iy (%)) = 7 (522 = 0 and 1/ (n) =
L/F (En(m)) € [e7¢, e€]. Writing

n a
In(p) = In(592) + ﬁm)( I (o) + ﬁm )I"(ﬁ)dﬁ)
VN

we find that Iy () = e**1(n — ]E(VSA’]"))2 for all n such that | — %I < §/C.

Part 4: IfM — 0, then ‘Z/—II‘\’] € [w -, E(SN) +6N] with 6y — 0. By part 3,

VN
In () ~ 4 (25568802, whence Viy Zy (- ~§(—Zn—gw>). 0

Let Hy (n7) denote the Legendre transform of Py (£)/Vn. We will compare Hy (17) to I (17). This is needed
to link the change of measure we performed in section §7.3.3 to the functions 7y which appear in the statement
of the LLT for large deviations.

Lemma 7.24 Suppose R > 0 and Viy # 0 for all N > Ny. Then for all N > Ny,

(1) Hy is well-defined and real-analytic on [aR bR] = [T (-R), F, (R)]
(2) For all R large enough, there exists ¢ > O such that Hy(-) is well-defined and real-analytic on

(w -, E(SN) + c) for all N large enough.
Proof Let [aX N bN] [aN, ] + E(‘ij ) = [ NV(NR), Py (R)] Lemma 7.19 and its proof provide real-analytic
maps &y ¢ [a N> bi,] — R such that P;"Lﬁj(m) =mn.Soforall R > 0, Hy is real—analytlc and well-defined on

[@%, b ]. By (7.29), [aR, bR ] = [aR, bR 1+ = [@®*!, b and part 1 follows.

Part 2 follows from Lemma 7.19(2) and (7.29). |
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Lemma 7.25 Suppose R > 0 and Viy # 0 for all N > Ny. Then for all N > Ny,
(1) dom(Zy) Ndom(Hy) O [ay, bR 1.
(2) There exists C(R) > 0 such that lfVL aN, bR] and N > Ny, then
(@) [V I (75) - VwHnw (75)| < C(R); () C(R)™ < HY (5) < C(R).
(3) For every € > 0, A9, N¢ > 0 such that if N > N and |Z E(SN)‘ < 0, then
0 i () - i () = 00 = 15 () < -

Proof Part 1 is a direct consequence of Lemma 7.24 and Theorem 7.4(1).
To prove the other parts of the lemma, we use the following consequence of (7.29) and the continuity of P},

and F,: Forevery R > 0, for all N large enough, for every 7 € [aR, bR ], there exist 51(\}), 1(3) e [-(R+1), (R+1)]

Py Ex))

such that ————— =7 and TA’, (51(3)) = 1. Arguing as in the proof of Theorem 7.4(3), we can also find a constant

VN
C(R) such that [£3)| < C(R)ln — Z522|.
It is a general fact that the Legendre transform of a C! convex function ¢ is equal on its domain to
©*(n) = sup{én — p(£)}. Thus for every z € [aﬁVN, bgVN],
£

Lm.7.18(4) N(f(z))
Vi Iy (%) = Vivsup {é’% - ﬁ(f)} = Vy ( @2 _ gy (5%) < VN(fﬁ% - ) + Ay (R+1)
z PN

<V
N SUP {SVN Vn

} +AN(R+ 1) = VNHN (V ) +AN(R+ 1)
So VNIN(ﬁ)_VNHN(ﬁ) < An(R+1). Similarly, one can show that VNHN(%)—VNIN(%) < An(R+1).
Part (2a) now follows from Lemma 7.18(4).

If z/Vn € (E(SN) 0, %}5’) + 6), then |§1(\l,)| < C¢, and the same argument gives

sup  sup |VnIn (z/VNn) = VNHy (z/VN)| < sup AN(CO).

N>=Ny |z-E(SN) N >Ny
VN0

Part (3a) follows from Lemma 7.18(4).
77 _ _V ‘76
By (7.41), H (VN) P,/ (f) : . P}(/Q/f)’ for the unique £ s.t.
Lemmas 7.18(3) and 7.21(1).
o€
Part (3b) is because if |%| is small, then |£] is small, and Y—’;’ and P,‘,/—N are close to one, by Lemmas
N : v, N (&)

7.18(3) and 7.21(3). O

N(f) zN . Part (2b) now follows from

7.3.7 Proof of the Local Limit Theorem for Large Deviations

Proof of Theorem 7.8. We consider the non-lattice case, when G4, (X, f) = R; the modifications needed for the
lattice case are routine.

By Lemma 2.27, it is sufficient to prove the theorem under the additional assumption that the initial distribution
of X is a point mass measure . Because of this reduction, we can assume that P = P, and E = E,.

Since G55 (X, f)=R, f is not center-tight, and Vx:=Var(Sy) — oo (see Corollary 3.7 and Theorem 3.8). There
is no loss of generahty in assuming that Viy # O for all N.

Let [aR,BR] = [F(-R) - Z8X) 70 (R) — Z80)). By Theorem 7.4(1), for R large enough, ﬂ[aN, bR

contains a non-empty interval. Fix R like that.
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Suppose % € [aR,bR1, and let 5 (-) := hy(- ), pu(€), and Py (£) be as in §§73.2,73.3. Then
Jén € [-(R+1),(R+ 1] asinLemma7.19: Py (én) = zn, €N = (M) and E¥V (Sy) = zv +O(1).
Define a Markov array X = {X, XN 1 <n<N+ 1} with the state spaces of X (i.e. S,SN ) = S,,), the initial

distributions of X (i.e. 7™ = §,), but w1th the transition probabilities

Rt (3, €N)
M) _ abNfuloy) Ml eN)
nn+1(x dy):=e eP"(fN)hn(x,fN) Tnne1 (X, dy).

Letf={fM :1<n<N+1,NeN}where £\ := f,, and set
v = AXXN) 4w (X X)),

Recall that e~/ h,, and e”»¢N) are uniformly bounded away from zero and infinity, see Lemma 7.14. So

’ff\rfl )+1 (x, dy) differ from 7, ,+1(x, dy) by densities which are bounded away from zero and oo, uniformly in N.

By Corollary 2.10, X is uniformly elliptic, and the hexagon measures associated to X and X on Hex (N, n) are
related by Radon-Nikodym derivatives which are bounded away from zero and co uniformlyin5 <n < N < co.
Thus, dN (,7) =< d,(f,7) and u™ () = u,(f) for 5 < n < N < 0. So,

. (X f) and (X, f) have the same co-ranges and essential ranges. In particular, (S(va) is irreducible and non-lattice.

. (X f) is stably hereditary (see Example 4.12 in §4 2.3).

e Vy := Var(Sy) o (because Vy < 1 u2 < Vy — o).

- E(S; 1 -
By the choice of &y, v~ EGy) = 0(—) —— 0. Therefore Sy satisfies the local limit theorem

VN VVn/ Noe
(Theorem 5.1):
P(Sy — zn € (a,b)) ~ |a — b|/27V". (7.42)

The task now is to translate (7.42) into an asymptotic for P(Sy — zny € (a, b)). By construction, the initial
distributions of X are 7™) = 1 = §,, therefore

P[Sn — zn € (@, 5)] = Ex(1(ap)(Sy — zn)) = "N ENI=ENaN
th (x)

< E (eg,\,s,\, N+1( +1)
'X

 éN(GEN=SN) _
ePN(EN)th(x) i € Lia,p) (SN ZN))

N+1( N+1)

= P E-nsn s () B (2, R0 G ). 0.4

where ¢ p () := 1(ap)(1)e 4N,
PyEN) _ zw

The first term simplifies as follows: By construction —5 = 3%, 50
N N

N PN(é“N))] _ VN () (7.44)

PN (EN)-ENZN — v 2N
c exp | (ex 2 - 6

where Hy (1) is the Legendre gansform of Pn(€)/Vn.
To simplify the third term E3 én (---), we sandwich ¢, in L'(R) between continuous functions with com-
pact support, and sandwich 1/ h’fN between finite linear combinations of indicators of sets QI(N D such that

PéN (Xi,’frl € ;) is bounded away from zero. Then we apply the Mixing LLT (Theorem 5.4) to (X, ), and obtain
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ot =3 EN (vEN -1
- Sy — ESN (RSN (XN ) b
Fén (¢a,b( N ZN)) N ( N+1 AN ) f Nty (7.45)
a

3 y (V) —
hye (Xnsr) w/27rV§,”
Since & is bounded, Vi” ~ Py (én) as N — oo (Lemma 7.18(3)). Since Hy (1) is the Legendre transform of
Pn(&)/VN, H (zn/VN) = VN /PR (EN) ~ VN/Vlf,N, see (7.41). This leads to

~ V
VI§N - ﬁ as N — oo. (7.46)
N vy

Substituting (7.44), (7.45), and (7.46) in (7.43), we obtain the following:

VN INGRD) | b ;
PIS - v € (@) ~ Sl -blx o [ e Ear
N N 27TVN |a—b| a
Vn In (R -VN HN (GRS ” =, =, -1
el )« o [ 5520 )
PN PN

Letyy = 20N then £y = ¢y (n) where & : [@R, BR] — [(R+1), (R+ 1)] is defined implicitly by
Py (én() = nn VN + E(Sn). Lemma 7.19 shows that &x () is well-defined, and that it satisfies the statement
of Theorem 7.8(4b). _ R

There exists a constant L = L(R) such that [py| < L(R). Indeed, ny € [aR,bR] and |aR|, (bR <

|F'(xR) — F'(0)] < R sup %/, which is uniformly bounded by Theorem 7.3(3).
[-R,R]

E(SN) E(SN)
VN IN (7]+ VN )—VNHN (7]+ Vi

Let py(n) i=¢ ) H}, (’7 + %) This is well-defined for 7 € [aX, 5’;,], and

by Lemma 7.25, there is a constant C such that C™' < py(17) < C forall N and 57 € [aR, /b\g]. In addition,
for every € > O there are 6, N > 0 such that e™¢ < pn(n7) < e€ forall N > N, and || < 6. In particular, if
ZN_E(SN) = 0. then ﬁN(ZN_E(SN)) 5 1

N ? N :

N—oco

Let py (1) = hi(x, f(n))Ef(”) (hN+1 (X'I%(fl), f(n))‘l) . (There is no dependence on x, because x is fixed.)

This function is well-defined for all € [ﬁg, Zﬁ], and by Lemma 7.14, there is a constant C such that
cl< on(m) < Cforall N andn € [Eiﬁ,i;g].

By Lemma 7.16 and the obvious identity %,(-,0) = 1, ||h§ — 1| H} 0 uniformly in n. Since |£(n)| < Cln|,

for every € > 0 there are 6, Ne > 0 such thate™ < py (1) <e€ forall N > N, and |n| < 6.
Setting py := pn - Op» We obtain the theorem in the non-lattice case. The modifications needed for the lattice
case are routine, and are left to the reader. m]

7.3.8 Rough Bounds in the Reducible Case

Proof of Theorem 7.9: We use the same argument we used in the previous section, except that we will use
the rough bounds of §6.2.5 (which do not require irreducibility), instead of the LLT for local deviations (which
does).

Let 7#=100K + 1 where K =ess sup(f). Looking at (7.43) and using Theorem 6.11 and the assumption that
‘Z/—z € [Fr (e), F (R)], we get that there exists a constant ¢ = ¢(R) and £y := éy (‘Z,—’;) € [&, R + 1] such that
for all N large enough,
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ce hoh Vi In ( N)
N

(Theorem 6.11 is applicable because 7 > 2(f) due to Corollary 4.6).)
Since P(Sy > z,) = P(Sy — zn € [0, A]) the lower bound follows.
Likewise, applying Theorem 6.12, we conclude that there is a constant C* = C*(R) such that for all N large

P(Sy —zn € [O,f’l])

(7.47)

enough we have, uniformly in j € NU {0}, P(Sy — zy € [fj,A(j + 1)]) < Cf/i;'h’ VN]N( ) Summing
over j we obtain the upper bound. O

7.4 Large Deviations Thresholds

7.4.1 The Large Deviations Threshold Theorem

In this section we look closer into the conditions imposed on w

7.8), and ask what happens when they fail.

Let f be an additive functional on a uniformly elliptic Markov chain X. We assume throughout that f is
non-center-tight, irreducible, and a.s. uniformly bounded. Without loss of generality, G := G4;4(X,f) = R or Z.
Our main result is:

in the LLT for Large Deviations (Theorem

Theorem 7.26 There exist c_ < 0 < ¢ as follows. Suppose zn is a sequence of numbers such that P[Sy — zn €
G =1forall N, and 85758 — 7.

(1) If 7 € (c_, ¢y), then zn satisfies the assumptions and conclusions of the LLT for large deviations (Theorem 7.8),
-VnIN

and 1 a bounded sequence Iy s.t. for all intervals (a, b) which intersect G, P[Sy — zn € (a,b)] =

\27Vy
(2) If z & [c_, i ], then the conditions of Theorem 7.8 fail, and ANy T oo such that P[Sn, — zn, € (a,b)] = 0

faster than e™YN! | for each I > 0.

The theorem does not extend to the case when z = ¢_ or ¢, see Example 7.37. The numbers ¢_, ¢, are called the
large deviations thresholds of (X, f).

Corollary 7.27 Let 3,(z) = lim sup VI\_,l |logP(Sy —E(Sn) € zVN +[—a, al)|. If a is bigger than the graininess
N—oo

constant of (X, 1), then ¢, = sup{z : J,(z) < oo} and ¢ = inf{z : J,(z) < oo}.

Thus, if z ¢ [c_, ¢4 ], then P[Sy — zny € (a, b)] decays “too fast" along some sub-sequence. Here is a simple
scenario when this happens. Let

. ess inf(Sy — E(Sy)) .. .esssup(Sy —E(Sn))
_ :=limsup , ry := liminf .

Nooo Vv N—co VN

If M — zand z ¢ [r_,r.], then AN, — oo such that P[Sy, — zn, € (a, b)] is eventually zero, and we
must be in case (2) of Theorem 7.26. We call .. the positivity thresholds of (X, f). Clearly, (¢c_,c;) C (r,14).

If c. = r4 then we say that (X, f) has a full large deviations regime. Otherwise, we say that the large deviations
regime is partial. For examples, see §7.4.4. Note that even in the full regime case, our results do not apply to
z = 1%,

In the partial case, P[Sy — zn € (a, b)] decays faster than expected when —ze () (e, cy),
but the precise asymptotic behavior remains unknown. We are not aware of general results in this direction, even
for sums of independent, non-identically distributed, random variables.

zn—E(SN)
V
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7.4.2 Admissible Sequences

Let f be a non-center-tight and a.s. uniformly bounded additive functional on a uniformly elliptic Markov chain
X, and recall that F (&) = (1/Vy) log E(ef5V).
Theorem 7.8 is stated under the assumption that for some R > 0, for all N large,

N =EOW) [y BON) ) EGM]

(7.48)
VN N Vn

Sequences {z} satisfying (7.48) for a specific R are called R-admissible, and sequences which satisfy (7.48)
for some R > 0 are called admissible. Admissible sequences exist, see Theorem 7.4(1). _

Why do we need admissibility? The proof of the LLT for large deviations uses a change of measure X, given
by (7.3). The change of measure depends on parameters &, which are calibrated so that E(Sy) = zy + O(1).
These parameters are roots of the equation P}, ({§n) = zn, where Py are the functions from (7.24), and the
admissibility condition is necessary and sufficient for these roots to exist:

Lemma 7.28 Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic Markov chain X, such
that Viy — oo. The following are equivalent:

(1) {zn} is admissible; (2) For some R > 0, for all N large enough, 3¢ € [—R, R] s.t. P]'V (éEN) = zNs

(3) For some R" > 0, for all N large enough, 3¢y € [-R’, R'] s.t. F(én) = %

Proof (1)=(2) is Lemma 7.19(1).
Assume (2). Py is strictly convex, therefore if 3¢5 € [—R, R] such that Pl’v(fN) = zn, then %)\SS"’) €

P\ (-R)-E(Sn) Pj(R-ESM)| . (=R TR N-E(SN) . =R+l TRely _ | Fiy(“R-D-E(SN) F{ (R+D-E(SN)
N , =: [ay, bR 1. By (7.29), 20N ¢ [aRH! pRr1] = | , )

Since ¥, is continuous, (3) follows with R” := R + 1. So (2)=(3).

Assume (3). ¥y is a smooth convex function, therefore 771\’, is continuous and increasing, whence
[Fv (—R"), F, (RN = Fr([-R’, R']). By (3), forall N > 1,
IPON) e [aR BR] = [F (—-R) = 228 FY(R) = 522, and {zy ) is R’-admissible. So 3)=(1). O

Lemma 7.29 Let f be an a.s. uniformly bounded additive functional on a uniformly elliptic Markov chain, and
assume that Viy — oo. Then YR > 0 de = &(R) > 0 such that if {zn} is R-admissible, and |Zn — zn| < €V,
then {zn} is (R + 1)-admissible.

Proof 1t is sufficient to prove the lemma under the assumption that E(Sy) = 0. Suppose {zy} is R-admissible,
and choose ¢ y€[-R, R] such that 7 (én) = F.

Fn are uniformly strictly convex on [—(R + 1), (R + 1)] (Theorem 7.3), so there exists an & > 0 such
that (R + 1) > FN(R) + & and F(~(R+ 1)) < Fy(—R) — € for all N. So, if |zZy — zn| < &V, then
IN/VN € [Fy (=R = 1), F(R+ 1)]. |

The following theorem characterizes the admissible sequences probabilistically. Recall the definition of the
graininess constant §(f) from (6.6).

Theorem 7.30 Let f be a non center-tight a.s. uniformly bounded additive functional on a uniformly elliptic
Markov chain X. The following are equivalent:

(a) {zn} is admissible.

(b) de > 0,n > 0 such that for every sequence {Zn} with |zy — zn| < €Vn and for every a,b such that
lal,|b] < 106(f) + 1 and b — a > 26(f), for all N large enough, P[Sy — Zn € (a,b)] = nVN.

(c¢) de > 0,1 > 0 such that for all N large enough, P(Sny > zny + €Vn) > 77VN and P(Sy < zy —eVn) = nVN.

Proof Note that under the assumptions of the theorem, Viy — oo (Corollary 3.7).

(a)=>(b): Let € := &(R) be the constant from Lemma 7.29. Suppose {zy} is R-admissible, then z is (R + 1)-
admissible.
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By Lemma 7.28, there is a bounded sequence of real numbers &5 such that PI'V (én) = Zn. Consider the
decomposition (7.43). Integrating over x € S; and taking note of the uniform bounds for hf’v in Lemma 7.14,
we obtain P[Sy —zn € (a,b)] > const.e’NENI—ENTN @[_?N —2ZnN € (a,b)], where P and §N correspond to the
change of measure (7.3).

The term eV (€N )_ENEN is bounded below by a constant times e_ZN InGNIVN) see (7.44) and Lemma 7.25(2).
By the choice of £, E(Sy) = Zn + O(1), so the asymptotics of @[SN —2ZnN € (a, b)] is given by Theorem 6.11,

—VNIN(%)

_ vV 2r VN
To finish the proof of (b), it is sufficient to show that 7; N(f,—fl:’]) is bounded from above. First we note that since
{zn}is (R + 1)-admissible,

provided |a — b| > 26(f). In this case, P[Sy —Zn € (a,0)] > C for all NV large enough.

f/—N € [aR+! BB forall N. (7.49)
N

By Theorem 7.4(2) and (3), IN(]%) = I&(%) = 0, and there exists p > 0 such that 0 < 7/ < p on
[aR*, bRH!] for all N. As 2280 = F1(0) € [aR*!, R*],

Vi
N \| _ AN E(Sn)
\IN(W) "fN(m) IN( Vi )

Equation (7.49) and Theorem 7.3 (1) and (3) tell us that

IA

1,5 (v —BSw)\?
2” Vi '

B _
Vn ’

Zn — E(Sn)
Vn

< C:=sup max
N [€1<R+1

Fu (&) -

So Iy (Zn/V) < % p>C?, and part (b) follows.

(b)=(c): The bound P[Sy > zy + eVy] > "N follows from part (b) with Zy = zy + &V, a = 0, and
b = 26(f) + 1. The lower bound is similar.

(c)=(a): If (¢) holds, then E(e®SV) > E(eRSV 1 senteVa]) = VNeR@N+8VN) whence Fiv(R) = logn +
[Sn2zn+&VN] n gn

R(% +¢). If R > 27| log |, then Fy (R) > R(% +£). Since F(0) = 0 and 7, is increasing, F, (R) > ‘Z,—Z

Similarly one shows that F,(—R) < ‘Z,—II‘\’] So {zn} is admissible. O

Example 7.31 The following example shows that condition (c) with & = 0 is not equivalent to admissibility.

Let Sy = Zf:’:l X, where X, are iid random variables supported on [«, B8] and such that X has an atom on
the right edge: P(X = 8) =y > 0. Then P[Sy > BN] =P[Sy = BN] = yN while P[Sy > BN + 1] = 0. Thus
{ 8N} is not admissible.

We note that the notion of R-admissibility depends on the initial distribution o since E(Sy) depends on 7.
However, the notion of admissibility is independent of the initial distribution as the next result shows.

Lemma 7.32 Let f be a uniformly bounded non center-tight additive functional of a uniformly elliptic Markov
chain. If z is admissible with respect to the initial distribution 1o, then it is admissible with respect to any other
initial distribution 7.

Proof Let X denote the Markov chain obtained from X by changing the initial distribution to 7. Objects
associated with (X, f) will be decorated with a tilde.

- E(S E(S
Suppose z is R-admissible for (X, f). Then for all N large enough ZNV—(N) € [TA’,(—R) - (VN)’ TA’, (R) +
N N
—E(S P,(—R—-1)-E(Sy) P, (R+1)-E(S
By (7.29). zv — E(Sn) c N ) —E( N)’ N ( ) —E(Sn) '
\% Vn VN
By Lemmas 7.18(3) and 7.21(3), there is a constant ¢; which only depends on R so that ‘Ij—l’;’ > ¢; on
o Pl(R+2) Pl (R+1) P\, (-R=2) P} (-R-1)
[-R — 3, R + 3] for all N large enough. Necessarily, NVN - NVN > ¢ and X Vo~ o Ve < —c.

This leads to:

E(Sn)
Vn
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v —E(Sw) c
Vn

Vn ’ Vn

P} (=R =2) +c|Vy —E(Sn) Pj(R+2)—c1Vy —E(SN)]

, We arrive at

Applying the increasing map ¢t — (Vn/ V) (t + ]%NE(SN))

Py(-R=2)+c|Vy - E(Sy) Py(R+2)-c1Vy - E(Sn)

Vi Vi

N — E(SN)
Vi

Looking at (7.24), we see that P}, (§) - ﬁ;\, (&) = £(B(Sn) — E(SN)), (the function ﬁN(f) does not depend

on the initial distribution, is the same for (X, f) and (XT), and cancels out). Next, Lemma 7.17(1) tells us that
)E(SN) - E(SN)‘ < ¢; for some constant ¢,. Thus, dc¢z = ¢3(R) so that

|Pi (R +2) — Py (R +2)| < c3, and [Py (=R = 2) = Pj, (=R = 2)| < c3.
(X, f) is not center-tight, therefore Vy — oo. If N is so large that ¢; Vi > c3, then

-E
N ~(SN) c
Vn

Vv ’ Vn

Py (-R-2) —E(Sn) Pj(R+2)- E(SN)]

By (7.29), 226N ¢ |Fr(—R - 3) — EE0 Fr (R4 3) - BN | \whence the (X, f)-admissibility of zy. O
VN VN VN

We say that (X, f) and (X, ) are related by a change of measure with bounded weights if X, X have the same
state spaces, f, = f, for all n, and if for some s the initial distributions and transition probabilities of X and X

are equivalent and related by € < 47t (x,y)

T (edy) <z 'foralln.

Lemma 7.33 Suppose f is an a.s. uniformly bounded additive functional on a uniformly elliptic Markov chain
X Af (X, 1) and (X, 1) are related by the change of measure with bounded weights, and Viy > cN for some ¢ > 0,
then {zn} is (X, f)-admissible iff {zn} is (X, f)-admissible.

Proof Since admissibility does not depend on the initial distribution we may suppose without the loss of
generality that 7 = .

Since X is uniformly elliptic, X is uniformly elliptic. By the exponential mixing bounds for uniformly elliptic
chains both Vi := Var[Sy (f)] and Vi := Var[Sy (f)] are O(N). Without loss of generality, cN < Vy < ¢ 'N.

Under the assumptions of the lemma, the structure constants of (X, f) are equal to the structure constants
of (X f) up to bounded multiplicative error. By Theorem 3.7, Vy =< Vy as N — oo. So 3¢ > 0 such that
¢N < Vy <T'N.

Let {zn} be (X f)-admissible. Then there are € > 0 and > 0 such that for all N large enough, P[Sy >
iv+eVnl 2N, PISy <zv-eWlz=g™. _

It follows that IP’[SN(f) > zy +8Vy] > 7V, P[Sy(f) < zy —&Vn] = " where 7 = ng and € := cce.
Hence {zn} is (X f) admissible. o

Lemma 7.34 Let f and f be two a.s. uniformly bounded additive functionals on the same uniformly elliptic
Markov chain. Suppose Vi := Var[Sy (f)] — oo and

1.nw®—wmm
m
N - VN

=0. (7.50)

Then {zn} is f-admissible iff {zn'} is f-admissible.

Proof We write Sy = Sy (f), and §N = Sy (f). By the assumptions of the lemma, VN = VM(§N) ~ VN as
N — oo,
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Let {zn} be f-admissible. By Theorem 7.30(c), there are £ > 0, > 0 such that P[Sy > zy + eVn] >
N, P[Sy < zy —&Vy] = n™V. It now follows from (7.50) that for large N, P [SN >IN+ %VN] > " and

P [§N <IN - %VN] > nN. Hence {zx} is f-admissible. o

7.4.3 Proof of the Large Deviations Threshold Theorem

Let f be an a.s. uniformly bounded and non-center-tight irreducible additive functional on a uniformly elliptic
Markov chain X. Then Vi — oo, and the algebraic range is R or tZ, with ¢ > 0. It is sufficient to consider the
cases R and Z.

We call z € R reachable, if at least one of the following conditions holds:

(1) The sequence zn:=E(Sn )+ Vn z is admissible. (2) 3 an admissible sequence {z } such that %;SN) - Z.

(3) Every sequence {zx} such that w — z is admissible.

The conditions are equivalent, by Lemma 7.29. If zn:=E(Sy ) +Vy z is R-admissible, we say that z is R-reachable.

We denote the set of R-reachable points by Cr and the set of reachable points by C. Since ¥, is monotone
increasing, Cg and C are connected, and by Theorem 7.4(1), C contains a non-empty neighborhood of the origin.
Therefore int(C) = (¢’, ¢}) for some ¢’ < 0 < ¢/.. The plan is to show that Theorem 7.26 holds with c. := c}.

1
StEP 1. Let 3,(z) = limsup V—I logP(Sy — B(Sn)ezVn + [—a, al)| with a > 35(f) (see (6.6)), then
N -0 N
¢t =sup{z : 3,4(2) < co}and ¢/ =inf{z: J,(z) < oo}.

Proof. If z € (¢/,¢}) then z € C, zy = zVn + E(Sy) is admissible, and I, (z) < co by Theorem 7.30(b). So
¢ <sup{z:J,(2) < o0} =: 8.
In particular, S > 0. We claim that § is the limit of 7 with the following property:

30 < € < 7 such that 3, (Z + 2€) < oo. (7.51)

1
If S = oo, this is clear, and if § < oo, then any = sup{z : I,(z) < o0} <7 < sup{z : J4(z) < oo} satisfies (7.51).

Fix 7 as in (7.51). Necessarily dn € (0, 1) such that for all N large enough
PLSy —E(Sn) > (Z+ €)Vn] > P(Sy —E(Sn) € (Z+26)Vy + [-a.a]) > n"V;

1
P[Sy —E(Sy) < (Z - €)Vy] = P[Sy — E(Sy) < 0]= S+o(l) 2 n"N, by the CLT.

By Theorem 7.30(c), zVn + E(Sn) is admissible, and 7 is reachable.
We just proved that S is the supremum of reachable z. It follows that ¢, = § = sup{z : 3,(z) < oo}. The
formula for ¢” follows by considering (X, —f).

StEP 2. Theorem 7.26 holds with ¢, := L.

Proof. Suppose first that G414 (X, f) = R.

If z € (¢, c}), then zy := E(Sn) + zV is R-admissible for some R > 0, and the conditions and conclusions
of Theorem 7.8(2) and (4) are satisfied. _

In particular, for some R > 0, % € [Zig, b%] and log pN(%}\(]s"’)) and §N(%]\(]s"’)) are uniformly

—VnIn N
bounded. Therefore P[Sy — zn € (a, b)] < , with Iy := 1 (—) .
N — 2N Nz N N Vn
By assumption, ‘Z,—’I‘\’] € [aﬁ, bﬁ,]. By Theorem 7.4(2), there is a constant p = p(R) such that for all N,
0 < I < pon [aX, bR ]. In addition, Theorem 7.4(3) clearly implies that Ty (%) =TI} (%) =0. Thus

0<Iy< %p(%ﬁs’v))z — 1 pz?, proving that Iy is bounded.
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1
Now take z ¢ [c/, ¢ ]. By step 1, 3, (z)=00 for all a>35 (X, f). Equivalently, lim sup Vo | log P(Sy—zn € [—a, a])|=c0.
N —o0 N

It follows that ANy T oo such that P(Sy, — zn, € [—a, a]) decays to zero faster that e Nl forall I > 0.
In summary, if Gg;4(X,f) = R, then Theorem 7.26 holds with ¢, := ¢. The case when G, (X,f) = Z is
handled in the same way, and is left to the reader. m]

7.4.4 Examples

Recall that (¢c_,¢;) C (v, r4). We give examples of equality (“full large deviation regime") and strict inclusion
(“partial large deviations regime"):

Example 7.35 (Equality) Let Sy = X| + --- + Xy where X,, are bounded iid random variables with law X,

expectation zero, and non-zero variance. In this case ¥ (&) = log E(e$X)/Var(X) for all N (Example 7.2), and
inf (X X

it is not difficult to see that ¢_ = % =1, ¢ = % = r4. So we have full large deviation

regime. See also Theorem 8.7.

