
ALEA, Lat. Am. J. Probab. Math. Stat. 18, 1�4 (2021)
DOI: 10.30757/ALEA.v18-

The central limit theorem and rate of mixing for simple

random walks on the circle

Klaudiusz Czudek and Dmitry Dolgopyat

Klaudiusz Czudek, Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg
E-mail address: klaudiusz.czudek@gmail.com

Dmitry Dolgopyat, University of Maryland, Institute for Physical Science and Technology, Atlantic Building
College Park, MD 20742
E-mail address: dimadolgopyat@gmail.com

Abstract. We prove the Central Limit Theorem and superpolynomial mixing for environment
viewed from the particle process in quasi periodic Diophantine random environment. The main
ingredients are smoothness estimates for the solution of the Poisson equation and local limit asymp-
totics for certain accelerated walks.

1. Introduction

Environment viewed by the particle (EVP) process is a powerful tool in the study of random walks
in random environment, (see Kozlov (1985); Bolthausen and Sznitman (2002); Zeitouni (2004) and
the references wherein). In particular, for random walks on Zd, if this process possesses a station-
ary measure which is absolutely continuous with respect to the environment measure, and if the
stationary measure has good mixing properties, then the corresponding random walk in random
environment satis�es the Central Limit Theorem. However, good mixing properties of EVP are far
from given. In fact, the EVP process is a standard source of examples of exotic behavior in both
ergodic theory Kalikow (1982); den Hollander and Steif (1997) and limit theory Kesten and Spitzer
(1979); Bolthausen (1989).

The EVP process could be de�ned for random walks on arbitrary groups. Consider a semigroup
G with a �nite set of generators Γ ∋ id acting on a compact metric space X . For every γ ∈ Γ �x a
positive continuous function p(·, γ) : X → [0, 1], γ ∈ Γ, in such a way that

∑
γ∈Γ

p(x, γ)=1 for every

x ∈ X . The formula
Tϕ(x) =

∑
γ∈Γ

p(x, γ)ϕ(γx), (1.1)

de�nes a Markov operator T on the space C(X ) of continuous functions on X that gives rise to a
Markov process (Xn) on X which we call environment viewed by the particle for RWRE on G. We
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note that the operator (1.1) also appears naturally in the theory of iterated function systems and
its properties are widely studied in mathematics.
If µ is a Borel probability measure on X then by Pµ (resp. Eµ) we denote the conditional proba-

bility (resp. expectation) given the distribution of X0 is µ. A Borel measure µ is called stationary
if µ(Tϕ) = µ(ϕ) for every ϕ ∈ C(X ), where µ(ϕ) stands for

∫
X ϕdµ. A stationary measure µ is mix-

ing if Eϑϕ(Xn) → µ(ϕ) for any ϕ ∈ C(X ) and any measure ϑ absolutely continuous with respect to µ.

The application of the Krylov-Bogoliubov procedure and the compactness of X yield the existence
of a stationary distribution for the operator (1.1), however the uniqueness and mixing properties
are not well understood. We refer to Conze and Guivarc'h (2000); Bolthausen and Sznitman (2002);
Brémont (2002, 2009) for discussions of the stationary measures for the case of Zd, to Dolgopyat and
Goldsheid (2019, 2021) for case of �nite extensions of Z, and to Bourgain et al. (2011); Benoist and
Quint (2013) for the case of larger groups, where even the case of constant transition probabilities
is far from settled. The mixing of the EVP process in the case of the independent environment on
Z was studied in Kesten (1977); Lalley (1986), and a simpler proof could be found in Dolgopyat
and Goldsheid (2013).
We note that there are several results on uniqueness and mixing under the assumption that (1.1)

is contracting in average or some related conditions (e.g. Barnsley et al. (1988); Czudek (2020);
Doeblin and R. (1937); Onicescu and Mihoc (1935); �l¦czka (2011), see also a survey Sten�o (2012)).
The contraction condition typically does not hold in the case of random walk in random environ-
ment, since in that case one typically assumes that the G action on X preserves some non atomic
probability measure.

Our goal in this paper is to go one step beyond existence of stationary measures, and to study
their ergodic properties. Our results can be divided into two parts. First, we show that in the
quite general setting unique ergodicity of stationary measure implies mixing. In the second part we
employ our approach in the simplest possible setting: quasi periodic random walks on Z and work
out precise mixing estimates in that case using the harmonic analysis on the circle. As a direct
application of our result we obtain the central limit theorem for a functional of the environment
observed by the particles in that case. We hope that our approach could be useful both for studying
walks on more complicated groups and for the studies of further ergodic properties in the quasiperi-
odic environment.

