
Final Topics.

1. Generating functions.

Local Limit Theorem.
Sn = X1 + X2 + . . . Xn where Xj are iid, Xj ∼ X, EX = 0, V X = σ2. Let

φ(x) =
1√
2πσ

exp
(
− z2

2σ2

)
.

Theorem. (Lattice LLT) If X has lattice distribution with span h, so that
X ∈ b + hZ then for any xn ∈ bn + hZ such that xn/sqrtn → z we have

√
nP (Sn = xn)

h
→ Φ(z).

Theorem. (Non-lattice LLT) If X has non-lattice distribution then for any
xn ∈ bn + hZ such that xn/sqrtn → z for any a, b we have

√
nP (Sn ∈ (xn + a, xn)

h
→ (b− a)Φ(z).

Recurrence of Random walks.
Therem. Let Sn = X1+X2 . . . Xn where Xj are iid and Xj ∼ X and E|X| < ∞.
(a) Suppose thar X is integer valued and considered as a Markov process on Z,

Sn is irreducible and aperiodic. Then Sn is recurrent if and only if EX = 0.
(b) Suppose that X is non lattice, then the following conditions are equivalent.
(i) EX = 0.
(ii) For any interval I, Sn visits I infinitely many times.
Branching processes.

Zn+1 =
Zn∑
j=1

Xjn,

where Z0 = 1, Xj are iid, Xj ∼ X, VarX > 0. Let p be the extinction probability

p = lim
n→∞

P (Zn) = 0.

Theorem. If EX ≤ 1 then p = 1. If EX > 1 then p is the smallest root of
p = GX(p) where GX(s) is the generating function of X.

2. Markov chains.

n-step transition probabilities.
P (n) = Pn. P (n + 1) = PP (n) = P (n)P. π(n) = π(0)Pn.
Classification of states.
Theorem. (a) j is transient iff

∑
n pjj(n) < ∞.

(b) j is not positively recurrent iff pjj(n) → 0.
(c) If j is transient then P (X returns j n times|X0 = j) = pn(1− p).
Classification of chains.
Theorem. (a) If i ↔ j then i and j have the same period.
(b) If i ↔ j then i and j are of the same type.
(c) If i → j and j is transient then i is transient.
(d) If i → j and i is recurrent then j → i.
Decomposition Theorem. S = T

⋃
C1

⋃
C2 · · ·

⋃
Cn . . . where T consists of

transient states and Cj are closed recurrent subchains.
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Cj =
⋃nj

l=1 Cjl where X0 ∈ Cjl ⇒ Xn ∈ Cj;(l+n) mod nj
and Xnjk restricted to

Cjl is irreducible and aperiodic.
Stationary distribution and limit theorems.
Theorem An irreducible chain has a stationary distribution iff it is positively

recurrent. In this case πj = µ−1
j where µj is the mean recurrence time.

Theorem (a) An irredicible chain is positively recurrent iff there exists positive
summable solution to the equation x = xP.

(b) Let s be an element of an irreducible chain. The chain is transient iff there
exists a non-zero solution yj satisfying |yj | ≤ 1 to the equation

yi =
∑
j 6=s

pijyj .

Theorem. (a) If the chain is irreducible an aperiodic then pij(n) → µ−1
j (where

∞−1 = 0).
(b) For an arbitrary irreducible chain

1
N

N∑
n=1

pij(n) → µ−1
j .

Chains with finitely many states.
Theorem. (a) In a finite chain j every recurrent state is positively recurrent.
(b) j is positively recurrent iff j → i implies i → j.
Theorem. In a finite irreducible aperiodic chain there exist constants C > 0

and θ < 1 such that |pij(n)− πj | ≤ Cθn.
Poisson process.
Poisson process with intensity λ :
Sn =

∑n
j=1 Xj where Xj are iid, Xj ∼Exp(λ). N(t) = max(n : Sn ≤ t).

N(t)-Poisson(λ) iff N(0) = 0 N has independent increments and

P (N(t + h)−N(t) = k) =


1− λh + o(h) if k = 0
λh + o(h) if k = 1
o(h) if k > 1

.