Example 7.36 (Strict Inclusion) Let X,, = (Y, Z,) where {V,}, {Z,} are two independent sequences of iid

random variables uniformly distributed on [0, 1]. Fix a sequence of numbers 0 < p,, < 1 such that p,, — 0, and

Z, itY, > p, . . . -
let f,(Xn) = {2 %f v < P Then f,(X,) are independent, but not identically distributed.
iy, <p

N N
A calculation shows that E(Sy) = > + o(N) and Var(Sy) = - + o(N). Clearly ess sup Sy = 2N, so

—(N/2+o(N
ry = lim (N/2 + o(N)) = 18. We will show that ¢, = 6, proving that (¢c_, ¢;) # (x_,13).
N—oo N/12
Fn (f)—— log l_[ egf"(y" Z" ~— Z logE ff"(y" Z" Z log pnez‘f+(1—p YE(e£U10: 1]))_>12 log E (e.fU[O 1])

n

& _
because p,, — 0. Hence F (&) FYE 121og ( )< 12¢ for £>0, because ¢ z —Z T 1)‘<e"E Therefore

for every & > 0, for every sufficiently large N,
E (e55V) < e!?VVE, (7.52)

Take some arbitrary 0 < z < z” < ¢;. By Corollary 7.27, we can choose z’ so that J;(z’) < oo, and there is
some 17 > 0 such that for all N large enough, for all & > 0,

(7.52)
"V <P(Sy —E(Sn) € 2’V + [=1,1]) < P[Sy > zViv + E(Sy)] < E(ef15V 2N ESNl) ¥ o o€V 2= HESN)/VIT,

Since 7 is fixed but € can be arbitrarily large, the term in the square brackets must be non-negative for all N
large enough. As E(Sy)/Vn — 6, z must be no larger than 6. Since z can be chosen to be arbitrarily close to ¢,
we get ¢, < 6.

Next we show that ¢, = 6. It suffices to show that zy := zVy + E(Sy) is admissible for each 0 < z < 6
(because then z satisfies the conditions of Theorem 7.8, and we are in the first case of Theorem 7.26).

By Theorem 7.30, it suffices to find &, > 0 such that for all N large enough,

P(Sy < zv —eVw) = "N (7.53)
P(Sy > znv + V) > 'V, (7.54)

(7.53) is because for £ < z, P(Sy < zny — sVN) > P(Sy —E(Sy) <0) — %, by the CLT To see (7.54), we
let Sy = Zi + -+ - + Zy, and note that E(S, V) =5 =E(Sny) +o(N), Vy, := Var(Sy) = 5 = Vv + o(N), and
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Sn = Sy (because f,,(Xpn, Yn) 2 Zy,). Let z); := zVy, + E(Sy,), then z), = zy + 0(N), and so for all large N,
P(Sy 2 v +&Vn) 2 P(Sy 2 v + &V ) 2 P(Sh 2 2y +26V) .

By Example 7.35, the large deviations thresholds for S}, are the positivity thresholds of §},, which can be

easily found to be +6. Since 0 < z < 6, P (S’ 27+ 28V1(,) > n:/;v > n;/"’ for some &,7; > 0 and all N large
enough. This completes the proof of (7.54), and the proof that ¢, = 6.

Example 7.37 (Failure of Theorem 7.26 at z = ¢,) This already happens in Example 7.1, when Sy = X; +
-+ + Xn, and X; are iid random variables such that X; = —1,0, 1 with equal probabilities.

By Example 7.35, ¢, = 1. = +3. Clearly, E(Sy) = Oand Viy = 2N. So 2% := N + I satisfy %)
11

However, P[Sy — z;:, € (=3, 3)] = 0, which violates the first alternative of Theorem 7.26, and P[Sy — zjy €
(—%, %)] = 37N N which violates the second alternative of the Theorem 7.26.

— (4.

7.5 Notes and References

The reader should note the difference between the LLT for large deviations and the large deviations principle
(LDP): LLT for large deviations give the asymptotics of P[Sy — zn € (a, b)] or P[Sy > zn]; The LDP gives
the asymptotics of the logarithm of P[Sy > zn], see Dembo & Zeitouni [40] and Varadhan [197].

The interest in precise asymptotics for P[Sy > zn] in the regime of large deviations goes back to the first
paper on large deviations, by Cramér [34]. That paper gave an asymptotic series expansion for P[Sy —E(Sy) > x]
for the sums of iid random variables. The first sharp asymptotics for P[Sy — zy € (a, b)] appear to be the work
of Richter [167], [103, chapter 7] and Blackwell & Hodges [14].

These results were refined by many authors, with important contributions by Petrov [155], Linnik [133],
Moskvin [146], Bahadur & Ranga Rao [11], Statulavicius [188] and Saulis [176]. For accounts of these and
other results, we refer the reader to the books of Ibragimov & Linnik [103], Petrov [156], and Saulis &
Statulevicius [177]. See also the survey of Nagaev [150].

Plachky and Steinebach [158] and Chaganty & Sethuraman [23, 24] proved LLT for large deviations for arbi-
trary sequences of random variables 7, (e.g. sums of dependent random variables), subject only to assumptions
on the asymptotic behavior of the normalized log-moment generating functions of 7;, and their Legendre-Fenchel
transforms (their rate functions). Our LLT for large deviations are in the spirit of these results.

Corollary 7.10 is an example of a limit theorem conditioned on a large deviation. For other examples of such
results, in the context of statistical physics, see [45].

We comment on some of the technical devices in the proofs. The “change of measure" trick discussed in
section 7.3.1 goes back to Cramér [34] and is a standard idea in large deviations. In the classical homogeneous
setup, a single parameter £y = & works for all times N, but in our inhomogeneous setup, we need to allow the
parameter £ to depend N. For other instances of changes of measure which involve a time dependent parameter,
see Dembo & Zeitouni [39] and references therein.

The Gértner-Ellis Theorem we used to prove Theorem 7.7 can be found in [69]. The one-dimensional case,
which is sufficient for our purposes, is stated and proved in appendix A, together with historical comments.

Birkhoff’s Theorem is proved in [13], and is discussed further in appendix B.

Results similar to Lemma 7.13 on the existence of the generalized eigenfunction hf were proved by many
authors in many different contexts, see for example [15], [67], [75], [90], [93], [113], [173]. The analytic
dependence of the generalized eigenvalue and eigenvector on the parameter ¢ was considered in a different
context (the top Lyapunov exponent) by Ruelle [172] and Peres [154]. Our proof of Lemma 7.16 follows closely
a proof in Dubois’s paper [67].

For an account of the theory of real-analyticity for vector valued functions, see [49] and [199].



Chapter 8
Important Examples and Special Cases

Abstract In this chapter we consider several special cases where our general results take stronger form. These
include sums of independent random variables, and homogeneous or asymptotically homogeneous or equicon-
tinuous additive functionals.

8.1 Introduction

In the previous chapters we studied the LLT for general uniformly bounded additive functionals f on uniformly
elliptic inhomogeneous Markov chains X. We saw that

. _ an-E(Sn) _ ~AaZ Bl
If Goss (X, f) = R, and N then P[Sy — znv € (a, b)] me :
. _ _B(Sn) la = bl ~vwin(s;
If G,ss (X, f) = R, and ZNV—NN — 0, then P[Sy — zn € (a,b)] ~ me (VN) , where 7y are the

rate functions, see §§7.2.2, 7.2.3.
o IfGus(X,H) =R, z € (c_,cy), and %&“N) — z, then

la —b| -vyIn(E _ 1 b g (ENESN)
P[SN—ZNG(a,b)]’“—mC N N(VN)pN (ZN ‘;ELSN)>X|a_b| . et‘N( VN )dt,

where pn (17) ——0> land én () ——0> 0 uniformly in N (see §7.2.4), and c,. are the large deviation thresholds
77— 77—
of (X, f) (see §7.4).

We will now apply the general theory to special cases of interest. The point is to verify the condition G4 (X, f) = R
and to find c..

8.2 Sums of Independent Random Variables

Throughout this section, let X;, be independent real-valued random variables, possibly with different distributions,
such that forsome K, | X,,| < K foralln.Let Sy = X 1+---+ Xy, Vy := Var(Sy) = Var(X;)+- - -+Var(Xy). This
is a special case of the setup studied in the previous chapters: X := {X},} is a uniformly elliptic inhomogeneous
Markov chain (with ellipticity constant €y = 1), and Sy = Sy (f), for the uniformly bounded additive functional

fn(x,y) == x.
Proposition 8.1 (X, f) is center-tight iff 3, Var(X,,) < oo. In this case, the limit Iéim (Sn — E(SN)) exists and is

finite almost surely.

Proof Corollary 3.9 says that (X, f) is center-tight iff sup Uy = Z u,zl < oo, where u,, are given by (2.26). In
N

n=3
Proposition 2.20 we saw that ufl = 2(Var(X,,—1) + Var(X})). Thus (X, f) is center-tight iff )} Var(X,,) < co. The
a.s. existence of lim (S,, — E(S},,)) is due to the two-series theorem (see also Theorem 3.12). |
n—oo

Recall the following definition from Chapter 3: Given a real-valued random variable X and a number ¢ € R,

2m _\1"?
D(X,¢) :=minE [dist2 (X,e + —Z)] )
6€eR é:

147
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Proposition 8.2 Suppose Y, Var(X,,) = co.

(1) (X, f) has essential range R lﬁz D(X,, §)2 =oo forall ¢ > 0.
n=1

(2) Otherwise, the following holds:
(a) There is a minimal positive ¢ such that Z D(X,, g—“)z < 00, (D) Gess (X, f) =tZ fort :=2m/é.

n=
(c) We can decompose X,, = F,(X,)) + h,,(X,,) where F,, are uniformly bounded measurable functions taking
values in tZ, and Y, Var[h, (X,)] < co.

2ri
(d) A constants yn such that Sy — yn converges a.s. modulo tZ, i.e. ]\}im exp [T”(SN - yN)] exists a.s.

Notice that unlike the general case discussed in Lemma 4.16, the decomposition in (c) does not require a gradient.

Proof By Proposition 2.21, for every & > 0 there is a constant C(£) > 1 such that

dy (€) = CEO* [D(Xp-1,€)” + DXy, €))]. ®.1)
Therefore, Y, D(X,,, &)? < o0 iff 3 d2(£) < oo. Hence the co-range of (X, f) is given by H(X,f) = {£ € R :
Z D(X,, f)z < oo}. Parts (1), (2)(a), and (2)(b) now follow from Theorems 4.3 and 4.4 on H (X, f).

n=1

* Next we prove (2)(c). Let & > 0 be as in (2)(a), and set ¢ := 27/£. For every n, choose 6,, € R such that
1
E [dist® (Xp, O +1Z)] < Du(X, ) + >
We can decompose every x € R into x = F,(x) + h,(x), where

F,(x) := the (minimal) closest point to x — 8, intZ, h,(x) := x — F,(x).

Necessarily, |h, (x) — 0, |=dist(x, 8,, + tZ), and X,, = F,,(X,,) + h,(X,,) with F,, bounded and taking values in ¢Z.
We claim that h has summable variances. Recall that for a random variable Y, Var(Y) = I(;Ililg E[(Y - 9)2]. Thus
€

D (X, 1)

n=1

Z Var(h, (X,,) )=Z min [, (X,)) - 9)2132 E[(hn(Xn)—é)n)z]:Z E[dis?(x, 6, + 1Z)] < +1 < oo,
n=1 n=1 n=1 n=1

We proved (2)(c).

Let a, := E[h,(X},)]. By the two-series theorem, the series Z(h,,(X,,) — @) converges a.s. Therefore, if

n=1

i
YN = @i + -+ +ap, then exp [?(SN —)/N)] =

exp [?(SN(JF) + Sy (h) - 7N)] = exp [§(SN(h) - yN)] — exp(% Z(hn(Xn) - wn)> » whence (2)(d).0
n=1

N —o0

We are now ready to state the non-lattice LLT for independent random variables:

Theorem 8.3 (Dolgopyat) Let X,, be a sequence of uniformly bounded independent real-valued random vari-
ables such that ), Var(X,,) = co.

(1) Suppose ZD(X,,, &)? = oo forall &€ > 0. Then for every zy,z € R s.t. %‘/LNSN) — z, for every a < b,
=1
" 2212

P[Sy —znv € (a,D)] =[1 + 0(1)]m

|la — bl as N — oo.
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0 2
2
(2) Otherwise, there is a finite maximal t such that Z D (X,,, TH) < oo, and:

n=1

2mi
(a) There exist constants yn s.t. SN — YN converge a.s. modulo tZ, (i.e. Iéim exp [T(SN —vyN)| exists a.s.).

(b) There is a bounded random variable & (X1, X3, . . .) and a bounded sequence of numbers by s. t. for all

2
te~e /2
Zn € by +1Z such that H—=85N) 5 7 ¢ R, V¢ € Co(R), lim \VNE[¢(Sn — zn)] = El¢(mt +F)].
VN ‘ N—eo 27[ }’HZEZ

Proof In case 1, Proposition 8.2 says that G.5s(X,f) = R. So (X, f) is non-lattice and irreducible, and the first
part of the theorem follows from Theorem 5.1. In case 2, Proposition 8.2 says that there is a minimal £ > 0 such
that >’ D(X,, §)2 < oo, and for this &, G5 (X, f) = tZ, where t := 2x/£. In addition, there are constants y such
that Sy — yn converge a.s. modulo Z.

By Theorem 6.3(a) there are bounded random variables &(Xi, X2, ...) and by (X, Xn+1) so that for all

, 2z —~E(SN)
¢ € C.(R) and z;, € tZ such that NW -z,
le_zz/z Z
lim VNE[¢(Sy — 2y — bn)] = Elgp(mt + §)]. (8.2)
N=eo N ‘/ﬂ mez

To finish the proof, we need to show that (8.2) holds with constant by, because then we can take z;\, :=zy —bn
for any zy € by + tZ such that %SN) - z.

There is no loss of generality in assuming that E(X,,) = O for all n, and ¢ = 1 (this can always be achieved by
scaling). By Proposition 8.2(c), we can decompose X, = F, (X,,) + h,,(X,,) with F,, uniformly bounded taking
values in Z, and where h has summable variances. The absence of a gradient term in this decomposition places
us in the “special case" (6.40), where the proof of Theorem 6.3(a) gives (8.2) with by constant and bounded. O

Next, we discuss the lattice LLT for sums of independent integer-valued random variables X,,. We say that
X, satisfies Prokhorov’s condition, if

(o)

1_[ ( max P(X; = m mod t)) = 0 for all integers ¢ > 2. (8.3)

0<m<t

Let my be the (smallest) most likely residue mod ¢ for X . Then it is not difficult to see that Prokhorov’s condition
is equivalent to

ZP[Xk # my mod ] = oo for all integers ¢ > 2. (8.4)
k

Lemma 8.4 Let X, be a sequence of independent Z-valued random variables, then the following are equivalent:
(1) Prokhorov’s condition (8.4); (2) (X,f) is irreducible, with essential range Z.

Proof
(2) = (1): Fix an integer t > 2. Every x € Z can be decomposed uniquely in the form x = {x};z + [x],;z, where
{x};z € [0,¢) and [x],z € tZ. Set

*  yr(x) := the (smallest) integer in my, + tZ closest to x, and zx (x) := x — yx(x),

* 8k(x) 1= (ke (x) —my) + [x = yr(x)]iz (gk takes values in 1Z),
e hr(x) :={x — yr(x)}sz (hx takes values in Z). Then

Xk = 8k (Xi) + hie (X)) + my.
The algebraic range of (X,g) is inside ¢tZ, and by the Borel-Cantelli lemma, (8.4) fails & X; #
my mod tZ finitely often a.s. & hig(Xx) # O finitely often a.s. So if (8.4) fails, then Z |hr (Xr)| < oo almost

k=0
surely. Hence h is center-tight. Since G (X, f — h)=Gaig (X, 9)CtZ, Gy (X, f)#Z contradicting to (2).
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(1) = (2): Fix an integer t > 2, 6 € [0, 1), and let mg be the (smallest) closest integer to 6. Then |m’ — 6| > %

for m’ # mg, whence E[dlst (X,,0+12)] > P(X # mg modt) > — [1 - max P(X,, = m mod t)].

Passing to the infimum over 6, we obtain Dz(Xn, 7 £y > —[1 - max P(X,, = mmod?)] = —]P’[X # m, mod 7].

By (8.1) and (8.4), we getZdz(Z”) > constZ(Dz(Xn Lz )+:02(X,,, 1)) = co,

‘We find that the co- range does not contain 27r Jt fort € {2,3,4,...}. But it does contain 27 (because Xy are
integer-valued). The only closed sub-group of R with these propertles is 2nZ. So the co-range is 2nZ, and the
essential range is Z. Since X}, are integer-valued, we have irreducibility. O

Theorem 8.5 (Prokhorov) Let X, be a uniformly bounded sequence of integer-valued independent random
variables. Assume (8.3). Then ), Var(X,,) = oo, and for all zy € Z and z € R such that wESN) _, z, Yk € Z,

N7
6—12/2
PSSy —znv =kl =1[1+0(1)] as N — oo.
N N V27TVN
Proof The theorem is a direct consequence of Lemma 8.4, and Theorem 5.2. O

Prokhorov also showed that (8.3) is a necessary condition for his LLT to apply to all uniformly bounded sequences
of integer-valued independent random variables X;, such that for some r, X, = X, for all n > r.We omit the
proof, which given Lemma 8.4, follows from a lattice version of Theorem 6.5.

We now turn to the LLT for large deviations. Recall that the large deviations thresholds are the endpoints of
the largest interval (c_, ¢, ) so that the LLT for large deviations in Chapter 7 applies to all sequences z such that
%)\(JSN) — z with z € (¢, c) (see Theorem 7.26). Necessarily, (c_,¢;) C (r_,14), where

. ess inf[Sy — E(Sy)] .. .esssup[Sy —E(Sn)]
r_ :=limsup , ty ;= liminf .
N—oo VN N—oo Vn

“Full large deviations regime" means that (¢_, ¢;) = (v_, 13).

We saw in Example 7.35 that sums of iid random variables have full large deviation regime. We will now give
a sufficient condition for full regime in the case of non-identically distributed independent random variables.

A sequence of bounded real-valued independent random variables X, is called tame, when one of the
following conditions holds:

(a) liI{Jn inf Vy /N > 0, and V6 > O there is an s > O such that for all n,
P[X,, > ess sup X,, — oVar(X,,)] > 7, P[X, <ess inf X, + oVar(X,)] > ns. (8.5)

(b) liIIJn inf Vy /N =0, and V6 > O there is an 15 > 0 such that for all n,
P[X, > ess sup X,, — 6 Var(X,,)] > n;/ar(Xn), P[X,, < ess inf X,, + 6Var(X;)] > ngar(x"). (8.6)

If Var(X,) = O(1), then (8.6) implies (8.5), but it is not equivalent to it. For example, suppose there
are sequences nx — oo and 0, € (0 1) such that o,, — 0, and X,,, = ia‘mL with probabilities % Then

P[X;, >ess sup X, — 6Var(X,, )] = 3, and (8.5) holds. But (8.6) fails, because n 5 Varn) 1 forall ns > 0.

Example 8.6 Let X,, be bounded independent random variables with non-zero variance. The tameness assump-
tion holds in each of the following cases:

(1) X,, are identically distributed;

(2) There are finitely many random variables Y1, .. ., ¥, such that for all n there is some k such that X, = ¥} in
distribution;

(3) X,, are uniformly bounded discrete random variables, and there is €9 > 0 such that every atom of X,, has
mass bigger than or equal to &.
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Theorem 8.7 Suppose X,, is a uniformly bounded and tame sequence of independent random variables such
that Y, Var(X,,) = oo, then

N N
1 1
=1, = liminf — X, - E(X, _=r1_ =i — inf(X,, — E(X,)).
¢ =1y = limin VNaneSS sup(X, — E(Xn)), - =r I;Irl_f;p anZ;eSS inf (X, — E(X»))

Proof Without loss of generality, E(X,,) = 0. By symmetry, ¢_(X,f) = —c; (X, =f) and 1. (X, —f) = —vr_(X,f).

Therefore, it is sufficient to prove the inequalities for c,.
N
1
We claim that ¢, <r,=liminf o Z ess sup(Xy). The first inequality is valid for general Markov chains (see
§7.4); the second follows from the independence of X,.
Next we show that ¢, > 1. Since Vy — oo, ¢, > 0, (see Lemma 7.19(2)). Therefore, by what we just

proved, r; > 0. Fix 0 < 6 < %r+ small, and choose some § < z < ry — 36. For all large enough N,

N
zZVy + 0V < Zess sup(X,,) — oV, so

n=1

N
P[Sn > zViv + 6V ] = ]P’[SN > ) ess sup(X) — 6Viy

n=1

N
> HP[X,- > ess sup(X;) — 6Var(X;)], because X; are independent.
i=1

By the tameness assumption, there exists 0 < 7 < 1 independent of N such that
P[Sn > zVn +6VN] = "N, (8.7)

Indeed, in case (b), (8.7) is straightforward, and in case (a) we use the inequalities P[Sy > zVny + 0Vn] > ngv
and Vy > const.N for large N.
Next, by the CLT, since z > 0, P[Sy < zVy —0Vn] = P[Sy < 0] — % So for all N large enough,

P[Sy < zVn —6VN] ="V, (8.8)

By (8.7), (8.8) and Theorem 7.30, zy := zVn = zVn + E(Sn) is admissible.

As explained in §7.4.3, the admissibility of zx means that z is reachable, and therefore z € [c_,ci]. In
particular, z < ;. Passing to the supremum over z we obtain vy — 36 < c,. Passing to the limit 6 — 0, we obtain
e < ¢y |

In the absence of the tameness condition, the identities ¢, = r. may be false, see Example 7.36. We are not
aware of general formulas for c.. in such cases.

8.3 Homogenous Markov Chains

A Markov chain X = {X,,} is called homogeneous, if its state spaces and transition probabilities do not depend
on n. In this case we let
Sp =6, m(x,dy)=m(xdy).
An additive functional on a homogeneous Markov chain is called homogeneous, if f = {f,,}, where f,,(x,y) =
f(x,y) for all n.
If f(x,y) = a(x)—a(y) witha : © — R bounded and measurable, then f is called a homogeneous gradient.
A Markov chain is called stationary, if {X,} is a stationary stochastic process: For each n, the joint
distribution of (Xjx, - - -, Xn+k) is the same for all k¥ > 0. Homogeneity and stationarity are closely related:
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e Every stationary Markov chain is equal in distribution to a homogeneous Markov chain with state space
S := (u>1 S, and transition kernel © = m|s. Moreover, the initial distribution u(E) := P[X; € E] must
satisfy

W(E) = f x(x, Eyu(dx) (E € B(S)) 8.9)

(on the left we have P[X; € E], and on the right P[ X, € E]).
e Conversely, any homogeneous Markov chain with an initial distribution satisfying (8.9) is stationary. To see
this iterate (8.9) to see that P[X,, € E] = u(E) for all n, and then use (2.1).

Probability measures satisfying (8.9) are called stationary.

Every homogeneous Markov chain with a finite state space admits a stationary measure, by the Perron-
Frobenius theorem. Some Markov chains on infinite state spaces, e.g. null recurrent Markov chains, do not have
stationary measures. However, if the chain is uniformly elliptic, then a stationary measure always exists:

Lemma 8.8 Let X be a uniformly elliptic homogeneous Markov chain. Then X admits a unique stationary initial
distribution.

Proof Fix x € S, and consider the measure y, which describes the distribution of X, given X; = x, i.e.

pn(¢) = E(o(Xn)|X1 = x).
By homogeneity and Proposition 2.13, there is a constant 0 < 8 < 1 such that for every bounded measurable
¢:S >R,

Hn+1($) = fE(¢(Xn+1)|X2 = y)n(x,dy) = fE(¢(Xn)|X1 = y)n(x,dy)
= f [1n(¢) + O(8™)] m(x,dy) = pn(¢) + O(8").
Necessarily {1, (¢)} is a Cauchy sequence, and u(¢) := lim p, (¢) exists for every bounded measurable ¢.

Let u denote the set function g(E) := u(1g). We claim that 1 is o-additive. Finite additivity is clear, because
¢ — u(¢) is linear. Next suppose A is a disjoint union of measurable sets {A;}. By finite additivity,

L o
D HAD +/7( U Al). (8.10)
=1

[=L+1
Let ¢ and v be the ellipticity constant and background measure with respect to which our chain satisfies the
ellipticity condition. (By definition, v,, depends on n but since the chain is homogeneous, v := v3 will work for

u(A) =

dpin

all n.) Applying Proposition 2.8 to X conditioned on X; = x, we obtain that di <€ Ufor n > 3. Hence,
1%
0< /7( U Al) =110z, a) = Jim o (10, 40) < EOIV( U Al)'
I=L+1 I=L+1
Since v is o-additive, lim v (U;2,; Ar)=0. It follows that Jim 7z (U2, Ar)=0. Looking at (8.10), we find
that (A) = Z 1(Ap). So i is a well-defined measure.
I=1

A standard approximation argument shows that for any bounded measurable function ¢, u(¢) = f ¢dp. Tt
follows that for every bounded measurable ¢ : © — R,

lim | ¢du, = f od[i. (8.11)

Take an arbitrary measurable set E C S, then
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H(E) = u(1g) = lim g, (1) = lim Ey[lp(Xpe)] = lim B [E(LE (Xn+1)1X0)]
! —~
= lim ffﬂ(y, dz)1E(2)pun(dy) = ,}L“Qof”(y’ E)pn(dy) = fﬂ(y, E)p(dy),

see (8.11). This proves that i is stationary. So a stationary measure exists.
Suppose 4 is another stationary measure, and let {X,,} denote the Markov chain with initial distribution g and
transition kernel xr. This chain is stationary.

Hence fi(¢)=E(¢(X1))=E($(X,)) = [ E($(X,)|X1=y)fi(dy) for all n. By (2.11),

u(¢) = nhl?ofE(‘ﬁ(X")'Xl = y)u(dy) = ,}E&f[“”(@ +0(0")]u(dy) = u(4).

So the stationary measure is unique. O

We will now discuss the LLT for uniformly elliptic homogeneous Markov chains. Nagaev gave the first
proof of this result (in the regime of local deviations). His proof is described in a special case, in the next
section. Nagaev’s proof is homogeneous in character; Here we will explain how to deduce the result from the
inhomogeneous theory we developed in the previous chapters.

We will always assume that the chain is equipped with its unique stationary initial distribution, given by the
previous lemma. Non-stationary uniformly elliptic homogeneous chains are “asymptotically homogeneous" in
the sense of §8.5, and will be discussed there.

Theorem 8.9 Let f denote an a.s. uniformly bounded homogeneous additive functional on a uniformly elliptic
stationary homogeneous Markov chain X.

1
(1) Asymptotic Variance: The limit o> = Iéim NVar(SN) exists, and o> = 0 iff f is the a.s. sum of a

homogeneous gradient and a constant.

(2) CLT: If 0% > 0, then % converges in probability as N — oo to the Gaussian distribution with mean

zero and variance o>

(3) LLT: If 0> > 0 then exactly one of the following options holds:

(a) Gess (X, f) = R. In this case, ifﬂ\/g"’) — z, then for every interval (a, b),

e=22/20?)
P[Sy —zny € (@, b)] =[1 + o(1)] ———=(b—a), as N — o,
V2roZN
(D) Goss(X,f) = tZ with t > 0. In this case, there are k € R and a bounded measurable function a : S - R

such that
f(X],Xz) +a(X)) —a(Xp) +k €tZa.s.

Proof. Let Viy := Var(Sy) and fx := f(Xk, Xk+1), and assume without loss of generality that E[ f (X1, X2)] = 0.
By stationarity, E(f;,) = O for all n.

N
Proof of Part (1): Vy = E(S3)) = Z E(f2) +2 Z E(fufm). By stationarity, E(fy fm) = E(fofam), SO

n=1 1<m<n<N
N-1

1
Vv =EUD +2 ) E(fofi (1= ).
k=1

|E(fofm)| decays exponentially (Prop. 2.13), so Y’ [E(fofx)| < oo, whence
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.1 S

0% = lim —Var(Sy) = E(f3) +2ZE(f0fk). (8.12)
N —o0 N o

(This identity for o2 is called the Green-Kubo formula. Note that had fn(Xn, Xn+1) been uncorrelated, then

Var(Sy) would have been trivially equal to NE( foz). The term ZE( Jfofx) is the correction needed for the
k=1
dependent case.)
Let u,, denote the structure constants of (X, f). The stationarity assumption implies that u,, is independent of
n, say u, = u for all n. It follows that Uy = u3 + - - + u3, = (N — 2)u*. Now we have two cases:

* u > 0: In this case by Theorem 3.7, Vy < Uy < N, whence o? > 0.
* u = 0: In this case, Var(Sy) = O(1) by Theorem 3.7, whence o> = 0 and f is center-tight. By the gradient
lemma (Lemma 3.14),
f(X1, X2) = a2(X2) — a1 (X1) +

for some ay, a; : © — R bounded and measurable and « € R. In the homogeneous case, we may take a; = a»,
see (3.6) in the proof of the gradient lemma. So f (X, X») = a(X2) — a(X)) + k a.s.
Part (2) follows from Dobrushin’s CLT (Theorem 3.10).

Proof of Part (3): By stationarity, the structure constants d,(¢) are independent of n, and they are all equal to

N
d(¢) := E(|e¥T — 1)%)1/2, where T is the balance of a random hexagon at position 3. So Dy (¢) = Z di &) =
k=3
(N =2)d*(&).
Ifd(¢) # Oforall € # 0, then Dy (&) — oo forall &€ # 0, and H(X,f) = {0}. By Theorem 4.4. G.5s(X,f) =R
and f is irreducible. The non-lattice LLT now follows from Theorem 5.1.
If d(¢) = 0 for some & # 0, then Dy (&) = 0 for all N, £ is in the co-range of (X,f), and the reduction
lemma says that there exist x, € R and uniformly bounded measurable a,, : © — R and &, (X,, X,+1) such that

2
Z hp(Xp, Xp+1) converges a.s., and (X, Xp41) + a@n(Xn) — ans1(Xn+1) + 1y (X, Xng1) + &5 € ?ﬂZ a.s.

Let Ay (X Xnats .. .) 1= an(X,) + Z hi (Xg, Xxs1). Then for all n

k>n
2r
fn(an Xn+l) + An(Xm Xn+1’ .- ) - An+l (Xn+1’ Xn+2’ .. ) + Kp € ?Z a.s. (813)

To finish the proof, we need to replace A;(X;, Xi+1, . ..) by functions of the form a(X;). This is the purpose of
the following proposition:

Proposition 8.10 Let X be a uniformly elliptic stationary homogeneous Markov chain with state space (S, $).
Let f : © XS — R be a measurable function such that ess sup | f (X, X2)| < oo. If there are measurable
functions A, : SN S Rand k, €R satisfying (8.13), then there are k € R and a measurable a : S — R s.t.

