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Abstract. We show that the generator of a conservative IID random system which expands on

average codimension 1 planes has an essential spectral radius strictly smaller than 1 on Sobolev
spaces of small negative index. Consequently, such a system has finitely many ergodic components.

If there is only one component for each power of the random system, then the system enjoys multiple
exponential mixing and the central limit theorem. Moreover, these properties are stable under small

perturbations.

As an application we show that many small perturbations of random homogeneous systems are
exponentially mixing.

1. Introduction

1.1. Overview of the main results. In this paper we provide sufficient conditions for exponential
mixing of the IID random dynamics on higher dimensional smooth manifolds.

We now explain our main hypothesis. We say that a measure µ on Diff1(M) is coexpanding on
average if there exists N ∈ N and λ > 0 such that for all x ∈ M and ξ ∈ T 1∗

x M , the unit contangent
bundle,

(1.1)

∫
N−1 ln ∥(Dxf

∗)−1ξ∥ dµN (f) ≥ λ > 0.

Here and below Df∗ denotes the adjoint (pullback) action on the cotangent bundle: if ξ ∈ T ∗
fxM and

v ∈ TxM , then ⟨Dxf
∗ξ, v⟩ = ⟨ξ,Dxfv⟩; and µN denotes the law of N -fold composition of independent

maps with law µ.
Our main result is the following:

Theorem 1.1. Let M be a closed Riemannian manifold and µ be a coexpanding on average measure
on Diff∞

vol(M) with compact support. Then there exists s0 > 0 such that for s ∈ [0, s0] the associated
generator G : H−s(M) → H−s(M) defined by (Gϕ)(x) =

∫
ϕ(fx)dµ(f) has essential spectral radius

less than 1.

Theorem 1.1 implies a variety of additional results. We say that that the random system is totally
ergodic if for each natural number q there is no non-trivial function ϕ which is invariant for µq almost
every f . We show that for coexpanding on average systems, the manifold M decomposes into a
finite number of totally ergodic components (Theorem 7.5). If we assume that both µ and µ−1 are
coexpanding on average, we are able to improve Theorem 1.1 to an essential spectral gap on Hs for
all s ∈ [−s0, s0] (Theorem 7.1).

The above results pertain to the essential spectral gap: they do not show exponential mixing yet.
The problem is that the spectral argument does not give ergodicity. However, for many examples,
ergodicity is already known. In that case, we obtain an actual spectral gap, which has a number of
dynamical consequences. In Section 8 we derive the following result

Corollary 1.2. If µ is coexpanding on average totally ergodic measure on Diff∞
vol(M), then the random

dynamics is multiply exponentially mixing and satisfies the annealed central limit theorem. The same
properties hold for small perturbations of µ.
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For the rest of the §1.1 we will say for brevity that a random system is strongly chaotic if it enjoys
the properties of the above corollary, that is, it is multiply exponentially mixing and satisfies the
annealed central limit theorem, and these properties are stable with respect to small perturbations.

It turns out (see Proposition 3.11) that in the conservative setting the coexpansion property is the
same as the much more studied expansion of average on codimension one planes property. Therefore
we can utilize a previous work on this subject including the invariance principle of Avila-Viana, to
verify the coexpansion on average in many examples. In particular,we obtain the following statement.

Theorem 1.3. Suppose that dimM > 1 and let U ⊆ Diff∞
vol(M) be an open set consisting of uniformly

Cr bounded volume preserving diffeomorphisms where r = r(dim(M)) is a sufficiently large constant.
Then the set of measures on U so that the corresponding random dynamics is strongly chaotic contains
weak* open and dense subset.

The proof of Theorem 1.3 relies on the following ingredients:

(1) The set of coexpanding on average measures is open and dense.
(2) Exponential mixing is dense.
(3) Exponential mixing is open among coexpanding on average systems.

The first two ingredients are due to [Ell23] (see also [BCG23] for some related results). Our contri-
bution is the third ingredient which relies on essential spectral gap given by Theorem 1.1 and stability
of the peripheral spectrum, given by Keller-Liverani stability theory in [KL99].

Remark 1.4. We note that neither ergodicity nor exponential mixing are open by themselves. Indeed,
take M = Td and let µ be a random translation x 7→ x + α where α is uniformly distributed on Td.
Then µ is exponentially mixing (in fact, the points of the orbit are IID uniformly distributed on Td).
Let µQ be defined similarly but now α be uniformly distributed on rational vectors with denominator
Q. Then µQ is not ergodic. Thus the openness comes by combining ergodicity with coexpansion on
average.

Theorem 1.3 allows us to produce coexpanding on average random systems but the size of the
support of their generator can be arbitrary large. It is of great interest to study coexpansion on
average for tuples of fixed size, where the random dynamics is generated by the uniform measure on
the elements of the tuple. As was mentioned above, we can use classical techniques for producing
hyperbolicity for random systems to provide such examples. In particular, we shall show that many
homogeneous systems satisfy this condition, as well as their perturbations. This is discussed in detail
in Section 4. Here, we provide several representative examples. Note that the words coexpanding on
average do not appear explicitly in the statements below.

Corollary 1.5. (a) Let (A1, . . . , Am) be a tuple of SLd(Z) matrices generating a Zariski dense subgroup
of SLd(R). Let (f1, . . . , fm) be either of the following systems:

(i) M = Td = Rd/Zd and fj(x) = Ajx+ bj for some vectors bj ;
(ii) M = SLd(R)/Γ where Γ is a uniform lattice in SLd(R) and fjx=Ajx.

Let f̃j be small, smooth, volume preserving perturbations of fj . Then the random system generated

by (f̃1, . . . , f̃m) is strongly chaotic and its generator has the spectral gap on L2.

(b) Suppose that d is even and let (R1, . . . , Rm) be rotations of the sphere Sd generating a dense

subgroup of SOd+1(R). Let f̃j be small, smooth, conservative perturbations of fj . Then either the

random system generated by (f̃1, . . . f̃m) is strongly chaotic and its generator has the spectral gap on

L2 or the f̃j are simultaneously conjugated to rotations.

It is possible that the same results hold in odd dimensions as well but we are unable to prove this
(the reason for this is discussed in §2.8). However, we have the following partial result. Recall that an
isotropic manifold is a rank 1 symmetric space of compact type of dimension at least 2. The full list
of such manifolds includes Sd, RPd, CPd, HPd and the Cayley projective plane.
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Theorem 1.6. Let M be an isotropic manifold and m ≥ 3, then there exists an open neighborhood
U of Isom(M)m in the space of m-tuples in Diff∞

vol(M)m such that on an open and dense set in U the
corresponding dynamics is strongly chaotic and enjoys a spectral gap in L2.

In contrast, the question of when the random isometries of M enjoy spectral gap in L2 is wide open.
The first examples are constructed in [Mar80; Sul81]. [BG08] proves density of the spectral gap for
random symmetric SU(2) actions. [Fis06] shows that the spectral gap has probability zero or one in
SU(2)m but it is unknown which alternative holds. Theorem 1.6 shows that the questions is much
easier for small perturbation of isometries.

1.2. Related Results.

1.2.1. Expanding on average. The expanding on average condition first appeared in the study of IID
matrix products, and shows up naturally for the following reason. Suppose µ is a probability measure
on SL(d,R), and we study the Lyapunov exponents of the associated random walk. Consider a µ-

stationary measure ν for the induced random walk on RPd−1. For a matrix A and a unit vector v,
define Φ(A, v) = ln ∥Av∥. Then consider the integral:∫∫

Φ(A, v) dν(v) dµ(A).

According to Furstenberg’s formula, the values that this integral takes for different stationary measures
ν are a subset of the Lyapunov exponents. Further, if there is a unique stationary measure ν, then the
integral is always equal to λ1(µ), the top Lyapunov exponent. Moreover, if the stationary measure is
unique, we have uniform convergence of Birkhoff sums against Φ. Namely,

lim
n→∞

E [ln ∥Anωv∥] → λ1(µ)

uniformly independent of v. Hence we obtain the expanding on average condition as long as λ1(µ) is
positive. For a more detailed discussion see [BL85, Cor. III.3.4] and [Via14, Ch. 6].