Our �rst result says that if X is compact and the random walk is lazy (recall that a walk is lazy
if it can stay at the same place for several units of time). then the unique ergodicity implies mixing.

Theorem 1.1. Suppose that the random walk (Xn) with the Markov operator (1.1) is uniquely
ergodic (i.e. it has exactly one stationary measure ν), X is compact, id ∈ Γ, the functions p(·, γ)
are continuous for γ ∈ Γ and there exists ε0 such that
ε0 ≤ p(x, id) ≤ 1− ε0 for every x ∈ X . Then

lim
n→∞

Ex(ϕ(Xn)) = ν(ϕ) for every x ∈ X and ϕ ∈ C(X ). (1.2)

We give two applications of this theorem.

Corollary 1.2. Let f1, . . . , fN be circle homeomorphisms, p1, . . . pN be positive numbers with p1 +
· · ·+ pN = 1. Let (Xn) be a Markov process with the Markov operator

Tϕ(x) =

N∑
i=1

piϕ(fi(x)), ϕ ∈ C(T).

If one of fi's is the identity and the action on the circle is minimal, then (1.2) holds.



The central limit theorem and rate of mixing... 3

Proof : The unique ergodicity follows from Malicet (2017, Corollary 2.3). □

To give another application, �x an irrational number α, a positive continuous function p ∈ C(T)
with 0 < p(x) < 1, x ∈ T, and de�ne

Tψ(x) = p(x)ψ(x+ α) + q(x)ψ(x− α), T : C(T) → C(T), (1.3)

where q(x) = 1− p(x).
This random walk was considered by Sinai Sinai (1999), where the author proved the unique

ergodicity and mixing under assumptions that α is Diophantine and p is su�ciently smooth. Later
Kaloshin and Sinai Kaloshin and Sinai (2000) showed there is no need to assume that α is Diophan-
tine1 when p is asymmetric, i.e. when ∫

T
log

p(x)

q(x)
dx ̸= 0.

The unique ergodicity in the symmetric case (i.e. when the integral above is zero) for any irrational
α has been proven by Conze and Guivarc'h Conze and Guivarc'h (2000). Another proof of this
result has been given in Czudek (2024). It has been proven there also that for any α irrational (1.3)
is mixing for a generic choice of p. With Theorem 1.1 we can strengthen the latter result.

Corollary 1.3. Let log p(x)
q(x) be continuous of bounded variation, α ̸∈ Q. Then (1.2) holds.

Proof : The process (Xn) restricted to even steps satis�es the assumptions of Theorem 1.1 by Conze
and Guivarc'h (2000), thus (1.2) holds for (X2n). Then conditioning with respect to X1 gives the
result for the process restricted to odd steps. Combining these yields the assertion. □

With an additional assumption that α is Diophantine and p is su�ciently smooth we obtain the
polynomial rate of mixing for (1.3). An important step in the proof is solving the Poisson equation
(Theorem 1.4), which also implies the central limit theorem even without estimating the rate of
mixing (Corollary 1.5). Then using Theorem 1.4 we can modify the proof of Theorem 1.1 to get
the rate of convergence (Theorem 1.6). Denote

∥ψ∥Cr := max
{
∥ψ∥∞, ∥ψ′∥∞, · · · , ∥ψ(r)∥∞

}
.

Theorem 1.4. Let α ̸∈ Q be Diophantine of type (c, τ), m0 the lowest integer with m0 > 1+ τ . Let
r ≥ 0, p ∈ Cr+3m0(T) symmetric, and let µ be the unique stationary measure for (1.3). Then there
exists a constant A > 0 such that for every ψ ∈ Cr+2m0(T) with µ(ψ) = 0 the Poisson equation

Tφ− φ = ψ

admits a solution φ which is Cr and ∥φ∥Cr ≤ A∥ψ∥Cr+2m0 .
If p is asymmetric we have a stronger estimate. Namely, it su�ces to assume that p ∈ Cr+2m0,

ψ ∈ Cr+m0. In that case ∥φ∥Cr ≤ A∥ψ∥Cr+m0 for some constant A independent of ψ.

Corollary 1.5. If α, p and ψ are as above, (Xn) is the stationary Markov process with transition

operator (1.3), then the process

(
N∑

n=1

ψ(Xn)

)
satis�es the functional Central Limit Theorem.

1A number α ̸∈ Q is called Diophantine of type (c, τ), c > 0, τ ≥ 0, if∣∣∣∣α− p

q

∣∣∣∣ ≥ c

q2+τ
for every p, q ∈ Z, q ̸= 0.

A number α is called Liouville when it is not Diophantine of any type.
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Proof of the Corollary: We can apply the martingale decomposition method. Under the assump-
tions of Theorem 1.4 the Poisson equation possesses a continuous solution φ.