2
F (X Xpi1) + a(Xp) = a(Xns1) + K € ?ﬂZ a.s. for all n.

Proof We assume for notational simplicity that & = 2.
Let Q := G", equipped with the o-algebra .% generated by the cylinder sets

[AL .. A ={xeS ix;e A (i=1,...,n)} (A € B(S)).
Let m be the probability measure on (Q, .%) defined by

m[Ay, ..., Ayl =P[X; € A,..., X, € Ayl
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Let o : Q — Q denote the left-shift map, o[(x,)n>1] = (Xn+1)n>1. The stationarity of X translates to the shift

invariance of m: mo o' = m.

Step 1 (Zero-One Law): Let o "% := {c7"(A) : A € F}, then for every A € (,,»1 0 " F, either m(A) =0
orm(A) = 1.

Proof of the Step. Fix a cylinder A :=[Ay, ..., A¢l.
By uniform ellipticity, for every cylinder B = [Bj, . .., By],

m(AN o~ VB)y = m([Ay,...,Ap % B, ..., BN]) > eom(A)m(B).
Applying this to the cylinders B = [S, ..., S, Cy, ..., C,], we find that
m(ANn o ERCy, ..., C)) = eom(A)m[Cy, ..., Cy] forall k > 1.
Since this holds for all C; € #(S), we have by the monotone class theorem that
m(An o~ “RE) > egm(A)m(E) for every .#—measurable E and k > 1. (8.14)

Suppose E € (x> 0".%, and let A be an arbitrary cylinder of length €. By the assumptionon E, E = 0" E,,
with E,, € % and n > €. So

m(ANE)=m(ANo™"E,) > egm(A)m(E,) = egm(A)m(E).

We see that m(E|A) = % > eom(E) for all cylinders A. So

(
E(1glXy,...,Xr) = egm(E) for all £,

and by the martingale convergence theorem, 1g > egm(E) a.e. Som(E) =0 or 1.
SteP 2: Identify f with a function f : Q — Rs.t. f[(x;)i>1] = f(x1, x2). Then there exist A : Q — R measurable
andk eRs.t. f + A— Ao o + k € Zalmost surely.

Proof of the Step. The assumptions of the proposition say that there exist A, : Q — R measurable and «,, € R
s.t.
foo™+A,00™ — Apsr 0 0" + k, € Z m-ae. for every n.

Let w, := e*4n and ¢, := e 27¥n  then ez”if"""% = ¢, m-a.s. Since m o o~ ! = m, we get
¥/ o = ¢, m-almost everywhere. So
Wn = cue w1 00 = cpeppie Uy, o0

Dividing the identities for w,, and w,, (with the same k), we obtain,

Wi/ Wni1 = (Cn/Cnsk) Wik /Wnsis1) © o for all k.

Hence w,,/wy41 is o~% Z-measurable for all . By the zero-one law, wy,/w,1 is constant almost surely. In
particular, there exists a constant ¢ such that Ay — A; € ¢ + Z m—a.e., and the step follows with A := A; and
K= K| —C.

STEP 3: There exists a : & — R constant on cylinders of length one such that f + a —ao o + k € Z m-a.e.
Proof of the Step. The transfer operator of o : Q — Q is the operator L : L'(Q) — L'(Q) which describes

-1
dmy o0
dm

the action of o on mass densities on Q: o[¢du] = Ledu. Formally, Ly :=
will need the following facts:

, where m, := ¢dm. We

(a) If ¢ depends only on the first m-coordinates, then Ly depends only on the first (m — 1) vV 1—coordinates.
Specifically, (Lo)[(yi)iz1] = @(y1,. .., ym-1) Where
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Oyt -5 ym-1) = Elo(Xy, .., X)) Xinn =y (1 <i<m-1)];

(b) L¢ is characterized by the condition f W Lodm = f Yooedm Yy € L (G);
© Lgyoo)=yLoVpe L',y e L™;

(d L1=1;

() YVpe L™, Ly — fcpdm inL'.

Part (b) is standard. Parts (c) and (d) follow from (b) and the o-invariance of m. Part (a) follows from (b),
and the following chain of identities:

fl//Lgodm :f Ydmy, o o :fa,[/ oo odm =E[W (X2, X3,..)0(X1, ..., Xm)]
=B (X2, X3, .. )Ele(X1, ..., X)X, i = 2])

éE(l//(xz,)g,...)E[¢|X2,...,Xm]) gf!//d)dm.

The first marked equality is a standard calculation; the second uses stationarity.

Part (e) can be proved using the following argument of M. Lin. It is enough to consider ¢ € L* such that
f wdm = 0.

For such functions,

IL |l = fsgn(L"(p)L"godm = fsgn(L"ga) oo™ pdm
= fsgn(L”ga) o 0"E(ploc™.F)dm < f |[E(plo™".%)|dm.

E(plo™".%) is uniformly bounded (by ||¢||«), and by the martingale convergence theorem, it converges a.e. to
~ -ng |l
Blo| (o7 ) £ Eelio. Q) = E(e) =0.
n=1

The marked equality relies on the zero-one law.

Let w := e*™4 where A : Q — R is as in step 2, and assume w.l.o.g. that x = 0 (else absorb it into f). Set
Sp=f+foo+--+foo" ! thene ™/ = w/w o o, whence e 25" = w/w o ¢”. By (c) and (e), for all
g e LY(Q),

. . L!
WLn(e_Zﬂ-lS"QO) - Ln(e—anSnW00n¢) = Ln(WQO) n_}_oo) fwgodm

Since |w| = 1 a.e., dm > 2 and ¢ = ¢(xy,..., X;;;) bounded measurable so that f wedm # 0. For this ¢, we
have n(~—2niS
w! = lim —L (e 2 inL'.
n—eo f wedm

We claim that the right-hand-side depends only on the first coordinate. This is because e >/ ¢ is function of
the first m coordinates, whence by (a), L(e™>*/¢) is a function of the first (m — 1) V 1 coordinates. Applying
this argument again we find that L?(e >™52¢) = L[e 2" L(e > )] is a function of the first (m — 2) V 1
coordinates. Continuing by induction, we find that L™ (e >"S» ) is a function of (m — n) V 1-coordinates, and
eventually only of the first coordinate.

Since w~! is an L!-limit of a functions of the first coordinate, w is equal a.e. to a function of the first
coordinate. Write w[(x;);>1] = exp[2mia(x1)] a.e.

By construction ez’“fw/w oo =1,s0 f(X1,X2) +a(X1) — a(X2) € Z a.s. By stationarity, f(X,, Xn+1) +
a(Xy,) —a(X,41) € Z a.s. for all n. |
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We now consider the LLT for large deviations. Given the work done in Chapter 7, what remains to be done
is to determine the large deviations thresholds c,.

Lemma 8.11 Let f be an a.s. uniformly bounded homogeneous additive functional on a uniformly elliptic
stationary homogeneous Markov chain, and assume the asymptotic variance o> is strictly positive. Then the
positivity thresholds 1. satisfy

) —

ess inf[Sy — E(Sy)] ess sup[Sy — E(Sy)]
m , Iy := lim .
N —o00 0—2N N—oo 0'2N

Proof Let a, := ess sup[S, — E(S,)]. By stationarity,
Ap+m < ap + am,

therefore lim(a,/n) exists. By Theorem 8.9, Vi ~ 02N, and the formula for r, follows. The formula for r_
follows by symmetry, by considering (X, —f). O

Theorem 8.12 Let f be an a.s. bounded homogeneous additive functional on a uniformly elliptic stationary
homogeneous Markov chain. If f is not the a.s. sum of a homogeneous gradient and a constant, then (X, f) has
full large deviations regime: ¢, = 1.

Proof Let f,, := f(Xy, Xn+1)- Subtracting a constant from f, we can arrange E[ f (X, X»)] = 0. By stationarity,
E(fn) = 0and E(Sy) =0 forall n, N.

By the assumptions of the theorem, the asymptotic variance o is positive. Without loss of generality, o> = 1.
This can always be achieved by replacing f by f/o.

We will prove that ¢, = r;. The inequality ¢, < 1, is always true, so we focus on ¢; > r,. By Lemma 8.11,
for every € > 0, for all sufficiently large M,

Sa = P[Sy > (ry —&)M] > 0.

(M +2)
Let K :=ess sup [f|. Secmr+2) = S+ (fare1 + fue2) + Z frs 5O
k=(M+2)+1
P[Sepr+2) = EM(vy — &) — 2¢K]
(L-1)(M+2)
>P|Sy > M(, —€)and Z Sk = (E-DM@y —€) - 2(6£ - DK .
k=1

We now appeal to (8.14): Let o (X;, . . ., X;) denote the o-field generated by X;, ..., X;. If E € o (X1, ..., Xpr41)
and F' € 0 (Xp43, - - ., Xecm+2)+1), then P[E N F] > €oP(E)P(F). Thus by stationarity,

PlSem+2) = EM (v — &) — 2¢K]
> €00m X P[S(e-1ym+2) = (€= )M (xy — &) = 2(€ = 1)K]
> (€06m)> X PLS(t-2yms2) 2 (E=2)M(vy — &) = 2(( = 2)K] > -+ > (e0dp)".

Rearranging terms, we see that for all ¢ sufficiently large,

2K
P [Seam+2) 2 LM +2) (t; — &) —)] > [(eodpr) 772 M+D)

M+2 M +2

M 2K
Recall that M is chosen after the choice of € and K. So we may take M so large that ) ((r+ - &) ) >

M +2
vy —2¢e. Letn := (eoéM)ﬁ, then
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1
P [Semz) = €M +2)(xy —2¢8)] 2 p2M+2),

Next, for all £ sufficiently large, for all N € [£(M +2), (£ + 1)(M +2)), we have Sy > Spm42) — K(M +2).
Therefore, for all N sufficiently large,

!
P[Sy > N(t; —3g) + eVy] > 72V > ¥, because Vy ~ >N = N. (8.15)

Theorem 7.26 says that ¢, > 0, sory > ¢ > 0. If & < v, /4, then by the CLT,

1
P[SN < N(r, =32) —eVn] 2 PISy < 0] ~ 5 > n"~. (8.16)

Looking at (8.15), (8.16) and Theorem 7.30, we deduce that z := N(x+ —3¢) is admissible. By Theorem 7.8,

P[Sny — zn € (a, b)] satisfy the LLT for large deviations, and by Theorem 7.26, vy — 3¢ = limy_,c0 %)\ism €
[c_,c4]. Sory < ¢y + 3¢. Since & was arbitrary, ¢y > ry. Thus ¢ = 1y4.
By symmetry, c_ (X, f) = —c;. (X, =f) = v, (X, —f) = r_(X, ). a

*8.4 One-Step Homogeneous Additive Functionals in L2

In this work we focus on bounded functionals on two-step uniformly elliptic Markov chains. We will now
deviate from this convention, and consider unbounded homogeneous additive functionals with finite variance,
on stationary homogeneous Markov chains with the one-step uniform ellipticity condition:

m(x,dy) = p(x, ) u(dy), € < p(x,y) < €', u(E) =P[X, € E].

There is an obvious overlap with the setup of the previous section, but we will give a very different proof of
the local limit theorem. This proof, due to Nagaev, is specific to the homogeneous case. But its ideas are of such
importance, that we decided to include it, despite its definite homogeneous character.

For simplicity, we will restrict our attention to one-step additive functionals f(x,y) = f(x), i.e. Sy =
f(X1) + f(X2) + -+ + f(Xn). The “one-step" assumptions on X and f are not essential, but the one-step
theory has special appeal, because it enables a more explicit characterization of the cases when o> = 0 or
Gess (X, f) = tZ. Specifically, no gradient terms are needed, as in Theorem 8.9.

Theorem 8.13 (Nagaev) Let f: S — R denote a one-step square integrable homogeneous additive functional,
on a stationary homogeneous Markov chain X with the one-step ellipticity condition.

1
(1) Asymptotic Variance: The limit 0% = ]\ljim NVar(SN) exists, and o> = 0 iff f is equal a.s. to a constant.

(2) CLT: If 0% > 0, then % converges in probability as N — oo to the Gaussian distribution with mean

zero and variance 0'2.

(3) LLT: If 0> > 0, then one of the two statements holds:

(a) Ac,t € R such that f(X1) € ¢ +tZ a.s. In this case, if&\%&\’) — z, then for every non-empty interval

(a,b),
-z22/20?)
P[Sy —zny € (a,b)] =[1 + o(l)]m(l)— a), as N — oo.

(b) At > 0 maximal and ¢ € R such that f(X1) € ¢ +tZ a.s. In this case, if zy € ¢ +tZ and &\%SN) -z
then for every k € Z,
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-z}/20?)
PSSy —zn =kt] =1+ o(1)] ———, as N — oo.
V2no?N

The proof of this theorem is given in the following sections.
Asymptotic Variance and Irreducibility.

Proposition 8.14 Suppose X is a stationary homogeneous Markov chain with the one-step ellipticity condition.
Let f be a one-step square integrable homogeneous additive functional, and set S,, = f(X1) + - -+ + f(Xy).

1
(1) The limit o = Iéim NVar(SN) exists, is finite, and

o = Var f(X1)] +2 )" Cov(f (X)), f(Xns1))-
n=1

(2) 0% = 0 iff f(X1) is constant almost surely.

Proof Part (1) is proved exactly as in the case of bounded additive functionals, but using (2.13) instead of (2.11).

If f(X;) is constant, then f(X,,) is constant for all n by stationary, and o> = 0. We now suppose o> = 0, and
prove that f (X)) is constant a.e.

Without loss of generality, E[ f(X;)] = O (otherwise subtract a constant from f).

Let S denote the state space of X, equipped with the (stationary) initial distribution of X, and define an
operator £ : L>(S) — L*(3) by

(Le)(x) := ﬁ e(Mp(x, y)u(dy) = Elp(X2)| X1 = x].

It is not difficult to see, by induction, that (L"¢)(x) = E[@(X,+1)|X1 = x]. Let
() = D (L) = D BIf Xna)|Xi = x].
n=0 n=0

The sum converges in L? by (2.12).
Since £ is bounded on L*(S), f(X;) = ¢(X1) — (L¥) (X)) a.s. Therefore, if o> = 0, then by part 1,

0=0c?= Il:'z’,[f(X1)2 +2f(X1) if(XrHl)]
n=1

= B(£(X)? +27(X)) Z} BLf (e Xi = 1)

=E[(W - Ly)* + 20 = L) Ly)(X)] = BLW — LY) (W — LY +2LY)(X))]
= B[y - (L)) (X))] = B (¢ (X1)* - B[y (X2) X, ")
=E (l/’(Xz)z - E[l//(Xz)IX1]2) , by stationarity

=E[E(y(x)? - B I P )| = B [Varw (o))

Necessarily, Var((X;)|X1) = 0 a.s., whence ¢ (X,) = E(¢(X»)|X;) almost surely. Recalling that f =
v — Ly, we see that

F(X) =y (X1) = (L) (X)) =y (X)) - Ely (X)) X1] = ¢ (X)) - ¢ (X2).

Rearranging terms, we find that
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Y (Xs) =¥ (X1) — f(X;) almost surely.

We claim that ¢ (X) must be equal a.e. to a constant function. Assume the contrary, and choose some (¢, sg)
in the support of the distribution of the random vector (f(X;), ¥ (X1)). Then the support of ¥ (X>) contains
so — fo.

Since ¥ (X1) is not constant a.e., and X is stationary, the support of the distribution of ¢ (X;,) contains more
than one point. Choose some s # s — to in this support.

Fix0<e< %l(so —t9) — s1|. By the definition of the support of a measure, the following events have positive
probability:

A=[lf(X) —tol <& lW(X1)—sol <e&], B:=[lyg(X2)—s1|l <e].

By the one-step ellipticity condition, E := A N B has positive measure (bounded below by €gP(A)P(B)). But
on E, ¥ (X) # ¢(X1) — f(X1), because

* Y (Xp)is e-close to s1,
e Y(Xy) - f(Xy)is 2e-close to sg — 1o,
o dist(sy,tg — s9) > 3e.

We obtain a contradiction to the a.s. equality ¥ (X2) = ¢ (X;) — f(X)).

Thus ¢ (X1) = const.. By stationarity, ¥ (X,) = const., and f(X;) =0 a.s. |
Remark. If we replace the one-step ellipticity condition by a weaker condition which implies the convergence in
norm of 3 £ (e.g. uniform ellipticity), then we can only claim that 0> = 0 & f(X;) = ¢(X]) —¢(X3) + const.
for some y € L.

Next, we calculate the co-range H(X,f) :={£ e R: )} dﬁ(f) < oo}. Note that this is well-defined even when
f is unbounded.

Lemma 8.15 Suppose X is a stationary homogeneous Markov chain with the one-step ellipticity condition. Let
f be a (possibly unbounded) homogeneous additive functional of the form f = f(x). Then

H(X f)={0}u {ZTN :t#0 and dceRst f(X))ec +tZa.s.}. (8.17)

Proof 1t is clear that 0 belongs to both sides.

The inclusion D is straightforward. To see C, suppose & € H(X,f) \ {0} and take 7 := 27/£. In the stationary
case, d, (&) are all equal to d(&) = B,y (Ie@F - 1|2), where Hex is the space of position 3 hexagons and I is
the balance of a random hexagon defined by (2.25). So

feHXH o Z ¢ <owodé)=0s Emmqe?F -1») =0.

n=3

SoI' € tZ myex -a.e. in Hex (n).

Fix tg, so in the support of the distribution of f(X). By stationarity, 7, s are in the supports of the distributions
of f(X,) forall n. SoP[| f(X,)—r| <&] >0forevery e > 0,n € N, and r € {so, #p}. By the one-step ellipticity
condition,

Y4 Y5

The balance of each hexagon in this set is 4¢-close to 79 — s¢ (note that while in the case where f,, depend on
two variables the balance of each hexagon contains six terms, but in the present case there only four terms since
f(y1) cancels out). Since I" € tZ myex -a.e., dist(tg — so, tZ) < 4e&, and since & can be chosen arbitrarily small,

Miex {(yl 2 y3) € Hex (n) : |f (yi) — sol < &, 1f(x) —10] < s} > 0.

to € 5o + tZ.
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We now fix s and take 7( to be a general point in the support of the distribution of f(X;). The conclusion
is that the support of the distribution of f(X;) is contained in so + #Z. Equivalently, f(X;) € s¢ + tZ almost
surely. O

Perturbations of Linear Operators with Spectral Gap. Before continuing the proof of Theorem 8.13 we
collect some definitions and facts from the theory of bounded linear operators. Let (X, || - ||) denote a Banach
space over C.

* The spectral radius of a bounded linear operator L is p(L) := lim v/||L"]|.
n—oo

* An eigenvalue of L is a number A € C such that Lu = Au for some non-zero u € X. An eigenvalue is simple
ifdim{u € X : Lu = Au} = 1.

e The spectrum of L is spec(L) := {1 € C : Al — L has no bounded inverse} (here and throughout, / denote
the identity).

Every eigenvalue A belongs to the spectrum (because ker(A/ — L) # 0), but there could be points in spec(L)
which are not eigenvalues (because A/ — L could be invertible with an unbounded inverse).
Classical results in functional analysis say that the spectrum is always compact, non-empty, and

p(L) = max{|z| : z € spec(L)}.

We will say that a bounded linear operator L : X — X has spectral gap with simple leading eigenvalue A,
if A #0and L = AP + N, where

(a) P and N are bounded linear operators such that PN = NP = 0;
(b) P2=P,PL=LP=AP,anddim{Pu:uc X} =1;

(©) p(N) <|a].

The operator P is called the eigenprojection of A.

Lemma 8.16 Suppose L has spectral gap with simple leading eigenvalue A and eigenprojection P. Then:

(1) A0 < 6 < 1 such that ||A7"L" - P|| = O(6") as n — oo.
(2) Ais a simple eigenvalue of L, and spec(L) = K U {1} where K is a compact subset of {z € C : |z| < |A]| —y}

for some y > 0 (“the gap").
(3) If L has spectral gap with simple leading eigenvalue A’ and eigenprojection P’, then I’ = A and P’ = P.
Proof L"=(AP+N)" = A" P+ N" (the mixed terms vanish and P" = P for all n). Thus, [|A7"L"-P||=| 17" N"||.
Since V||N"|| = p(N) < [A], [|AT"L" — P|| = O(8") for every p(N)/|A| < 6 < 1.

The number A is an eigenvalue, because L(Pu) = A Pu for every u € X, and there are some u such that Pu # 0.
It is a simple, because if Lu = Au, then

u=A1"L"u — Pu,

whence u is in the image of P, a space of dimension one.

Since all eigenvalues are in the spectrum, A € spec(L). To finish the proof, we will show that K := spec(L)\{1}
is contained in {z € C : |z] < p(N)}. It is sufficient to show that z/ — L has a bounded inverse for all z # A s.t.
|2l > p(N).

Let X := ker(P) :={u € X : Pu= 0} and let X, := im(P) := {Pu : u € X}. It is not difficult to see that

X=X, ®X;and L(X;) C X;.
Indeed, the projections on X1, X; are, respectively, I — P and P.

Fix z # A such that |z| > p(N).

* OnXy,z[-L=2zl-N,and p(L|g,) = p(Nlx,) < |z|. It follows that z ¢ spec(L|x,), and (z/ — L)|x, has a
bounded inverse (zI — N)™'|x,.
e OnXy,zI—L=zI-2I,s0(zl - L)'y, = (z = 1)7'I, a bounded linear operator.

Thus (zI = L)™' = (zI = N)™'(I = P) + (z — 1)~' P, a bounded linear operator. O



162 8 Important Examples and Special Cases

The next result says that if we perturb a linear operator with spectral gap “smoothly," then the perturbed oper-
ator has spectral gap for small values of the perturbation. Moreover, the leading eigenvalue depends “smoothly”
on the perturbation parameter. We begin by clarifying what we mean by “smooth."

Let ¢t — L, be a function from a real open neighborhood U of zero, to the space of bounded linear operators
on X.

e t+> L;is continuous on U, if forallt € U, ||L;+n, — L¢|| ﬁ 0.

* t— L, is differentiable on U, if for all ¢ € U, there is a bounded linear operator L; (called the derivative of
L; at t) such that

If t — L; is continuous on U, then we say thatt — L, is C'-smooth, or just cl.

Livn — Ly

’

. / 0.

h—0

e Byinduction,t — L, iscalled C"-smoothifz — L, isdifferentiable on U, with C"!-smooth derivative. In this
case, the r'-derivative of L, is the bounded linear operator L;r) obtained inductively from Lgr) = (Lﬁr_l) ),
Lgl) =L;.

Theorem 8.17 (Perturbation Theorem) Fixr > 1 and a > 0. Suppose L; : X — X is a bounded linear

operator for each |t| < a, and t — L; is C"-smooth with r > 1. If Ly has spectral gap with simple leading
eigenvalue Ay and eigenprojection Py, then there exists some 0 < k < a such that:

(1) L; has spectral gap with simple leading eigenvalue for each |t| < k;
(2) The leading eigenvalue A, and eigenprojection P; of L; are C" -smooth on (—k, k),
(3) There exists y > O such that p(L; — A, P;) < |A¢| —y forall |t| < k.

For the proof of this theorem, see Appendix C.

Nagaev’s Perturbation Operators. We now return to the discussion of one-step additive functionals on one-
step uniformly elliptic stationary homogeneous Markov chains.
Let X := {u : © — C : uis measurable, and |[u|| := sup |u(x)| < oo}, and define a bounded linear operator
X

L, X > Xby
(Lu)(x) = f e u(y)p(x, y)u(dy) = B *u(X2)|X; = x).

=l

Lemma 8.18 Let S, := f(X2) + -+ + f(Xn+1), then
E["Snu(Xp)IX1] = (Lfw)(X1) - (u € X). (8.18)

Proof This is a special case of Lemma 5.5, with f,,(x,y) = f(y). O

Lemma 8.19 If X is uniformly elliptic, then Ly has spectral gap with simple leading eigenvalue 1o = 1, and
eigenprojection Pou = E[u(X)]1s.

Proof By definition, (Lou)(x) = E[u(X>2)|X; = x]. Let Pou := E(u(X1))1g and Ny := Lo(I — Py). These are
bounded linear operators, and it is straightforward to verify that dim{Pu : u € X} = 1, Pg = Py, Po.Ly = LoPy =
Py, Loy = Py + Ny, and No Ly = LoNy. It remains to check that p(Ny) < 1.
First, notice that (I — Py)> = I — 2Py + Pg = I — Py. By induction, (I — Py)" = I — Py. Since £y commutes
with Py,
Ny = (Lo(I = Py))" = LI - Po)" = LI~ Py).

For every u € X, (I — Py)u = u — E(u(X1)), and by stationarity, this is the same as u — E(u(X,+1)). This and
(8.18) (with t = 0) leads to

INgull = IE@(Xn+1) = E@(Xnr1))IX1 = )| < Cix 8" lluell,

where Cp,ix and 0 < 6 < 1 are constants which only depend on the ellipticity constant of X, see (2.11). So
[INyII < 2Cpmix0", and p(No) < 6 < 1. ]
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Lemma 8.20 If X has the one-step ellipticity condition and E[f(X,)*] < oo, then t — L, is C*-smooth on R,
and
(Low) (x) = iBLf (X)u(X2)| Xy = x] 5 (L{u)(x) = —E[f (X2)*u(X2)| X = x].

Proof Define an operator on X by (Lju)(x) = E[if (X2)el X2y (X,)|X; = x]. Clearly, 1L/ <E(f (X)) <
[| fll2 < co. For every u € X, for every x € G,

1 IfX2) — 1 —ihf (X)) |
'E(£t+hu—z,u><x)—(L;u>(x> =‘E(e )

u(X2)|X1 = x)

ehf(X2) _ 1 —inf(Xy)

<E hf(X2)?| 1 X1 = x| llull < MIAIE(f(X2)?1X1 = x)]|ull,

( 27X F(X2)7| 1irx)=01| X1 ) [[2el| [RIE(f(X2)71 X1 = x)|ull
el — 1 —is o - 1

where M := seﬁlfo; —Qa | By the one-step ellipticity condition, eg < p(x,y) < €. So

B2 (X)X = x) = f P udy) < €' f FOPu(dy) < € E().

It follows that “%(Lﬁ-h -L)-L

Next we define the operator £, u = —E[f(X2)%e XD y(X) | X, = x].
By one-step ellipticity, [|.£;’|| < €;”E(f(X2)?) = ||| < co. Fix u € X. Then:

< Me I fI31A — 0.So t +— L, is differentiable, with derivative L.
—

ihf(X2) _ 1 _ 4

‘%u;hu_ L) - (L0 = ‘E (if ()= e X, = x)
. els —1-is s£0

< B(f(X2)’q(hf (X2))|X1 = x) llull, where g(s) := {0 ' s=0

We now apply the one-step ellipticity condition as before, and deduce that

1 !
HZ(L;ML - L) - L)) < & BIf (X2)q(hf(X2))] P 0. (3.19)

(To see (!) note that g(hf(X>)) n 0 pointwise, g is bounded, and E(|f(X2)|) <c0.) It follows that L/ is

differentiable, with derivative L;’.
To finish the proof of C2-smoothness, we check that 1 L/ is continuous.

(L] = L'w)(x) = -E (f(Xz)z[eihf (X2) _ q)eitf (sz(Xz)'xl - x) .

As before, this leads to ||£”

t+h

— 0. |
h—0

- Ll < 'E ( f(X2)? ‘eihf(X” - ID By the dominated convergence theorem,

” _ 7
t+h t

Proposition 8.21 If X has the one-step ellipticity condition, and B[ f(X{)?] < oo, then there exists k > 0 such
that:

(1) For every |t| < k, L; has spectral gap with simple leading eigenvalue A, and eigenprojection P;.
(2)t+— A; and t — P, are C* on (—k, k).
(3) Let Ny := L; — A, Py, then there exists y > 0 such that p(N;) < |A;| —y for all |t| < k.

da d’2 1
(4) do=1, 4, := —L = {B[f(X1)], and Ay:= L =- [0’2 + E(f(Xl))z], where 0% = Allim NV?II‘(SN).
t=0 —00

dr |, dr?
(5) Suppose o> > 0 and E(f) = 0. Then there is a constant ¢ > 0 such that for every |t| < k, |A;| < e,
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Proof Parts (1)—(3) follow from the perturbation theorem, and the previous lemmas.
We prove part (4). Given |t| < «, let A4, and P, be the leading eigenvalue and eigenprojection for £,. By
Lemmas 8.19 and 8.16(3),
Ao=1 and Pou =E[u(X))]ls.

It is straightforward to show that if two operator-valued functions A;, B, are differentiable, then (A; + B,)’ =
A; + Bt/ and(A[Bl»)/ = A;Bt + A[Bt,.
Differentiating the identity L;P; = A,P;, we obtain L;P; + L;P; = A;P; + A;P,. Multiplying both sides on
the left by P; gives
PIL;PI+/11PIP;=A;P[+/1[P[P; (-.'PtLt:LtPt:/ltPt, P?:Pt).