The Lyapunov exponent results of Furstenberg were extended to random dynamical systems and
beyond in [AV10; BM20; Bax89; Bax86; BK87; Car85; Cra90; Kif86; Led86; Led84] and others.

The expanding on average condition was applied to studying ergodic properties of random dynamical
systems in [BS88; DKK04]. An application to stable ergodicity problem appears in [DK07], which
proved stable ergodicity of certain random isometric systems. This property is also crucial for stable
ergodicity results of the present paper.

The application of expansion on average to the mixing of random systems appears in [DKK04] and
was expanded in [BFP24; BCG23]. The latter paper obtains mixing results similar to ours under
stronger conditions. (The expansion on average is not explicitly assumed in [BFP24] but they refer
to other papers such as [BCG23] for the verifications of the assumptions of their main theorem in
specific models, and the first (among many) steps of such verification usually amounts to expansion
on average.) Roughly speaking [BFP24] use similar ideas to handle high frequencies, but they use
PDE techniques to treat low frequencies, while we rely on ergodic theoretic approach which seems
more flexible. Thus we can obtain similar conclusions under less restrictive assumptions. On the
other hand [BFP24] do not assume the independence of the consecutive maps, they work with more
general Markov chains. Similar extensions seem possible in our setting as well, but it would make the
arguments less transparent.

Later, interest in expansion on average increased when it was realized that the condition should
be generic and also leads to a variety of interesting results. Perhaps most surprising were measure
rigidity results obtained by Brown and Rodriguez Hertz in [BR17], which showed, in particular, that
for a volume preserving expanding on average random dynamical system on a surface all stationary
measures are invariant, and all invariant measures are either periodic or volume. Quite recently, the
results of [BR17] were generalized to higher dimensions under the condition of being expanding on
average in all dimensions [Bro+25], plus additional assumptions such as all Lyapunov exponents being
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non-zero. 1 Also in [Liu16] large deviations were studied for expanding on average systems. Chung
constructed some discrete perturbations of the standard map and gave some alternate characterizations
of the expanding on average condition [Chu20]. This generalized perturbations due to Blumenthal,
Xue, and Young that used continuous noise [BXY18, Prop. 9], [BXY17]. A generalization of the
expanding on average condition was also used by Eskin and Lindenstrauss in the homogeneous setting
[EL]. As will be discussed more below, Potrie [Pot22] showed how one could construct more examples
of expanding on average systems on surfaces and that these systems are dense in weak* sense. Later,
in [DD24], the authors showed that conservative expanding on average random dynamics on surfaces
satisfies quenched exponential mixing. In the dissipative setting, an important question is the existence
of an absolutely continuous invariant measure. In [Bro+24], Brown, Lee, Obata, and Ruan showed
that for dissipative perturbations of a pair expanding on average pair of Anosov diffeomorphisms there
exists an absolutely continuous stationary measure.

The above mentioned work is, in the non-homogeneous case, limited to surfaces. In higher dimen-
sions much less is known. An important work by Elliott Smith [Ell23] implies that the expanding on
average condition, and its generalization to k-planes, is weak* dense in the space of driving measures.

1.2.2. Contracting on average diffeomorphisms. The importance of expanding on average condition for
IID matrix products is that it is equivalent to the fact that the induced projective action is contracting
on average. This fact was crucial in the study of statistical properties of random matrix products,
see [GR85; Le 89; Le 82], and led to a general theory of contracting on average systems, see [Ant84;
BM24; Bla01; Kai78; Mal17; Ste12]. We note that similarly to the present work, quasicompactness of
the associated transfer operators plays a key role in most of the above mentioned papers. However,
since contractions improve regularity, in the mostly contracting case one can get quasicompactness on
the spaces of smooth (Hölder) functions, while in the present case one needs to work with less regular
functions which introduces additional complications. We emphasize that unlike the contracting on
average property, whose random dynamics are extremely similar to that of an actual contraction,
conservative expanding on average maps look much more like maps that have at least one positive and
one negative Lyapunov exponent. In this sense the dynamics looks partially hyperbolic.

1.2.3. Generic dynamics. For deterministic systems, establishing even weak statistical properties is
quite difficult whereas for random systems this is much easier. If the random dynamics is sufficiently
rich, then many statistical properties can be shown. This was done in [DKK04] in the context of
stochastic flows. A recent work of Blumenthal, Coti Zelati, and Gvalani shows exponential mixing of
some random flows including the Pierrehumbert model [BCG23]. An important question is just how
“rich” the random dynamics must be in order to exhibit chaotic behavior. The following conjecture
appears in [DK07].2

Conjecture 1.7. For each closed manifold M and regularity class k ≥ 1, the expanding on average
pairs (f, g) are open and dense in Diffkvol(M) × Diffkvol(M).

Naturally the idea of the conjecture is that it should take very little randomness for a random system
to have strong properties.

Similarly, [DD24] conjecture that for a generic tuple the associated random dynamics is exponentially
mixing. The present work shows that the two conjectures are intimately related. See Proposition 7.8
for the precise statement.

The foregoing discussion was mostly limited to understanding dynamics in the random conservative
setting, however, there are some notable results in the dissipative setting as well, see [BM24; DKK04;
Le 86].

1We note that the conditions of [Bro+25] also imply ergodicity so that paper provides additional examples of expand-

ing on average systems that are ergodic. The ergodicity plays important role in the applications of our results described

in Section 7.
2This statement is the strengthened statement that the result hold for pairs—and not longer tuples—which was

demanded by the audience during the first author’s talk at the 2024 Penn State Fall Conference.
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We also note that the Smale and Palis conjectures [Pal00; Sma67] about the genericity of good
behaviors from either the topological or ergodic theoretic point of view, were motivated by the success
in understanding hyperbolic systems. In fact, a reasonable description could be obtained for large
classes of nonuniformly hyperbolic systems [BCS25; DVY16]. The problem with deterministic systems
is that they could admit small invariant regions where dynamics is far from hyperbolic [Ber16; Ber17;
New79]. The fact that hyperbolicity is much more prevalent in the random setting because non-
hyperbolicity implies existence of invariant geometric structures motivates a quest to understand the
behavior of generic random systems.

1.3. Comments on the proof. There are two main approaches to establishing exponential mixing
for systems without large symmetry group. The first, more classical, approach is based on quasicom-
pactness in an appropriate space. It goes back to the work of Lasota–Yorke [LY73] and Ruelle [Rue78]
and requires establishing Lasota–Yorke type inequalties (see [Bal00; PP90; Via99]). This approach got
a powerful boost in the last two decades with the development of weighted Banach spaces [AGT06;
Bal00; BKL02; CL22; GL06; Tsu01], which led to powerful results in the deterministic setting. In the
present paper we also follow this approach. While deterministic systems may require the use of an
anisotropic Banach space that is well adapted to the dynamics of the system, in our case because of
the uniformity of the assumption we are able to work directly with the simplest Hilbertian spaces—the
Sobolev spaces Hs(M).

The proof of our main results in this paper is quite different than in our earlier work [DD24], which
used a coupling method developed in [Dol00; You99]. The proof of [DD24] relied on a delicate argument
to construct a coupling between two curves lying in our surface. The proof makes detailed use of Pesin
theory and many tools from smooth dynamics. The consequences obtained are stronger as well: that
paper is able to show that a C1+Hölder-curve exponentially equidistributes. The methods in this paper
do not yield such a result because a measure along a curve is not regular enough to be in Hs for s
close to 0.

The current proof proceeds by a direct calculation of the essential spectral radius that gives a
relatively explicit relationship between the expansion on average constant and the spectral radius. In
this sense, the argument is not a particularly dynamical one as it does not shed much light on how the
dynamics comes to be mixing, whereas the argument in [DD24] shows this quite explicitly. On other
hand, the analytic approach of the present paper makes it much easier to see how the system changes
under small perturbations3, both when we change the diffeomorphisms, which entails spectral stability
results elucidated in §7.5, and when we apply a multiplication by a small function which allows one to
obtain the Berry–Esseen bound of Theorem 7.11(b).

