
STAT 650 Final.

(1) Consider the Markov chain on Z such that Xn+1−Xn = ±1 and
if Xn 6= 0 then Xn+1 moves towards 0 with probability 2/3 and away
from 0 with probability 1/3. Suppose that P (Xn+1 = 1|Xn = 0) = 3/4
and P (Xn+1 = −1|X0 = 0) = 1/4. Find the stationary distribution of
this chain.

Solution. For n ≥ 2 the stationarity equation gives
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.

The general solution to this equation is
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Since solution should be summable at +∞ we have B+ = 0. Likewise
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For n = ±1 we get
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Thus

πn =


3
16

(
1
2

)|n|
if n < 0

1
4

if n = 0
9
16

(
1
2

)n
if n > 0

(2) Let Xn be a weakly stationary sequence with E(Xn) = 0, V (Xn) =
1 and spectral density f(λ). Let Yn =

∑n
j=0 Xj2

j. Find

lim
n→∞

Var(Yn)

4n.

Solution.
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where the last equation follows from stationarity. As n → ∞ the last
sum converges to
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−k. Therefore
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(3) Consider a renewal sequence Tn = X1 + X2 + . . . Xn where Xj

are iid having nonlattice distribution and such that E(X3) < ∞. Let
N(t) = max(n : Tn ≤ t) and D(t) = XN(t)+1. Compute

lim
t→∞

E(D2(t)).

Solution. Let r(t) = E(D2(t)). Then r satisfies

r(t) = H(t) + (r ∗ F )(t)

where F is the distribution function of X and H = E(X21X>t).
Therefore r = H ∗m and by Strong Renewal Theorem
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(4) Consider a 3 dimensional Bessel propess Xt–the diffusion process
on [0,∞] with drift a(x) = 3 and diffusion coefficient b(x) = 4x.

(a) Find functions f(x) such that f(Xt) is a martingale.
(b) For 0 < u < v < w find the probability that the process visits w

before u given that X0 = v.
Solution. (a) The condition on f reads

2xf ′′ + 3f ′ = 0.

Denoting u = f ′ we get
u′

u
= − 3

2x
.

Thus u = Ax−3/2 and so f(x) = Bx−1/2 + C.
(b) Applying the optional sampling theorem to Mt = (Xt)

−1/2 we
get
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