Therefore P, L;P; = A;P; . Substituting = 0 and recalling the formulas for Py and L, we obtain that A = iE[f].
Next, we differentiate both sides of the identity L'P, = A} P; twice:

(LD P+ 2(LY)' P+ LI'P] = (AP +2(A7) P, + AT P/ .
Now we multiply on the left by P, substitute ¢ = 0, and cancel Po L P = AgPoPy':

Po(Ly)"Po+2Py(Ly) Py = (A5)" Py +2(A5) PoP)). (8.20)

n
Recall that L'u = E(ei’S;'u(X,,H )| X1), where S, = Z Sfi+1(Xk+1). One can prove exactly as in Lemma 8.20

k=1
that
d n . ’ d2 n 7N\2
O Li'u =iB(Su(XneDIX1), —|  Liu=-E[(S) u(Xnr)|X1].
i=o de= |,

Also (43)" = nA2~'A) = nA = nE[f], and

A" =n(n—1DAZHAN* +nAd™ A = n(n — 1GE[f1)? + nay.
Substituting this in (8.20), we obtain (in the special case u = 1),

~E[(S))*] + 2E[S,Pi1] = n(n — D)GE(f))? + nA] + 2nE(f)E[P§1].

By exponential mixing and stationarity, 2E[S,, Pj1] = 2nE(f)E[Pj1] + O(1). Substituting this in the above,
dividing by n, and passing to the limit, we obtain

A = ~B(F = lim © (BIS,)7) - w°B() = ~E() - Jim L Var(s,).

This proves part (4).
Suppose o > 0 and E(f) = 0. Make « so small that (47 = A5 < %0'2 for |t| < k. Then

t N t N
A= /10+f (/1(3+f A;;dn)ds = /lo+f (a(’)+f (ag + (/l;;—/l(’)’))dn) ds
0 0 0 0
’ 1 7,2 e 12 ’”
=1+tdy+ A5t + (4, — Ap)dnds.
2 0Jo

Thus 4, =1 - %o-zt2 + &(t), where £(¢) is the double integral. Clearly, |e(¢)| < %O'th. To get part (5), we
choose « and ¢ so that 1 — %O'th <e” for lt] < k. |

Lemma 8.22 For every [a, b] C R\ H(X, ) there exists y > 0 such that p(L,;) < 1 —7y forallt € [a, b].
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Proof Fix [a,b] c R\ H(X,f) and ¢ € [a, b] (necessarily, t # 0). Recall the notation {z};z = t{z/t}, and define
8:(x) 1= {f(x)}2nz. Then e"$' = /. Hence d,y(1,1) = dy(1,9r), and (L) (x) = f &8O p(x, ) () p(dy).
Notice that ess sup |g;| < |¢| < max(|al, |]). Therefore Lemma 5.6 applies, and there is a constant £, which

depends only on a, b and the ellipticity constant of X, such that

||£f|| < e—gdz(z,g,) _ e—EdZ(t,f) _ e—§d2(z).

Here d?(¢) is the structure constant of f.
Since t ¢ H(X,f), >, d%(t, f) = c0. As d,,(t,f) = d(¢t) for all n, d(¢t) > 0. So

1_
p(L;) < exp [—gsd(t)z] < 1 -y, for some y; > 0.

Choose some n, such that || £ || < (1 — ;)" . By the continuity of  — £, there is an open neighborhood U;
of t, where
|LE N < (1 = y,)™ forall s € Uy.

Recall that p(£,) = lim {f[Z7T = inf T ZZT (because [|LE] < [|£X]™). In particular, p(Ly) < YILYT,
and therefore p(Ls) < 1 —y, forall s € U;.

Since [a, b] is compact, we can cover it by finitely many U;,...,U,,, and obtain the bound p(Ls) <
1 —min{y,,...,y: ) on [a,b]. O

Proof of Theorem 8.13. Throughout this proof we assume that X is a stationary homogeneous Markov chain
with the one-step ellipticity condition, and we let f : © — R be a function such that E[ £ (X)?] < co.

We also suppose that f(X) is not equal a.s. to a constant, and therefore by Proposition 8.14, NVar(S N) o

o #0.

Proposition 8.23 (CLT) For every a < b,

Sn —E(Swn) ] 1 fb —12)202
P|l——=€(a,b)| — e dr.
|: VN N —>oo \/271.0-2 a

Proof 1t is sufficient to prove the proposition in the special case when E[ f(X;)] = 0. In this case, by Lévy’s
continuity theorem, it is sufficient to show that for each z,

)

E (eizsN/W) Ly et

the characteristic function of the centered Gaussian distribution with variance o-2.

Fix t and suppose n is large enough so that |¢|/4/n < k, where (—k, k) is the interval of perturbation parameters
which satisfy the conclusions of Proposition 8.21. By stationarity and (8.18),

E (50V7) = E (S/V7) = E[(L], zD(XD] =E [(/lt/\/ﬁpt/‘/z_’_Nt/\/ﬁ)n(Xl)]
= B () Pl + Ny DD = 27 CBIP, @ (X1 + 0 (IN7 1)
= 22 [14 0 (1P = Poll) + 0 (1l "IN 1)

Observe that || P,/ — Poll — 0 (because s > Py is C?); and /lz_/ri/ﬁ”Nzr;\/Zl” — 0 (because p(Ny) < |Ag| —y <
(1 —y)|As]| for all |s| < k). Thus
(ST = [1+ o(D1A], 1
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It remains to show that lim A", - =e™2
n—>c>o /‘f

Recall that s — Ay is C%, therefore A, = Ao + 1) + 34;1> + o(1?) = 1 = 30> + 0(1*), as t — 0. So

A= (L= b0+ 0(1)" —— &4,
To justify the limit, calculate Log(/l:’/ n) for some branch of the complex logarithm function, which is

holomorphic on a complex neighborhood of 1. O

Proposition 8.24 (Non-Lattice LLT) Suppose there are no t,c € R such that f(X1) € ¢ + tZ almost surely,

-z%/20"
then for every a < b and zy, z € R such that &\ﬁ(sm — 7, P[Sy —znv € (a,b)] = [1 + 0(1)]———|a - b|.
N 2r0lN
Proof Without loss of generality, E(f (X)) = 0, whence E(S,) = 0 for all n.
As we saw in §5.2.1, it is sufficient to show that
1 L ) 6—22/20'2 .
— f e p(E)E(e'$57)dE ~ ——=¢(0) as n — oo, (8.21)
NS no?n

for every L > 0, and each ¢ € L' (R) such that supp((Z) c[-L,L].

Choose « as in Prop. 8.21, and fix R > 0, arbitrarily large. We divide [-L, L] into [—%, \%] L=k, k] \

[—%, \% ,and [-L, L] \ [—«, ], and consider the contribution to the integral from each of these regions.
. . _L L . . . .
Contribution of [ 7 ﬁ] : This is the part of the integral governed by the CLT.

L e e e e = L () e
2 J_ryvi 2n\n \z
2 501 g = ¢(0) ( f iézg-10?E )
271-\/_[ ¢(0) d;f \/_ d§+0R~>oo(1) .
So the contribution of [- &, &7 s M[l + o0 (Hh+o (D]
i il e 1 onn () ok (D]

Contribution of [—«, k] \ [—%, %]: For £ in this region, by Prop. 8.21(5),

[E(e'5m)| = [E(“Sn)| = [EL(LEDXD] = [BI(ALP 1+ NZD(X1)]]
< 12" (1 Pell + AN < €€ [O(1) + 0(1)] < const.e™5™".

Therefore this contribution is 0(||¢||oo fR/\F ‘C”fzdf) = oR_,oo(l)

Contribution of [-L, L] \ [k, «]: By the assumptions of the proposition, there are no ¢, € R such that
f(X1) € ¢ +1tZ a.s. By Proposition 8.15, H(X, f) = {0}.
By Lemma 8.22, there is y > 0 such that p(Lg) < 1 -y for all ¢ € [-L, L]\ [-«, «]. It follows that

)E (eif S") H_ﬁ H < const. (1 - —) . Therefore, the contribution of [-L, L] \ [—x, ] is bounded by
1 —~ ) y\" 1
— BBz =0 ((1-1) )=0(—).
21 Jiksigl<Li - ¢ 2 NG

Collecting all these contributions, we find that for each R > 1,

1 fL B (S 4 e—z2/2(rzA0 1 1 |
" _Le P(&)E(e )f——2¢()[ + OR— 00 ( )]+0(%)_

2nocn
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Taking R — oo, we obtain (8.21). |

Proposition 8.25 (Lattice LLT) Suppose t € R is the maximal number such that for some ¢, f(X1) € ¢ +tZ
almost surely (necessarily t # 0). Then for every zy € tZ such that ﬂ\/és”) — gz, for every k € Z,
f -z2/202

PlSy —znv =kt] =[1 + o(1)] ———.
V2no2N

Proof Without loss of generality, E(f(X;)) = 0and ¢t = 1. As we saw in §5.2.1, it is sufficient to show that for

every k € Z and z,, € Z such that & — gz,

\n

1 T ek ies 6—22/20'2

— | eirmeiekp(eiSnyds ~ S 8.22
o _ﬂe e (e*"")d& s (8.22)

To see (8.22), we take « as in Proposition 8.21, split [-x, 7] into [-R/+/n, R/vn], [=«, k] \ [-R/~/n, R/~/n],
and [, ] \ [k, k], and consider the contribution of each of these regions to the integral.

Contribution of [—%, %]: As in the non-lattice case,
n n

1 R/\n ) ) 6—22/20'2
— e 6N TR (1€ )4 ~ ————[1 + 0goeo(1)].
2 J_r/yn 2rn02n

Contribution of [—«, «] \ [—%, %]: As in the lattice case, in this region, there exists ¢’ > 0 such that
n n

. 12
[E(e'¢57)| < const.e™'¢™",

and therefore the contribution of [—«, «] \ [—%, %] is bounded by ‘/LEOR_,OO(l).

Contribution of [—x, ] \ [—«, «]: By assumption, t = 1 is the maximal ¢ for which there is a constant ¢ such
that f(X|) € ¢ +Z a.s. Therefore, by Proposition 8.15, H(X, f) = 2xZ, and [-x, 7] \ [—«, k] is a compact subset
of H(X,f)c.
By Lemma 8.22, there is a y > 0 such that
[Ee*5)| < 1Ll < const.(1 —y)" forall n > 1, & € [-m, 7] \ [-«, £].

It follows that the contribution of [—x, 7] \ [~«, k] is 0(1/+/n).

Summing these contributions, and passing to the limit as R — co, we obtain (8.22). O

8.5 Asymptotically Homogeneous Markov Chains

A Markov chain X is called asymptotically homogeneous (with limit X), if it has state spaces S, = S, and
transition probabilities

Tnne1(x,dy) = [1 + £,(x, y)Im(x, dy), where sup|e,| —— 0,
n—oo

and 7(x,dy) is the transition probability of a homogeneous Markov chain X on S. An additive functional
f = {fuln>1 on X is called asymptotically homogeneous (with limit f), if

suplf;,—f|——aOforsomef:SxG—)]R.
n—oo
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Clearly, all homogeneous Markov chains and homogeneous additive functionals are asymptotically homoge-
neous.

If X is uniformly elliptic, then X must also be uniformly elliptic. Conversely, if X is uniformly elliptic, then
some truncation X, := {X, },>, is uniformly elliptic. To see this, take r so large that sup |&,| < % foralln > r.

Suppose X is uniformly elliptic. Then X is uniformly elliptic, and by Lemma 8.8, X has a unique stationary
measure u. There is no loss of generality in assuming that X itself is stationary, otherwise we change the initial
distribution to u. By Corollary 2.9, we can write

Tnne1 (X, dy) = pp(x, y)p(dy) , pu(x,y) == [1 + &,(x, y)Ip(x, y),

where p(dx) is the stationary measure of X, sup |e,| — 0, and where for some constant €y > 0,0 < p < € 1

and fp(x, Yp(y, 2)u(dy) > €.
Henceforth, we assume that X is a uniformly elliptic asymptotically homogeneous Markov chain with a

stationary limit X, and f is a uniformly bounded asymptotically homogeneous additive functional on X, with
limit f. Letf := {f,}, where f,, = f.

Theorem 8.26 Let g =f—1.

(1) If (X, 9) is center-tight, then G (X, ) = Gess (X, ).

(2) Otherwise, Goss(X, ) = R.

(3) In particular, Gess(X,f) = R whenever it is not true that for some bounded measurable function a(x) and
ot eR, f(X1,X2) +a(Xy) —a(Xz) + ¢ € tZ a.s. with respect to the stationary law of X. In this case, (X,?)
satisfies the non-lattice LLT (5.1).

Proof Let ir = {)?n tnsr and?r = J;;z}nzw Similarly, define X,, f,. Discarding a finite number of terms does
not change the essential range (since any functional which is identically zero for large n is center-tight). Therefore

Gess (;((’T) = Gegs (F)‘((r;fvr) and G, (Xr’?;) = Gess (X;fv)-

1 p ~
Pick r so large, that — < < 2forall n > r. Then X, and X, are related by a change of measure with

2 pxy)
bounded weights, and therefore (by Example 4.12),

Gess (§r7?r) = Gess (Xr,?r ).

It follows that Gess (X, ) = Gegs (X, D).
If g is center-tight then Gess (X, f) = Gess (X, T+ 9) = Gess(X, ), and we obtain the first part of the theorem.
Now suppose that g is not center-tight. By Theorem 4.4, to see that G.55(X,f) = R, it is sufficient to show
that H(X,f) = {0}. Equivalently:
Dn (&) —— oforall ¢ %0,

where Dy are the structure constants associated to X, see §2.3.2.
Recall also the structure constants d,, (&, ). Since X is stationary, {X,},>1 is a stationary stochastic process,
and d,, (&, f) are all equal. Call their common value d(¢). By Lemma 2.16(2) we have

22(¢) = d (&,1) < 8 [dn(&D)7 + dn(£,0)°] .

Asymptotic homogeneity says that ||g,|lcc —— 0, therefore d,21 (¢£,9) — 0. So for some ny = ny(£), for

»2(§)

0 Hence

every n > ng, d2(¢,) >

N _ 2
D& = Z d2(&1) > w — oo, whenever d(€) # 0.

n=3



8.5 Asymptotically Homogeneous Markov Chains 169

Next we consider the case when d(¢) = 0 and & # 0. In this case for a.e. hexagon P € Hex (n), eT¢P) = 1,
where I'(f, -) denotes the balance for f. Hence

ST = ieT(e)

and 50 d,,(£,1) = du(£,0).
Let yy := maxess sup |gnl, and fix 79 > 0s.t. [e? = 1|* > 372 forall |r| < 19. If O < || < 79(6yn)~", then

(4.14) tells us that for every n > N,

2
cﬁm@z%@@nmmn>N+3

By assumption, g is not center-tight, so 3" u2(g) = co. It follows that D (17, g) — oo forall 0 < || < 19(6yn)~".
By assumption, yy — 0, so Dy (&,9) — oo, whence

N
D& = Zd%g N =) dr(&9) = Dy(£9) — o

n=3

also when d(¢) = 0 (but & # 0). This completes the proof that G (X?) = R, whenever g is not center-tight.
We proved parts (1) and (2) of the theorem. We now prove part (3). Suppose f is not a.s. a homogeneous
gradient plus a constant, modulo some group ¢Z. By Theorem 8.9, G.4s(X,f) = R. If g := f — f is center-tight,
then Gos5(X, ) = Gess (X f) = R, by the first part of the theorem. If g is not center-tight, then G5(X, f) = R by
the second part of the theorem. In both cases G55 (X, f) = R. a

Lemma 8.27 If f is not the sum of a homogeneous gradient and a constant, then the variance of Sy (f) with
respect to X satisfies Var[Sy (X f)] =< Nas N — .

Proof Choose r so large that sup |&, (x, y)| < % for all n > r. Then for n > r + 3, the hexagon measures of X and
X on Hex (n) differ by a density uniformly bounded away from zero and infinity (see Example 4.12). It follows
that e _

W2 (X, 1) < u? (X, 1).

Next, by the assumption sup | f,, — fu| — 0, [u2(X, ) — u (X, f)| = 0. Therefore
n—0o0

| . N
5 D XD < D (XD = Z HESIERICH
n=3 n=3 n=3
1Y 1
By Theorem 3.6, v Z ufl(X, f) =< N[VN + O(1)], where Vy is the variance of Sy (f) with respect to the
n=3

(stationary homogeneous) limit Markov chain X.

By Theorem 8.9(1) and the assumption that f is not a homogeneous gradient plus a constant, Vy ~ 02N
N

1 —
where o # 0. So ~ Zui(x,f) = 1.
n=3
The lemma now follows from the variance estimates in Theorem 3.6. O

Next we discuss the large deviation thresholds for (X?) (see §7.4).

Theorem 8.28

(a) If f is not a homogeneous gradient plus a constant, then (XT} has full large deviations regime, and ¢+ (X?) =
(X ) =1 (X 1).
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(b) If f is a homogeneous gradient plus a constant, and f is not center-tight, then c, (5(:?) = 400, C_ (S(va) = —o0,

Proof Suppose f is not a homogeneous gradient plus a constant. By the previous lemma, Vi := Var(X, Sy () =
N, and therefore
ISn () = Sv (Dl
Vn

N
1 -
= 0[5 Yo = falla) —— 0.
n=1
By Lemma 7.34, (i?) and (52, f) have the same admissible sequences. So
(X, 1) = e (X 1).

Given r, let %r = {Yn}nzr and X, := {X,}n>r. It is not difficult to see, using Theorem 7.26 with intervals
much larger than r ess sup | f|, that

(X ) = (X f,) and o (X, ) = e (X, ).

By asymptotic homogeneity, we can choose r so large so that sup |e,(x, y)| < 5 for all n > r. In this case X,
and X, are related by a change of measure with bounded weights. By Lemma 7. 33 (X ) = ¢ (Xp, Fr).

In summary, c. (X, f) = (X f)=ca (Xr,f )= (X, f) = ¢ (X, f). Similarly, one shows that 1. (X f) =1.(Xf).
By Theorem 8.12, .. (X, f) = r.(X, f), and the proof of part (a) is complete.

In the proof of part (b) we may assume that f = 0 and E( fn) = 0 for all n, since adding a homogeneous

gradient and centering does not change c...
nzfl
Write Sy = Sy (XD, Sum = > fe(Xe Xaw1), Vv = Var(Sy (X D). Since Tis not center-tight, Vy —
k=n,
0o.

Divide the interval [0, N] into blocks

[, 2] Uno + 1} U [n3,n4] U -+ U [ngy, tig +1] U By 41 + 1} U [0y 42, N, (8.23)
where for i odd, n;,1 is the minimal n > n; + 1 such that Var(S,, ) > 1, and for i even, n;4; = n; + 2. We
denote the maximal odd i with n; + 1 < N by ky.

Since || fulleo = IIf,, fallo — 0, we have lim lim min{n;j, - : 0 < j < kyodd} = co. From the

£—00 N—oo
identity Var(Sy, n+1) = Var(Sy, ») + Var(f,,) +2Cov(Sn;,ns f,,) and the mixing estimate (2.13), we see that there
is My > 1 s.t.
1 < Var(Sy; n,,,) < Mp foroddi < ky, and Var(S,,kNﬂ,N) < M.

Similarly, as ||fn||oo — 0 hm Var(Sn, nj +l) =1land lim Var(Sn, n,+1+l) =1.

14)000

Next we claim that

. 1
Jlim = Z Var(Su;.n+1) = 1. (8.24)
N j<kn odd
Clearly, VN = Z Var(Sy; n;,y+1) + 2 Z Cov(Sn; ;. +15 Snjinja+1) (with the convention that
j<kn+2o0dd i<j<ky+2odd

Ny +3 = N —1). Since Var(S,,kNJrg,N) < My and \71\/ — 00, to prove (8.24) it suffices to show that
j-1

lim Z |COV(Snymisr 1 Snyunjrs1)| = 0 (8.25)

J—)OO
By Proposition 2.13, the LHS of (8.25) is at most

D Gt Plfpllolflle < ) Coix " Sup 1 fplks 58P 1o

psnj,qzn; p<0,g>0 q=n;j
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which tends to 0, since the last term tends to 0. This proves (8.25) and hence (8.24).
Let Sy denote the number of blocks in the decomposition (8.23). Since lim dVar(S,, snpa+1) = 1,(8.24)

Jj—o0 od

implies that for large N, _ _
VN/2 < By < 2Vy.

Let M; = max ||ﬁ||oo, then M; — 0. Applying Dobrushin’s CLT to the array

nj<l<nj
ﬁ/M', nj <l <nj, jisodd, j=>1,

we obtain that S, ,;,,/,/Var(Su;.n,.,) is asymptotically normal. So for each z > 0 there exists 17(z) > 0 such

that for all j large enough, except perhaps the last one,
P(Snj,njﬂ Z 32) Z U(Z) (826)

For j = ky + 2 (the last one), P[|S; n| < 2] 2 %, by the Chebyshev inequality.
An ellipticity argument similar to the one we used in the proof of Theorem 8.12 now shows that as N — oo,
P(Sy > Bnz) > ceb¥ PN,
(The constant ¢ incorporates the contribution of the blocks (with small j or j = k + 2) where (8.26) fails.)
Recalling that Vi < 28y, we obtain P(Sy > Vyz) > ceﬁ”n(Zz)ﬁN. Next, by the CLT for Sy, P[Sy <

Vnzl = P[Sy < 0] — % Theorem 7.30 now tells us that

N = (2 — S)VN is admissible for each £ > 0.

is inside (c¢_, ¢;) for each £ > 0, whence c*(x f) > z. Since z is arbitrary,

It follows that z — & := lim @
N

(X, 1) = +o0. Similarly, (X,f) = —c0. o

It is worthwhile to spell out the results of the present section in the special case when the limit f is identically
equal to zero.

Corollary 8.29 (Asymptotically Negligible Functionals) Suppose sup |ﬁ,| — 0 and E(ﬁ) = 0. Then:

e Either (X?) is center-tight, and Z ﬁ, converges almost surely;
n=1
e or (X,f) is not center-tight, satisfies the non-lattice LLT (5.1) and (X,f) has full large deviations regime with
thresholds c. (X, f) = +c0.

Proof The non center-tight case follows from the previous results, with f = 0.
In the center-tight case, the results of Chapter 3 tell us that

Fa(®.3) = ane1(0) = an(x) + by (5, 3) + ¢ where )" Var(hy) < oo.

Moreover, we can obtain such a decomposition with ||a,llc — 0, see (3.6). Changing a,, if necessary, we may
also assume that E(a,) = 0, in which case E(f;,) = 0 = E(h, + ¢,). Therefore the additive functional h = h + ¢
has zero mean and finite variance. Hence by Theorem 3.12,

00

Z(hn + ¢,,) converges almost surely.

n=1

In summary Sy (?) — an + a; converges almost surely, and hence Sy (?) — apn converges almost surely. Since
lim ay = 0, the proof is complete. o

N—co
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Corollary 8.30 Suppose sup |fn| — 0 and ]E(ﬁ) = 0. Then:

e FEither S N(f~) converges a.s. to some random variable S, in which case for each function ¢ € C.(R),

Jlim E(@(Sn) = E(@(S));
o orSy (T) satisfies a non-lattice LLT, in which case, for every ¢ € C.(R),

1 (o]
lim VNE(4(Sw)) = = f _9s)ds.

8.6 Equicontinuous Additive Functionals

In this section we examine the consequences of topological assumptions on f and X. We will say that (X, f) is
equicontinuous, if the following three assumptions hold:

(T) &, are complete separable metric spaces.
(X) o mypr1(x,dy) = pu(x, y)tin+1(dy) where 661 < pn < €g for some €y > 0 independent of n, and

o for every & > 0 there exists 6 > 0 such that for every n, for every ball B ¢ &, with radius &, y, (B) > 6.
(U) For some K < oo, ess sup |f| < K, and for every € > 0 46 > 0 such that

o 7N x,, yl S Sn S.t. d(x’,y’) <0
sup{|fn(x,x )= fu(y,y ) ineN, X7y € Gy st dx"y") < 6 <e.

In particular, by (X), X is uniformly elliptic (even one-step uniformly elliptic).

Theorem 8.31 Suppose (X, f) is equicontinuous, and S,, are connected. Then either (X,f) is center-tight, or
Gess(X, ) =R, and (X, ) satisfies the non-lattice LLT (5.1).

Proof Assume (X, f) is not center-tight. Choose ¢; > 0 such that |’ — 1|> = 4sin? (%) > 162 for all 6] < 0.1.
Fix £ #0.
We consider the following two cases:

(D ANy such that |ET(P)| < 0.1 for every hexagon P € Hex (n) and n > Nj.
(II) dng T oo and hexagons Py, € Hex (ny) such that [€T(P,, )| > 0.1.

In case (I), for all n > Ny, dfl(f) = E(le®" - 11%) > ¢|E(T?) = clufl. By non center-tightness, Zuft = oo,

whence Y d2 (&) = oo.
In case (II), for every k there is a position n; hexagon P,, with |£T'(P,, )| > 0.1. There is also a position n

hexagon P, with balance zero, e.g. (a Z id ) We would like to apply the intermediate value theorem to deduce

the existence of ﬁnk € Hex (n) such that 0.05 < fl"(ﬁnk) < 0.1. To do this we note that:

* Because of (X), the space of admissible position n; hexagons is homeomorphic to S,,, > X sz_l X Gﬁk XSy, .
» The product of connected topological spaces is connected.

¢ Real-valued continuous functions on connected topological spaces satisfy the intermediate value theorem.

* The balance of hexagon depends continuously on the hexagon.

So Fnk exists. Necessarily, |ei‘fr(P”k) -1 > cl.le"z(ﬁnk) > clg’;‘z -0.05% =: ¢;.

By the equicontinuity of f, Je > 0 such that [e¥T®) — 1| > %cz for every hexagon whose coordinates are in
the e-neighborhood of the coordinates of ﬁnk. By (), this collection of hexagons has measure > ¢ for some
6 > 0 independent of k. So dﬁk &) = %Czé. Summing over all k, we find that ), dflk (&) = o0. Since & # 0 was
arbitrary, H (X, f) = {0}, and this implies that G55 (X, f) = R. |
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Theorem 8.32 Suppose (X, f) is equicontinuous, and Vy > const.N for some positive constant. Then (X, f) has
full large deviations regime, and

. inf Sy — E(Sn) .. ~supSy —E(Sn)
. =limsup ————, ¢, =liminf ——————,

(8.27)
N—oo VN N—oo \%N;

where the infima and suprema are taken over all of S X - - - X Sy +1.

Example 7.36 shows that the equicontinuity assumption on f cannot be removed.

Proof Changing f by constants, it is possible to assume without loss of generality that E(Sy) = 0 for all N.
The inequalities 0 < ¢; < r; < liminf V;,l sup Sy are always true, therefore to show the identity for ¢, it is
sufficient to prove that ¢, > liminf V]\_,l sup Sy .
Fix z,e > Osuch that 0 < z+ & < liI{Jn Jgf VI\_,1 sup Sy . For all sufficiently large N there is a sequence

Xls.., XN4+1 St
N
ij(fj,fjﬂ) > (z+¢&)Vy.
=1

i=
Let B(x,r) denote the open ball with center x and radius r. By (U) and the fact that Vy > const.N, there is
N
r > Osuch thatif X; € B(xj,r) for2 < j < N + 1, then for all N large enough, Z [i(X;, Xj1) 2 (z+&/2)Vn.
j=1
By (%), all balls in &,, with radius r have y,-measure bounded below by ¢, for some positive constant
0 = 0(r). Therefore

P[X2 € B(f% r)a . '7XN+1 € B(fN+1’ r)]

= f P1(x1,x2) - p(xXN, XN+ (dx) pa(dxz) - 1 (dxy+1)
S1 B(X2,r) B(XN+1.7)

N oN
€ 0.

[\

Hence there is 0 < < 1 such that for all N large enough,
P(Sn > (z+&/3)Vy) 2 ™.

Next, by the CLT and the assumptions that E(Sy) = 0 and z > 0, if ¢ is small enough and N is large enough,
then

P[Sy < (z—-&)VNn] 2 P[Sy <£0] = % +o(l) = V.

By Theorem 7.30, zy = zVp is admissible. In particular (see §7.4.2), z < ;. Passing to the supremum
over z, we obtain that ¢; > liminf VIQ] sup Sy, whence ¢, = liminf VlQl sup Sy . The identity for ¢_ follows by

symmetry. O
By (8.27), for each N, there is a finite sequence X*(N) := (X7 p» X5 p»-- > Xnyy y) Such that ci =
N
. 1 + +
lim — > (fu(xh o x5, v) —E(SN)) -

N—oo VN
n=1

Our next result says that when S; are all compact, one can choose x*(N) consistently, i.e. to have a common
extension to an infinite sequence. Such infinite sequences appear naturally in statistical mechanics, where they

are called “ground states."
An infinite sequence X = (x1, x2,...) € H;’il ©; is called a maximizer, if YN > 3, for all y; € G;,

N-1 N-1

Z Snns Ynr) + [N, XN+1) < Z Snns Xns1) + NN, XN41). (8.28)
n=1 n=1
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An infinite sequence X = (X1, X2,...) € [[2, S; is called a and a minimizer, if VN > 3, forall y; € &;,

N-1 N-1
Z Snns Ynr1) + NN, XN 2 Z Snns Xns1) + IN(XN, XN41). (8.29)
n=1 n=1

Theorem 8.33 Suppose (X, f) is equicontinuous, Viy > c¢N for some positive constant c, and all the state spaces
&; are compact. Then maximizers x* = (x;’, x; ,...) and minimizers X~ = (x7, x5, ...) exist, and satisfy

N N
. 1 - - |
= 11115132;) Vi ( ; Fn(Xs X, 00) — E(SN)), ¢ = liminf 7 ( ; Jn(x xp ) = E(SN))-
Proof Let M}, (respectively, My,) denote the space of sequences satisfying (8.28) (respectively, (8.29)) for
fixed N.

SteP 1. MY, are non-empty compact sets, and My, > My, for all N. Thus, the sets M* = ﬂ My + @.
N=1

Proof of the Step. By Tychonoff’s theorem, & := [];2, &; is compact, and by equicontinuity, for every x € Sy 1,
N-1

the map on x(V1, Y2, ...) = Z fii, yit1) + fn(yn, x) is continuous. Therefore ¢y, attains its maximum
i=1

and its minimum on . It follows that M3, are non-empty.