On the other hand, the approach of [DeW24] seems less sensitive to the independence assumption
and so it may be easier to extend to the setting of partially hyperbolic skew products. We note that
for partially hyperbolic systems there are many results in the setting where all central exponents have
the same sign. They were first studied in [ABV00; BV00], and [Dol00]. Later more properties were
shown in [And10; DVY16; VY13]. The systems with mixed exponents in the center are much less
understood, even though their abundance was demonstrated in [AV10], and we hope that studying
expanding and coexpanding on average systems could shed some light on their properties.

We also note that both coupling and analytic techniques only show mixing on small scales and so
they require mixing to start the argument. Namely, in the case of coupling we need the two pieces of
the curves to be close to start the coupling procedure, while in the analytic case we only have good
control of high frequencies, so we only get quasi-compactness as opposed to the spectral gap. In the
two dimensional case the mixing was already known due to [Chu20; DK07], but in the present setting
it is not known in the full generality, see §2.8 for a detailed discussion.

The reader may notice that the present proof is significantly shorter than the proof in [DeW24].
Moreover, a significant part of the present paper is devoted to examples, with the proof of the main
result being limited to Sections 5–6. The reason for this disparity is that in [DeW24] required novel

3There is also an approach to perturbation theory based on coupling and shadowing, see [CD09a; CD09b; Dol05;

Dol04]. However, the results obtained by this method are weaker than the results relying on analytic techniques.
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finite time estimates in Pesin theory which are of independent interest. In the present paper we can
use the well developed theory of pseudodifferential operators. This is the main reason why we assume
that the our random maps are C∞. While this assumption is clearly not optimal it allows us to cite
many references that do not explicitly track the smoothness required for various estimates.

Acknowledgments. The first author was supported by the National Science Foundation under Award
No. DMS-2202967. The second author was supported by the National Science Foundation under award
No. DMS-2246983. The authors are grateful to Carlangelo Liverani for helpful discussions. After we
had proved the main results of this paper, we learned from Zhiyuan Zhang that he had independently
obtained a related proof using curvelet spaces, and we remain grateful to Zhiyuan for the ensuing
discussions. In particular, the results of §7.7 were suggested by Zhiyuan.

2. Background

Here we describe the necessary background.

2.1. Symbols and the Operators. First we describe, the symbol class Sm(X) where X ⊆ Rn is an
open set.

For a domain X ⊆ Rn a symbol of class Sm(X), m ∈ R is a smooth function a(x, ξ) : X × Rn → R
so that on every compact set K ⊂ X there exists Cα,β such that

(2.1) |Dα
ξD

β
xa(x, ξ)| ≤ Cα,β(1 + |ξ|)m−|α|.

The corresponding symbol class Sm(M) on a manifold is defined analogously, see [Trè80, Ch. I.5],
by means of charts. In the language of Shubin, this is the class Sm1,0(X) [Shu01, Def. I.1.1]. We
write Ψm(X) for the class of pseudodifferential operators on X defined using symbols by the standard
quantization in Rn. The operators in Ψ−∞(X) are called smoothing because they map Hs → C∞ for
all s ∈ R.

Write Ψm(M) for the class of pseudodifferential operators whose restriction to any charts—up to
perturbation by a smoothing operator in Ψ−∞—is pseudodifferential operator on the chart as described
above. In particular smoothing operators have symbol 0. The principle symbol4 of an operator is an
element of Sm(T ∗M) and is well defined modulo Sm−1(T ∗M). If two pseudodifferential operators
in Ψm(M) have the same principle symbol then their difference is an operator in Ψm−1(M). We
write σA(x, ξ) : T ∗M → R for the principle symbol of a pseudodifferential operator A. The association
between symbols and pseudodifferential operators is given by a quantization procedure Op that takes a
a function on T ∗M and produces a pseudodifferential operator in Ψm(M) with that principal symbol.
For our purposes, we only need to know that such a quantization procedure exists.

2.2. The Pullback. A useful construction is the pullback of a pseudodifferential operator. If A is a
pseudodifferential operator in symbol class Sm(M), and f : M →M is a smooth diffeomorphism, then
the pullback Af of A acts on a function ϕ by ϕ 7→ (A(ϕ◦f))◦f−1. See the discussion surrounding [Trè80,
Thm. I.3.3] or [Shu01, Sec. I.4.2]. An important fact for the symbolic calculus of pseudodifferential
operators is that the principle symbol is functorial with respect to the pullback. Namely, if A has
symbol a(x, ξ), then Af has principle symbol a(f(x), (Dxf

∗)−1(ξ)) [Trè80, Thm. I.4.4]. This is why
the symbol class Sm(M) is well defined.

The random dynamics acts on pseudodifferential operators via the pullback. For an operator Ψ, we
let LΨ denote the averaged pullback

(2.2) (LΨ)(ϕ) =

∫
(Ψfω )ϕdµ(ω),

where we defined the pullback of a pseudodifferential operator in a previous section. Note that this
will preserve the symbol class of Ψ if the fω lie in a compact subset of Diff∞(M).

4We do not provide a precise definition of the principle symbol here since it is not important for our purpose, we only

use Lemma 5.1 below.
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2.3. Elliptic Operators. We will have particular use for elliptic operators. For an open set X ⊆ Rn,
we say that a symbol σ(x, ξ) ∈ C∞(X × Rn) is an elliptic if for every compact subset K ⊆ X, there
are positive constants C1, C2 such that for all sufficiently large ξ.

(2.3) C1|ξ|m0 ≤ |σ(x, ξ)| ≤ C2|ξ|m.
As the principle symbol transforms appropriately under pullback, this definition extends naturally to
manifolds and the estimate (2.3) holds there. See [Shu01, Sec. I.5] for more information.

2.4. Sobolev Norms. One can use pseudodifferential operators for defining the Sobolev spaces. In
fact, there are several equivalent approaches to this. See a discussion in [Shu01, Prop. I.7.3].

Here we will just use the fact that for every s ∈ R that there exists pseudodifferential operator ∆s

with principle symbol ∥ξ∥s such that ∆s : Hs(M) → L2(M) is an isometry, see e.g. [Trè80, Lem. II.2.4].
Note that the notation for the pullback of ∆s by a diffeomorphism f looks crowded: (∆s)f .

We can choose a particularly simple definition of the Sobolev norms. For s > 0, one defines the Hs

Sobolev norms by
∥ϕ∥2s = ∥(Id +∆s)ϕ∥20.

For s < 0, one can defines them as
∥ϕ∥2s = ∥∆−sϕ∥20.

Note that these definitions are basically the same, up to the Id term which is compact as a map
Hs → L2. Also, compare with [Lef24, pp. 5.3.2.1, 5.3.2.2]. Shubin and Lefeuvre’s definitions of the
Sobolev norms for 0 < s < 1 are different but only by a compact error, which is the quadratic form
defined by a compact operator.

2.5. Interpolation inequalities. We now review a useful fact concerning the interpolation of the
spectral radius for an operator on an interpolation space. For an operator A : V → V on a Banach
space, we write re(A) for its essential spectral radius.

There are two main types of interpolation: real and complex interpolation. Complex interpolation
will be more useful for us. In this case, one starts with a complex Banach couple, which is a pair
(A0, A1) of Banach spaces along with an embedding in a complex Hausdorff vector space. For each
θ ∈ (0, 1) one obtains an interpolation space, which we denote by [A0, A1][θ]. For an overview of the
general theory see [BL76].

The following result allows us to interpolate the norm, the spectral radius, and the essential spectral
radius.

Lemma 2.1. ([BL76, Thm. 4.1.2], [Szw15, Prop. 5.2]). Suppose (A0, A1) is a complex Banach couple,
then

(2.4) ∥T∥[θ] ≤ ∥T∥1−θA0
∥T∥θA1

,

and

(2.5) re(T : (A0, A1)[θ] → (A0, A1)[θ]) ≤ re(T : A0 → A0)1−θre(T : A1 → A1)θ.

Note that the estimates on the norm of the interpolation imply that we can interpolate the spectral
radius because the spectral radius of an operator A is equal to lim

n→∞
n−1 log ∥An∥.