N∑
n=1

ψ(Xn) =

N∑
n=1

(
Tφ(Xn)− φ(Xn)

)
=

N−1∑
n=1

(
Tφ(Xn)− φ(Xn+1)

)
+ Tφ(XN )− φ(X1).

The last two terms become negligible when divided by
√
N , and the sum is a square integrable

martingale with stationary ergodic increments. Theorem 3 in Brown (1971) completes the proof. □

Theorem 1.6. Let α ̸∈ Q be Diophantine of type (c, τ), m0 the lowest integer with m0 > τ +1. Let
k ≥ 1 and r = 6km0. If p ∈ Cr+m0(T) is symmetric, then there exists a constant A > 0 such that
for every x ∈ T and ψ ∈ Cr(T)∣∣∣∣Exψ(Xn)− ν(ψ)

∣∣∣∣ ≤ A∥ψ∥Crn−k/2 lnn,

where (Xn) is the Markov process (1.3), ν is the unique stationary distribution. If p ∈ Cr+m0 is
asymmetric then the same is true with r = 4km0.

In Theorems 1.4 and 1.6 the assumptions that α is Diophantine and ψ is su�ciently smooth are
both unremovable. Indeed, it has been shown (see Theorem 3 in Czudek (2022)) that for every α
Lioville it is possible to construct a C∞ observable for which the Central Limit Theorem fails. In
view of Corollary 1.5 Theorem 1.4 cannot hold for such observable. In the same way Theorem 2 in
Czudek (2022) implies that the observable must be su�ciently smooth even if α is Diophantine.
In order to give a counterexample to Theorem 1.6 more work needs to be done.

Theorem 1.7. If α is Liouville, p ∈ C∞(T) with ε ≤ p ≤ 1 − ε, then there exist φ ∈ C∞(T) and
G ⊆ T of positive Lebesgue measure such that for every x ∈ G and β > 0 there exist in�nitely many
N 's with ∣∣∣∣Exφ(XN )−

∫
T
φ(z)dν(z)

∣∣∣∣ > 1

Nβ
, (1.4)

where (Xn) evolves with the rule (1.3) and ν is the unique stationary measure.

Remark 1.8. It is known (see Conze and Guivarc'h (2000)) that ν is equivalent to Lebesgue in
the asymmetric case. However, in the symmetric case the equivalence holds only if ln p − ln q is a
coboundary. This condition fails for generic pair (p, α), see Dolgopyat et al. (2021). If ν is singular
with respect to the Lebesgue measure then (1.4) does not rule out that ν is polynomially mixing

in the sense that
∫
ψ(x)Ex(φ(Xn))dν(x) −

∫
ψ(x)dν(x)

∫
ϕ(x)dν(x) decays polynomially. Thus

the rate of mixing in the generic symmetric Liouville environment remains an open question. On
the other hand, Theorem 1.7 shows that the assumptions that α is Diophantine in Theorem 1.6 is
necessary.
We note that a related results in the case of constant p are obtained in Dolgopyat (2002, �4.3).

2. The proof of Theorem 1.1

We follow closely the strategy of Dolgopyat and Goldsheid (2021, Section 9), see also Dolgopyat
et al. (2022, Section 6). We shall use

Proposition 2.1. If {Xn} has unique stationary measure ν then ∀ϕ ∈ C(X ),

1

N

N∑
n=1

Ex(ϕ(Xn)) = ν(ϕ) as N → ∞ uniformly in x.
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Given X we consider the accelerated walk X̃ obtained from X by erasing all repetitions (i.e. the
points Xn s.t. Xn = Xn−1). Given a segment W of the accelerated walk (i.e. a �nite sequence
x0, x1, . . . , xk such that xj ∈ (Γ \ id)xj−1) we let tW be the time it takes the walker to traverse

W (given that she takes that path). Thus tW =
∑
w∈W

ℓw, where (ℓw)w∈W are independent and

each ℓw, w ∈ W , has geometric distribution with parameter 1 − p(w, id). Let TW = EW (tW ) =∑
w∈W

1

1− p(w, id)
. Let τ be the �rst time when TX̃(1,τ) ≥ ε0n/2, where X̃(1, k) stands for (X̃i)0≤i≤k.