Suppose x/ € M3, converge to x € S. We claim that x € M3,. Otherwise there is X = (X1, X2, . ..) such that

N N
TN+ = AN, BUE D Fu o Knet) > D | Fa s X
n=1 n=1

Let¥ := X1,..., XN, xJI.\,H,YNJrz, XN+3s .- .). Since "JN+1 — XN+l = XN+1» ¥ > X By equicontinuity, for
N N

all j sufficiently large, Z G ® ) > Z fn(xn, x! ). But this contradicts the assumption that x/ € M.
n=1 n=1

We see that M3, is closed, whence by the compactness of &, compact. Similarly one shows that My, is
compact.

Next we prove the monotonicity of My,. Suppose x € MY, . Choose some arbitrary y € S. Looking at the
sequence Y’ := (¥1,..., VN> XN+1» XN+2> YN+3» YN+4, - - ) and using the defining property of My, we see that

N-1 N+1
Z JnOn Yns1) + NN, XN+1) + fnet(XN+1, Xng2) < Z Sn(Xns Xn11).
n=1 n=1

N-1 N

It follows that Z Sn(ns Yne1) + fNINs XN+1) < an(xns Xnt+1). SOX € ME
n=1 n=1

Similarly, one shows that M,‘v 1 C M.

N N
STEP 2. VX* € M3, D fulin Xpyy) SInfSy +2K, )" fulxy, x5,) > sup Sy - 2K.

n=1 n=1
N-1
Proofof the Step. Let (z4, . . ., zn) be apoint where Z Sn(Zns Zne1) = max Sy—1. Takey := (21, ..., ZN» Xy > Xpvgpr - - -
n=1
and recall that ess sup |f| < K. Then
N N N-1
Z fn(xz’ x;+1) 2 Z Snn> Yn1) 2 Z Sn(zn, Znv1) — K = max Sy — K > max Sy — 2K.
n=1 n=1 n=1

The statement for x~ has a similar proof, which we omit.
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Sy —E(S
We can now prove the theorem. By Theorem 8.32, ¢, = liminf M

N—oo N

(this is the only place where

we are using the assumption that Vy > const.N).

N N

1

By Step 2, sup Sy < Z fnl(xy, x} . )+O0(1) for each x* € M*.Soc, = li]{]ninfv—( Fulxp, x5 ) — E(SN)).
n=1 —* VN n=1

The proof of the identity for c_ is similar, and we omit it. O

8.7 Notes and References

Sums of Independent Random Variables. The non-lattice LLT in Theorem 8.3 is due to Dolgopyat [56]. His
proof also applies to unbounded vector-valued random variables, assuming only that sup E(]| X,,||*) < co.

The lattice LLT in Theorem 8.5 is due to Prokhorov. An extension to unbounded integer valued independent
random variables is given by Rozanov [169].

Other conditions for the LLT for sums of independent random variables include the Mineka-Silverman
condition [144], StatuleviCius’s condition [190], and conditions motivated by additive number theory such as
those appearing in [146] and [147].

Mukhin [148] gave a unified discussion of some of these conditions, using the quantities D(X, &).

Homogeneous Chains. The literature on homogeneous Markov chains is vast. Sufficient conditions for the
CLT, LLT, and other limit theorems in non-Gaussian domains of attraction can be found in [46, 81, 82, 98, 114,
119, 139, 149, 98, 168, 88, 152, 10, 122, 123].

The LLT for local deviations holds under weaker assumptions than those in Theorems 8.9 and 8.13. The
assumption that f has finite variance can be replaced by the assumption that the distribution of f is in the domain
of attraction of the Gaussian distribution [4]; One can allow f to depend on infinitely many X,, assuming that the
dependence of f(x1, x2,...) on (X, X,+1, - - .) decays exponentially in n [88]; and the ellipticity assumption can
be replaced by the assumption that the generator has a spectral gap [149, 98]. In particular, the LLT holds under
the Doeblin condition saying that 3¢ > 0 and a measure  on S such that 7(x, dy) = g9l (dy) + (1 —&9)7(x, dy)
where 7 is an arbitrary transition probability (cf. equation (2.10) in the proof of Lemma 2.12). There are also
versions of this theorem for f in the domain of attraction of a stable law, see [5].

There are also generalizations of the LLT for large deviations to the case when f(xy, x2, . . .) has exponentially
weak dependence on x; with large k [123, 122, 10]. However, the unbounded case is still not understood. In
fact, the large deviation probabilities could behave polynomially for unbounded functions, see [198, 141].

The characterization of coboundaries in terms of vanishing of the asymptotic variance o is due to Leonov
[129]. A large number of papers discuss the regularity of the gradients in case an additive functional is a gradient,
see [21, 37, 106, 134, 135, 153, 152] and the references wherein. Our approach is closest to [55, 106, 152].

We note that the condition u(f) = 0 (where u*( f) is the variance of the balance of a random hexagon), which
is sufficient for f being a coboundary, is simpler than the equivalent condition o> = 0. For example, for finite
state Markov chains, to compute o> one needs to compute infinitely many correlations E( fy f,,) while checking
that # = O involves checking the balance of finitely many hexagons.

Nagaev’s Theorem. Nagaev’s Theorem and the idea to prove limit theorems for Markov chains using perturba-
tion theory of linear operators first appeared in [149]. Nagaev only treated the lattice case. He did not assume the
one-step ellipticity condition, he only assumed the weaker condition that for some k, the k-step transition kernel
of X has contraction coefficient strictly smaller than one (see §2.2.2). This is sufficient to guarantee the spectral
gap of Lo, but it does not allow to characterize the cases when 02 >0, Goss (X, ) =R, and Gegs (X, f) =tZ in a
simple way as in Propositions 8.14 and 8.15. As a result, the LLT under Nagaev’s condition is more complicated
than in our case.

Nagaev’s proof can be generalized even further, to the case when £, all have spectral gap on some suitable
Banach space. See [87, 88, 98].
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A proof of the perturbation theorem (Theorem 8.17) can be found in [98], and we included it, for completeness
in Appendix C. The expansion of the leading eigenvalue A, follows calculations in Guivarc’h & Hardy [88], see
also [171, 152]. The identities for the derivatives of A are often stated in the following form (In A); = E(f),
(In )y = —02/2. We leave it to readers to check that these formulae are equivalent to Proposition 8.21(4). The
proof of Proposition 8.14 uses ideas from [84].

The LLT for stationary homogeneous uniformly elliptic Markov chains in §8.3-§8.4 remain true if we remove
the stationarity assumptions, with the one caveat: The characterization of the cases 02 =0and G, # R in
terms of an a.s. functional equation for f (X, X») must always be done using the stationary law of {X,,}.

To establish these LLT in the non-stationary case, one could either appeal to the more general results on
asymptotically homogeneous chains in §8.5, or make minor modifications in the arguments of §8.3-§8.4. In the
case of Theorem 8.9, it suffices to note that Theorem 5.1 holds for all initial distributions and that Gz, (X, f)
does not depend on the initial distribution, because of Lemma 2.17 and Theorem 4.4. In the case of Theorem
8.13, one has to use the fact that Nagaev’s perturbation theory allows to control E (ei’ Sn/ M) for an arbitrary
initial distribution.

Itis interesting to note that the higher order terms in the asymptotic expansion of the CLT and LLT probabilities
do depend on the initial distribution, see [99].

Asymptotically Homogeneous Chains. Asymptotically homogeneous Markov chains appear naturally in some
stochastic optimization algorithms such as the Metropolis algorithm. For large deviations and other limit theorems
for such examples, see [48, 47] and references therein.
Asymptotically homogenous systems are standard examples of inhomogeneous systems with linearly growing
variance, cf. [31, 151]. e
We note that using the results of §2.5 it is possible to strengthen Lemma 8.27 to conclude that Var[Sy (X, f)] =
Var[Sy (X, f)] + o(N) as N — oo, but the present statement is sufficient for our purposes.

Equicontinuous Additive Functionals Minimizers play an important role in statistical mechanics, where they
are called ground states. See e.g. [184, 164]. In the case the phase spaces S, are non-compact and/or the
observable f(x,y) is unbounded, the minimizers have an interesting geometry, see e.g. [29]. For finite state
Markov chains, we have the following remarkable result of J. Brémont [18]: for each d there is a constant p(d)
such that for any homogeneous Markov chain with d states for any additive functional we have

1
ro=max— max [f(x1,x2)+-ec+ f(xgo1,xg) + f(xgx1)]

q=<p q xi1,.--Xq

This result is false for more general homogenous chains, consider for example the case © = N and f(x,y) = 1
if y=x+ 1 and f(x,y) = 0 otherwise.

Corollary 8.30 was proven in [56] for inhomogeneous sums of independent random variables. In the indepen-
dent case, the assumption that r}l_IBO llgnllc = O can be removed, since the gradient obstruction does not appear.

Quantitative versions of Corollary 8.30 and Theorem 8.31 have been obtained in [59]. There it is shown that
e—zz/ 2

V27TVN

provided that C > by —an > VA_,k/ % where k is integer such that

P[Sn — zy/Vi € (an, bn)] = [1 + o(1)]

(bny —an), as N — o

o either || full = O(n®) and k < @ -1;
1+

¢ or 3, = M-acompact connected manifold, f, are uniformly Holder of order @ and k < =5 —
These results are consequences of so called Edgeworth expansions, which are precise asymptotic expansions
for P(%\/LNSN) < z). These results improve on Corollary 8.30 and Theorem 8.31, since the length of the target

interval (apy, by ) is allowed to go to zero. The exponents k given above are optimal.



Chapter 9

Local Limit Theorems for Markov Chains in Random
Environments

Abstract We prove quenched local limit theorems for Markov chains in random environments, with stationary
ergodic noise processes.

9.1 Markov Chains in Random Environments

A Markov chain in a random environment (MCRE) is an inhomogeneous Markov chain whose transition
probabilities depend on random external parameters ¥, which vary in time: 7, 41 (x, dy) = 7(¥,, x, dy).!

The noise {Y;,} is a stochastic process, which we will always take to be stationary and ergodic. In this case it
is possible and convenient to represent {Y;,} as a random orbit of an ergodic measure preserving map, called the
noise process. We proceed to give the formal definitions and some examples.

9.1.1 Formal Definitions

Noise Processes: These are quadruples (Q, %, m, T), where T is an ergodic measure preserving invertible Borel
transformation on a standard measure space (Q, %, m).

e “Ergodic" means that for every E € ¥ s.t. T'E=E,mE)=00rm(Q\ E) =0.
+ “Measure preserving" means that for every E € .%, m(T~'E) = m(E).
* “Invertible" means that there exists Q; C Q of full measure such that 7 : Q; — Q; is injective, surjective,
measurable, and with measurable inverse.2
The noise at time n is Y, := T"w := (T o --- o T)(w) (n times), w € (Q, F#, m).
If m(Q) < oo then we will speak of a finite noise process, and we will always normalize m so that m(Q) = 1.
Every stationary ergodic stochastic process taking values in a polish space can be modeled by a finite noise
process, see Example 9.3. If m(€) = oo, then we will speak of an infinite noise process. In this case, we will

always assume that (Q, .%, m) is o-finite and non-atomic. Such processes arise in the study of noise driven by
null recurrent Markov chains, see Example 9.5.

Markov Chains in Random Environment (MCRE): These are quadruples

X = (Q Z,mT), (S,B), (7w, % d)}wrecaxs (Holwea ) ©.1)
N e’ N — N———

noise process  state space ransition kernel generator initial distribution
generator

made of the following objects:

» The Noise Process (Q,.%,m, T), see above.

* The State Space (S, %) is a separable complete metric space S, with its Borel o--algebra %.

I MCRE should not be confused with “random walks in random environment." In the RWRE model, the transition kernel at time n
depends on a random “environment" Yy independent of n, and on the position of the random walk at time n, i.e. 7, ,41(x, dy) =
(Yo, Sn, x, dy).

2 The invertibility assumption can be removed by replacing a non-invertible map by its natural extension, see [33, Ch. 10].

177
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* The Transition Kernel Generator {7 (w, x, dy)}(w,x)eqxs is a measurable family of Borel probability mea-
sures on (S, #). Measurability means that (w, x) +— f o(y)r(x, w,dy) is measurable for every bounded
Borel ¢ : © — R.

¢ The Initial Distribution Generator {x,,},cq is a measurable family of Borel probability measures p,, on
S. Measurability means that for all bounded Borel ¢ : @ - R, w +— f @(x) e (dx) is measurable.

Fix w € Q. The quenched MCRE with noise parameter w is the inhomogeneous Markov chain X¢ =
{X®},>1 with

n
e state space S; e initial distribution ur.,; e transition kernels nZ’n 6 dy) = n(T"w, x, dy).

3

Remark. Note that the initial distribution of X* is ur,,, not y,,. Similarly, 7y 2(x, dy) = n(Tw, x, dy). These
choices are consistent with the convention that whatever happens at time n depends on 7" w.

We denote by P“, E“ the probability and expectation associated with X“. These are sometimes called the
quenched probability and expectation (for the noise value w). By contrast, the annealed probability and
expectation are given by m(dw)P“ (dX*) and fg E“m(dw).

Additive Functional Generator: f* := f, where f : Q X © x © — R is a measurable function. This generates
the additive functional f“ on X given by

I y) = f(T"w, x, ). 9.2)

N N
Welet S := ) [ (X, X2) = ) f(T"0, X3, X12).
n=1 n=1

9.1.2 Examples

Let (S, ) be a compact metric space, fix a countable set S, and let {r;(x, dy)};es be some family of transition
kernels on .

Example 9.1 (Bernoulli Noise) Consider the noise process (Q, %, m, T) where

e« O=SZ= {(--- ,w_1, w0, w1, --) : w; € S}.

e % is generated by the cylinders [ay, . ..,a,] :={w € Q:w; =a;,k <i < n}.
* {pi}ies are non-negative numbers such that )} p; = 1, and m is the unique probability measure such that
m(ilak, ..., anl) = pa; *** Pa, for all cylinders.

e T:Q — Qis the left shift map, T[(w;)icz] = (Wi+1)iez-

(Q, .7, 1, T) is ergodic and probability preserving, see [33].

Define n(w, x,dy) := m,(x,dy). Notice that 7(T"w, x,dy) = m,,,(x,dy), and w, are iid random variables
taking the values i € S with probabilities p;. So X represents a random Markov chain, whose transition
probabilities vary randomly and independently in time.

Example 9.2 (Positive Recurrent Markovian Noise) Suppose (Y;), ¢z is a stationary ergodic Markov chain
with state space S and a stationary probability vector (ps)ses. In particular, (Y;,), ez is positive recurrent. Let:
e Q:= S%; e.7 is the o-algebra generated by the cylinders (see above);
e m is the unique (probability) measure such that for all cylinders, m(x[ak, - . ., an]) = P[Yx = ak, ..., Yy = anl;
o T is the left shift map (see above).

Define as before, n(w, x, dy) := m,,(x, dy). The resulting MCRE represents a Markov chain whose transition
probabilities at time n = 1,2, 3, ... are 7y, (x, dy).

Example 9.3 (General Stationary Ergodic Noise Processes) The previous construction works verbatim with
any stationary ergodic stochastic process {Y;} taking values in S. The assumption that S is countable can be
replaced by the condition that S is a complete separable metric space, see e.g. [62].
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Example 9.4 (Quasi-Periodic Noise) Let (Q, .%, m, T) be the circle rotation: Q = T! := R/Z; . is the Borel
o -algebra; m is the normalized Lebesgue measure; and T : Q — Q is the rotation by an angle o, T(w) = w + @
mod Z. T is probability preserving, and it is well-known that 7 is ergodic iff « is irrational, see [33].

Take a measurable (possibly continuous) 1-parameter family {m,(x,dy)},er of transition kernels on &,
and form the generator 7 (w, x, dy) = 7, (x,dy). Then X are inhomogeneous Markov chains whose transition
probabilities vary quasi-periodically: 7y, ;41 (X, dY) = Ty 4na modz (X, dy). More generally, let Q := Td = R4 /Zd
with the Haar measure m, and consider T(w) := w + @ modZ<¢. This is a probability preserving map, and
if {ay,...,aq, 1} are linearly independent over Q, then T is ergodic [33]. Next, take a measurable (possibly
continuous) d-parameter family of transition kernels {7, (x, dy)},, et on &, and form the generator 7 (w, x, dy) =
7, (x,dy). Then X has transition probabilities which vary quasi-periodically:

Tpn+1 (X, dy) = T(wy+nay,....wq+nag)mod Z4 (x,dy).

Example 9.5 (Null Recurrent Markovian Noise) This is an example with an infinite noise process. Suppose
(Y1)nez is an ergodic null recurrent Markov chain with countable state space S, and stationary positive vector
(pi)ies- Here p; > 0 and (by null recurrence) ), p; = oo. For example, (Y;,),,ez could be the simple random walk
on Z4 for d = 1,2, with the stationary measure, p; = 1 foralli € 74, (the counting measure). Let

e Q= 5%; .7 is the o-algebra generated by the cylinders;

e m is the unique (infinite) Borel measure s.t. ¥ cylinder m(x[ax, . . ., an]) = pa, PLY; = a; (k <i < n)|Y = arl;
o T :Q — Qis the left shift map T[(w;)iez] = wi+1-

(Q,.7,m,T) is an infinite ergodic measure preserving invertible map, see [1]. As in Example 9.2, one can
construct MCRE with transition probabilities ry, (x, dy) which vary randomly in time according to (¥},),ez. For
each particular realization of w = (¥});ez, X* is an ordinary inhomogeneous Markov chain (on a probability
space). We shall see that some additive functionals on X may exhibit slower variance growth than in the case
of finite noise processes (Example 9.16).

Example 9.6 (Transient Markovian Noise: A Non-Example) The previous construction fails for transient
Markov chains such as the random walk on Z¢ for d > 3, because in the transient case, (Q,.%,m,T) is not
ergodic, see [1].

We could try to work with the ergodic components of m, but this does not yield a new mathematical object,
because of the following general fact [1]: Almost every ergodic component of an invertible totally dissipative
infinite measure preserving map is concentrated on a single orbit {T"w},cz. Since MCRE with such noise
processes have just one possible realization of noise up to time shift, their theory is the same as the theory of
general inhomogeneous Markov chains.

9.1.3 Conditions and Assumptions

We present and discuss the conditions on X? and f that will appear in some of the results in this chapter. In
what follows, (X%, f?) are as in (9.1) and (9.2). We begin with conditions on X:

(S) Stationarity: ur,(dy) = f e (dxX)m(w, x,dy), ie. for every ¢ : & — R bounded and Borel,

[ e urn(dy) = [ (fo ¢, x,dy)) pre,(dx).

The following consequences of (S) can be easily proved by induction:
(S P(XHE)=prny,(E) forall E € #andn > 1; (S2) Vk {X%, }i>1 is equal in distribution to {XiTk‘“}
(E) Uniform Ellipticity: There is a constant 0 < €y < 1 such that

(@) m1(w, x,dy) = p(w, x, V) ure(dy), with p : Q X S X S — [0, 00) Borel; (b) 0 < p < 1/€p;

© [ pw,x, »)p(Tw,y, D) pre(dy) > eVw, x, 2.

This implies that X are all uniformly elliptic, and the ellipticity constant is uniformly bounded away from

zero. In particular, X satisfies the exponential mixing estimates in Prop. 2.13 uniformly in w.

i>1’
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(G) Global Support: u,,(dy) is globally supported on S for all w.3 The essence of this assumption is that the
support of u, is independent of w. If supp(u,,) = &’ for all w, then we can get (G) by replacing S by &'.

(C) Continuity: Q and S are separable complete metric spaces equipped with the Borel structure, and:

(CDHT: Q — Qisahomeomorphism; (C2) (w, x,y) — p(w, x, y) is continuous;

CHwe fe ¢du,, is continuous ¥ bounded continuous ¢ : S — R; (C4) (w, x,y) — f(w, x, y) are continuous.

(D) Discreteness: S is finite or countable. This is an alternative to (C).

Example 9.7 It is fairly easy to get examples which satisfy (E),(G),(C) or (E),(G),(D). Take a noise process
compatible with (C) (e.g. Examples 9.1-9.5). Next take a deterministic uniformly elliptic continuous globally
supported transition kernel p(x, y) u(dy) on a compact metric (or finite) space. Let ¢ and i be bounded continuous
functions on Q X S and Q x &2, respectively, and consider the generators

e‘”(‘“’y)y(dy) ew(w,x,y)p(x’ y)

————, p(w,x,y) = :
[ evwm p(dn) P Y [ ee@xmp(x,n) e, (dn)

Heo(dy) =

Next we discuss how to obtain, in addition, stationarity (S). The following lemma will be proved in §9.3.1:

Lemma 9.8 Let X be a uniformly elliptic MCRE with a compact metrizable state space (S, ) and an initial
distribution { e }weq- Suppose x — m(w, x,dy) is continuous in the weak-star topology for each w. Then:

(1) There exists an initial distribution generator { ., }cq Which satisfies (S).
(2) py, < W and there exists C > 0 such that | log :jiz—‘“l < Ca.e. in G for all w.

(3) Suppose in addition that Q is a metric space, T : Q — Q is continuous, and (w, x) — n(w, x,dy) is
continuous. Then w — p,, is continuous.

Corollary 9.9 Suppose X2 satisfies conditions (E),(G) and (C) with a compact metrizable state space S. Then

—Q —w
there is a MCRE X' satisfying (E),(G),(C) and (S), so that for every w € Q and x € S, X conditioned on
X, = x is equal in distribution to X* conditioned on X{* = x.

=Q
Proof Let X be the MCRE with the noise process, state space, and transition kernel generator of X2, but with
initial distribution generator y;, from Lemma 9.8. O

Corollary 9.9 and Example 9.7 give many examples satisfying (E),(S),(G),(C). In the special case when S is
finite and discrete, we also obtain (D).

So far we only considered conditions on X®. Next we discuss three conditions on f. We need the annealed
measure P(dw, dx,dy) := m(dw)u, (dx)m(w, x,dy). P represents the joint distribution of (Tw, X<, X;’ ), be-
cause by the T-invariance of m,

ff d/(a),x,y)dIP:fff1//(Tw,x,y)m(dw)uTw(dx)ﬂ(Tw,x,dy). 9.3)
cJeJa

(B) Uniform Boundedness: |f| < K where K < oo is a constant. (B) implies that f is a uniformly bounded
additive functional on X, and that the bound does not depend on w.

(RC1) @ is called relatively cohomologous to a constant if there are bounded measurable functions a :
QxS — Randc:Q — Rsuch that f(w, x,y) = a(w, x) —a(Tw, y) + c(w) P-a.e.

(RC2) Fix t # 0, then f? is relatively cohomologous to a coset of ¢Z if there are measurable functions
a: QxS — S'and A : Q — S! such that

e@TNS @) 2 () L) gy o
a(Tw, y)

We will use (RC1) and (RC2) to characterize a.e. center-tightness and a.e. reducibility for (X%, {*), see Theorems
9.10 and 9.17, and Proposition 9.24.

3 But m(w, x, dy) need not have global support, because p(w, x, y) is allowed to vanish.
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9.2 Main Results

Throughout this section, we assume that (X, ) are as in (9.1) and (9.2), and we let Vy denote the variance of
Sy = fTw, XP, X))+ + f(TNw, Xy, Xy, 1), with respect to the (quenched) distribution of X*.

Theorem 9.10 Suppose X has a finite noise process, and assume (B),(E) and (S).

(1) If {2 is relatively cohomologous to a constant, then AC = C(eq, K) such that for a.e. w, V¢ < C for all N.

(2) If £ is not relatively cohomologous to a constant, then there is a constant o> > 0 such that for a.e. w,
VY ~No?as N — co.

Thus, under the assumptions of Theorem 9.10, the limit o’ = Z\l,im Vy /N exists for a.e. w, and is a.s.
—00

constant. We call 0% the asymptotic variance of (X, f?).
There is also an asymptotic mean g such that y := imE“ (S} )/N fora.e. w: By (S), E [f(T"“a), X« X;‘{)+2)] =

n+1’

¢(T"w) where p(w) = E(f(Tw, X{*, X5’)), and by the pointwise ergodic theorem, E(Sy) = ZQ’:—OI o(T"w) ~
N f ¢dm m-a.e.

Theorem 9.11 Assume that X has a finite noise process, and suppose (X, 12) satisfies (C) or (D), and each of

(S)L.(E).(G),(B).

(1) Non-Lattice LLT: Suppose f* is not relatively cohomologous to a coset of tZ for any t # 0. Then o> > 0,
and for a.e. w, for every open interval (a, b), and for every zy, z € R such that &\W(SN) -z,

1 [eZ/207
Pw[S]u\;_ZNe(a,b)]"’\/—N ? |Cl—b|CZSN—>OO.
no

(2) Lattice LLT: Suppose all the values of f* are integers, and f* is not relatively cohomologous to a coset of tZ.
with some integert > 1. Then o > 0, and for a.e. w, for every zy € Z and z € R such that &‘/ﬁ(sm -z,

VN \ V2ro2

Theorem 9.12 Suppose X has a finite noise process, and assume (B),(E),(S). Iff* is not relatively cohomologous
to a constant, then

1 -z2/202
PY[Sy =zn] ~ — as N — oo,

(1) There exists a continuously differentiable strictly convex function ¥ : R — R such that for a.e. w € Q,
F() = lim ~logE (%) (¢ € R)
) N—oc N ’

(2) Let F'(x00) := §lim F'(&), and let Iy (n) and I(n) denote the Legendre transforms of Gy (€) :=
—+00
# log E® (€558 ) and F (£). Then for a.e. w, for every n € (F'(—o0), F'(c0)), Iy (m) o I(n).
(3) I (n) is continuously differentiable, strictly convex, has compact level sets, is equal to zero at the asymptotic
mean [, and is strictly positive elsewhere.

(4) With probability one, we have full large deviations regime, and the large deviation thresholds and the
positivity thresholds of (X, 1?) (defined in §7.4) satisfy

_ T eSS inf[ S — E“(S%)] T e sup[Sy - E“(Sp)]

0_2 N—ooo 0’2N ’ + — 4+ -

=1
o2 N—co 02N
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Corollary 9.13 (Kifer) Assume the conditions of the previous theorem, and let 7(77) = sup{én — F (£)}. Then
£eR

T =T on (F'(~), F'(0)), T = +c0 outside (F'(—0), F'(c0)), and for a.e. w, Sy /N satisfies the large
deviations principle with the rate function 7(1}):

1
(1) hmsupﬁlog]P"”[SN/N eK]< - 1nf I(n)forall closed sets K C R.

N —o0

1
(2) liminf — logP“[Sy /N € G] = — inf I(n)for all open sets G C R.
N—oco N neG

Proof Use Lemma A.3 and the Gértner-Ellis Theorem (Appendix A). O

Theorem 9.14 Suppose X have a finite noise process, and (X2, 1?) satisfies (C) or (D), and each of (S), (E),
(G), (B).

(1) Non-Lattice LLT for Large Deviations: Assume {* is not relatively cohomologous to a coset of tZ. for any
t # 0. Then for a.e. w, for every open interval (a, b), and for every zy € Rs.t. < — z, lf 2L e (c_,cy) then

0 0 e B (%)
V@ IL (N IVE) R (54 e Z” N )
PUISY — 7y € (@, b)] = [1+o(D)] - — " p w(z” i f ” Wy,
[ N — XN (a,D)] =1 o(D)] oy la |p1\/ v |a—b|

with p%, £y as in Theorem 7.8(4).

(2) Lattice LLT for Large Deviations: Suppose {* is integer valued, and not relatively cohomologous to a coset
of tZ for any integer t > 1. Then for a.e. w, for every zn € Z such that 5} — z, lf 2L e (c_,cy) then

VR IN@NIVE)
e NN _E@ (S«
PULSY = zy] = [1 +o(1)] @ (Z” ( N)),

2n02N VN
with o'y as in Theorem 7.8(4).
.z —E¥(Sy) .
(3) For a.e. w, for each sequence zn such that lim — N =0, it holds that
1+0o(1) (zv —E2(S9))\?
VN IN (ZN/V;\}))z 552 ( v as N — oo,

So far we have focused on MCRE with finite noise spaces. We will now address the case of MCRE with
infinite noise spaces. First, here are two examples of the new phenomena which may occur.

Example 9.15 (No Asymptotic Mean) For MCRE with infinite noise spaces, it is possible that E(S%)/N
oscillates for a.e. w, without converging.

Proof. Let {Y,,},cz be the simple random walk on Z, started from the stationary (infinite) distribution. In
Example 9.5, we built a noise process (Q, %, m, T) such that Q = ZZ, T is the left shift, and w = (wy)nez € Q
is m-distributed like (Y},),ez.

Let X = {X}, },ez be a sequence of bounded iid random variables with positive expectation ¢y, and independent
of {Y,}. Let X be the MCRE with noise process (€,.%, m, T), such that X = X for all w (so the generators
7(w, x,dy) and p,, are independent of w). Let f be the function f(w, x, y) := 110,00) (W) x.

1
For the pair (X2, %), B[ f2(X%, X“. )] = ¢ol{w, 201, and s0 NE“’(SI“\;) = %’#{1 <n<N:w, >0}
We claim that the RHS oscillates a.e. without converging. The liminf and limsup of the RHS are T-invariant,

whence by ergodicity, constant. If the claim were false, then Wy := %#{1 <n < N :Y, =2 0} would have
converged a.e. to a constant. But this contradicts the arcsine law for the simple random walk.
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Example 9.16 (Pathological Variance Growth) For MCRE with an infinite noise process, it is possible that
VY — o ae., Vi) = o(N) a.e., and that there is no sequence of constants ay > 0 (independent of w) such that
VY ~ap forae. w.

Proof. Let X, be iid bounded real random variables with variance one and distribution £. Let f,(x) = x.
Let (Q,.%,m,T) be an infinite noise process, and fix E € % of finite positive measure. Let 7(w, x,dy) :=

{(dy), flwx, y) = le(w)x.