The use of this is that one can interpolate between Sobolev spaces ([BL76, Thm. 6.4.5], [Ham75,
p. 22]). The pair of Sobolev spaces (Hs0 , Hs1), s0, s1 ∈ R, form an interpolation couple and complex
interpolation gives

(2.6) [Hs0 , Hs1 ][θ] = Hθs0+(1−θ)s1

Remark 2.2. Similar results hold for real interpolation. In that case interpolation spaces depend on
two parameters θ ∈ (0, 1) and q ≥ 1, and

(2.7) [Hs0 , Hs1 ]θ,q = Bs
∗

2,q

where s∗ = (1 − θ)s0 + θs1 and Bspq is the Besov space Bspq.



8 JONATHAN DEWITT AND DMITRY DOLGOPYAT

Using this fact one can also obtain spectral gap on appropriate Besov spaces (see Remark 7.2) but
this will be less useful for us, so we do pursue this subject in detail.

2.6. Weak mixing of random systems. Random dynamics on a manifold M is naturally encoded
by a skew product F on Σ ×M where Σ = supp(µ)N. It is defined by

(2.8) F (ω, x) = (Sω, fω0
(x))

where S is the shift. If ν is a stationary measure for the random dynamics given by a measure µ
on Diffν(M), then we say that a random system is weak mixing on L2(ν) if there does not exist a
non-trivial function ϕ ∈ L2(M,ν) such that

(2.9) Eµ [ϕ ◦ f ] = eiθϕ for θ ∈ R.
Note that this is implied by the usual skew product on Σ ×M being weak mixing for the invariant
measure µ × ν. Indeed, without loss of generality we may assume that ∥ϕ∥L2 = 1. Then taking the
scalar product of both sides of (2.9) with ϕ we obtain

∫
⟨ϕ, ϕ ◦ f⟩dµ(f) = eiθ which is only possible if

ϕ ◦ f = eiθϕ for µ almost every f.

Note that the last equality shows that µ is weak mixing iff µ−1 is weak mixing.

2.7. Perturbation of the essential spectrum. We recall a result of Keller and Liverani [KL99]
that is convenient for studying the essential spectrum of perturbations. Let (B, ∥ · ∥) be a Banach
space. Suppose that there is a second norm | · | on B and a family of operators Gε : B → B indexed
by ε ≥ 0 and constants η ∈ (0, 1), C,M > 0, and a monotone upper semicontinuous function τ(ϵ)
satisfying the following conditions:

There exist C,M such that for all ε, ∥Gnε ∥ ≤ CMn;(2.10)

∥Gnε ϕ∥ ≤ C[ηn∥ϕ∥ +Mn|ϕ|];(2.11)

Spec(Gε) ∩ {|λ| > η} consists of isolated eigenvalues of finite multiplicity;(2.12)

For all ϕ ∈ B, |Gεϕ− G0ϕ| ≤ τ(ε)∥ϕ∥ where τ(ε) → 0 as ε→ 0.(2.13)

Fix r > η and let Vr,δ = {λ : |λ| ≥ r and d(λ, Spec(G0)) > δ}. The next result is a special case of
[KL99, Theorem 1 and Corollary 1].

Proposition 2.3. Suppose (2.10)–(2.13). Then there exists θ,D > 0 such that for each r, δ there
exists ε1 ≤ ε0, depending only on the constants fixed above, such that for |ε| ≤ ε1:

(i) Gε has no eigenvalues in Vr,δ;
(ii) The multiplicity of eigenvalues in each component of (C \ Vr,δ) ∩ {|λ| ≥ r} is constant;

(iii) Each simple eigenvalue λ0 of G0 can be continued so that |λε − λ0| ≤ Dτ(ε)θ.

2.8. Ergodicity. Recall that for a random dynamical system, a stationary measure ν is ergodic if it
does not have any a.s. invariant sets of intermediate measure. As was mentioned above, our results
show essential spectral gap but do not show ergodicity. Ergodicity is not known to follow from just
the coexpanding on average assumption or even expanding on average on all k-planes defined in §3.1
below. This is due to a possible presence of zero Lyapunov exponents.

That said, it is possible to prove ergodicity with additional hyperbolicity assumptions. In [DK07],
it was shown that knowing the expanding on average condition for all k-planes, combined with a
lack of zero Lyapunov exponents, is enough to deduce ergodicity for a random dynamical system. In
particular, for conservative dynamics on a surface expanding on average dynamics is ergodic [DD24,
Sec. 6]. The proof is given by a type of random Hopf argument where the role of the stable and
unstable manifolds in the usual Hopf argument is replaced by the use of the stable manifolds for
different realizations of the random dynamical system. See [Chu20] where this argument is explained
in detail. A consequence of this approach to ergodicity is that the examples in [DK07] are only known
to be ergodic for even dimensional spheres, whereas the dynamics on odd dimensional spheres might
have a zero Lyapunov exponent. This can happen due to the formula for the Taylor expansion of the
Lyapunov exponents in [DK07, Thm. 2]. This is why Corollary 1.5 requires even dimensional spheres.
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We shall also use the following criterion for ergodicity of the random system, which follows from
[Kak51, Theorem 3] or [LQ95, Prop. I.1.3].

Proposition 2.4. The following properties are equivalent:

(a) The skew product defined by (2.8) is not ergodic.
(b) There exists a measurable set Ω ⊂ M with 0 < ν(Ω) < 1 which is invariant mod 0 for µ

almost every f , i.e. ν(f(Ω)∆Ω) = 0 for µ-a.e. f .

2.9. Transversality. We recall here Thom’s Jet Transversality Theorem. See for example [GG73] or
[CEM24] for a general discussion.

Let X and Y be smooth manifolds and W be a submanifold in Y . We say that a smooth map
f : X → Y is transversal to W if for each x ∈ X such that f(x) ∈ W we have that Tf(x)Y =
Tf(x)W + Df(TxX). We will use the notation f ⋔ W to mean that f is transversal to W. Note that
if f ⋔ W and dim(X) + dim(W ) < dim(Y ) then the image of X is disjoint from W. We also recall
that for each smooth map f from X to Y and each k there is a smooth map jkf from X to the space
Jk(X,Y ) of k-jets. The following result is helpful for constructing maps with certain properties:

Theorem 2.5. [GG73, Thm. 4.9] (Thom Jet Transversality Theorem) Let X and Y be smooth
manifolds and W be a submanifold of Jk(X,Y ). Then

TW = {f ∈ C∞(X,Y ) | jkf ⋔W}
is a residual subset of C∞(X,Y ) in the C∞ topology.

We emphasize that the submanifold W in this theorem need not be closed or compact. The Thom
transversality theorem also applies in the volume preserving setting [Vis71, Thm. 3].

2.10. Measure Theory. The following result is useful in proofing that certain properties are generic.

Proposition 2.6. Let A be a measurable set in a closed manifold M such that 0 < vol(A) < vol(M).
Then for each r ≥ 1 the set

Nr(A) = {g ∈ Diffrvol(M) : vol(gA ∩ (M \A)) > 0}
is open and dense.

Proof. Denote B = M \A and let A∗ and B∗ be the density points of A and B respectively.
To see that Nr(A) is open, take g ∈ Nr(A). Since vol(A∆A∗) = vol(B∆B∗) = 0, we have that

gA∗ ∩ B∗ ̸= ∅. Take x ∈ A∗ such that y = g(x) ∈ B∗. Since g is Lipshitz, there is a constant δ > 0
such that for all t small enough the sets U1 = B(x, t), U2 = B(y, δt) satisfy that:

(i) U1 and U2 are closed;
(ii) U2 ⊂ Int(gU1);

(iii) vol(B ∩ U2) + vol(A ∩ U1) > vol(U1) = vol(gU1).

For a fixed sufficiently small t > 0, (i)–(iii) will also be satisfied with g replaced by its small perturbation
g̃, which shows that g̃ ∈ Nr(A), whence Nr(A) is open.