Thus the accelerated walk X̃(1, τ) belongs to the set Sn(x) of accelerated walk segments starting
at x and such that TW ≥ ε0n/2 but TW̄ < ε0n/2 for each pre�x W̄ ⊂ W. By Proposition A.2, we
have PW (tW > n) = O(exp(−c(log n)2)) for some c > 0 and any segment W . Therefore

Ex(ϕ(Xn)) =
∑

W∈Sn

Ex

(
(ϕ(Xn)1{X̃(1, τ) =W}

)
=
∑

W∈Sn

n∑
k=1

Px(X̃(1, τ) =W )PW (tW = k)Ee(W )(ϕ(Xn−k)) +O(exp(−c(log n)2)),

where e(W ) is the endpoint of W .
We claim that ∀ϕ ∈ C(X ) ∀ε > 0 ∃n0 such that ∀n ≥ n0 ∀W ∈ Sn we have∣∣∣∣∣

n∑
k=1

Px(X̃(1, τ) =W )
[
PW (tW = k)Ee(W )(ϕ(Xn−k))− ν(ϕ)

]∣∣∣∣∣ ≤ ε. (2.1)

Summing (2.1) over W ∈ Sn we obtain the theorem. It remains to prove (2.1).

We use the following result. Let σ2W =
∑
w∈W

p(w, id)

[1− p(w, id)]2
be the variance of tW . Since we

assumed there exists ε0 such that ε0 ≤ p(x, id) ≤ 1 − ε0 for every x ∈ X , there exist c1 < c2 such
that c1n ≤ σ2W ≤ c2n for all W ∈ Sn.

Proposition 2.2. (Davis and McDonald (1995)). We have PW (tW = ε0n/2 + j) =
1√

2π σW
e−j2/(2σ2

W )+

o
(
σ−1
W

)
, where o

(
σ−1
W

)
decays uniformly in j ∈ Z.

Divide Z into intervals {Is} of length δ
√
n for small δ then∑

{j:ε0n/2+j∈[1,n]}

PW (tW = ε0n/2 + j)Ee(W )(ϕ(Xn−(ε0n/2+j)))

=

 ∑
{s:Is⊆[1,n]}

PW (tW ∈ Is)
1

|Is|
∑
m∈Is

Ee(W )(ϕ(Xn−m))

+ oδ→0(1) + on→∞(1)

=

[∑
s

PW (tW ∈ Is) (ν(ϕ) + on→∞(1))

]
+ oδ→0(1) = ν(ϕ) + on→∞(1) + oδ→0(1) (2.2)

where the �rst equality follows by Proposition 2.2 and the second equality follows from Proposition
2.1. Thus (2.1) follows and the theorem is proven.

3. The proof of Theorem 1.4

In the course of the proof we shall need the following lemmata.

Lemma 3.1. ∥fg∥Cr ≤ 2r∥f∥Cr∥g∥Cr for every r ≥ 1 and f, g ∈ Cr.
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Proof : For r = 0 the statement is obvious. For r > 1

∥fg∥Cr = max
{
∥(fg)′∥Cr−1 , ∥fg∥∞

}
≤ max

{
2r−1

(
∥f ′∥Cr−1∥g∥Cr−1 + ∥f∥Cr−1∥g′∥Cr−1

)
, ∥f∥∞∥g∥∞

}
.

The assertion follows since all the norms ∥f∥∞, ∥f∥Cr−1 , ∥f ′∥Cr are bounded by ∥f∥Cr and the
same is true for g. □

Lemma 3.2. Let α be Diophantine of type (c, τ), m0 the lowest integer with m0 > τ +1. For every
r ≥ 0 there exists a constant Ar such that for every ψ ∈ Cr+m0(T) with

∫
T ψ(x)dx = 0 the solution

φ of the cohomological equation φ(x+ α)− φ(x) = ψ(x), x ∈ T, is Cr and ∥φ∥Cr ≤ Ar∥ψ∥Cr+m0 .

Proof : It su�ces to write down the formal solution φ in terms of Fourier series and use the estimates
on the Cr norms, see e.g de la Llave (2001), the top of p.26. □

Proof : I. Symmetric case
By Lemma 3.2 under the above assumptions the cohomological equation

p(x)

q(x)
=
g(x+ α)

g(x)

possesses a positive solution g ∈ Cr+2m0(T). Then g(x)
q(x) is the unique invariant density up to a

multiplication by a constant (see Sinai (1999)). Since ν(ψ) = 0 we have∫
T
ψ(x)

g(x)

q(x)
dx = 0,

and therefore Lemma 3.2 implies the equation f(x+α)−f(x) = g(x)ψ(x)/q(x) has a Cr+m0 solution
f . Since g > 0, this solution can be written as f(x) = g(x)η(x) for some η ∈ Cr+m0(T). Thus η
satis�es

g(x+ α)η(x+ α)− g(x)η(x) =
g(x)ψ(x)

q(x)
.