Then Sy = Z lg(T"w)X,, , and Vi) = Z 1g (T"w). We now appeal to general results from infinite ergodic

=1 n=1
theory. Let (Q, Z#,m,T) be an ergodic, invertible, measure preserving map on a non-atomic o-finite infinite

measure space. Let L} := {A e L'(Q,.%,m): A > O,IAdm > 0}. Then,

N
1
(@))] Z AoT" = co almost everywhere for all A € Ll; 2) v Z AoT" N—> 0 almost everywhere for all A € L'

n=1
(3)Let an be a sequence of positive real numbers, then
N N
. .. 1 n 1 . 1 n 1
either lim inf — Z AoT" =0a.e.forall A € L;; or limsup — Z AoT" =co0aee. forall A € L, (or both).
N—ooo apn =1 N-oc AN =1

N
So flay > O s.t. Z A(T"w) ~ ap for a.e. w, even for a single A € L}r. (See [1]: (1) is the Halmos recurrence
n=1
theorem (see also Lemma 9.23); (2) follows from the ratio ergodic theorem; and (3) is a theorem of J. Aaronson.)
Specializing to the case A = 1g we find that VI(‘,’ — 00 a.e.; VX,’ = o(N) a.e. as N — oo; and fay so that
V) ~ay forae. w € Q. |

We continue to present our general results on MCRE with infinite noise spaces.

Theorem 9.17 Suppose X has an infinite noise process, on a non-atomic o-finite measure space. Assume

(B).(E).(S).

(1) If 1 is relatively cohomologous to a constant, then Vi < C forall N, for a.e. w, where C = C(eg, K) is a
constant.
(2) I £ is not relatively cohomologous to a constant then Vy — oo fora.e. w.

Theorem 9.18 Suppose X has an infinite noise process, on a non-atomic o-finite measure space. Assume
(X2, 12) satisfies (C) or (D), and each of (S),(E),(G),(B).

(a) Non-Lattice LLT: Suppose ¢ is not relatively cohomologous to a coset of tZ for any t # 0. Then

znv —E“ (S¥)

—_—N 5 g
Nz

for a.e. w, for every open interval (a,b), and for every zy,z € R such that

e—zz/ 2

P [SY —zn € (a,D)] ~ la —blas N — oo.

/27rV1‘\‘,’
(b) Lattice LLT: Suppose that all the values of ¢ are integers, and * is not relatively cohomologous to
Zn-E®(5%)

VK

a coset of tZ with an integer t > 1. Then for a.e. w, for every zn € Z such that - z

Theorem 9.19 Under the assumptions of Theorem 9.18

(1) Suppose 12 is not relatively cohomologous to a coset of tZ for any t # 0. Then for a.e. w, (X?,{*) satisfies
the non-lattice LLT for large deviations (Theorem 7.8 parts (1),(2), and (4)).

(2) Suppose that all the values of f* are integers, and f is not relatively cohomologous to a coset of tZ with an
integer t > 1. Then for a.e. w, (X“,{*) satisfies the lattice LLT for large deviations (Theorem 7.8 (1),(3),
and (4)).
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9.3 Proofs
9.3.1 Existence of Stationary Measures

We prove Lemma 9.8. We need the following standard fact:

Lemma 9.20 Let Q be a measurable space, and S be a compact metric space. Let {,, (w € Q) be Borel
probability measures on S. If w — f @dl,, is measurable for all continuous ¢ : S — R, then w +— f @dl,, is
measurable for all bounded Borel ¢ : S — R.

Proof We will show that # = {¢p: G > R: v f ¢d{,, is measurable} contains all bounded real-valued
measurable functions on S.

(1) Z contains % := {lg : K C Siscompact}, because each 1g is the pointwise decreasing limit of a
uniformly bounded sequence of continuous functions.

(2) The collection of compact subsets of S generates the Borel o--algebra, and is closed under finite intersections.

(3) Z is closed under finite linear combinations, and under bounded increasing pointwise limits.

By the functional monotone class theorem, .% > {bounded measurable functions}. m|

Proof of Lemma 9.8: S is compact. Fix w € Q. Let C denote the cone of non-negative continuous functions on
S, with the supremum norm. The interior of C is C*, the open cone of strictly positive continuous functions.

Let Li? : C — C denote the operator (L ¢)(x) = f ©(Y)m(T*w, x,dy). The right-hand-side is in C, because
of the assumptions on 7(w, x, dy). Observe that

Tf
Lo = L' 9.4)

Since S is compact and metrizable, the space of probability measures on S is weak-star sequentially compact.
Using a diagonal argument, we can construct Ny = Ni(w) — oo and Borel probability measures y; on & as

Nk
1 i i . . .
follows: A Z(LG‘” LT 96, p—y u; weak star, for every i € Z. If T'w = T/ w, then y = uj, and we
k —00
n=1

may define ;/T_,.w := ;. By (9.4), for every continuous function ¢,

Ni+1
, i ’ i+l . i+l i+l ’
ALY @)= (LT “p) = lim — § (WwLr, @ LT o) (x) = ), (¢). 9.5)
k—oo N ]

Equivalently, f a(Tiw, x, dy)y’Tiw(dx) = '“’me for all i € Z. We obtain (S):

Hio = f 7w, x, dy) g, (dx). 9.6)

But it is not clear that w — u, is measurable. We will address this now.
Let T, := Ly LY . By (E), forevery ¢ € C,

(T o) (x) = f f e()P(T"w, %, Y)P(T" w, y, 2) prrns1 o, (dy) g2, (d2)

e [60 f (D ppnsng, (42, € f go(z)uTn+zw<dz>].

Therefore, the diameter of 7.’ (C) with respect to the Hilbert projective metric of C is no larger than 6 log(1/¢€o)
(see Appendix B).

Call the projective metric d¢ and let 6 := tanh(% log(1/€p)) (a number in (0, 1)). By Birkhoft’s Theorem
(Theorem B.6), for every ¢ € C*,
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dc(L?, -+ L@ LY, - L)1) < 0" de (T e, T1) < 6log(1/€0)8™ "

Since L, ---L%1 = 1, this implies the existence of positive constants M;’(¢) and m;’(¢) such that
Mu)
10g( " (¥)

my) (¢)

) < 6log(1/€)0"", and m@ (p) < L®, -+ L®,¢ < M®(p).Therefore

lm& (@) 'L*,,, -+ L ¢ — 1]l < 6, := exp[6log(1/€9)0" '] - 1. 9.7)

. s ’ -~k ’ ’ —
By (9.5), for every continuous function ¥, ,uT_kw(Lg ©y) = /,lT_k+lw(z//). So, /JT—an(LO—Jzn L% ) =

-2n —1 —2n+1 -1 -1
Wpan ) (LG LY Q) = (LY@ LT C@) ==l (LY 99) = g, (9).
So after integrating m¢’ (¢)‘1Lﬁ’2n -+ L ¢ with respect to u'sznw, (9.7) gives

Im% (@)l (@) = 1] < 6, — 0. 9.8)

In particular, m% (¢) — f @dy’,, whence for every ¢ € C* and x € ©
n—oo

(Lf’zn"‘Lﬁ’1<P)(X)rH—m>f¢d#;- 9.9)

For fixed x € &, w > (LY, -+ L¥ ¢)(x) is measurable for all ¢ € C*. As C* = C* = C(&), w = u,(¢)
is measurable for all continuous ¢. By Lemma 9.20, w — u/, (w) is measurable for all bounded Borel functions
¢. We proved part (1).

To see part (2), fix w, and let Y denote the inhomogeneous Markov chain with initial distribution ﬂ/T‘3w and
transition kernels 7, (x, dy) := n(T" 3w, x, dy).

Since X is uniformly elliptic, Y is uniformly elliptic, with the same ellipticity constant, and with background
PY, € E
measures i, := {7, . By Proposition 2.8, € < (n—(E)) < €' forall E € #(3) and n > 3. By (9.6), Y
w Mrn-3
satisfies (S), and the numerator equals /‘/T'Hm(E ). So ,u’TZ;w < frn-3,, forall n > 3, and the Radon-Nikodym
derivative is bounded between € and € !, We proved part (2).

We proceed to part (3). Suppose Q is a metric space, and 7 : Q — Q and (w, x) — 7(w, x, dy) are continuous.

0 o0
By (9.8), for every ¢ € C*, sup Im% (@) — 1, ()] < 1"”"‘2' — 0.
— n—oo
By (9.7), for each ﬁxed X e S, (LY, - LY ) (x) —2 1, (¢) uniformly on Q. By our assumptions,
(LY, - L¥ ¢)(x) are continuous in w. Smce the uniform limit of continuous functions is continuous, w —
1, (@) is continuous. O

9.3.2 The Essential Range is Almost Surely Constant

From this point, and until the end of section 9.3, we assume that (X2, 12) are as in (9.1) and (9.2), and that
(B),(E),(S) hold. Unless stated otherwise, we allow the noise process to be infinite.

The purpose of this section is to prove the following result:

Proposition 9.21 There exist closed subgroups H, Gess < R s.t. for m—a.e. w, the co-range of (X“,1?) equals
H, the essential range of (X, %) equals G55, and

R H={0},
Gess ={2Z H=1Z 1#0,
{0} H=R.

We call H and G, the a.s. co-range and a.s. essential range.
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We need a few preliminary comments on the structure constants of (X, {“). Fix an element w in the noise
space, and let Hex(w) denote the probability space of position 3 hexagons for X“. Let m,, denote the hexagon
measure, as defined in §2.3.1. Recall the definition of the balance I'(P) of a hexagon P, and define

uw(w) :=EB(TP)H'?,  d(w, &) :=E(e¥T™® — 11172, (expectation on P € Hex(w) W.r.t. mg,).

By (S), the probability space of position n + 3 hexagons for X* is (Hex(T"w), mrn,,). Therefore the structure
constants of (X%, {“) are given by

dpn3(&,19) =d(T"w, &) and  up3(f) = u(T"w) (n 2 0). (9.10)

Lemma 9.22 u(-), d(-, -) are Borel measurable, and for every w, d(w, -) is continuous. In addition, if X satisfies
(C), then u(-), d(-, ) are continuous.

Proof The lemma follows from the explicit formulas for the hexagon measure and the function T" : €% — R. We
omit the details, which are routine. m]

Proof of Proposition 9.21. Let H,, := H(X%,{“) be the essential range of (X, {*“). By Theorem 4.3, H,, is

N N-3
either R or 1Z for some ¢ = t(w) > 0. By (9.10) Dy (£, w) := Z dn(&,19) = Z d(T"w, &)
n=3 n=0

Step 1: U(a, b):={w € Q : Dy (-, w) N—> oo uniformly on (a, b)} is measurable and T-invariant Va < b.

Proof. Observe that d? < 4, therefore |Dy (£, Tw) — Dy (¢, w)| < 8. It follows that U(a, b) is T-invariant.

¥YM e QAN e Nsit. } The
forall ¢ € (a,b) NQ, Dy (w, &) > M |
inclusion C is obvious. The inclusion O is because if w ¢ U(a, b) then for some M € Q, for all N € N there
exists some 17 € (a, b) such that Dy (w,nx) < M, whence by the continuity of n — Dy (w, n7) there is some
én € (a,b) NQ such that Dy (w, én) < M. Sow ¢ U(a, b) = w ¢ RHS.

SteP2: Thesets Qq :={w e Q: H, ={0}}, Q ={weQ:H,=R},andQ3 :={w e Q:3t #0s.t. H, = tZ}
are measurable and T-invariant. Therefore by ergodicity, for each i, either m(£);) = 0 or m(Q5) = 0.

Measurability is because of the identity U(a, b) = {w eQ:

Proof. Recall that for Markov chains, Dy — oo uniformly on compact subsets of the complement of the co-range

= 1 : : X
(Theorem 4.9). So Q; = ﬂ u (;’ n)7 Q) = (No<a<b rationat U(a, b)¢, Q3 = Q7 N Q7.

n=1
By Step 1, Q; are T-invariant and measurable. Since T is ergodic, these sets are either of measure zero or of

full measure.
By Theorem 4.4, if ; has full measure, then the essential range is a.e. R, and if €, has full measure, then
the essential range is a.e. {0}. It remains to consider the case when Q3 has full measure.

SteP 3: If Q3 has full measure, then there exist t # 0 such that Q3(t) := {w € Q : H,, = tZ} has full measure,
and then the essential range is a.e. (2n[t)Z.

Proof. For every w € 3 there exists #(w) > 0 such that H,, = t(w)Z. We can characterize t(w) as follows:
_ . Dy (w, ) — oo uniformly
Hw) = sup {t €QN(0,): on compact subsets of (0,7) [ °
Itis clear from this expression that #(Tw) = #(w), and that for every A > 0, [t(w) > A] = ﬂ U(a,b).

O<a<b<A rational
So #(+) is a measurable T-invariant function.

By ergodicity, there is a constant ¢ such that 1(w) = ¢ for a.e. w. So H,, = tZ a.e. By Theorem 4.4,
Gess (X9, %) = Qr/t)Z a.e. -
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9.3.3 Variance Growth

In this section we prove Theorems 9.10 and 9.17 on the behavior of V¥, as N — oo.

Lemma 9.23 Suppose (Q, %, m,T) is an invertible, ergodic, measure preserving map on a probability space or
a non-atomic infinite measure space. Let A : Q — R be a non-negative measurable function. Either A = 0 a.e.,
orZAOT” = oo a.e.

n>0

Proof If m(€) < oo, then the lemma follows from the pointwise ergodic theorem. If m(Q) < oo, then we can
use the following well-known argument [1].
If A is not equal to O a.e., then there is an € > 0 such that £ := {w € Q : A(w) > &} has positive measure.
We claim that
Z 1g(T"w) = o ae.on E. ©.11)

n>0

Since A > €lg, (9.11) implies that Z A(T"w) = co almost everywhere on E, whence (by ergodicity) almost

n>0
everywhere on Q.

Suppose by way of contradiction that (9.11) fails, then there exists N s.t. W :={w € E : Z 1e(T"w) = N}
n=0

has positive measure.

The invertibility and measurability of 7" imply that 7" (W) are measurable and pairwise disjoint. By non-
atomicity, we can break W = W; U W, where W; are measurable, disjoint, and with positive measure. By
invertibility, W; = U T"W; are disjoint T-invariant sets with positive measure. But this contradicts ergodicity.

nez
O

Part 1: Either V{ is Bounded Almost Surely , or V{i — co Almost Surely. Recall that | f| < K, and € is
an ellipticity constant for X’. By Theorem 3.7 and (9.10) there are positive constants C; = C; (€, K) (i = 1,2)

N N
such that for all N, C;! Z u(T"w)? —=Cy < V& < C Z w(T"w)? + Co.

n=3 n=3
N
If u(w) = 0 m-a.e., then for a.e. w, Vlﬁ}’ < (G, for all N. Otherwise, by Lemma 9.23, Z u(T"w)2 N—> 00,
n=3 -

whence V) — oo almost everywhere.

Part 2: Linear Growth of Variance when Vi — co a.e. and m(€) = 1. Suppose m(Q) = 1 and V7 — oo
almost surely. We claim that
Jo? > 0s.t. V¥ ~ No? as. 9.12)

Let 0'(2) = fQ u?dm. This is a finite number, because ||ullc < 6K by (B), and m(Q) = 1. This is a positive
number, because as we saw in part 1, if # = 0 a.e., then Vlﬁ‘,’ = 0(1) a.e. contrary to our assumptions.

N
By the pointwise ergodic theorem, Z u(T"w)2 =[1+ 0(1)]0'(2)N . Hence

n=3
Vi > [1+0(1)]Ci (€0, K) ' No§ — oo. 9.13)
N N N-n
Ve = Z Var® (F,) +2 Z Z Cov® (F, Fust ), where Fy = f(T"w,X%,X% ). By (S), {(X!""'“};»1 is equal in
n=1 n=1 k=1
distribution t0 {X¢ };>. S0 Cov® (Fy, Fuer) = Wi (T"' w), where ¢y (w) := Cov®(f (Tw, X©, X¥), f(T* 1w, X2 | X)),
N-1 N-1N-n

Thus V' = Z Yo(T"w) +2 Z Z Ui (T" w). The next step is to find the limit of (1/N)x RHS as N — oo.
n=0 n=0 k=1
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N-1
By the pointwise ergodic theorem, for a.e. w, Al/im # > Yyo(T"w) = f Yodm. Next we recall that |||l <
—00 n:O
Conix || f112,6%, with Cpnix > 0and 0 < 6 < 1 which depend only on € (Proposition 2.13). Therefore for every M,

N-1N-n N-1M-1

: 1 n _ 1 n M
Jim Z Z i (T"w) = [ lim — Z Z Yi(T"w)] +0OM),
n=0 k=1 0 k=1
| N=IN-n o
whence by the ergodic theorem lim — Z Ur(T"w) = Z f Yrdm, with the last sum converging expo-
Noo N A= k=1

1 (o]
nentially fast. In summary, NV]‘\‘,’ N—) o= f(lﬁo + ZZ wk)dm. By (9.13), %VI‘\*I’ 4 0ae,s002 >0,
—00 k:l

and (9.12) is proved.

We now show that the following properties are equivalent:

(a) f is relatively cohomologous to a constant; (b) ess sup( sup VYY) < o0; (c) m{w : V}7 is bounded} > 0
weQ NeN

Part 3: (a)=(b)=>(c): Suppose {* is relatively cohomologous to a constant. Then there are uniformly bounded
measurable functions a : QxS — Rand ¢ : Q — R such that for m-a.e. w, for every n, and with full probability
with respect to the distribution of {X;”}, f’ (X}, X, +1) =a(T"w, XY) - a(T"'w, X o)t e(Tw).

Summing over n, we see that for a.e. w, YN, |Sy — Z c(T"w)| = la(Tw, X{’) - a(TV*w, Xy, <2suplal.
n=1
Recalling that the variance of a random variable § is inﬂg [|S — c||§, we deduce that for a.e. w, V' < 4sup a?,
CcE

whence (b). Clearly (b)=(c).
Part 4: (¢c)=(a): We saw in the proof of part (1) that if (c) holds, then V3 = O(1) a.e. and u(w) = 0 a.e. Since
m is T-invariant, ), uﬁ(X‘”, f“) = 0 a.e. Applying the gradient lemma to X, we find bounded functions g;;

and constants &’ such that f’ (X, X;” ) = g/ (X)) — g (X:2 ) + ¢, P“—a.s. Moreover, the proof of the
gradient lemma shows that we can take

where Ly := (Z,, Y, X}) is the n-th element of the ladder process of X“. By (S), g, (x) = a(T"w, x)

and ¢? = c(T"w), Where a(-,-), ¢(+) are bounded measurable functions. So ¢ is relatively cohomologous to a
constant. O

= BO[F9,(X9, X9 )], g2(2) —E“’(f‘”z( YO ) O (Y XS

9.3.4 Irreducibility and the LLT

In this section we prove Theorems 9.11 and 9.18. The main ingredient in the proof is the following criterion for
irreducibility:
Proposition 9.24 Suppose (X2, 1?) satisfies (C) or (D), and each of (S),(E),(G).

(1) 1 is irreducible with essential range R for a.e. w iff {* is not relatively cohomologous to a coset tZ for any
t#0.

(2) Suppose 2 is integer valued, then  is irreducible with essential range Z for a.e. w iff f* is not relatively
cohomologous to a coset tZ for any t > 1.

(In this proposition, we allow the noise space to be infinite.)

Lemma 9.25 Suppose W, W, are two independent random variables such that for some a,t € R, Wi +W, € a+tZ
with full probability. Then we can decompose a = ay + ap so that W) € a; + tZ a.s., and W € a; + tZ a.s.
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Proof Without loss of generality @ = 0, t = 2. Then [E()| - |[E(eM2)| = |[E(eM1+W2)| = 1. Necessarily,
[E(e"«)] = 1 (k = 1,2). Choose ai such that E(e!Wk=a)) = 1, then E(cos(Wix — ax)) = 1, whence
Wi — ax € 2nZ almost surely. Thus a; + a» € 2nZ, and there is no problem to adjust aj togeta; +a; =0. O

Lemma 9.26 Let Q be a measurable space, S be a separable metric space, and  : Q X S — R be Borel. If,
for each w, Y (w, -) is continuous on S and positive somewhere, then there exists a measurable x : Q — S such
that ¥ (w, x(w)) > 0.

Proof Fix a countable dense set {x;} C S. For every w there exists an i such that ¥ (w, x;) > 0. So i(w) :=
min{i € N : (w, x;) > 0} is well-defined and Borel measurable. Take x(w) = X ().

Proof of Proposition 9.24 We begin with part 1 of the proposition.

Proof of (=): Suppose G.ss(X“,f“) = R for a.e. w, and assume by way of contradiction that f® is relatively
cohomologous to a coset ¢Z for some ¢.
It is easy to see that in this case there are measurable functions g(w, x, y) and c¢(w) so that for m-a.e. w,

FTw, X, XP) + g(Tw, X©) - g(T?w, X¥) + c(Tw) € 1Z P°-as.
By the T-invariance of m, we may replace w by 7"~ 'w and obtain that for m-a.e. w,
@0, X7 XT"') 4 g (1w, XT"7'9) — g (T w0, XI"™'@) + ¢(T"w) € 1Z s,
By (S), (XIT"_I“’, XZT"_I‘“) is equal in distribution to (X2, X%, ,). So

FTw0, X2, X9 ) + g(T"w, XP) — g(T™ ' w, X%, )) + o(T"w) € tZ as. for ae. w.
Let g¢ = {g(T"w, ) }n>1 and ¢ = {c(T"w)},>1, then ¥ — Vg® + ¢® is a reduction of f* to an additive
functional with algebraic range inside ¢Z, a contradiction.

Proof of (<): Suppose f* is not relatively cohomologous to a coset tZ for any ¢ # 0. Necessarily f is not
relatively cohomologous to a constant, and by Theorems 9.10 and 9.17, V¥ — oo for a.e. w.

Assume by way of contradiction that G.s;(X“,f“) # R on a set of positive measure of w. By Proposition
9.21, Goss (X9, 1¥) = G5 a.e., where G,z = {0} or ZT”Z with ¢ # 0. The first possibility cannot happen, because
it implies that f* is center-tight, so by Theorem 3.8, Vi = O(1), whereas V§/ — oo a.e. So there exists ¢ # 0
such that G z5(X“,1°) = 2n/t)Z a.e., and H,, := H(X“,f?) =tZ a.e.

Fix w such that H,, = tZ. By the reduction lemma, there are measurable functions g% (x), h% (x,y) with
>, Var“[h¢’] < oo, and there are constants ¢%’, such that

explit(f;(x, y) = &7 (%) + &% () + B (x, y) — ;)] =1

almost surely with respect to the distribution of (X;’, X ). Let 1) = e’“r’ | and a?(x) = ¢'’87 ™) Then for
a.e. w, ‘
et VT @y thiy (6y) - qo g (X)/ay, () ae. W.r.t ipne, (d)n(T"w, x, dy).

This seems close to a contradiction to the assumption that f is not relatively cohomologous to a coset, but
we are not quite there yet. Firstly, our proof of the reduction lemma does not provide g% and ¢ of the form
? =c(T"w), a? = a(T"w, x) with c(-), a(-, -) measurable. Secondly, we need to get rid of A%.

To resolve these issues we look closer at the structure of the hexagon spaces for MCRE (see §2.3.1).
For a.e. w, H, = tZ so Y d(T"w,t)> < oo p-almost everywhere. By Lemma 9.23, this can only happen if
d(w,t) :=d({*“,t) = 0a.e. Hence

I'(P) € (2n/t)Z for a.e. hexagon P € Hex(w), for m-a.e. w. 9.14)

(T is the balance, defined in §2.3.2.)
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zZe .Y
Let Ly = (Z,, Y |, X;?) denote the ladder process of X (see §2.3.3),and H” (L;’, Ly’ ) =T (Z“J - Yajl > X X,‘;’H) .

It is a property of the ladder process that the hexagon in the RHS is distributed exactly like a random hexagon
in Hex (w). So

H® € 2r/tH)Z P“-as., m-ae. 9.15)

Next we define the octagon balance
r Z"Y“”X“”X“”X = HY(LY,LY) + HY (LY, LY). 9.16)
(The definition requires clarification, because the right-hand-side seems to depend through Ly’ also on Y;*.

Z(A) w
In fact, there is no such dependence: The octagon is obtained by stacking ( 2 Y“” f(w,X‘” on top of
VAR & w

Zf", Y“’ s X‘“ , X‘“ and removing the common edge L LY = (Z2, Y3‘“, Xf(’). When we add the balances of these

hexagons thls edge appears twice with opposite signs, and cancels out.)

CramM 1. Let P® denote the distribution of {L:’}. For each {* € S, there is a measurable function Z (w) € G

w 3 2
such that for a.e. w, T (g“*, é;g(;)), )gw, ;w, X‘“) € 27”2 g ={(w) |-a.e.
zy =

Remark. This is the only point in the proof where we need conditions (G), (C), (D).

Proof of the Claim. By (9.15) and (9.16), T € ZT”Z with full P“—probability, for a.e. w. The point it to obtain this
a.s. with respect to the conditional measures.

By the assumptions of the proposition, at least one of (C) and (D) is true. Assume (D). Then & is countable
or finite, and for fixed w, the P*-distribution of (Lg" LZ’, L“’) is purely atomic.

Necessarily, I' € ZT”Z for every octagon with positive P“—probability. So the claim holds for any pair
(£*,0) € © such that P*[(Z2, 2, Z¢) = (", {(w),{")] > 0. For the ladder process, {Z®} is equal in
distribution to {X;}, therefore such pairs exist by assumptions (E) and (G). Since & is countable there is no
problem to choose Z (w) measurably, and the claim is proved, under assumption (D).

Now suppose (D) fails. Then (C) must hold. There is no loss of generality in assuming that m, the measure
on the noise space €2, is globally supported. Otherwise we replace 2 by supp(m).

By (9.15), (9.16) and Fubini’s Theorem, for a.e. w € Q, for a.e. ({1, {2, {3) with respect to the distribution

({1’ (2’ (3) ~ (Zw, Zg)’ Zgu)’

zZw zw yw@w
it (20, 2 o s Y X zp -4
EPM(|e” R 5)—1|2 zﬁ-q):O. 9.17)

7%=

w _

Let P’ denote the (annealed) joint distribution of (w, X{”, X5, X§’). By the Markov property, (G), (E) and (C),
the LHS has a continuous P’-version on

A={(w,{1,0,85) € AX G p(Tw, &1, L)p(T?w, §, &) > 0).

Henceforth we replace the LHS of (9.17) by this continuous version.

By (C1) and (C2), A is open, and by (G) and the assumption that supp(m) = Q, A C supp(P’). So every open
subset of A has positive P’-measure, and (9.17) holds on a dense subset of A, whence everywhere in A.

To prove the claim it remains to construct a measurable function ¢ (w) such that (w, ¥, { (w), ( )eA for all w.
By (E) and (G) f~ p(Tw, *, Op(T*w, £, ) HUr2,,(d0) is strictly positive, so for every w there is ¢ such that

YW, 0) = p(Tw, " Op(T*w, ) > 0.
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We now apply Lemma 9.26, and deduce Claim 1.
Henceforth we fix some {* € S and will apply the claim for that particular point.

Given w € Q and a, b € S, construct the bridge distribution ]P’fl"b(E) =P}’ € E|ZP = q, X;” = b) asin
§2.2.3.

CLamv 2. For a.e. w, for a.e. (§3,&4,&5) sampled from the joint distribution of (X5, X}’, X5’), the random
variables

W = f(Tw, 0" h) + f(TP0, Y, &), Y ~PY .

WI' = f(TPw,0" V) + f(Tw,Ya &), Yo~ PLY,
are purely atomic, and there are ¢; = ¢;(w, &;) such that W5’ € c3+ ZT”Z and Wg’ € cs+ QT”Z with full probability.
Proof of the Claim. By the choice of Z(w) and Fubini’s theorem, for a.e. (&3, &4, &5) ~ (Xf", Xf“’, X;"),

L Lw) &Y 2 ol
r(g’ 15‘“’53’«54’55)6 L F (

ZP = XP =&
Z9 =) X2 =4 | —a.e.

w _ _
Zo =g XY =g

Py % w

Notice that " [ £, {;cz)’ g , Yg , §5) is equal to the independent difference of WST *© and W5, plus a constant
2 3 4 N

which only depends on (w, &3, €4, €s). Now Lemma 9.25 gives the claim, except that the lemma gives ¢; depending

on both &3, &4 and &s. However for fixed w and &3 the distribution of W3’ is independent of & and &5, whence

c3 is a function of &3 only. Likewise, c5 depends only on &s.

Cram 3. Given w and (&3, &4, &5) as in Claim 2, let

(. &3) = the smallest positive atom of W3 if there are positive atoms,
gl e3) = otherwise, the largest non-positive atom of W5’

c(w) = —f(Tw, L) - F(TPw, {(w), ).

These functions are well-defined, measurable, and for m-a.e. w, for a.e. (§3, &4, &5) ~ (X5, X|°, X&°),

2
[f(TPw, &3, €4) + f(T 0, €1, €5)] + g(w, &) — g(T?w, &) + c(w) € T”Z. (9.18)

Proof of the Claim. The function g(w, &3) is well-defined for a.e. w because of claim 2. It is measurable, because
(w, &3) > P(W3 € (a, b)) are measurable, and

{(w, &) :PY(0 < W <a) =0,P°(W3” >a) #0} (a>0)

ety s {{(w, £): BOVY > ) #0) (a0

The measurability of c(w) is clear.
The LHS of equation (9.18) is an atom of

_ *Z((A))é’*yiu W gwy _pow .
r({7 Yzw »535 §4a§5)a (£3»£4) P (

Z9 = l(w) XL =&
Z%’ =g Xg*’ =&

ze =g X§U§3)

By Claim 1 and Fubini’s theorem, it takes values in 27”Z for a.e. (w, &3, &4, &5) distributed like the annealed
distribution of (w, X¥’, X3’, X¢°).

By (S), {Xl.TS“’},-Zg is equal in distribution to {Xl.T"“’},-Z,,, s0 (9.18) gives a bounded measurable function
a(w, x) such that for all n,
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2
f:lu(Xr‘lu’ Xrtzu+l) + fr‘;)+1 (X:zu+]’ Xr(:)+2) + a/(an’ X;zu) - a(TnJrzw: X:::.z) + C(an) € Tﬂz-
Fix w, and let
iz f(T"w, X2, X2 ) + a(T"w, X)) — a(T" w, X2, ).

n+l n+l

Then f;; + f7,, + c(T"w) € ZZ P“-as. So

eizf,: — e—itc(T"w)e—itfn*H _ eit[c(T"“w—c(T"w)]eitfn*ﬂ'

By induction, there are constants A, = A, (w) such that e = 15,e""%2n. Then
eitfl*(Xf“,X;’) — /lan(eitf;n(ng,X;;M)|X;u’ Xf)) — /l2nE(eitf2’;,(X;,’I,X;;M)lxéu)

= lon [E(e"fz*n) + 0(9")], where 0 < 6 < 1, see (2.11).