To show that Nr(A) is dense we need to show that any diffeomorphism g can be approximated by
diffeomorphisms from Nr(A). If g ∈ Nr(A) we are done, so we may assume that vol(A∆gA) = 0. Then
g preserves A∗. Let z be a point on the boundary of A∗. Then for each r, B(z, r) contains points
from both A∗ (since z ∈ ∂A∗) and from B∗ (since otherwise z ∈ Int(A∗)). Thus there are points
xn ∈ A∗, yn ∈ B∗ converging to z. Hence there are maps hn arbitrary close to identity such that
hnxn = yn and hence hnA

∗∩B∗ is non-empty. Then g̃n = hn ◦g also has this property. Now the same
argument as in first part of the proof shows that g̃n ∈ Nr(A). Since g̃n → g, Nr(A) is dense. □

3. Expanding on average conditions

3.1. Bundle maps associated to a random system. In order to adequately describe the expanding
on average conditions that we use, we will introduce a small amount of formalism. Suppose that E
is a Riemannian vector bundle over a smooth manifold M . Let Aut(E) be the space of all vector
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bundle automorphisms of E fibering over a homeomorphism of M , and let Aut∞(E) be the space of all
C∞ bundle automorphisms of E fibering over all the diffeomorphisms C∞ diffeomorphisms of M . For
example, for any C∞ diffeomorphism f , Df ∈ Aut∞(TM). Now consider a measure µ supported on
the space of maps F : E → E in Aut∞(E) that cover a diffeomorphism f .

Definition 3.1. We say that a measure µ on Aut(E) is expanding on average if there exists N,λ > 0
such that for every unit vector v ∈ E ,

(3.1)

∫
ln ∥FNω v∥ dµN (ω) > λ > 0.

There is also a more general notion of expanding on average on k-planes, which seems to first be
mentioned in [Ell23, Def. 1.2].

Definition 3.2. Suppose that µ is a probability measure on Aut(E). Then we say that µ is expanding
on average on k-planes if the following holds. There exists N,λ > 0, such that for all k-planes V in E ,∫

ln ∥Fnω |volV ∥ dµn(ω) > λ > 0.

Note that given dynamics in Aut(E) there are naturally associated random bundle maps of the
associated Grassmannian bundles. For a measure µ we let µk denote the associated random dynamics
on Grk(E). If the dynamics of µ are denoted F , then we write Fk for the induced dynamics of F on
Grk(E).

3.2. Characterization of Expansion on Average. The expanding on average property for bundle
automorphisms is characterized similarly to the expanding on average property for diffeomorphisms.
The proof of the following is a straightforward extension of [Ell23, Thm. 3.2], which is a generalization
of the proof of [Chu20, Prop. 3.17], although [Ell23, Thm. 3.2] does not claim the full characterization
that [Chu20] obtains.

Proposition 3.3. Let E be a smooth Riemannian vector bundle and suppose that µ is a probability
measure on Aut(E) with bounded support. Then µ is expanding on average if and only if for all a
µ-stationary measures ν on P(E),

(3.2)

∫∫
ln ∥Dfv∥ dν(v) dµ(f) > 0.

The analogous characterization holds for the expansion on average on k-planes. Namely, µ is
expanding on average on k-planes if and only if for all µk stationary measures ν on Grk(E),

(3.3)

∫∫
ln ∥Fk|V ∥ dν(V ) dµ(Fk) > 0.

Proof. First suppose that µ is not expanding on average. Then for every n ∈ N, there exists a vector
vn such that ∫

ln ∥Fnω (vn)∥ dµn(ω) ≤ 0.

Let νn be the measure

∫
δFn

ω vn
dµn(ω), and ν be a weak* limit of the measures ν′n =

1

n

n−1∑
i=0

νi. As

µ ∗ ν′n is increasingly close to ν′n, it follows that ν is µ-stationary. Further, for any ϵ and all large
N we have that

∫
ln ∥Fnω vn∥ dµn(ω) ≤ ϵ. Hence, for any weak* limit we have by continuity that∫

ln ∥Fωv∥ dν(v) ≤ ϵ. But ϵ > 0 was arbitrary so we obtain the needed conclusion.

Suppose now that µ is expanding on average; then it is straightforward to see that there exists λ > 0
such that not only is the integral of ν positive, but in fact for any stationary measure ν, the integral
is at least λ. This completes the proof. The argument in the case of k-planes is identical. □
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In the following proof we will say that a vector v is a.s. non-expanding if almost surely lim supn−1 ln ∥Fnω v∥ ≤
0. Also a ν-measurable family of subbundles is a collection of k-dimensional subspaces in Rd defined
at ν-a.e. point. The invariance of such a measurable family means that this collection is permuted by
the random dynamics µ.

Proposition 3.4. Suppose E is a Riemannian vector bundle over a smooth manifold M and that µ
is a probability measure on Aut(E).

(a) The measure µ is expanding on average if and only if for every stationary measure ν on M , there
is no non-trivial ν-measurable µ-a.s. invariant subbundle of E comprised of vectors that a.s. have
Lyapunov exponent at most 0.

(b) A volume preserving driving measure µ is expanding on average if for all stationary measures
ν there do not exist any µ-a.s. invariant ν-measurable family of subbundles or a ν-measurable
Riemannian metric.

The advantage of part (b) is that in the volume preserving case we do not need to verify expansion
directly, only rule out measurable invariant structures.

Also, note that the condition (b) is not necessary for expansion on average. A simple counterexample
is the product of two expanding on average systems. That is, if µ is expanding on average, then the
measure µ×µ on Diff∞

vol(M×M) is expanding on average, see §4.3 below for this and similar examples.
Before we proceed, we comment on condition (b), which is slightly different than the statements

appearing in the literature. For example, a similar characterization appears in [Pot22, Thm. 1.2], but
without the added statement that there might be more than one subbundle. Its conclusion reads, that
if the dynamics is not expanding on average, “[...] then there is an invariant ν-measurable distribution
or conformal structure5 .” The corresponding statement in [Ell23, Lem. 3.2] gives a less precise type
of characterization, which says that there are no ν-measurable algebraic structures in Grk(TM). Such
structures can have more than one connected component. However, compare the statement of [Ell23,
Lem. 3.5] with the last line of that lemma’s proof to see that a similar issue appears. As we will shortly
explain, systems that are expanding on average but do not have an invariant measurable subbundle or
Riemannian metric do occur. That said, the main results of the papers just mentioned are certainly
unaffected: these are just minor oversights and do not affect the strategy of the proofs, because the
methods used in [Ell23; Pot22] to rule out invariant bundles also allow to rule out families of such
bundles (cf. Lemma 4.5 in the present paper).

Here is an example of non-expanding on average dynamics without an a.s. invariant line bundle
or Riemannian metric over a stationary measure. Suppose that (f1, f2) are two volume preserving
diffeomorphisms of a closed surface M , and that p is a common fixed point where their differentials
are the matrices:

(3.4)

[
λ 0
0 λ−1

]
and

[
0 −1
1 0

]
.

Then ν = δp is an invariant measure for the driving measure 2−1(δf1 + δf2) where all Lyapunov
exponents at p vanish. However there is no invariant Riemannian metric at p nor a line bundle. On
the other hand, the union of the x and y axes is certainly invariant. Moreover, applying the techniques
used in [Ell23] and the proof of Theorem 4.1 below, one can produce an example of a random measure
where all maps preserve p, the derivative at p is given by (3.4) above, the only stationary measures
are δp and the volume, and there are no invariant structures over volume either.

Proof of Proposition 3.4. The necessity of (a) is obvious, so we only show the other direction. From
Proposition 3.3, it follows that there exists an ergodic stationary measure ν̂ on E such that

∫
∥Fωv∥ dν(v) dµ(ω) ≤

0. We let ν denote the pushforward to the base.
Given x ∈M , consider the subset of P(TxM) of vectors v such that v is almost surely non-expanding,

i.e. the Lyapunov exponent of the vector v is non-positive. Note that if v, w ∈ TxM are almost

5Note that for volume preserving linear cocycles, having a measurable invariant Riemannian metric is the same thing

as having a measurable conformal structure.
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surely non-expanding, then so is every vector in their span. Thus we see that there is a well defined
a.s. non-expanding subspace over each point x ∈ M , which we call Vnon(x). In fact, note that for
ν̂-a.e. v ∈ E , by the Birkhoff ergodic theorem v is a.s. non-expanding. Thus we see that over ν-
this subspace is nontrivial. Further note that any w /∈ Vnon(x) is not almost surely non-expanding,
i.e. a.s. lim inf n−1 ln ∥Fnωw∥ > 0. Since ν is ergodic, the dimension of Vnon(x) is a.s. constant, call this
dimension k. Note that due to its characterization Vnon is a.s. invariant. This finishes the proof of the
characterization in the non-conservative case.