Since for any η and any c ∈ R the function η(x)+ c
g(x) is a C

r+m0 solution of the above equation as

well, η can be chosen so that
∫
T η(x)dx = 0. By Lemmata 3.2 and 3.1

∥η∥Cr+m0 =

∥∥∥∥gη · 1g
∥∥∥∥
Cr+m0

≤ 2r+m0

∥∥∥∥1g
∥∥∥∥
Cr+m0

· ∥gη∥Cr+m0

≤ 2r+m0

∥∥∥∥1g
∥∥∥∥
Cr+m0

Ar+m0

∥∥∥∥gψq
∥∥∥∥
Cr+2m0

≤ 22r+3m0Ar+m0

∥∥∥∥1g
∥∥∥∥
Cr+m0

∥∥∥∥gq
∥∥∥∥
Cr+2m0

∥ψ∥Cr+2m0 .

Now, let φ ∈ Cr be a solution of

φ(x)− φ(x− α) = η(x).

By Lemma 3.2 and the above estimates ∥φ∥Cr ≤ A∥ψ∥Cr+2m0 for some constant A independent of
the choice of ψ ∈ Cr+2m0 .
We claim that φ solves the Poisson equation. Indeed,

Tφ(x)− φ(x) = p(x)φ(x+ α) + q(x)φ(x− α)− φ(x)

= p(x)
[
φ(x+ α)− φ(x)

]
− q(x)

[
φ(x)− φ(x− α)

]
= q(x)

[
p(x)

q(x)

[
φ(x+ α)− φ(x)

]
−
[
φ(x)− φ(x− α)

]
= q(x)

(
g(x+ α)

g(x)
η(x+ α)− η(x)

)
=

q(x)

g(x)

(
g(x+ α)η(x+ α)− g(x)η(x)

)
= ψ(x).
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II. Asymmetric case Let λ = exp
∫
T log

p(x)
q(x)dx. Let us the assume λ > 1. In the asymmetric case

the invariant density (see Sinai (1999)) is η(x)g(x)
p(x) , where g solves

p(x)

q(x)
= λ

g(x)

g(x− α)
,

and η solves

λ−1η(x+ α)− η(x) =
1

g(x)
.

Observe both g, η are Cr+m0 and g is positive.

The function κ(x) =
∞∑
k=0

g(x− kα)ψ(x− kα)

p(x− kα)
λ−k solves the equation

λκ(x)− κ(x− α) =
λg(x)ψ(x)

p(x)
. (3.1)

It is clear that κ is Cr+m0 and ∥κ∥Cr+m0 ≤ Ã∥ψ∥Cr+m0 for some constant Ã independent of ψ ∈
Cr+m0 . Observe

∫
T

κ(x)
g(x)dx = 0. Indeed, by the de�nition of η we have∫

T

κ(x)

g(x)
dx =

∫
T
κ(x)η(x+ α)λ−1dx−

∫
T
κ(x)η(x)dx

=
∞∑
k=0

∫
T

g(x− kα)ψ(x− kα)

p(x− kα)
λ−(k+1)η(x+ α)dx−

∞∑
k=0

∫
T

g(x− kα)ψ(x− kα)

p(x− kα)
λ−kη(x)dx.

Since the Lebesgue measure is rotation invariant we get∫
T

κ(x)

g(x)
dx =

∞∑
k=1

∫
T

g(x− kα)ψ(x− kα)

p(x− kα)
λ−kη(x)dx−

∞∑
k=0

∫
T

g(x− kα)ψ(x− kα)

p(x− kα)
λ−kη(x)dx

= −
∫
T

g(x)η(x)

p(x)
ψ(x)dx = 0,

where the last step follows from the assumption that ψ is centered. Since
∫
T

κ(x)
g(x)dx = 0 there exists

φ ∈ Cr(T) with

φ(x+ α)− φ(x) = κ(x)/g(x).

For the same reasons as in the symmetric case and the estimates on the norm of κ, ∥φ∥Cr ≤
A∥ψ∥Cr+m0 for some A independent of ψ ∈ Cr+m0 .
We claim that φ solves the Poisson equation. Indeed,

Tφ(x)− φ(x) = q(x)

[
p(x)

q(x)
(φ(x+ α)− φ(x))− (φ(x)− φ(x− α))

]

=
q(x)

g(x− α)

[
λg(x)

κ(x)

g(x)
− g(x− α)

κ(x− α)

g(x− α)

]
=

q(x)

g(x− α)

(
λκ(x)− κ(x− α)

)
= ψ(x). □
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4. The proof of Theorem 1.6