Choose ny — oo so that Ay, E(eitf;"k) — A(w). Necessarily |A1(w)| = 1 and
e =1 P¥as.

This argument works for a.e. w. Since the left-hand-side is measurable in w, A(w) equals a.e. to a measurable
function. Without loss of generality A(w) is measurable. Recalling the definition of f,, and setting a(w, x) :=
exp(—ita(w, x)), we obtain

a(Tw, X{°)

et T XX = () ———— L.
a(T?w, X§’)

Thus  is relatively cohomologous to ¢Z, in contradiction to our assumptions. This contradiction shows that
Gess (X9, 1) = R for a.e. w, and proves part 1 of the proposition.

To prove part 2 (<), we assume that f? is integer valued, but not relatively cohomologous to a coset of nZ
with n > 1, and show that Gz (X“, ) = Z a.s. Equivalently, we must show that H,, := H(X%,{*) = 2aZ for
a.e. w. Since @ is integer valued, 2w € H,,, so if H,, # 2nZ, then H,, = tZ fort = 27” andn € {2,3,4,...}. We
can now repeat the proof of part 1 verbatim, and obtain a relative cohomology to a coset of nZ, a contradiction
to our assumptions. The proof of the implication (=) is similar to that in the non-lattice case, and we omit it. O

Proof of Theorem 9.11. In the non-lattice case, f* is not relatively cohomologous to a coset of tZ with # # 0. In
particular, f* is not relatively cohomologous to a constant, and by Theorem 9.10, o> > 0 such that Vi ~N a2,
By Proposition 9.24 (1), for a.e. w, G¢gs(X?, f“) = R and f is irreducible. The non-lattice LLT in Theorem
9.11 now follows from Theorems 5.1.
The lattice case has a similar proof, except that now we use Proposition 9.24 (2) to check irreducibility. O

Proof of Theorem 9.18 The proof is identical to the proof of Theorem 9.11, except that now, since the noise
process is infinite, we do not know that Vlf," ~ const.N, we only know that Vﬁ’ — oo (Theorem 9.17). m]

9.3.5 LLT for Large Deviations

We prove Theorems 9.12, 9.14 and 9.19.

Proof of Theorem 9.12. Let Gy () := ﬁ log E® (e¢5V).

Part (1): We show that for a.e. w, Gy (€) converges pointwise on R to a continuously differentiable and strictly
convex function ¥ (¢), which does not depend on w.

StEP 1: Given ¢ € R, for every w € Q and for all n > 1, there are unique numbers p, (¢,w) € R and unique
non-negative functions h, (-, &, w) € L=(S, B(S), urny,) such that fs hy(x, & w)urny,(dx) = 1, and
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f eff(T"‘”»x’)’) _ hn+l (_y’ ‘f, (,()) ﬂ(an, X, dy) =1. (9 19)
s ePn(&0 , (x, &, w)

Furthermore, there is a measurable function p(&, w) such that p,, (¢, w) = p(€, T"w).
Proof of the Step. The existence and uniqueness of h,, p,, follow from Lemma 7.13, applied to (X, {“) with
a, = 0. Writing (9.19) first for (n,w) and then for (n — 1,Tw), and then invoking uniqueness, we find that

Pn(& w) =P, 1(£,Tw). So

Pa(é.0) =P, (ETw) =+ = P (£.T" ') = P&, T"w).
The proof of Lemma 7.13 represents £, (x, &, ) as a limit of expressions which are measurable in (x, £, w), so
(x, &, w) = hy(x, &, w) is measurable. By (9.19), (w, &) = p(&, w) is measurable.

STEP 2: Let K := ess sup |f| and let € be the ellipticity constant from (E). For every R > O there exists a constant
C(€eo, K, R) such that |p(&, w)| < C(€o, K, R) for all w € Q and |£] < R.

Proof of the Step. See the proof of Lemma 7.14.
N
Step3: Let Py (&, w) := Z P(&, T*w), then for every w € Q such that V& — 00, Gy (€) = (V/N) [Py (&, w)/Vy+

k=1
O(1/Vy)] uniformly on compact sets of £ in R.

Proof of the Step. It is convenient to work with
1 w
TN (€)= g 0g B (e5°N) = (N/V)HG ().
N
st 2y (&) 7, Byééiw) + (B (SY) = §-1,-0Pn (1, @))€. By Lemmas 7.16-7.18,

() |Py(&w) — Pn(&w)| =0(1) uniformly on compact sets of &,
3) 1F (&) = Pn(E)/Vy| = O(1/Vy) uniformly on compact sets of &.

Step 3 follows.

We can now prove the a.s. convergence of Gy (£). By the assumptions of the theorem, 2 is not relatively
cohomologous to a constant. Therefore, by Theorem 9.10, there exists o2 > 0 such that VI‘\‘,’ ~0ZNas N — o
for a.e. w.

Fix a countable dense set {£1, &>, ...} C R. For each i, w — p(&;, w) is bounded and measurable. By Fact 3,
for a.e. w,

N N
1 1
: w 2 1: — k : — k
dim G316 = o Jlim 7o ;p@, T*w) = lim — ;p(a-, T w)
= f p(éi, w)m(dw), by the pointwise ergodic theorem.
Q

This shows that for all i there exists G(&;) € R such that Iéim Gy (&) = G(&) for ae. w, with G(&;)

independent of w. Let ’ denote the set of full measure of w where this holds for all i € N.
B (S 1eN) | JEIKN
NE® (e45V) N

If K := ess sup [f?, then [(GY)'(&)] < = K|&|. Therefore, the functions

& - Gy (€) are equicontinuous on compacts.
If a sequence of functions on R is equicontinuous on compacts and converges on a dense subset of R, then it
converges on all of R to a continuous limit. So there is a continuous function #“ (¢) such that

Allim Grn(&) =F (&) forall ¢ eRandw € Q.

In fact ¥ (¢) does not depend on w, because by virtue of continuity,



194 9 Local Limit Theorems for Markov Chains in Random Environments
FE) = lim F(&;,) = lim G(&;,), whenever &, —— &,
k—o0 k—o00 k—o0

and the RHS is independent of w. We are therefore free to write 7 (£) = F (£).

It remains to show that 7 (&) is continuously differentiable and strictly convex on R. Fix w € Q’. Applying
Theorem 7.3 to (X%, {“) we find that for every R > 0 there is a C = C(R) such that C~' < (F)" < Con
[-R, R]. So ¥ is continuously differentiable and strictly convex on (—R, R), because of the following fact:

Lemma 9.27 Suppose ¢, : R — R are twice differentiable convex functions such that C™' < ¢!/ < C with
C>0,0n(-R,R). If oy, oo ¥ pointwise on (—R, R), then ¢ is continuously differentiable and strictly convex

on (—R, R).

Proof Recall that a pointwise limit of convex functions is convex, and convex functions have one-sided deriva-
+h) -
tives ¢, (£) := hli%li pe+h -9 (’0(5).

h
Differentiability: For all |£| < R,

e +h) - @¢E—-h) - s0(§)|

1#2(&) = ¢L(©)] = lim ’ p

en(&+ 1) — (&) on(& = h) —gn(§)
h h

= limlim ¢}, () = ¢}, (1) for some &y, 17 € (& = h & + )

= lim lim

h—0t n—co

< lim lim 2Ch = 0, because |¢, | < C on a neighborhood of &.

h—0* n—o

We find that ¢/, () = ¢’ (£), whence ¢ is differentiable at &.
Strict Convexity: Suppose —R < £ < n < R, then

h) - .
&) - ') = gL - ¢(6) = tim LD =W @& D) = 9lE)
— lim lim 22D —en) (€= 1) — en()
h—0* n—eo h h

= lim lim @], (7,) = ¢;,(£x) for some &, € [£ = 1 &), mp € [7,77 + 1]

> hli%l liminf C~'|n, — &, = C' (5 — &), because ¢/’ > C~!' on (-R, R).
-0t n—ooo

It follows that ¢’ is strictly increasing on (—R, R), whence the strict convexity of .

The Derivative is Lipschitz Continuous: The same calculation as before shows that if —-R < ¢ < n < R, then
le’(m) = ¢"(O)] < CIE —nl. o

Part (2): We show that for a.e. w, the Legendre transforms of Gy converge to the Legendre transform of ¥ .
Again, the proof is based on general properties of convex functions.

Lemma 9.28 Suppose ¢, (&), o(&) are finite, convex, and differentiable on (—R, R). If ¢,,(§) —— ¢(&) on
n—oo

(_R9 R)! then ()D;,'L(f) _r::)—o;) ()D,(f) on (_R’ R)

Proof Fix ¢ € (—R, R). By convexity, for every & > 0 sufficiently small,

‘Pn(f)“ﬁn(f‘h) ‘pn(é‘:"'h)_‘pn(é:)
h h '

This is because the LHS is at most (¢,)”(£), the RHS is at least (¢,,)}(£), and by differentiability, (¢,).(¢) =
@, (£). Passing to the limit n — oo, we find that

(9.20)

< () <
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(&) —p(& —h) @& +h) — @)

7 s I forall 4 > 0.

lim sup ¢/, (£), liminf ¢, (£) €

We now invoke the differentiability of ¢, pass to the limit 4~ — 0%, and discover that limsup ¢, (¢) and
liminf ¢, (£) are both equal to ¢’ (£). O

Lemma 9.29 Let ¢, (&), o(&) be finite, strictly convex, C' functions on R, s.t. (&) = (&) for all € € R. Let
@' (£o00) = Elim @' (&). Let ¢}, ¢* denote the Legendre transforms of ¢n, ¢. Then for alln € (¢’ (=), ¢’ (+0)),

forn suﬂiciéntly large, @), is well-defined on a neighborhood of n, and ¢;,(n) — ¢*(1).

Proof Fix n € (¢’'(—), ¢’ (+0)). By assumption, ¢’ is continuous and strictly increasing. Therefore, there
exists some & such that ¢’ (£) = 7.

Fix two constants gy, My > 0 such that |¢’| < My on [€ — &0, & + &), and choose 0 < & < g arbitrarily
small. Choose &) < & < & such that |£] — &| < e. Then ¢’(£1) < n < ¢'(&). Choose 6 > 0 such that
@'(é1) <n—-0<n+d < ¢ (&). By Lemma 9.28, ¢, (¢;) — ¢’ (&i), and therefore there exists NV such that for
alln > N,

“My—-1<¢' (&) -1<¢ () <n=06<n+8 <@, (&) <@’ (&)+1 < My+1. 9.21)

L, = (—=6,n+06) C (¢,,(&1), ¢,,(£2)) and ¢y, is continuous and strictly increasing. Therefore, for every 1’ € I,
there exists a unique &, € (&1, &2) so that ¢, (&) = 1’. So ¢}, is well-defined on 1,,.
Let &, be the solution to ¢,,(£,) = 1. Then ¢} () = & — @n(&,). Similarly, ¢*(17) = én — ¢(£). So

len(m) = @* (] < 1€n = &1 - Nl + lon(€n) — @(&)]
<& =&l - Il + len(€n) = @n(O] + l@n (&) — ¢(©)]

é gl + (Mo + D&, = €]+ l@n(é) = @(E), " |ep| < Mo + 1 0n (&1, &) by (9.21)
<eMy+1+1n])+o(l), asn — co.

Since ¢ is arbitrary, ¢;,(17) = ¢*(17). O

Let 7 be the Legendre transforms of Gy, and let I be the Legendre transform of . By the last lemma, for
a.e. w, I is eventually defined on each compact subset of (=F ' (—00), F (c0)), and converges there to 7.

Part (3): We analyze the function 7 (7). Fix w such that o (&) = ﬁ log E®(ef 55\“1) converges pointwise to 7 .
By Lemma 9.29, ¢}, converges pointwise to Z. Since ¢, is uniformly bounded away from zero and infinity on
compacts (see the first part of the proof), (¢},)" is uniformly bounded away from zero and infinity on compacts,
see Lemma 7.23. By Lemma 9.27, I = lim ¢}, is strictly convex and continuously differentiable.

By Lemma 9.28, (¢}’ (17) ~ I'(n) for all n in the interior of the range of ¢’, and ¢, (£) oo F (&)

for all £ € R. The convergence is uniform on compacts, because (¢},)"”, ¢, are bounded on compacts.
It is easy to verify that ¢ is twice differentiable. Therefore by Lemma 7.23, ¢}, is twice differentiable and
(on) (@ (£)) = £ for all €. Passing to the limit as N — oo we obtain the identity

T'(F'(&) = &forall € € R. (9.22)
F’ is strictly increasing, because it is the derivative of a strictly convex function. Since 7/(F'(&)) = &,

I’(n) T +o0. By convexity, 7 is continuous where it is finite, and therefore has compact level sets.
n—F’(£c0

Substituting & = 0 in (9.22), we obtain 7’(¥’(0)) = 0, son = F’(0) is a critical point of 7 (-). By strict
convexity, 7 attains its global minimum at #’(0). In addition,
I(F'(0)=0-F'(0)—F(0) =0.

We conclude that 7 () = 0 when 7 = 7/(0), and 7 (r7) > O for n # ¥’(0).
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It remains to see that 7’(0) is equal to the asymptotic mean u. In part 1 we saw that for a.e. w, (&) =
lim(Gy)(€) on R, and Gy and ¥ are differentiable. By Lemma 9.28, for a.e. w, £'(0) = lim(Gy)’(0) =
imE“(Sy)/N = u.

Part (4): We calculate the large deviations thresholds. _

Without loss of generality, o = 1, otherwise we work with f* := f*/0- and notice that the thresholds,
asymptotic mean, and the asymptotic log-moment generating function associated to f are related to those of f
by ¢: = o¢s, ¥y = Oy, g = u/o, and 7?(6) = F(£/0). Since o2 = 1, for ae. w, VY ~ N, and for all £ € R,

1 w
F (&) = lim FY (&), where 7 (€) = —- log B (e“5W).
N—oo VN

SteP 1. For a.e. w, ¢, (X?,f?) > F'(+00) — p and c (X, {*) < F'(—c0) — .
Proof of the Step. Fix n € (F'(—o0) — p, F'(+00) — u), and choose n* such that
F'(—0)—u<n~ <n<n® <F'(+c0) — .

Take &* such that ¥/ (£*) — u = n*. By Lemma 9.28 and the definition of ,

. w7 E¥(Sy)
Jim (F7)"(£%) - Ve - n* as.
In particular, if %}\;S%) — 17, then for all large N,
v —EY(Sy) , . EY(Sy) , E“(S%)
o €| @) - — o (R E) - — 5|
N N N

and {zy} is admissible. So for a.e. w, every n € (F'(—o0) — p, F’(4+00) — u) is reachable (recall that by our
assumption Allim Vi /N = 1). Since ¢, is the supremum of reachable points, ¢, > F’(+0c0) — u. Similarly, one
shows that c. < F’(—c0) — pu.
StEP 2. For a.e. w, ¢ (X, ) < F/(400) — pand (X, 1) > F'(—o0) — p.
Proof of the Step. Fix w such that Vi’ /N — o?=1, E(SY)/N — p, and (F3’) — F’ on R (a.e. w is like that).
Take n > ¥ ’(c0) — u, and assume by way of contradiction that 7 is reachable. Let zy be an admissible sequence
such that %

N
By admissibility, for some R, for all N large,

v —EY(S9) wyr EYGSN) oy E¥(Sy)
e € |(FN)'(=R) - Ve J(FND)(R) - Ve

Necessarily, n < 7'(R) — u, whence by convexity, n < 7 ’(c0) — u. But this contradicts the choice of 7.
ess sup[S¥ — E(S¢)] ess inf[SY — E(S¥)]
P Nw (5N , 1_(w):=lim N (5N
VN N—>o0 VIt]")

StEP 3.1, (w):= lim exista.e., and are a.e. constant.
N —o0

Proof of the Step. It is enough to prove the statement for r, ; the statement for r_ follows by considering —f.
Let Sy(w) = esssupSy — E“(Sy). By (S), {Xl.TN“’}izl is equal in distribution to {X{*};>n+1. S0
E“(SY,p) = EY(Sy) + ETN‘“(S;IN‘“). It is not difficult to see using (E) and (B) that

N
ess sup S5, < ess sup S% +ess sup Sy, © — 4K.

Thus the sequence Ty (w) = Sy (w) — 4K is sub-additive, with respect to the noise process (€, .%, m, T). Since
Sy (w) > —K N, the subadditive ergodic theorem implies that the limit
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. Syw) . Tn(w)
lim = lim
N —>o0 N N> N

exists, and is independent of w with probability one. The step follows, since

VN IN — o*=1as.

Step 4. ¢, =1y and c_ =1_.

Proof of the Step. By §7.4, ¢, <1, and c_ > r_, so it is enough to show that ¢, > 1, and c_ < v_.
Fix & > 0. By Step 3, for each sufficiently large Ny, there exists . N, > 0and a set Q) n, With measure

bigger than 1 — %52, such that all w € Q

4

&,Ny’
1 p
Pw(Sﬁo ~E(S) 2 (6 - 5e)Vin + 8K) S (9.23)

By (E), (B) and (S), for all sufficiently large Ny, we can find yé’ No 0 and Q’g’ No with measure bigger than

1.2 ’”
1- 7€ such that for all w € Qg, No>

2
PM(SX)IO - E(S%o) Z (r"' - 58)V;€}:}|X“), Xﬁ0+l) 2 y:::No'

Since Vi /N — a2 = 1, by choosing Ny sufficiently large, we can find y,, N, > 0and Qg n, with measure bigger
than 1 — & such that for all w € Q. n,,

P (5530 ~E(S%) > (t, — )Ny | X, Xﬁoﬂ) > Yo No» (9.24)

and V) > N/2for N > Np.
Given M, let ji(w) < j2(w) < -+ < jpp(w)(w) be all the times 1 < j < M when T/No(w) € Q¢ n,- Then

!
pe (sﬁoM —E° (8%, p)2np (v — £)No — (M — nM)NOK) >y > yMy

To see this, condition on X;", Xﬁ( R XAQ/)[NOH to make the partial sums of terms involving X;"N0+ {ree s Xé‘;Jr D Not1
independent for different £; then use (9.24) or (B) to control the partial sums; finally take the expectation over
X, X9 X
17 No+12 " " M Np+1
The pointwise ergodic theorem for 70 : Q — Q says that there is a TN0-invariant function S(w) such that
for a.e. w,
ny (w)

Bw) = lim and fﬂ(w)dm =m(Qen,) > 1 - &

(B(w) is not necessarily constant, because 7™V° is not necessarily ergodic). Clearly B(w) < 1. Therefore
m[B >1—-¢&] > 1-¢.So for large M, and on a set Q, of measure bigger than 1 — ¢, nﬁM >1-¢0nQ,,

npy(ty —&)Nog— (M —npg)NoK > [(1 —e)(xy — &) —eK]| NgM.

Thus, for all £ > 0 small, on a set of w with probability at least 1 — & — &2, there is an . > 0 and two constants
C1, C> > 0 independent of £ such that for all N large,

P?[Sy = E®(Sy) + (tx — Cie)N + CreN] > nz""u. (9.25)
(In (9.25) we used the inequality V3 > N/2, which is valid on Q,, v, .)

Next we claim that for all € > 0 small, on a set of w with probability at least 1 — &, there is a 6, > 0 such that
for all NV large,
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PS9 < B (S9) + (t, — Ce)N — CreN] > 9.~ . (9.26)

Indeed, By Theorem 7.26, r, > ¢, > 0. Choose & > 0 such that (C; + C»)e < r,. Then P“[SY < E“(Sy) +
(t; = Cie)N — CeN] > P¥[Sy < E“(Sy)]1 — 1/2, by Dobrushin’s CLT.

By (9.25) and (9.26), zn:=E“(Sy) + (r+ — C1&) N is admissible for w in a set of measure at least 1 - 2¢, and
therefore ¢, > (1 — O(€))r, on a set of w with probability bigger than 1 — 2&. Taking € — 0, we obtain ¢, > 15
as required.

By symmetry, c_ < r_. O

Proof of Theorems 9.14 and 9.19. By Proposition 9.24, G4, (X, f*) = Ra.e.in case (1), and G4 (X“, ) = Z
a.e.in case (2). Parts (1) and (2) of Theorem 9.14 then follow from Theorem 7.26, using V3> ~ No2, E(S%) ~ Npu.
Part (3) follows from Theorem 7.4(4). Theorem 9.19 has a similar proof, using Theorem 7.8. |

9.4 Notes and References

Markov chains in random environment were introduced by Cogburn [27]. Probabilistic limit theorems for MCRE
are given in Cogburn [28], Seppéldinen [180], Kifer [111], [112] and Hafouta & Kifer [93, Ch. 6,7],[92].

In dynamical systems, one studies a setup similar to MCRE, called a “random dynamical system." In this
setup, one iterates a map 7,, with w varying randomly from iterate to iterate. For a fixed realization of noise,
a random dynamical system reduces to a “sequential” (aka “time-dependent” or “non-autonomous") dynamical
system. Limit theorems for random dynamical systems can be found in Kifer [112] Conze, Le Borgne & Roger
[30], Denker & Gordin [42], Aimino, Nicol & Vaienti [9], Nicol, Torok & Vaienti [151], and Dragicevic,
Froyland & Gonzélez-Tokman [64] (this is a partial list). For limit theorems for sequential dynamical systems,
see Bakhtin [12], Conze & Raugi [31], Haydn, Nicol, Torok & Vaienti [97], Korepanov, Kosloff & Melbourne
[120], and Hafouta [90, 91].

If we set the noise process to be the identity on the one point space, then the LLT in this chapter reduce to
LLT for homogeneous stationary Markov chains, see Chapter 8 and references therein.

The results of this chapter are all essentially known in the case when T preserves a finite measure. Theorem
9.10 was proved in the more general setup of random dynamical systems by Kifer [112],[110]. Corollary 9.13
and the first two parts of Lemma 9.8 are close to results in [110],[111], and the third part is due to Hafouta
(private communication). Theorem 9.11 is close to the results of Dragicevi¢, Froyland & Gonzélez-Tokman [64],
and Hafouta & Kifer [93, chapter 7, Theorem 7.1.5]. The main difference is in the irreducibility assumptions.
Our condition of not being relatively cohomologous to a coset is replaced in [93] by what these authors call the
“lattice" and “non-lattice" cases (this is not the same as our terminology). In the paper [64], the non-cohomology
condition is replaced by a condition on the decay of the norms of certain Nagaev perturbation operators, and a
connection to a non-cohomology condition is made under additional assumptions.

The results for infinite measure noise processes seem to be new. The reason we can also treat this case, is that
the LLT we provide in this work do not require any assumptions on the rate of growth of Vj, and they also work
when it grows sub-linearly. It would be interesting to obtain similar results for more general stochastic processes
(or deterministic systems) in random environment with infinite invariant measure.



Appendix A
The Gartner-Ellis Theorem in One Dimension

A.1 The Statement

The Legendre-Fenchel transform of a convex function ¢ : R — R is the function ¢* : R = R U {+00} given by
¢"(n) := sup{én — p()}.
£eR

This is closely related to the Legendre transform, defined by (7.40), see Lemma A.3 below. Our purpose is to
show the following special case of the Girtner-Ellis theorem:

Theorem A.1 Suppose a,, — oo, and let W,, be a sequence of random variables such that E(eWr) < oo for all
& € R. Assume that the limit
1
F (&) := lim — logE(e‘fW")
n—o g,

exists for all ¢ € R, and is differentiable and strictly convex on R. Let I () be the Legendre-Fenchel transform
of F (&). Then:

1
(1) For every closed set F C R, limsup — logP[W, /a, € F] < — in}“p 1(n).
n—oco dp ne

1
(2) For every open set G C R, liminf — logP[W,/a, € G] > — ing 1(n).
ne

n—o  q,

A.2 Background from Convex Analysis

To prove Theorem A.1 we need to recall some standard facts from convex analysis.

Lemma A.1 Suppose ¢ : R — R is a convex function which is differentiable on R. Then ¢ is continuously
differentiable on R.

Proof By convexity, for every i > 0, w <¢'(z) < w. So
h) — - —h h) — - —h
lim sup ¢’ (y¢’ (x)<lim sup PO +h) —e(y) _ p() —px =) |_ex+h) —p(x)  ¢(x) —¢x—h)
yox yox h h h h h—0
¢’ (x) — ¢'(x) = 0. Similarly, liminf ¢’(y) — ¢’(x) > 0. Thus lim ¢’(y) = ¢’(x). O
y—oXx y—oXx

The derivative of a differentiable convex function is monotone increasing. For such functions we can safely
define ¢’(c0) := flim @'(é), @' (-00):= flim @'(é).

Lemma A.2 If ¢ : R — R is strictly convex and differentiable on R, then the Legendre transform ¥ of ¢ is
continuously differentiable and strictly convex on (¢’ (—), ¢’(0)). In addition, ' o ¢’ = id there.

Proof By strict convexity, ¢’ is strictly increasing. By the previous lemma, ¢’ is continuous. So the Legendre
transform ¢ of ¢ is well-defined on (¢’ (—0), ¢’(c0)). Fix h # 0 and 1 so thatn,p + h € (¢’ (—0), ¢’(0)). Then

¢, Epsuchthat o"(§) =n, Yy =én—@(&), ¢ (&) =n+h Y@ +h) =E&m+h) - ).
The following identities hold:

Yo+ -y _ Entn+h) —eEn)] = [En =~ ¢(©)]
h h

199
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_ En=On+e&) — ¢(n) _9(n) - 90(6))
h &n—§

By convexity, the term in the square brackets lies between %(n —¢'(¢)) =0and %(n — ¢’ (&r))=—1. Therefore

Y +h) —y@n)
e = 6t 036~ €D).
By strict convexity, ¢’ is increasing, and by the previous lemma, ¢’ is continuous. It follows that the inverse

function of ¢’ is well-defined and continuous. Consequently, &, = (¢’)~' (7 + h) ;—0> (") L) = &. It follows

h) —
PO DL — g+ 016 - €D — &= ()7 ).

Thus ¢ is differentiable on (¢’ (—0), ¢(c0)), and ¢’ = (¢’)~! there. Looking at this formula, we recognize
that ¢’ is continuous and increasing, which shows that ¢ is C! and strictly convex on (¢’(—c0), ¢’(c0)). m|

1
= (6= 8) [E(n

+ &p.

it is bounded, and
that

Lemma A.3 Let ¥ : R — R be a finite, differentiable, and strictly convex function. Let I denote the Legendre-
Fenchel transform of . Then:

(1) I is convex onR. (2) I = +oo outside of [F’'(—o0), F’(c0)].

(3) I agrees with the Legendre transform of ¥ on (¥ '(—o0), F'(c0)). On this interval I is strictly convex,
differentiable, and I’ o ¥' = id.

(4) I is increasing to the right of F'(0) and decreasing to the left of ¥'(0).

Proof The first statement follows from the sub-additivity of the supremum.
To see the second statement, let ¢, (&) := én — F (£).
* Ifn > F'(e0), then ¢; (£) el F'(00) > 0,50 (&) oo T
* Ifn < F'(-c0), then ¢} (¢) E——> n—F'(-) <0, and @, (£) E——> +00.

In both cases, 7 (17) = sup ¢, (£) = +co.
£

Now supposen € (F/(—0), F’(c0)). By Lemma A.1, ¥ is continuous, and by strict convexity, ¥’ is strictly
increasing. So there is exactly one &y, where ' (£p) = 1. As ¢, (£) is concave, this is the point where ¢,, ()
attains its global maximum, and we find that 7 () = ¢, (&) = &n — F (£o). It follows that 7 agrees with the
Legendre transform of # at n7. The remaining parts of part 3 follows from Lemma A.2.

By part 3, 7/(¥’(0)) = 0, therefore I attains its global minimum at ¥ ’(0), and is decreasing on
(F’(—00), ¥'(0)) and increasing on (¥ ’(0), F'(c0)). At this point it is already clear that I satisfies the
conclusion of part 4 on (F'(—o0), F’(c0)). Since I is finite on (F’(—c0), F'(o0)) and equal to +oco outside
[F/(—o0), F'(o0)], we just need to check that the values of I at ¥’(+c0) do not spoil the monotonicity. Indeed
they do not. For example, for every F'(0) < & < F/(0),

I (F'()) = tlir(r)1+(1 —0)I(F' () +tI(F'(0)) = zl—i>I(I)1+ I((l - 1)F " (c0) + tT'(O)) > 1(¢),

where the first inequality holds because 7 is convex on R and the second holds because I is increasing on
[F7(0), F'(0)).
Similarly, for every ¥/(—o0) < & < F/(0), we have 7 (F'(—0)) > I (£). |

Lemma A4 Let ¢ : R — R be a convex function with Legendre-Fenchel transform ¢*, and suppose ¢*(19) =
&ono — ¢(&o)- Then the Legendre-Fenchel transform of o(& + &) — ¢(&o) is ¢ () — ¢* (170) + &o(170 — 7).

Proof At 7, this Legendre transform is equal to
Sup [€n — @& + £0) + ¢(é0)] = Sup [(£ + £0)n — @(£ + £0)] + @(&0) — £on
= ¢ () — [€on — ¢(&0)] = " () — [§omo — ¢(&0)] + o(n70 — 7).

The lemma follows from the identity ¢*(170) = &ono — ¢(&o). a
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A.3 Proof of the Girtner-Ellis Theorem

Proof of the Upper Bound: Suppose n > 7 (0). For every & > 0,
1 1
limsup — logP[W,,/a, > n] < lim — log E(ef Wn=any = ¢ (&) — £n.
n—oo n

n—oo dp

This is also true for & < 0, because for such &, since F (0) = 0,

RiGE ?‘(0))

j(? —_ =
& —-én=I\&1n :

> |&l(n — F'(0)) = 0 > limsup ai logP[W,/a, > n].

n—oo n

1
In summary, lim sup — log P[W,,/a,, > n] < F (&) — &én for all £ € R. Passing to the infimum on £, we obtain

n—oo n

1
that lim sup — log P[W,/a, = 1] < =1 () for all > F'(0). Similarly, one shows that

n—oo dp

1
lim sup - logP[W,/a, < n] < —1(n)foralln < F'(0).

n—oo n

Every closed set F' C R can be covered by at most two sets of the form (—co,77{] and [772, c0) where n; € F
and 71 < ¥/(0) < n. By Lemma A.3(4), i%ff = min{Z (1;)}.