We now prove the alternative criterion for the conservative case. If the subspaces Vnon we found
in the above part had dimension k < d, then we are done. So suppose that k = d, we then need to
produce an invariant subbundle family or Riemannian metric.

We now apply the invariance principle to upgrade ν̂ from a stationary measure to an invariant
measure. Let Σ be the space Diff(M)N×Grk(E) endowed with the measure µN×ν̂. By [AV10, Thm. B],
the disintegration of ν̂ along fibers depends only on the zeroth symbol. But this implies that the
disintegration of ν̂ is a.s. invariant under all of the dynamics. We have a map that sends ω0ω1 ∈ Diff(M)
to the disintegration ν̂ω0,ω1 , and as the disintegration of the image of this vector is invariant we have
that fω0 ν̂ω0=ν̂ω1 for a.e. ω1. Thus the disintegration is almost surely equal to some constant ν̂; this is
a measure on P(E) that is a.s. invariant by µ.

As before, we may assume that ν̂ is ergodic. By [ANO99, Lem. 3.22], if the cocycle does not preserve
a measurable Riemannian metric, then for almost every ω, the conditional measure ν̂ω = ν̂ is supported
on the union of two proper subspaces [V ] and [W ]. In this case we will produce a finite collection of
subspaces that are permuted.

First, if there exist any atoms of ν in Gr1(TM), then we are done, because the atoms of a fixed
mass are an almost surely invariant set. So, suppose there are no atoms of the disintegration of ν in
Gr1(TM). Then there is a minimum k < d such that ν assigns positive measure to some k-dimensional
subspace. Note that k < d due to the support of the disintegration of ν being contained in the union
of two subspaces [V ] ∪ [W ] from the previous paragraph. Then due to ergodicity there exists some
0 < η < 1, such that at ν-a.e. point there is a plane V whose measure is η. Note that there are at
most finitely many such planes in each fiber as their intersection is a set of zero measure. Hence at
each point we have a finite collection V1(ω), . . . , Vk(ω) for some a.s. constant k. Further, note that
there is some maximum η such that the foregoing statement is true as each fiber has mass 1. But this
implies that the set of such mass η planes over each point must be a.s. invariant because otherwise
stationarity would be violated: Every preimage of such a plane must be a plane of at least measure η.
Thus this collection of planes is a ν-measurable µ-a.s. invariant finite collection of subspaces. We have
obtained the needed dichotomy. □

Remark 3.5. Note that the above proof furnishes additional information in dimension 2: any invariant
family of line bundles is supported on at most two lines at each point. Otherwise the fact that the
disintegration of ν is supported on two non-trivial subspaces in the penultimate paragraph would not
hold.

Definition 3.6. We say that a measure µ on Diff(M) is clean if:

(i) For each x ∈M the distribution of fx has an absolutely continuous component;
(ii) volume is ergodic for µ;

(iii) there do not exist any measurable µ a.s. invariant family of line bundles or a µ-a.s. invariant
Riemannian metric on M .

Here we say that a measurable Riemannian metric g is µ a.s. invariant if for µ almost every f :

vol(x : ∀v ∈ TxM gx(v) = gfx(Dxfv)) = 1.

A µ a.s. invariant family of line bundles is defined similarly.
We say that a measure µ on Diff(M) is coclean if (i) and (ii) along with the condition (iii)′ below

hold:

(iii)′ For the induced action of µ on T ∗M , there do not exist any measurable µ a.s. invariant family of
subbundles of T ∗M or a µ a.s. invariant Riemannian metric on T ∗M .
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Corollary 3.7. If µ is clean and µ̃ is another measure on Diff(M) such that µ is absolutely continuous
with respect to µ̃, then µ̃ is expanding on average and ergodic. In particular if µ̄ is an arbitrary measure
then for each ε ∈ (0, 1] the measure εµ + (1 − ε)µ̄ is expanding on average and ergodic. The same
holds for the conclusion that µ is coexpanding on average, if µ is assumed to be coclean.

Proof. We will check only the first claim about clean measures; the proof for coclean measures is
identical.

First we show that that the volume is the unique µ̃ stationary measure. Indeed let ν be an ergodic
stationary measure. By (i) ν has an absolutely continuous component and since the class of absolutely
continuous measures is invariant under convolution with µ, ν must be absolutely continuous as all its
mass must belong to its absolutely continuous component. By (ii) and Proposition 2.4, every µ almost
surely invariant subset of M has null or conull volume. Applying Proposition 2.4 again we see that ν
is volume.

However by (iii) there are no µ invariant and, hence, µ̃ invariant, geometric structures and so by
Proposition 3.4, µ̃ is expanding on average. □

Given a measure µ on Diff∞
vol(M) we have four different associated bundle maps. Write Df : TM →

TM for the derivative. Write Df∗ : T ∗M → T ∗M for the pullback, which maps fibers T ∗
xM →

T ∗
f−1(x)M .

Associated to the measure µ there are four basic associated random bundle automorphisms that
one might study. In square brackets, we give them a name corresponding to their relationship with
the original maps f . We list them as a pair (f, F ), where f is a diffeomorphism and F is a bundle
map covering f .

Definition 3.8. For a measure µ on Diff∞(M), we have four associated random bundle maps, and
refer to the condition of each of them being expanding on average as follows:

(1) (f,Df) on TM . [expanding on average]
(2) (f, (Df∗)−1) on T ∗M . [coexpanding on average]
(3) (f−1, Df−1) on TM . [expanding on average backwards]
(4) (f−1, Df∗) on T ∗M . [coexpanding on average backwards]

In fact, one can define the same four notions for just any collection of bundle maps. We won’t
bother constructing diffeomorphisms that show each of these classes is distinct, but for bundle maps
it is quite easy. In fact, we can do it with dynamics over a single point.

Proposition 3.9. Let E = {∗} ×R3, where {∗} is the singleton topological space. For any 1 ≤ i ≤ 4,
one of the four different type of expanding on average (1)–(4) in the above list, there is a probability
measure µ with bounded support on Aut(E) such that µ is not expanding on average of type (i),
but is expanding on average of the other three types. For example, there is a measure that satisfies
(2), (3), (4), but not (1).

Proof. This is straightforward using the characterization in Proposition 3.4. We give an example of a
measure µ that is not expanding on average for (1) but is for each of the others. The other examples
we obtain the other cases, one can replace µ by the measures µ−T , µ−1, and µT . Here, by µ−T we
mean the pushforward of µ by the map A 7→ A−T ; the others are defined analogously.

Let µB be a measure supported on GL(2,R). We will take µB to be a measure that is expanding on
average and such that µdetB is also uniformly expanding. We may also choose B so that the measures
µB−1 , µB−T and µB−T are also expanding on average because all those conditions are generic (see
Example F in §4.2 for a detailed discussion). In fact, by taking a power of these measures, we may
arrange that all four of these measures are expanding on average with N = 1 and that for all unit
vectors v, if µ′ is one of these four measures,

(3.5) Eµln ∥Fωv∥ > 100.
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Now consider the automorphisms of the trivial bundle {∗}×R3 distributed according to the measure
µC , where C is distributed according to:

C =

[
det(B)−1 q

0 B

]
,

where q ∈ R2 is a vector of length L, which is a constant that we will choose later.
Then four associated random walks arise distributed according to the measures µC , µC−T , µC−1 , µCT :[

det(B)−1 q
0 B

]
,

[
det(B) 0

∗ B−T

]
,

[
det(B) ∗

0 B−1

]
,

[
det(B)−1 0

qT BT

]
,

where we have written a ∗ for whatever that entry must be.
We now explain why µC is not expanding on average but the rest are.
(1) For µC , as the first coordinate is contracting, it is clear that µC is not expanding on average as

it has an almost surely contracting subbundle.
(2) For µC−T , both of the blocks on the diagonal elements are expanding on average with N = 1,

hence any vector will expand in one step.
(3) For µC−1 , similarly both of the diagonal blocks are expanding on average in one step, hence so

is µC−1 .
(4) For µCT , we need to argue slightly more as now the first block does not expand. First note

that any unit vector that lies in the subspace {0} × R2 will certainly expand due to (3.5). In fact,
by continuity, we see that the same holds for all unit vectors that make an angle of at most ϵ0 with
{0} × R2. But any vector v that makes angle at least ϵ0 with R2 has first component at least ϵ0/2 in
magnitude, hence for any matrix C in the support of µCT , ∥Cv∥ ≥ Lϵ0. Thus for L sufficiently large,
we see that this measure is expanding on average as well. □

We can also give constructions in the case of diffeomorphisms.