Let (X, µ) be a measure space. A point X-valued process is Poisson process with
intensity measure µ if letting N(A) to denote the number of points in A we have

(i) N(A) has Poisson(µ(A)) distribution.
(ii) If A1, A2 . . . An are disjoint then N(A1), N(A2) . . . N(An) are independent.
Theorem (a) If {xj} is a Poisson process on X with intensity µ and f : X → Y

is a measurable map then {f(xj)} is a Poisson process on Y with intensity ν(B) =
µ(f−1B).

(b) If N1 and N2 are independent Poisson processes with intensities µ1 and µ2

then N = N1 + N2 is a Poisson process with intensity µ = µ1 + µ2.
(c) If N is a Poisson process with intensity µ and we discard the point x with

probability p(x) then the remaining points form Poisson process with intensity ν
where

ν(A) =
∫

A

p(x)dµ(x).

Campbell-Hardy Theorem. Let {xj} be a Poisson process of R with intensity
λ Let Wj be iid random variables independent of the Poisson process and r be a
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smooth function. Let
G(t) =

∑
xj>0

r(t− xj)Wj .

Then

E (exp(iθG(t))) = exp
(

λ

∫ t

0

eiθr(s)W ds

)
.

Birth and death chain.
Let pn(n+1) = pn, pn(n−1) = qn and pnj = 0 for j 6= n± 1.

Theorem. Let ξn = p0p1...pn−1
q1q2...qn

. The process is positively recurrent iff S =∑
n ξn < ∞. In this case πj = ξj/S.
Theorem. Let ηj = q1q2...qj

p1p2...pj
. The process is recurrent if

∑∞
j=0 ηj = ∞.

Continuous time chains.
Forward equation P ′ = PG.
Backward equation P ′ = GP.
Transition probabilities and the generator P (t) = exp(tG).
Stationary distribution πG = 0.
Theorem. Suppose that pij(t) → δij as t → 0 and that the chain is irreducible.
(a) If there exist stationary distribution then pij(t) → πj as t →∞.
(b) If there is no stationary distribution then pij(t) → 0 as t →∞.
Theorem. Suppose that either |gii| are uniformly bounded or for each i there

are only finitely many j such that gij 6= 0. Then
(a) The holding time at state i has Exp(−gii) distribution.
(b) The probability that the first jump from state i is to state j equals gij/|gii|.

3. Stationary processes.

Linear prediction.
Theorem. Let Xn be a real stationary sequence with zero mean and covariance

c(m). Then the best linear predictor of Xr+k based on Xr, Xr−1 . . . Xr−s takes form

X̂r+k =
s∑

j=0

ajXr−j

where
s∑

j=0

ajc(|m− j|) = c(k + m) for m = 0, 1 . . . s.

Spectral Density.
Continuous time Bochner Theorem. The following are equivalent
(a) c(t) is a covariance function of a weakly stationary process;
(b) For any real t1, t2 . . . tn and z1, z2 . . . zn∑

jk

c(tj − tk)zj z̄k ≥ 0.

(c) There exists a measure µ on R such that

c(t) =
∫ ∞

−∞
eitλdµ(λ).

Discrete time Bochner Theorem. The following are equivalent
(a) c(n) is a covariance function of a weakly stationary process;
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(b) For any real m1,m2 . . .mn and z1, z2 . . . zn∑
jk

c(mj −mk)zj z̄k ≥ 0.

(c) There exists a measure µ on (−π, π] such that

c(t) =
∫ π

−π

eitλdµ(λ).

Ergodic Theorem.
Ergodic Theorem for stationary sequences. If Xn is a weakly stationary

sequence then there exists a mean square limit

X̄ =
1
N

N

lim
n=1

Xn.