1 !
So lim sup — log P[W,,/a,, € F] < —ir}f[ (. log(A + B) <2+ max(log A, log B)).

n—oo dp
Proof of the Lower Bound: We begin with the special case G = (a, B), where ¥/(0) < @ < f < F’(o0). Fix

0<o< B%“ arbitrarily close to zero.

Define &5, 7175 by
ns=a+d, F'(&s)=1ns.
Since 7' o F' =id on (F'(—0), F’()), &5 = T'(ns), and since I is increasing to the right of #/(0), &5 > 0.
Let u,(dt) denote the probability measures on R given by u,(E) := P[W,, € E]. Construct the change of

measure
%! 1, (dr)

/’ln(dt) = E(ef{‘iwn) ’
and let VT’,, denote the random variables such that P[VT/,, € E] = u,(E).

CrLAIM. P[Wn/an € (,a+20)] — 1.

n—oo

Proof of the Claim. Clearly, log E(e’W") = log E[e"*46)Wn /E(e45Wn)]. Therefore,

lim x logE(e’W") = F(1) := F (1 + &) — F (és).

n—o dy,
By Lemma A 4, the Legendre-Fenchel transform of F is

T(s) = 1(s) =T (ns) +&s(ns - 9).

Note that %'(0) =1s = a + J. Therefore, by the upper bound we just proved,

1 _ —
limsup — log P[W,,/a, > @ + 26] < -1 (a +20)

n—oo dpn

I(ns+06)-Is)
5

= — [L(a+26) - I(ns) - £56] = =6 —I'(s)| <0

where the last inequality is because J is strictly convex. It follows that
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P[W,/an > @ + 28] — 0.

Similarly, working with the random variables —W,,, one shows that

1 — —
lim sup — logP[W,, /a, < a] < -1 (@)

n—oo dp
T -T@)] _

=—[L(a) =T (ns) +&56] = =6 | 1T (ns) - 5

0,

whence, again, JP’[VT/,, /a, < a] — 0. The claim follows.

1
We now return to the problem of bounding lim inf — log P[W,,/a, € G]. Since (@, 8) O (a,a + 26) and
n—oo  ay,
&5 >0,

1 1
liminf — logP[W,,/a, € (@, B)] = liminf — logP[W,,/a, € (a, @ + 20)]
n—eo

n—o  q,
eés Wn—(a+26)an)

|
> liminf — logE (l(a’aJrg(s)(Wn/an) B (b )

n—o  a,

E(efoWn ))

1 —~
= liminf — log [E (1a.a+26)(Wa/an)) e 6 @+200nE (W) |

n—o  q,

- lim & 10gP (Wp/ay € (@, a +20)) = £s(a +26) + F (£s)

n—oo g,

=0-(ésms —F (£5)) — €50 = =1 (ns) — €56 ~ —I(a)=- (g}[g) 7,

because 7 is increasing on («, ), by the assumptions on @ and 3.
Similarly, one shows that whenever F'(—-) < a < 8 < ¥’(0), then

1
liminf — logP[W,,/a, € (@, B)] = — (in/g)f.
a,

n—o @,

Since I = +co outside [F'(—o0), ¥ '(c0)], and every open set is a union of intervals, this implies the lower
bound for every open set G which does not contain ¥ ’(0).

Now suppose that G does contain #’(0). Observe that igf I =0, because zero is the global minimum of 7,
and by Lemma A.3(3), 7 (F'(0)) =0xF'(0) — F(0) = 0. Since G is open, G O (F'(0) — a, F'(0) + @) with
a positive, and then by the upper bound and the positivity of 7 (7 ’(0) + @) (which follows from Lemma A.3(4))

lim sup i logP[W,,/a, ¢ (F'(0) —a, F'(0) + @)] < 0.

n—oo dp

1
So P[W,/a, ¢ G] — 0, and lim — logP[W, /a, € G] = 0. Since, as noted above, igf] = 0, the result follows.
n—o a,
O

A.4 Notes and References

Theorem A.1 is a special case of results by Gartner [77] and Ellis [69], which apply to vector valued random
variables, and which assume less on ¥ (¢). The special case discussed above follows (up to minor details) from
the work of Plachky & Steinbach [158]. The proof we gave here is based on Ellis’s book [70, § VIL.3]. See [40,
§2.3] and [164, §12.2] for additional discussions of Girtner—Ellis Theorem and its applications.



Appendix B
Hilbert’s Projective Metric and Birkhoff’s Theorem

B.1 Hilbert’s Projective Metric

Suppose (V, || - ||) is a normed vector space over R. A cone is a set K C V such that

(1) K+K cCKk;
(2) AK c K forall 4 > 0;
(3) Kn(=K) ={0};
(4) K is closed, and the interior of K, int(K), is non-empty.
Necessarily K = int(K): Suppose x € K and y € int(A); Then x = limx,, where x,, = x + %y, and
x, € int(K). Indeed, by the assumption on y there is an open ball B c K such that y € B, and therefore
X, €B :=x+1BcK+KCK.

Every cone determines a partial order on V by x < y & y — x € K. Sometimes we will write <g instead of
<

Notethatx >0 e x e K,andx <y = Ax < Ay forall 1 > 0.
Two x,y € K \ {0} are comparable if my < x < My for some M, m > 0. Let

M(x|y) :=inf{M > 0:x < My};

m(x|y) :=sup{m > 0: my < x}.

Clearly, m(x|y) = M(y|x)~L.
LemmaB.1 If x,y € K \ {0} are comparable, then M (x|y), m(x|y) are finite positive numbers. They are the
best constants in the inequality m(x|y)y < x < M(x|y)y.

Proof Choose M,, | M(x|y) suchthat x < M,y.So M,y —x € K for all n. Passing to the limit and recalling that
K is closed, we obtain M (x|y)y — x € K. So x < M(x|y)y. Necessarily, M (x|y) > 0: Otherwise M (x|y) =0,
and x < 0, whence —x € K. But this is impossible, since K N (—K) = {0} and x # 0.

By the symmetry m(x|y) = M(y|x)‘1, x > m(x|y)y, and m(x|y) < oo. m|

M(x]y)
m(x|y)

Proposition B.2 Any two x, y € int(K) are comparable. Hilbert’s projective metric is a pseudo-metric on int(K),
and dg (x,y) = 0 iff x, y are collinear. If x, x’ are collinear and y, y’ are collinear, then dg (x’,y") = dg (x, y).

Proof Let B(z,r) :={xeV:|lx—z|l <r}.
Comparability of x, y € int(K): Choose r > 0 such that B(x, ), B(y,r) C int(K), then x —ry/||y|l, y —rx/||x|| €

K, whence ﬁy <x< @y.

Hilbert’s projective metric (of K) is dx (x, y) := log ( ) (x, y comparable).

Positivity: Fix two comparable x,y and let M := M(x|y), m := m(x|y). We saw that my
x —my,My — x € K, whence (% - l)xz%(x —my) + (My — x) e K. Necessarily, M /m
(1-2)xeK,and KN (-K) > (% — 1) x #0.So dx (x,y) = log(M/m) > 0. In addition, if dx (x,y) = 0 iff
M = m. In this case +(My — x) € K, so My = x and x, y are collinear.

x < My, so

<
> 1, otherwise

Symmetry: d (-, -) is symmetric, because M (x|y) = m(y|x)~".

Triangle Inequality: If x,y,z € int(K), then x < M(x|y)y < M(x|y)M(y|z)z and x > m(x|y)y
m(x|y)m(y|z)z. Since K + K C K, < is transitive. Therefore M(x|z) < M(x|y)M(y|z) and m(x|z)
m(x|y)m(y|z). The result follows.

vV IV

Projective Property: If x’ = Ax, then M(x’|y) = AM(x|y) and m(x'|y) = Am(x|y), so dx(x’,y) = dg(x, y).
Similarly, if y’ = 'y, then dg (x’,y") = dg (x’, ). So dg (x’, y") = dk (x, y). O
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Corollary B.3 Hilbert’s projective metric is a proper metric on the “projectivization” of the interior of K,
PK :=int(K)/ ~, where x ~ y iff x, y are collinear.

Proposition B.4 If x € K \ int(K) and y € int(K), then x, y are not comparable.

Proof Suppose by contradiction that x, y are comparable; then x — my € K for some m > 0. Let B denote the
open unit ball in V. Since y € int(K), y+&B C K for some &€ > 0. Therefore x + meB = (x—my)+m(y+¢eB) C
K + mK C K, and x € int(K). But this contradicts the assumption on x. O

B.2 Contraction Properties

Let V; be two normed vector spaces, and let K; C V; be cones. A linear map A : V; — V; is called non-negative
(with respect to K, K»), if A(K;) C K>, and positive (with respect to Ky, K) if A(int(K;)) C int(K>).
Positivity implies non-negativity, because K; = int(K;).

Let <;:=<k,. Every non-negative linear map satisfies Ax >, 0 on K, and

x<1y= Ax <5 Ay.

Proposition B.5 If A is non-negative, then di, (Ax, Ay) <> dg, (x,y) on int(K}).

Proof If x,y € int(K;) then x, y are comparable, so m(x|y)y <; x <; M(x|y)y. Since A is non-negative,
m(x|y)Ay <» Ax <, M(x|y)Ay, so M(Ax|Ay) < M(x|y) and m(Ax|Ay) > m(x|y). It follows that
di,(Ax, Ay) < dk,(x,y). |

The projective diameter of a positive linear map A : V| — V; (with respect to cones K, K») is

Ak, k,(A) :=sup{dk,(Ax, Ay) : x,y € int(Kj)} < oo.
t -t

The hyperbolic tangent function is tanh(s) = %. We let tanh(oco) := 1.
e e

Theorem B.6 (G. Birkhoff) Suppose K; are cones in normed vector spaces V; (i = 1,2), and let A : Vi —» V,
be a linear mapping which is positive with respect to K1, K». Then for all x,y € int(K;)

dx, (Ax, Ay) < tanh ({Ax, Kk, (A)) di, (x, ). (B.1)
In particular, if Ak, k,(A) < oo, then A is a strict contraction.

Proof in a Special Case. Suppose V; =V, =V and K| = K, = K, where V = RZ, and K := {(x,y):x,y > 0}.
Let A : RZ - R? be a linear map such that A(int(K)) C int(K). The theorem is trivial when det(A) = 0,
because in this case Ax, Ay are collinear for all x, y, and dg (Ax, Ay) = 0. Henceforth we assume that det(A) # 0.

Write A = (Z Z) Since positive maps are non-negative, A(K) C K, and this implies that a,b,c,d > 0
(calculate A on the standard basis).

Two vectors x = (x‘), y = (ii) belong to int(K) iff x;,y; > 0. In this case M(x|y) = r.nivé(x,-/yi) and
i=l,

X2

m(x|y) = gllir%(xi/y,-). It follows that

10g(ﬂ /&)
X210 y2

axq + bxz/ayl + by2)| — o axy + bxy o ayi + by,
cxy +dxy ! ¢y +dy; a

dg(x,y) = , and therefore

dx (Ax, Ay) = [1og
Kk (Ax, Ay) = |log cx1 +dxy cy1 +dyy

aé+b x|

= [log pa(t) —logpa(s)|, where pa(&) := ,t:=—, and 5 := 2
cé+d X2 V2
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det(A)
(c&+d)?

image of log ¢4 is an interval with endpoints ¢ 4(0) = g and p4(c0) = % It follows that

As x, y range over int(K), ¢, s range over (0, o). Since ¢’, (§)= and det(A)#0, ¢4 is monotonic, and the

Ak, k(A) =

d
log “—’, (B.2)
be

with the understanding that | log(zero/non-zero)| = | log(non-zero/zero)| = co. (We do not need to worry about
log(zero/zero), because ad — bc # 0.)

By (B.2), Ak, x (A) = co whenever some of a, b, ¢, d are zero. In this case tanh(%AK,K (A)) = 1, and Birkhoft’s
Theorem follows from Proposition B.5. Henceforth we assume that a, b, ¢, d > 0.

If x,y € int(K) are not collinear, then dg (x,y) = log |%/§_;| = |logt — log s| # 0, with 7, s as above. This
leads to
di (Ax, Ay) _ |log pa(r) —logpa(s)

dkg(x,y) logt —log s

By Cauchy’s mean value theorem, there is some & between ¢ and s such that

dg (Ax, Ay) _
dK ()C, )’)

(logpa)' ()| _ det(A)&
(log)" (&) (a& + b)(c& +d)

where ¥ (€) := logé — log(aé + b) —log(cé + d). Note that ¢ € (0, o).

The task now is to find the global maximum of e¥¢)| det(A)| on (0, 00). Since a, b, ¢, d # 0, (&) 6—0) —o0o0.

So ¢ has a global maximum inside (0, o). Since there is exactly one critical point, &y = V(bd)/(ac), Y (¢) and
e¥(©)| det(A)| attain their global maximum at &j. Substituting &y in (B.3), we find, after some algebraic work,

= e¥ @) det(A)), (B.3)

Vad — \be
that the global maximum of the RHS of (B.3) is 6(A) := |~ae— 7%/ §o
Vad + Vbc

dg (Ax, Ay) < 0(A)dk (x,y) for all x,y € int(K).

(B.2) and some elementary algebra shows that 6(A) = tanh(Ag g (A)/4), and Theorem B.6 follows.

Proof for Maps Between General Two-Dimensional Spaces: Suppose V, V, are two-dimensional.

By finite dimensionality, the topological properties of K; do not change if we change the norm of V;. We
choose for V; norms coming from inner products. Euclidean geometry tells us that the intersection of K; with
Sl:={xeV:|x| =1}isacirclearc A; c S'. Let d4; := {&i,mi}. IE & =y then int(K) = @. If & = 5 then
K> is one-dimensional. In both cases, (B.1) holds in a trivial way.

Henceforth we assume that &; # 7; (i = 1,2). Let

P;:V; > R?

denote the linear map such that P; : &; — (é) and P; : np; & ((1)) Clearly P;(int(K;)) = int(K), where K is the
positive quadrant in R?.

Denote the partial orders of K and K; by < and <;. Thenforall x, y € int(K;)andm > 0, x <; my © my—x €
K; © mP;y—P;x € K & P;x < mP;y. Itfollows that M (x|y) = M (P;x|P;y). Similarly, m(x|y) = m(P;x|P;y),
and we conclude that

di,(x,y) = dg (Pix, P;y) for all x,y € int(K;). (B.4)

Let A’ := P2AP1’1, then A’ is a linear map of R? such that A’(int(K)) c int(K), and (B.4) implies that for all

x,y € int(K;) we have dg, (Ax, Ay) = dg (P2Ax, P,Ay) = dg (A’ P1x, A’P1y). So

dg,(Ax, Ay) = dg (A’P1x, A’P1y) < tanh(Ag x (A")/4)dk (P x, P1y)
= tanh(Ak, k, (A)/4)dk, (x, y) = tanh(Ak, k,(A)/4)dk, (x,y), whence (B.1).
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Proof of Theorem B.6 in the General Case: Suppose K; are cones in a general normed vector spaces V;, and
let A : Vi — V, be a linear map such that A(int(K;)) C int(K>). We estimate dk, (Ax, Ay) for x, y € int(K7).
If Ax, Ay are collinear, then dg, (Ax, Ay) = 0. Henceforth, assume Ax, Ay are not collinear. Necessarily, x, y
are not collinear.
Let V/ := span{x, y} and K| := K; N V/. We claim that the interior of K| as a subset of V| is equal to
int(Ky) NV

e Suppose z € int(K;) N Vl’. Let B; denote the open unit ball with center zero in Vi. Then z + €B; C K
for some € > 0. Let B; denote the open unit ball with center zero in Vl’. Clearly, B{ C BN Vl’, SO
zZ+ sB{ c(z+eB))n Vl’ cKin Vl’ = K{. Since z + sB{ is a neighborhood of z, z is in the interior of K{ as
a subset of V.

* Suppose z is in the interior of K| as a subset of V/. Since x € V/, z — ax € K, for some a > 0. Since
x €int(K;), x+eB; C K| forsome £ > 0.S0 z+aeB; = (z—ax)+a(x+&B;) C K| +aK; C K;, whence
z €int(Ky) NV,

Consequently, x, y are in the interior of K| as a subset of V. As this interior is non-empty, K7 is a cone in V.

Similarly, if V; := span{Ax, Ay} and Kj := K; NV}, then the interior of K] as a subset of V] is equal to
int(K>) N V., which contains Ax, Ay. So K2’ is a cone in V2’.

Next we claim that d K, = dk,; on int(K;) N'V/ (i = 1,2). This is because if x’,y" € K/, then the condition
my’ < x" < My’ only involves the vectors x” — my’, My’ — x" (m, M > 0) which all lie in K.

Clearly, A(int(K;) N Vl’) C int(K») NV, , therefore A : Vl’ — Vz’ is positive with respect to K/, Kz’ As Vl’, Vz’
are two-dimensional, A : V| — V] satisfies (B.1), and

dx, (Ax, Ay) = dg; (Ax, Ay) < tanh($Ag; x; (A))di (x, )
= tanh(3 A7 k7 (A))d, (x, ).
We claim that Ak k7 (A) < Ak k, (A):
Ak: k;(A) = sup{dKé(Ax', Ay") 1 x',y" e int(Ky) NV}, ~int(K{) = int(K;) NV,
e sup{dk, (Ax’, Ay") : x',y" € int(Ky) N V/'} < Ak, k, (A),

because A(int(K) N V{) C int(Kz) NV, and dKé = dk, onint(K;) N 'V;.
It follows that d, (Ax, Ay) < tanh ({Ax, k,(A)) dx, (x,y). O

B.3 Notes and References

Hilbert’s projective metric was introduced by David Hilbert in [100]. Theorems B.5 and B.6 and the proofs
given here are due to Garrett Birkhoff [13]. For other nice proofs, see [22] and references therein. Rugh [173]
extended Hilbert’s projective metric to complex cones.



Appendix C
Perturbations of Operators with Spectral Gap

C.1 The Perturbation Theorem

Let X be a Banach space over C, and suppose Ly : X — X is a bounded linear operator. Recall that we say that
L has spectral gap, with simple leading eigenvalue 1y and associated eigenprojection Py, when

Lo = APy + No,

where 4o € C, and Py, Ny are bounded linear operators with the following properties:

(1) LoPo = PoLo = AoPo: (2) PG = Po, and dim{Pou : u € X} = 1;

(3) PoNg = NoPyp = 0, and p(Ng) < |Agl, where p(Np) := lim = IIN(;‘II, the spectral radius of Np.
(Necessarily, 49 # 0.)

By Lemma 8.16, in this case the spectrum of £ consists of a simple eigenvalue 1y, and a compact subset of

some disk centered at zero with radius r < |Ag].
The purpose of this appendix is to prove the following result, from Chapter 8:

Theorem C.1 (Perturbation Theorem) Fix r > 1 and a > 0. Suppose L, : X — X is a bounded linear
operator for each |t| < a, and t v— L, is C"-smooth. If Ly has spectral gap with simple leading eigenvalue A
and eigenprojection Py, then there exists a number 0 < k < a such that:

(1) For each |t| < k, L; has spectral gap with simple leading eigenvalue A;, and associated eigenprojection P;;
(2)t > Ay andt — P; are C"-smooth on (—k, k);
(3) There exists y > 0 such that p(L; — 4, P;) < |A;| =y forall |t| < k.

C.2 Some Facts from Analysis

Let X* denote the dual of X. Every bounded linear operator A : X — X determines a bounded linear operator A*
on X* via (A*¢)(x) = ¢(Ax). It holds that ||A*|| = ||A]|. Recall the definition of C"-smoothness from §8.4.

Lemma C.2 Suppose that for each |t| < a we have a scalar c¢(t) € C, a vector h; € X, a bounded linear
functional ¢, € X*, and bounded linear operators A;, B; : X — X. If t & c(t), h, @1, A;, By are C"-smooth on
(—a, a), then the following objects are C"-smooth on (—a, a):

(1) A7, c(t)Ay, Ay + By, A; By (2) the operator ¢, (-)hy; (3) the scalar ¢;(Ashy).

Proof We prove (1) and leave (2) and (3) to the reader.
Suppose r = 1. Since A; is Cl, Ajvox = Arx + 0Ax + g9(x) where |leg(x)|l = o(I6])]lx]l. So for every
@ e X",
(Al = AD@)(x) = @lArrox — Arx] = @[Arx + OA[x + gg(x) — Arx]
= 60(A7 @) (x) +o(l6D 1 x]lllell.

So || A=t _ (A — 0. and 4] is differentiable, with derivative (47)". Next [[(4],)" ~ (AD"ll =
A, — Al —y 0, because A, is C!. This proves that A} is C! with derivative (A})*.

Similarly, one shows that A; + B;, c¢(t)A, and A, B, are C' with derivatives A} + B/, c’(t)A; + c(t)A;, and
A;B; + A, B/ (the operators need not commute, and the order matters). Part (1) follows, in case r = 1. For higher
r, we argue by induction. O
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Lemma C.3 If p(L) < |A|, then AL — I has a bounded inverse. (I :=identity.)

Proof Let A := —Z A™"L"™. The sum converges in norm because p(A1~'L) < 1, and a straightforward
n>0
calculation shows that A(A"'L — 1) = (A"'L-DA=1. O

Theorem C.4 (Implicit Function Theorem) Suppose X,9), 3 are Banach spaces, A C X X ) is open, and

F: A — 3is Cl. Suppose (xo, yo) € A is a point where

(1) F(xq,y0) =0, and

(2) (0yF)(x0,¥0) : 9 — 3, the partial derivative of F with respect to the second variable at (xo, yo), is an
invertible bounded operator with a bounded inverse.

Then there exists an open neighborhood U C ¥ of xo and a unique C' map u : U — ) such that (x,u(x)) € A
forall x € U, u(xg) = yo, and F(x,u(x)) = 0. If F is C"-smooth on A, then u is C"-smooth on U.

The proof is a fixed-point argument, see [49, Ch. 10].

C.3 Proof of the Perturbation Theorem

Since dim{Pyu : u € X} = 1, Py must take the form Pyou = ¢ (1) hg, where ¢y € X*, hg is a non-zero vector in
%:, and (p()(ho) = 1. Since LOPO = P0.£0 = /loP(),

Loho = Aghy and LSQOO = Adoo-

To prove the perturbation theorem, we will construct for small |¢| a scalar A; € C, a bounded linear functional
¢; € X* and a vector h, € X, all depending C"-smoothly on ¢, such that

Lihy = A, Ligr = Digr,  @i(hy) = 1. (C.1)

Then we will show that £, has spectral gap with simple leading eigenvalue A,, and eigenprojection P;u :=
@ (u)hy.

Construction of i, and A,: Let X := ker(Py) = ker(¢y). This is a Banach space.

Choose 0 < g9, k1 < a so small, that for all |¢| < ki, |@o(Lho)| > &p. This is possible, because ¢ — L, is
continuous, and |¢o(Loho)| = | 29| > 0.

It follows that for some g1 > 0,

@o(L;(hg +w)) # 0, whenever |t| < k1, [wl| < &1.

Let By := {w € Xy : ||[w|| < &1}, and define

_ Li(ho +w) _
Flewy = wolL: (ho +w)] (o +w)-

Fis C" on (—«1, k1) X By by Lemma C.2, and F(0,0) = ’13—2’(’ —hy=0.
We claim that (0, F)(0,0) : X9 — X is bounded, invertible, and has bounded inverse. Here is the proof. For

every w € X,
@o(Lo(ho +w)) = (Lypo) (ho +w) = Aopo(hg + w) = Ao,

because Xg = ker(¢g). Therefore

__ Lothg+w) _ Aoho + Low
F(O,w) - F(0,0) = —900(-50(}10 ) (ho+w) = —/10 (ho +w)

= /lglLow - w.
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Therefore (0,,F)(0,0) = (/1511:0 — D)|x,. Since Py vanishes on X,

p(Lolx,) = p(Lo( = Po)lx,) = p(Nolx,) < p(No) < |Aol.

By Lemma C.3, (/161.[20 — I)|x, has a bounded inverse.

By the inverse function theorem, there is 0 < k2 < «; and a C" map t — w; € Xy on (—«>, k2) such that
F(t,w,) =0.

Equivalently, £;(ho + w;) = @o(L;(ho + wy))(hg + wy). Therefore

Ltht = /ltht»

where h; := hg + w;, A; := @o(L:(ho + w;)). Since w; € Xo, ©o(hs) = @(hg) = 1.
By Lemma C.2, t — A4, h, are C"-smooth on (—«y, k). By further decreasing «», if necessary, we can
guarantee that A, is close enough to 4y to be non-zero.

Construction of ¢,: Let X := {¢ € X" : p(ho) = 0}. This is a Banach space. Let
m: X > Xy, w(e) i= ¢ = ¢(ho)go.
Note that 7| x =1 * (the identity on X)), and 7(X*) = X, because
(@) (ho) = ¢(ho) — ¢(ho)go(ho) = 0.

Define G : (—«i, k1) X 3:3 - %3 by

G(t,¢) == n[L (o + @) = A (@0 + ¢)] < alLi(po+ @) — A, - 7(po) =0.

G is C” on its domain, and G(0,0) = 0. Since G is affine in its second coordinate,

3 * * ! * *
(8,6)(0,0) = o (Ly— AoI)x; = (1L~ AoI)lxs = (Ly — Ao )lx;.
To see the marked identity, note that if ¢ € X, then Lj¢ € X, because Loho = Aoho, and therefore [ L;j¢] =

Ljpon X;.
Clearly, (.E("; — Aol *)Ixa is bounded. It has a bounded inverse on %(’;, because PS IxS = 0, and therefore

p(Lylx;) = p(Ly — WPylx;) = p(Nylx;) < p(Ng) = p(No) < |40l

We can now apply the inverse function theorem, and construct O < k3 < k2 and a C"-smooth function ¢ — i,
on (—k3, k3) so that G(¢, ;) = 0. Equivalently,

Li(po+ ) = (o + 1) = [L; (wo + Y1) — A (@0 + ¥)](ho) - @o. (C2)

Evaluating the two sides of (C.2) at i;, we obtain

0= [L; (o +¥1) = (g0 + ¥)(he) = [L (@0 + ¥1) = A (o + ¥)](ho) (C3)

(The left-hand side of (C.2) vanishes because £, h; = A,h;, the right-hand side of (C.3) reduces to the right-hand
of (C.2) because ¢g(h;) = 1). Thus the right-hand-side of (C.2) vanishes. It follows that the left-hand-side (C.2)
vanishes, and

L (o + 1) = A (0o + Y1)

Since t — (@ + ¥;)(h) is smooth, and (¢g + ¥o)(hg) = @o(hy) = 1, there is 0 < k4 < k3 such that
(w0 + Y1) (hy) # 0 for || < k4. Now take
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o = o + Yy
T (ot ) ()

Completion of the Proof Define the operators P,u := ¢;(u)h, and N; := L; — A, P;. Then it is straightforward
to verify, using (C.1), that

Pf:Pt,Pt£t=.£,Pt=/l,Pt,P,N,=N,P;=0.

Clearly, dim{P,u : u € X} = Span{h;} = 1, and by Lemma C.2, t — P; is C"-smooth on (—k4, K4).
We claim that there is 0 < k5 < x4 such that

sup p(Ny) < inf |A;].
|t|<kq

[t]<ks

By assumption p(Ny) < |A¢l, therefore there exists some n¢ such that ||N(')1 ]| < ]4¢|™. Choose some y > 0 such
that
NIl < (1 =2y)"™]A0]™.

Since t — P; and t — L, are continuous att = 0, t ||Nt"°|| is continuous at ¢t = 0. Therefore there exists
0 < k5 < k4 such that
NIl < (1 =y)"|A,|" for all |7] < ks.

Necessarily, p(N;) < (1 —y)|4,] for |t]| < «s. |

C.4 Notes and References

For a comprehensive account of the theory of perturbations of linear operators on Banach spaces, see [105]. The
proof we gave here is taken from [98, §XIV.2].

Suppose L; is a smooth perturbation of an operator £ with spectral gap. The perturbation theorem provides
smooth solutions to
Lt ht — /lt ht .

In §7.3.2 we considered a similar eigenvector problem, but in the inhomogeneous setup. There the unperturbed
operators are
Ly L¥(Gni1) = L¥(Gn) s (Lnp)(x) = E(@(Xn+1) X = x),

the perturbations are (£ ¢)(x) = E(en+1XnXnt) p(X,,1)|X, = x), and the eigenvector problem is to find
smooth families of 7}, and A}, such that £! Al = A,h,.

In §7.3.2 we solved the problem, using the contraction properties of linear maps mapping cones into other
cones. It is also possible to solve the problem using “inhomogeneous versions" of the perturbation theorem.

Suppose first that f,, are uniformly bounded. Hafouta and Kifer ([93]) proved the sequential complex Ruelle-
Perron Frobenius Theorem!, which provides holomorphic solutions of £,;h; = A,h;, for ¢ in a small complex
neighborhood of ¢ = 0. By contrast, the methods of §7.3.2 rely on the positivity of the function e’/ in a crucial
way, and are therefore limited to real t. To deal with complex ¢, Hafouta and Kifer use a highly non-trivial
extension of Hilbert projective metric to complex cones, due to Rugh [173] and Dubois [67].

Yeor Hafouta informed us of a different proof of the complex Ruelle-Perron Frobenius Theorem, based on
the approach of [98], which also covers unbounded f,, with finite L? norm.

The analyticity of complex perturbations opens the way to employing perturbative calculations similar to
those done in Lemma 7.17 and Proposition 8.21, but for complex ¢ and inhomogeneous (X, f). For applications to
Edgeworth expansions and Berry-Esseen estimates for inhomogeneous Markov chains, see [59] and the notes to
Chapters 6 and 8. (The homogenous setup can be analyzed using the spectral theorem, see [26, 73, 74, 85, 98, 99].)

! For the non-sequential case, see [161].
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