Proposition 3.10. There exists a measure µ with compact support on Diff∞
vol(T4) that is coexpanding

on average but is not expanding on average.

Proof. To begin, let µA be a measure with finite support on SL(2,Z) that is expanding on average at
time N = 1 and satisfies all four of the types of expanding on average in Definition 3.8 with a uniform
lowerbound M > 0 on the expansion in each case. Note that by taking a convolution µnA we can make
M as large as we like.

We now define two measures µ̂A and µ̂L that are both supported on SL(4,Z). We define µ̂A to be
a pushforward of µA by the map

A 7→
[
A 0
0 Id2

]
,

and µ̂L will be supported on the constant shear matrix[
Id2 0
L Id2 Id2 .

]
We then claim that for suitably chosen M,L that µ̂ = (µ̂A + µ̂L)/2 is coexpanding on average but not
expanding on average. The corresponding cocycle on T ∗T4 takes the form:[

A−T 0
0 Id2

]
,

[
Id −L Id
0 − Id

]
We claim that for L = 10 that if M , the expansion on average constant, is sufficiently large, then this
random matrix product is coexpanding on average.

We will check the definition of coexpanding on average directly. Suppose that v = (x, y) ∈ R2 ⊕R2

is a unit vector. Then there are two cases depending on where v lies. Fix ϵ = 1/100.
(1) (∥x∥ ≤ ϵ) In this case ∥y∥ ≥ 1 − ϵ2. Thus we can compute, that

(3.6) 2Eµ̂[ln ∥Bv∥] = Eµ̂A
[ln ∥Bv∥] + Eµ̂L

[ln ∥Bv∥] = (i) + (ii).
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Due to the diagonal structure of the matrix, we obtain the trivial bound

(i) = Eµ̂A

[
ln

∥∥∥∥[A−T 0
0 Id

] [
x
y

]∥∥∥∥] ≥ ln(1 − ϵ2).

Also

(ii) = ln

∥∥∥∥[Id −L Id
0 − Id

] [
x
y

]∥∥∥∥ ≥ ln

(∥∥∥∥[Id −L Id
0 − Id

] [
0
y

]∥∥∥∥− ∥∥∥∥[Id −L Id
0 − Id

] [
x
0

]∥∥∥∥)
≥ ln(L(1 − ϵ2) − ϵ) > 0

Thus we see that the expansion on average condition is satisfied for vectors with ∥x∥ ≤ ϵ, given L and
our choice of ϵ.

(2) (∥x∥ ≥ ϵ) In this case we will take advantage of the expansion on average condition. As in the
previous case, we have decomposition according to equation (3.6) into two terms (i) and (ii).

(i) = Eµ̂A

[
ln

∥∥∥∥[A−T 0
0 Id

] [
x
y

]∥∥∥∥] ≥ Eµ̂A

[
ln

∥∥∥∥[A−T 0
0 Id

] [
x
0

]∥∥∥∥] ≥M − ln ϵ.

Also

(ii) = ln

∥∥∥∥[Id −L Id
0 − Id

] [
x
y

]∥∥∥∥ ≥ lnσ4 ≥ ln 2L,

where σ4 is the smallest singular value of this matrix. Thus as long as

M − ln ϵ− ln 2L > 0,

the random dynamics are expanding on average for these vectors as well.
Thus given our choice of L = 10 and ϵ = 1/100, as long as

M ≥ ln(1/100) + ln 20,

the measure µ̂ is coexpanding on average.
Noting that this system cannot be expanding on average because the last 2 coordinates do not grow

under the dynamics completes the proof. □

Example A. Note that in the above proof if we had reversed the roles of µA and µAT , then the
dynamics on T4 would be generated by matrices of the form[

A 0
0 Id

]
,

[
Id L Id
0 Id

]
.

The same argument as above shows that the random walk of these matrices will be expanding on
average. However, note the random dynamics generated by these matrices is not ergodic because
all maps factor over the identity map on T2. Thus x3 and x4 are continuous invariant functions
for our system. This is especially striking in view of Corollary 7.5 below, which shows that under the
coexpanding on average condition, there would only have been finitely many totally ergodic components
of volume.

Below we will need the following alternative characterization of the coexpanding on average condi-
tion.

Proposition 3.11. Suppose that E is a d-dimensional vector bundle over a topological space X.
Suppose that µ is an measure on Autvol(E). Then µ is coexpanding on average if and only if it is
expanding on average on d− 1 planes.

Proof. Fix a Riemannian metric on E so that the induced volume form of the metric agrees with the
volume form already on E . (As all volume forms are proportional, any metric will have this property
after rescaling.) First we begin with an observation. Suppose that V is a (d− 1)-plane in E and that
L : Ex → Ey. Then we can fix orthonormal frames (nV , v1, . . . , vd−1) and (nL(V ), v

′
1, . . . , v

′
d−1) such

that nV and nL(V ) are orthogonal to V and L(V ), and the vi are an orthonormal basis of V and the
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v′i are an orthonormal basis of L(V ). Then with respect to this ordered basis the L is represented by
a matrix: [

a 0
b C

]
,

where a ∈ R, b ∈ Rd−1, and C ∈ GL(d− 1,R). This is the action Ex → Ey. Then L∗ : E∗
x → E∗

y is given
by the matrix [

a−1 b′

0 C−T

]
.

Let n∗V denote the dual vector to nV . Then as adet(C) = 1 due to volume preservation, we see that

∥F |n∗V ∥ = ∥F |vol(V )∥,

i.e. the norm of the action on the conormal to V is the same as the action on the volume element of
V .

It then follows that coexpansion on average is the same thing as being coexpanding on d− 1-planes

because

∫
ω

ln ∥Fnωn∗V ∥ dµnω =

∫
ω

ln ∥Fnω |vol(V )∥ dµnω □

An immediate consequence of the above result is that for volume preserving systems in dimension
2, expanding on average and coexpanding on average are the same thing. Both are equivalent to being
expanding on average on lines (1-planes).

Corollary 3.12. Suppose that E is a two dimensional vector bundle over a manifold M . If µ is a
measure with compact support on Aut(E ,M) such that the induced bundle automorphism on Λ2E
preserves a non-vanishing volume, then µ is expanding on average if and only if it is coexpanding on
average, i.e. the corresponding measure µ∗ on Aut(E∗,M) over the same base dynamics is expanding
on average.

4. Examples

It was proven in Potrie [Pot22] (for surfaces) and Elliot-Smith [Ell23] (in arbitrary dimension) that
the set of conservative measures which are ergodic and expanding on average on k planes is weakly
dense, for every k. By Corollary 3.12 the set of ergodic measures which are coexpanding on average
is also dense. As the coexpanding on average property is also manifestly C1 open, this shows that
ergodic coexpanding on average measures are weak∗ generic.

In this section we discuss several specific models of random dynamics studied in the literature and
show that many are coexpanding on average.

4.1. Random flows. Here we show how to verify coexpanding on average condition for measures of
large support. Our arguments are close to constructions of [BH12; Ben+15; BCG23; Ell23; Pot22] but
we provide details, since the model considered below is of independent interest. We note that for most
of the examples of §4.1 it seems possible to verify the stronger assumptions of [BFP24] (in fact for
Example D this is done in [BFP24; BCG23]). However, as it was mentioned in the introduction, the
advantage of our assumptions is that they are stable under weak* small perturbations, and so they
remain valid if µ is approximated, for example, by atomic measures.

Example B. Take p > 1 and let X = (X1, . . . , Xp) be a tuple of smooth divergence free vector fields
on M , a closed manifold of dimension at least 2. Denote by Φj(t) the time t map generated by the
flow of Xj . Let d = dim(M). Fix T > 0, and let (t, j) be uniformly distributed on [−T, T ]×{1, . . . , p},
and let µ = µX be the law of Φj(t).

