FALL SEMESTER 2004
STAT 600 -- Introduction to Probability Theory
HOMEWORK ASSIGNMENTS.

Text Patrick Billingsley, Probability and Measure

Mar. 8
Section Problems Due
2. Probability measures 2.3, 2.4 , 2.6, 2.15, 2.17, 2.19 Sept. 7
2. Probability measures 2.14, 2.20 Sept. 12
3. Existence and extension 3.11 Sept. 12
4. Denumerable Probabilities 4.1, 4.3, 4.4, 4.7, 4.11(a,e) Sept. 19
5. Simple Random Variables 5.1, 5.17(a) Sept. 19
5. Simple Random Variables 5.5(a), 5.12, 5.17(b) Sept. 26
6. The law of large numbers 6.11, 6.13 Sept. 26
10. General measures 10.2, 10.3, 10.4 Oct. 3
11. Uniqueness and Extension 11.2(b) Oct. 3
12 Measures in Euclidean space 12.1 Oct. 17
13 Measurable Functions and Mappings 13.1, 13.8, 13.17 Oct. 17
14 Distribution functions 14.3(a), 14.5, 14.8 Oct. 24
15 The integral 15.2 Oct. 31
16 Properties of the integral 16.1(a), 16.3, 16.4(a) Oct. 31
16 Properties of the integral 16.8, 16.9 Nov. 7
18 Product measure and Fubini Theorem 18.1, 18.6, 18.14 Nov. 14
20 Random variables and distribution functions 20.5, 20.6, 20.8 Nov. 21
20 Random variables and distribution functions 20.9, 20.12, 20.13, 20.15, 20.20 Nov. 30
21 Expected values 21.9, 21.21 Dec. 5
22 Sums of independent random varaibles 22.15, S1, S2. Feb. 1
9 Large Deviations and The law of iterated logarithm 9.4, 9.5, S3, S4, S5. Feb. 8
23 Poisson process 23.1, 23.3, 23.5, 23.6, 23.12 Feb. 15
25 Weak Convergence 25.4, 25.6, 25.7, 25.17 Feb. 22
26 Charactersitic functions 26.1, 26.2, 26.6, 26.10, 26.12 Mar. 1
27 Central Limit Theorem 27.3, 27.4, 27.6 27.10, 27.14
28 Infinitely Divisible distributions 28.1, 28.3 Mar. 29
29 Limit Theorems in higher dimensions 29.2 (a)-(c), 29.3(b) 29.6 Mar. 29
30 Method of moments 30.3, 30.4. 30.5 (a), 30.7 Apr. 7
32 Radon-Nikodym Theorem 32.5, 32.6, 32.9, 32. 10 Apr. 12
33 Conditional Probability 33.7, 33.13, S6, S7 Apr. 19
34 Conditional Expectation 34.2 34.10, S6, S7 May 3
35 Martingales 35.2, 35.6, 35.7 May 3
Sx refer to Supplimentary problems