Final Topics.

1. GENERATING FUNCTIONS.

LocAL LiMiT THEOREM.
Sp = X1+ Xy +...X,, where X areiid, X; ~ X, EX =0, VX = 2. Let

1 22
P(z) = 727ro exp (‘W) .
Theorem. (Lattice LLT) If X has lattice distribution with span h, so that
X € b+ hZ then for any z,, € bn + hZ such that x,,/sqrtn — z we have

VnP(S, = x,)
h
Theorem. (Non-lattice LLT) If X has non-lattice distribution then for any
Zpn € bn + hZ such that x,, /sqrtn — z for any a,b we have

VnP(S, € (x, + a,x,)

h —
RECURRENCE OF RANDOM WALKS.
Therem. Let S,, = X1+X5...X,, where X, areiid and X; ~ X and E|X| < cc.
(a) Suppose thar X is integer valued and considered as a Markov process on Z,

Sy, is irreducible and aperiodic. Then S, is recurrent if and only if EX = 0.

(b) Suppose that X is non lattice, then the following conditions are equivalent.
(i) EX = 0.
(ii) For any interval I, S,, visits I infinitely many times.
BRANCHING PROCESSES.

Zn+1 = Z Xjna

where Zy = 1, X; are iid, X; ~ X, VarX > 0. Let p be the extinction probability
p= lim P(Z,)=0.

n—oo

— ®(2).

(b—a)®(2).

Theorem. If FX < 1 then p = 1. If EX > 1 then p is the smallest root of
p = Gx(p) where Gx(s) is the generating function of X.

2. MARKOV CHAINS.

n-STEP TRANSITION PROBABILITIES.

P(n)=P". P(n+1) = PP(n) = P(n)P. 7(n) = = (0)P™.

CLASSIFICATION OF STATES.

Theorem. (a) j is transient iff Y~ p;;(n) < oo.

(b) j is not positively recurrent iff p;;(n) — 0.

(c) If j is transient then P(X returns j n times| Xy = j) = p"(1 — p).

CLASSIFICATION OF CHAINS.

Theorem. (a) If i <> j then ¢ and j have the same period.

(b) If i <> j then ¢ and j are of the same type.

(c¢) If i — j and j is transient then ¢ is transient.

(d) If i — j and 4 is recurrent then j — 1.

Decomposition Theorem. S =TJC; JC2---|JC, ... where T consists of
transient states and C; are closed recurrent subchains.
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Cj = U2, Cji where X € Cji = Xy € Cji(14n) mod n; and X, i restricted to
Cjy is irreducible and aperiodic.

STATIONARY DISTRIBUTION AND LIMIT THEOREMS.

Theorem An irreducible chain has a stationary distribution iff it is positively
recurrent. In this case m; = ,uj_l where p; is the mean recurrence time.

Theorem (a) An irredicible chain is positively recurrent iff there exists positive
summable solution to the equation x = zP.

(b) Let s be an element of an irreducible chain. The chain is transient iff there
exists a non-zero solution y; satisfying |y;| < 1 to the equation

Yi = Zpijyj-

is

Theorem. (a) If the chain is irreducible an aperiodic then p;;(n) — u;l (where
o~ =0).
(b) For an arbitrary irreducible chain

1 N
N 2 pu(n) = g
n=1

CHAINS WITH FINITELY MANY STATES.

Theorem. (a) In a finite chain j every recurrent state is positively recurrent.

(b) j is positively recurrent iff j — ¢ implies i — j.

Theorem. In a finite irreducible aperiodic chain there exist constants C' > 0
and 6 < 1 such that |p;;(n) —m;| < CH".

POISSON PROCESS.

Poisson process with intensity A :

Sn =>4, X; where X are iid, X; ~Exp(\). N(t) = max(n : S, <1).

N(t)-Poisson()) iff N(0) = 0 N has independent increments and

1— Mi+o(h) ifk=0
P(N(t+h) — N(t) =k) =< A+ o(h) ifk=1.
o(h) ifk>1

Let (X, ) be a measure space. A point X-valued process is Poisson process with
intensity measure p if letting N(A) to denote the number of points in A we have

(i) N(A) has Poisson(u(A)) distribution.

(ii) If Ay, A ... A,, are disjoint then N (A1), N(A3)...N(A,) are independent.

Theorem (a) If {z;} is a Poisson process on X with intensity pand f: X — Y
is a measurable map then {f(x;)} is a Poisson process on Y with intensity v(B) =
u(f~'B).

(b) If Ny and N» are independent Poisson processes with intensities pq and po
then N = N; + N5 is a Poisson process with intensity pu = pu1 + po.

(c¢) If N is a Poisson process with intensity p and we discard the point z with
probability p(z) then the remaining points form Poisson process with intensity v
where

v(4) = [ pla)duta)

Campbell-Hardy Theorem. Let {z;} be a Poisson process of R with intensity
A Let W; be iid random variables independent of the Poisson process and r be a



smooth function. Let
G(t)= Y r(t—az;)W;.
x;>0

Then .
E (exp(i0G(t))) = exp ()\/ 6’%(5)st> .
0

BIRTH AND DEATH CHAIN.

Let Pn(n+1) = Pny Pn(n—1) = A4n and Pnj = 0 for J 7é n =+ 1.

Theorem. Let &, = %. The process is positively recurrent iff S =
> &n < 00. In this case m; = &;/S.

Theorem. Let 7; = %. The process is recurrent if Y7 ;7; = oo.

CONTINUOUS TIME CHAINS.