The proof below is for the symmetric case. The asymmetric case is an obvious modi�cation.
Fix x ∈ T and let T̃ = T 2 be the transition operator of (1.3) restricted to even times. It is clear

from the proof of Theorem 1.1 applied to the process associated to T̃ that the assertion follows if the
left-hand side of (2.1) with T replaced by T̃ decays faster than A∥ψ∥Crn−k/2 lnn for some constant
A independent of ψ. Recall that W ∈ Sn(x) is a segment of an accelerated walk and tW is the
time it takes the walker to traverse W . As explained before tW is a sum of random variables with
geometric distributions and parameters uniformly separated from 0 and 1. Fix n large and de�ne
inductively δ0j = P(tW = n− j), j = 0, 1, . . . , n−1 and δmj = δm−1

j−1 − δm−1
j , j = m,m+1, · · · , n−1,

m = 1, . . . , n− 2.
Let k = 1 and r = 6km0. By Theorem 1.4 there exists Ã such that for each ψ ∈ Cr(T) there

exists φ ∈ Cr−6m0(T) with
T̃φ− φ = T 2φ− φ = ψ (4.1)

and ∥φ∥Cr−6m0 ≤ Ã∥ψ∥Cr . Indeed, if ϕ̂ solves T ϕ̂−ϕ̂ = ψ then the solution of Tφ−φ = ϕ̂ solves also
(4.1). The solution φ clearly satis�es T̃ jψ = T̃ j+1φ − T̃ jφ for every j ≥ 0. Using Proposition A.2
from the appendix and the bound ∥T̃ jφ∥∞ ≤ ∥φ∥Cr−6m0 ≤ Ã∥ψ∥Cr we can estimate the left-hand
side of (2.1) as follows:

n−1∑
j=0

PW (tW = n− j)T̃ jψ(e(W )) =
n−1∑
j=0

PW (tW = n− j)
(
T̃ j+1φ(e(W ))− T̃ jφ(e(W ))

)

= T̃nφ(e(W ))PW (tW = 1)− φ(e(W ))PW (tW = n) +
n−1∑
j=1

T̃ jφ(e(W ))δ1j (4.2)

=
∑

{j:|n−j−ε0n/2|<
√
n lnn}

T̃ jφ(e(W ))δ1j + ∥ψ∥CrO(exp(−c(lnn)2)).

The second term decays faster than polynomially. By Proposition A.1 from the appendix, the �rst
term is bounded by∣∣∣∣ ∑

{j:|n−j−ε0n/2|<
√
n lnn}

T̃ jφ(e(W ))δ1j

∣∣∣∣ ≤ 2Ã
√
n lnn∥ψ∥Cr max

j
δ1j = O(n−1/2 lnn)∥ψ∥Cr ,

which gives the assertion for k = 1.
To show the assertion for k = 2 we again use Theorem 1.4 to �nd a function φ̃ such that

T̃ φ̃ − φ̃ = φ and ∥φ̃∥Cr−12m0 ≤ Ã2∥ψ∥Cr (it is possible since r = 12m0 by the assumption). Then
the second line of (4.2) (and thus (2.1)) can be rewritten as

T̃nφ(e(W ))PW (tW = 1)− φ(e(W ))PW (tW = n) +
n−1∑
j=1

T̃ jφ(e(W ))δ1j

= T̃nφ(e(W ))PW (tW = 1)− φ(e(W ))PW (tW = n) +

n−1∑
j=1

(
T̃ j+1φ̃(e(W ))− T̃ jφ̃(e(W ))

)
δ1j

= T̃nφ(e(W ))PW (tW = 1)− φ(e(W ))PW (tW = n)

+T̃nφ̃(e(W ))δ1n−1 − T̃ φ̃(e(W ))δ11 +
n−1∑
j=2

T̃ jφ̃(e(W ))δ2j .
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By exactly the same argument like for k = 1 the above expression equals∑
{j:|n−j−ε0n/2|<

√
n lnn}

T̃ jφ(e(W ))δ2j + ∥ψ∥CrO(exp(−c(lnn)2))),

where the �rst term can be bounded by Proposition A.1 as∣∣∣∣ ∑
{j:|n−j−ε0n/2|<

√
n lnn}

T̃ jφ(e(W ))δ2j

∣∣∣∣ ≤ 2
√
n lnn∥ψ∥Cr max

j
δ2j = O(n−1 lnn)∥ψ∥Cr .

This completes the proof for k = 2.
The claim for k > 2 is obtained in exactly the same way by repeatedly solving the Poisson

equation and using higher order Abel summation.

5. Slow mixing.

Here we prove Theorem 1.7.

Denote by G+
q the set of points in T whose distance to the set

{
0,

1

q
, · · · , q − 1

q

}
is less than

1

16q

and let G−
q = G+

q +
1

2q
. We shall need the following lemma.