If Xn is strongly stationary then also Xn → X̄ with probability 1.
If the spectral measure satisfies µ({0}) = 0 then X̄ = EX.
Ergodic Theorem for measure preserving transformations. Let T be a

transformation of space Ω preserving a probability measure µ. Let f be a square
integrable observable. Then there exists a square integrable observable f̄(ω) such
that

1
N

N∑
n=1

f(Tnω)

converges to f̄(ω) in mean squares and with probability 1.
If any T -invariant set A has measure either 0 or 1 then f̄(ω) = Ef.

4. Renewal Theory.

Sn = X1 + X2 · · ·+ Xn

where Xn are positive iid with distribution F. Let µ = EX, N(t) = max(n : Sn ≤ t),
m(t) = E(N(t)), Fk = F ∗ FḞ (k times).

m(t) =
∞∑

k=1

Fk(t).

Renewal equation.

µ = H + µ ∗ F ⇒ µ = H + H ∗m.

Limit Theorems for the renewal process.
Theorem. (a) N(t)/t → 1

µ almost surely.
(b) If σ2 = V ar(X) satisfies 0 < σ2 < ∞ then

N(t)− t/µ√
tσ2/µ3

⇒ N (0, 1).

Renewal Theorems.
Discrete Renewal Theorem. If X is integer valued and has span 1 then

P (∃n : Sn = m) → 1
µ

as m →∞.
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Renewal Theorem. (a) m(t)/t → 1
µ .

(b) If X is non-lattice then for any positive integrable non-increasing function g

g ∗m → 1
µ

∫ ∞

0

g(s)ds.

(c) If V (X) = σ2 < ∞ then

lim
t→∞

(
m(t)− t

µ

)
=

σ2 − µ2

2µ2
.

5. Queues.

Let ρ = ES/EX and Un = Sn − Xn+1. Let Wn be the waiting time of n-th
customer.

Theorem. (a) If ρ ≥ 1 then P (Wn < z) → 0 as n →∞.
(b) If ρ < 1 then as n →∞ Wn converges in distribution to

max
m≥0

m∑
j=1

Uj .

6. Optimal Sampling.

Wald’s equation. If Xj are iid and M is a stopping time then

E

(
M∑

n=1

Xj

)
= EXEM.

Martingale Sampling. If (Yn, Fn) is a martingale and T is a stopping time
such that

(a) P (T < ∞) = 1;
(b) P (|YT |) < ∞;
(c) E(Yn1n>T ) → 0 as n →∞ then
E(YT |F0) = Y0.

7. Diffusion processes.

Maximum of Brownian Motion. Let W (t) be a Brownian Motion with zero
drift and variance t. Let M(t) =

∑
s∈[0,t] W (s), τ(x) = min(t : W (t) = x). Then

for x > 0

P (M(t) > x) = P (τ(x) < t) =
1
2
P (W (t) > x).

Arc Sine Law.

P (W (t) has no zeros on [t0, t1]) =
2
π

sin−1
(√

t0/t1

)
.

Diffusions.
Let X(t) be a diffusion process with drift a(t, x) and diffusion coefficient b(t, x).

Let p((s, x) → (t, y)) be transition density of X(t).
Forward equation.

∂p

∂t
= − ∂

∂y
[a(t, y)p(t, y)] + +

1
2

∂2

∂y2
[b(t, y)p(t, y)] .
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Backward equation.

∂p

∂s
= −a(s, x)

∂p

∂x
− b(s, x)

2
∂2p

∂y2
.

Suppose that a and b do not depend on time
Invariant density.

∂

∂y
[a(t, y)p(t, y)] =

1
2

∂2

∂y2
[b(t, y)p(t, y)] .

Generator. If f(t, x) is twice differentiable and the derivatives are bounded
then

lim
h→0

E(t,x)f(t + h, Xt+h)− f(t, x)
h

=
∂f

∂t
(t, x) + a(x)

∂f

∂x
(t, x) +

b(x)
2

∂2f

Px2
(t, x).

Martingales. f(t, Xt) is a martingale iff

∂f

∂t
(t, x) + a(x)

∂f

∂x
(t, x) +

b(x)
2

∂2f

Px2
(t, x) = 0