Forward equation P’ = PG.

Backward equation P’ = GP.

Transition probabilities and the generator P(t) = exp(tG).

Stationary distribution 7G = 0.

Theorem. Suppose that p;;(t) — 6;; as t — 0 and that the chain is irreducible.

(a) If there exist stationary distribution then p;;(t) — m; as t — oo.

(b) If there is no stationary distribution then p;;(t) — 0 as t — oc.

Theorem. Suppose that either |g;;| are uniformly bounded or for each i there
are only finitely many j such that g;; # 0. Then

(a) The holding time at state ¢ has Exp(—g;;) distribution.

(b) The probability that the first jump from state ¢ is to state j equals g;;/|gii-

3. STATIONARY PROCESSES.

LINEAR PREDICTION.
Theorem. Let X,, be a real stationary sequence with zero mean and covariance
¢(m). Then the best linear predictor of X,. 1, based on X, X,._1 ... X,._ takes form

s
Xr+k = § anr—j
Jj=0

where

Zajc(|mfj|) =c(k+m) form=0,1...s.
7=0

SPECTRAL DENSITY.

Continuous time Bochner Theorem. The following are equivalent
(a) ¢(t) is a covariance function of a weakly stationary process;

(b) For any real t1,ts...t, and z1,22...2,

> elt; = t)zizk > 0.
jk

(c) There exists a measure p on R such that
oft) = / ().

Discrete time Bochner Theorem. The following are equivalent
(a) ¢(n) is a covariance function of a weakly stationary process;



(b) For any real my, ma...my, and 21,22...2,
Zc(mj — mk)zjék > 0.
jk

(c) There exists a measure p on (—, w] such that

s
c(t) = / e du(N).
—T
ERGODIC THEOREM.

Ergodic Theorem for stationary sequences. If X, is a weakly stationary
sequence then there exists a mean square limit

- 1 N
X:N}Lliann.

If X,, is strongly stationary then also X,, — X with probability 1.

If the spectral measure satisfies ({0}) = 0 then X = FX.

Ergodic Theorem for measure preserving transformations. Let T be a
transformation of space () preserving a probability measure pu. Let f be a square
integrable observable. Then there exists a square integrable observable f(w) such
that

N
an::lf(T w)

converges to f(w) in mean squares and with probability 1. -
If any T-invariant set A has measure either 0 or 1 then f(w) = Ef.

4. RENEWAL THEORY.

Sn:X1+X2.+Xn
where X, are positive iid with distribution F. Let p = EX, N(t) = max(n : S, < t),
m(t) = E(N(t)), Fr = F « FF (k times).

m(t) =Y Fi(t).
k=1
RENEWAL EQUATION.

p=H+puxF=pu=H+ Hx*xm.
LiMIiT THEOREMS FOR THE RENEWAL PROCESS.
Theorem. (a) N(t)/t — %L almost surely.
(b) If 02 = Var(X) satisfies 0 < 0% < oo then

N(t)—t
M = ./\/‘(07 1).
Vio? u?
RENEWAL THEOREMS.

Discrete Renewal Theorem. If X is integer valued and has span 1 then

1
P(En:S,=m)— —
( ) .

as m — OoQ.



Renewal Theorem. (a) m(t)/t — i
(b) If X is non-lattice then for any positive integrable non-increasing function g

1 oo
g*m—>f/ g(s)ds.
K Jo
(c) If V(X) = 02 < oo then
2 _ 2
lim (m(t) - t) S

t—o0 M

5. QUEUES.

Let p = ES/EX and U,, = S,, — X;,+1. Let W, be the waiting time of n-th
customer.

Theorem. (a) If p > 1 then P(W,, < z) — 0 as n — oc.

(b) If p < 1 then as n — oo W,, converges in distribution to

max U;.
m>0 4
20—

6. OPTIMAL SAMPLING.

Wald’s equation. If X; are iid and M is a stopping time then

M
E <Z Xj> = EXEM.
n=1

Martingale Sampling. If (Y, F},) is a martingale and T is a stopping time
such that
(a) P(T < 0) =1,
(b) P(|Yr|) < oo;
(¢) E(Yolps1) — 0 as n — oo then
E(Yr|Fy) = Yo.

7. DIFFUSION PROCESSES.

Maximum of Brownian Motion. Let W (¢) be a Brownian Motion with zero
drift and variance t. Let M(t) = > .ci0q W(s), 7(x) = min(t : W(t) = z). Then
forx >0

P(M(t) > z) = P(r(z) < t) = %P(W(t) > 1).

Arc Sine Law.

2
P(W(t) has no zeros on [tg,t1]) = ;sirf1 (\/to/h) .

Diffusions.

Let X (¢) be a diffusion process with drift a(¢,z) and diffusion coefficient b(t, z).
Let p((s,z) — (t,y)) be transition density of X (¢).

Forward equation.

a9 16
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Backward equation.

Op dp  b(s,x) 0%p
%:—a(s,x)%— 5 0
Suppose that ¢ and b do not depend on time
Invariant density.

2

5y [atp(e)] = 5 2 bt )p(t.0)].

Generator. If f(¢,x) is twice differentiable and the derivatives are bounded
then

. Euuft+h Xewn) — f(t,z)  Of of b(z) O*f
i n = g (b Fal@)gta) + =75 (o).
Martingales. f(t, X;) is a martingale iff

of of b(z) 0*f _

E(tam) + a(fﬂ)%(t,m) + Tﬁ(tam) =0