Lemma 5.1. If α ∈ R, p, q ∈ Z, γ ≥ 2 satisfy |qα− p|< 1

16qγ
then Ex cos(2πqXq̃)>

√
2
2 for x ∈ G+

q ,

where q̃ = ⌊qγ−1⌋. Likewise Ex cos(2πqXq̃)<−
√
2
2 for x ∈ G−

q .

Proof : Fix p, q, γ, α as in the statement. Clearly Xq̃ started at x ∈ T can attain with positive
probability only those points x + nα with |n| ≤ q̃. If x ∈ G+

q , then the distance of x + nα with
|n| ≤ q̃ to the set {0, 1/q, · · · , (q − 1)/q} is less than 1

16q + qγ−1 · 1
16qγ <

1
8q . Since cos(2πqx) is 1/q

periodic we get cos(2πqXq̃) > cos(π/4) =
√
2
2 a.s., which implies the �rst assertion, the second is

similar. □

Proof of Theorem 1.7: We are going to construct inductively a sequence (φn) of functions of the

form an cos(2πqnx) in such a way that the sum φ =
∞∑
n=1

φn satis�es the assertion.

By the assumptions for any γ ≥ 2 there exists in�nitely many p, q's such that

|qα− p| < 1

16qγ
. (5.1)

Let p1, q1 be an arbitrary pair satisfying (5.1) with γ = 2. Let q̃1 = ⌊qγ−1
1 ⌋, φ1(x) = q−

√
2

1 cos(2πq1x).

By Lemma 5.1 either ν(φ1) ≤ 0 and Exφ1(Xq̃1)− ν(φ1) >

√
2

2
q−

√
2

1 for every x ∈ G+
q1 or ν(φ1) ≥ 0

and
∣∣Exφ1(Xq̃1)− ν(φ1)

∣∣ > √
2

2
q−

√
2

1 for every x ∈ G−
q1 .

Assume φ1, · · · , φn−1 are already de�ned, n ≥ 1. Let pn, qn be such that (5.1) is satis�ed for
γ = n + 1, and put φ̂n(x) = q−

√
n+1

n cos(2πqnx), q̃n = ⌊qnn⌋. We impose additional condition that

qn is so large that q−
√
n+1

n < 0.001q
−
√
n

n−1 .

To �x the notation consider the case where ν(φ̂n) ≥ 0. Then for all x ∈ G−
qn we have

∣∣Ex(φ̂n(Xq̃n))− ν(φ̂)
∣∣ ≥√

2

2
q−

√
n+1

n .

Denote ψn =

n∑
j=1

φj(x). Let Hn = {x ∈ G−
qn : Ex(ψn−1(Xq̃n)) ≥ ν(ψn−1) +

√
2
4 q

−
√
n+1

n }.
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If Leb(Hn) ≥ Leb(G−
qn)/2 then we set φn = 0 and Gn = Hn. If Leb(Hn) < Leb(G−

qn)/2 then we
set φn = φ̂n and Gn = G−

qn \Hn. In either case, by Lemma 5.1 on Gn we have∣∣Ex(ψn(Xq̃n))− ν(ψn)
∣∣ ≥ √

2

4
q−

√
n+1

n =

√
2

4
q̃

−
√
n+1
n

n . (5.2)

If ν(φ̂n) < 0 then we proceed as above but will use G+
qn instead of G−

qn to ensure (5.2).

Put φ =
∞∑
n=1

φn. Since
∞∑
n=1

φ(j)
n converges uniformly for each j the function φ is C∞.

Let G = lim supGn. Since the Lebesgue measure of Gn is uniformly bounded from below, G is
necessarily of positive measure. Fix x ∈ G. Then for in�nitely many n's we have

∣∣Exφ(Xq̃n)− ν(φ)
∣∣ ≥ ∣∣Exψn(Xq̃n)− ν(ψn)

∣∣−
∣∣∣∣∣∣
∑
j>n

Ex(φj(Xq̃n)− ν(φj)

∣∣∣∣∣∣
The last term is at most 0.003q−

√
n+1

n due to our choice of n while the �rst term is at least
√
2
4 q

−
√
n+1

n

by (5.2). It follows that for in�nitely many n∣∣Exφ(Xq̃n)− ν(φ)
∣∣ ≥ 0.3q−

√
n

n = 0.3q̃
−

√
n+1
n

n .

Since
√
n+1
n tends to 0 as n → ∞ and the above inequality holds for in�nitely many n's by the

de�nition of G, Exφ(Xn)− ν(φ) decays slower than polynomially. □

Appendix A. Sums of geometric random variables.

Proposition A.1. Let (ℓj)j≥1 be a sequence of independent random variables with geometric dis-
tributions with parameters pj. Let us assume there exists ε0 > 0 such that ε0 < pj < 1− ε0, j ≥ 1.
Denote Sn = ℓ1+ · · ·+ ℓn and de�ne δ0,n(j) = P(Sn = j), δm,n = ∇mδ0,n where the operator ∇ acts

on sequences by (∇a)(j) = a(j + 1)− a(j). Then sup
j

|δm,n(j)| ≤ Cmn
−(m+1)/2.

Proof : Let ϕk(t) denote the characteristic function of ℓk−E(ℓk) and Φn(t)=
n∏

k=1

ϕk(t) be the charac-

teristic function of Sn − E(Sn). Then P(Sn=j)=
1

2π

∫ π

−π
Φn(t)e

it(j+E(Sn))dt. So

δm,n(j) =
1

2π

∫ π

−π
Φn(t)e

it(j+E(Sn))
(
eit − 1

)m
dt.

Therefore

sup
j

|δm,n(j)| =
1

2π

∫ π

−π
|Φn(t)|

∣∣eit − 1
∣∣m dt ≤ C

∫ π

−π
|Φn(t)||t|mdt. (A.1)

We claim that given ε0 as in the assumption of the proposition there are constants δ, κ > 0, and
θ < 1 such that

|ϕk(t)| ≤ e−κt2 for |t| ≤ δ, (A.2)

and
|ϕk(t)| ≤ θ for δ ≤ |t| ≤ π. (A.3)

To check (A.2), note that the Taylor series of ϕk(t) takes form

ϕk(t) = 1−
Var(ℓ2kt

2)

2
+ εk(t)t

3 where |εk(t)| ≤ CE(ℓ3k)

for some constant C independent of k since under the assumptions of the proposition Var(ℓk)
is uniformly bounded from below while E(ℓ3k) is uniformly bounded from above. Hence if δ is
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su�ciently small, then for |t|≤δ we have that |ϕk(t)|≤1− κt2≤e−κt2 where κ = inf
k

Var(ℓk)

4
and the

last inequality relies on the fact that 1− s ≤ e−s for s ≥ 0.
(A.3) holds because for δ ≤ |t| ≤ π

|ϕk(t)| =
∣∣∣∣ pk
1− qkeit

∣∣∣∣ = pk√
p2k + 2qk(1− cos t)

≤ 1√
1 + 2η(1− cos δ)

.

Multiplying the above estimates we obtain that |Φn(t)| ≤

{
e−κnt2 , |t| < δ

θn, δ ≤ |t| ≤ π.
. Plugging this

into (A.1) we obtain

sup
j

|δm,n(j)| ≤ C

[
θn +

∫ δ

−δ
e−κnt2tmdt

]
.

The second term in the RHS is smaller than C
∫ ∞

−∞
e−κnt2tmdt = O

(
n−(m+1)/2

)
as claimed. □

Proposition A.2. Let (ℓj)j≥1 be a sequence of independent random variables with geometric dis-
tributions with parameters pj Assume that there exists ε0 > 0 such that ε0 < pj < 1 − ε0, j ≥ 0.
Denote Sn = ℓ1 + · · ·+ ℓn and for each n set

τ = min

{
k ≥ 1 :

k∑
j=1

1

pj
> n/2

}
.

Then there exists a constant c > 0 such that

P
(∣∣Sτ − n/2

∣∣ > √
n lnn

)
= O(exp(−c(lnn)2)).

Proof : Since the parameters pk are bounded away from 0 and 1,
n

2
< τ <

n

2
+O(1).

It therefore su�ces to show that for each N

P
(∣∣SN − ESN

∣∣ > √
N lnN

)
= O(exp(−c(lnN)2)).

To this end let ψk(t) denote the moment generating function of ℓk − E(ℓk) and Ψn(t) =

n∏
k=1

ψk(t)

be the moment generating function of Sn − E(Sn). Then similarly to the proof of (A.2) we obtain
that for |t| < δ where δ is su�ciently small, we have ψk(t) ≤ eκt

2
and so ΨN (t) ≤ eNκt2 . Thus for

any such 0 < t < δ

P
(
SN − ESN >

√
N lnN

)
≤ exp

[
κNt2 − t

√
N lnN

]
.

Choosing t = lnN/(2κ
√
N) get that P

(
SN −ESN >

√
N lnN

)
= O(exp(−c(lnN)2)). The estimate

P
(
SN − ESN < −

√
N lnN

)
= O(exp(−c(lnN)2)) is similar, using

t = − lnN/(2κ
√
N). □
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