Theorem 4.1. For any fixed T and p ≥ 2, µX is coexpanding on average for an open and dense set
of tuples X .
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We need some preparations. We say that X = (X1, . . . , Xp) has the accessibility property if for

each x and y in M there are r ∈ N, j⃗ = (j1, . . . , jr) and t⃗ = (t1, . . . , tr) such that Φj⃗ (⃗t)x :=

Φjr (tr) · · ·Φj1(t1)x = y. Note that for fixed j⃗, we can view Φ as a smooth map Φj⃗ : Rr → M . We

denote the set of tuples with the accessibility property by A. The following results can be found in
[PS97, Section 3].

Theorem 4.2. Suppose that M is a smooth manifold. Then we have the following properties of
accessible vector fields.:

(a) [PS97, Thm. 3.2] If X ∈ A then for each x, y ∈ M there exist j⃗ and t⃗0 such that t⃗ 7→ Φj⃗ (⃗t)x is a

submersion at t⃗0 and Φj⃗(t⃗0) = y.

(b) [PS97, Thm. 3.3] (Chow theorem) If for each x ∈ M the vector fields X1, . . . , Xp together with
their brackets generate TxM then X ∈ A.

(c) For each p ≥ 2, A is open and dense in the space of C∞ vector fields.

Part (c) is proven in [Lob72] for dissipative vector fields, however, the argument also works in
the divergence free case. We sketch the argument here since similar reasoning will be used to prove
Theorem 4.1. It sufficient to consider the case p = 2.

We encode the failure of accessibility by the union of large codimension submanifolds W of a jet
bundle and then use Thom Jet Transversality Theorem 2.5. If the codimension is sufficiently large,
transversality then implies that a residual subset of maps have their jet disjoint from W . W will be
unions of submanifolds of the bundle of jets of sections M → TM ⊕ TM .

Roughly the proof will show the following: it is generic that if we have a pair of vector fields, then
at every point z ∈ M , that either X1(z) or X2(z) does not vanish. Moreover, if one, say X1 does
not vanish at z, then we prove that linear relations among the Lie derivatives LiX1

X2 are a positive

codimension in the space of jets and hence for sufficiently large k the lie derivatives LX1X2, . . . ,LkX1
X2

must span TzM .
First we define a subset W 1

i . This is the subset of ji+d(M,TM ⊕ TM) of jets of vector fields

(X1, X2) such that (z, ji+dX1, j
i+dX2) ∈ W i

1 if X1(z) ̸= 0 and {LiX1
X2(z), . . . ,Li+dX1

X2(z)} are not

linearly independent. We claim that W 1
i is a finite union of submanifolds of positive codimension.

The claim is easiest to see in coordinates (the codimension is coordinate independent). For a given
choice of X1 ̸= 0 at z, we can pick linearizing coordinates so that X1 = e1. Then the condition that
{LiX1

X2(z), . . . ,Li+dX1
X2} span TzM is equivalent in coordinates to the condition that the columns of the

matrix of vectors [∂ie1X2, . . . , ∂
i+d
e1 X2] are not linearly independent. The failure of linear independence

is equivalent to the rank of this matrix being q for some q < d. The condition that the matrix has rank
exactly q is the condition that all q×q minors containing a non-vanishing minor of order q−1×q−1 have
rank 0 [CEM24, p. 2.2.1]. Because each q×q minor contains a non-vanishing (q−1)×(q−1) subminor,
each of these vanishing locuses gives us a submanifold Q(X1) of jd+iz (M,TM) of codimension at least
1 depending, in these coordinates, only on the partial derivatives of X2 of order between i and i+ d.
(Note moreover, that this argument applies even though we are restricting to the jets of conservative
vector fields because jets we are considering only involve the derivative in one direction.) Further, note
that Q(X1) varies smoothly with X1(z). Define W 1

i (X1) to equal the union of the submanifolds Q
corresponding to the various minors just described.

Having established that W 1
i is the union of submanifolds of jd+iz (M,TM ⊕ TM) of codimension at

least 1, consider W 1 = W 1
d ∩W 1

d+2d ∩ · · · ∩W 1
d+2d2 . As these conditions are independent of each other,

the codimensions add. (In the coordinates described above, W1 is literally a product of W 1
d+2kd for

k = 0, . . . , d.) Thus, W 1 is a finite union of submanifolds of codimension d+1 of jd+2d2

z (M,TM⊕TM).
Similarly, we may define a subset W2 with the reversed condition, that for certain ranges of i the LiX2

X1

fail to form a basis of TzM when X2 is non-vanishing.
Then by the Thom jet transversality theorem, it follows that for a generic pair of conservative vector

fields (X1, X2) over M is transverse to W 1 ∪W 2. As W 1 ∪W 2 is codimension d+ 1 subset of the jet
bundle, X1 and X2 are thus generically disjoint from W 1 ∪W 2. This means that generically, if z is a
point where one of the vectors fields, say X1, does not vanish, then {LiX1

X2}1≤d(1+2d) will span TzM .
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From jet transversality, it is also the case that each of X1 and X2 has finitely many zeros and they
occur at distinct points (a generic section of TM ⊕ TM avoids the zero section and is transverse to
{0}⊕TM ∪TM ⊕{0}). Thus for a generic pair of vector fields, at every point z one of them does not
vanish, and the brackets of that field with the other generate TzM . Hence the accessibility is generic
for pairs of volume preserving vector fields.

Lemma 4.3. (cf. [BH12], [Ben+15, Thm. 4.4]) If X ∈ A then the volume is the unique stationary
measure for µX .

Proof. Given x and y ∈ M , let j⃗, t⃗0 be as in Theorem 4.2. Assume first that T is large enough so
that for each x and y the absolute value of each component of t⃗0 is less than T . Split t = (t′, t′′) so

that t′′ is d dimensional and det

(
∂Φj⃗
∂t′′

)
(⃗t0) ̸= 0. Then for t⃗ close to t⃗0 this determinant is also non

zero. Integrating over t′ as above we see that for all x and y the distribution of frωx has density which
is positive in a neighborhood of y. It follows that the Markov chain x 7→ frωx satisfies the Doeblin
condition [MT09, p. 402] and so its stationary measure is unique. This completes the proof in the case
T is sufficiently large. In the general case consider m such that all components of t⃗0 have absolute
value less than Tm and consider the event that for 0 ≤ k < r vector field Xjk+1

is applied during the
steps kr + 1, . . . , (k + 1)r where j1, . . . , jr are components from Theorem 4.2(a). □

As a shorthand below, we will say geometric structures to refer to measurable families of bundles
or Riemannian metric as in the criterion in Proposition 3.4(b).

Lemma 4.4. Suppose X ∈ A and E is a bundle over M . If there is a measurable geometric structure
defined on E that is µ almost surely invariant, then there is a smooth structure which is µ almost
surely invariant.

Proof. Given x and y let j⃗, t′, t′′ be as in the proof of Lemma 4.3. Let qx be the invariant measurable
structure given by our assumption. By Fubini Theorem for almost every x there is t̄′ arbitrary close
to t′0 such that for almost all t′′, Φj⃗(t̄

′, t′′)qx = qΦj⃗(t̄
′t′′)x. Note that the left hand side is a smooth

function of ỹ = Φj⃗(t̄
′, t′′)x. It follows that qỹ coincides almost surely with a smooth version in a

small neighborhood of y. By compactness it follows that there exists a continuous structure q̄y which
coincides with qy almost everywhere. By continuity q̄ is µ invariant. □

Lemma 4.5. Suppose that X ∈ A, E →M is a vector bundle, and F is a random map of E covering
µ.

(1) If there exists x ∈ M such that for all non zero v ∈ Ex the law of the image of (x, v) has an
absolutely continuous component on E , then there are no invariant smooth geometric structures
for X .

(2) (cf. [Ell23]) Suppose that for some x ∈M , the law of the pair (fx, Fx) has density on M ×SLd(R)
then there are no invariant smooth geometric structures.

(3) Let U denote the Lie algebra generated by X1, . . . , Xp. Suppose that there exists a chart, a point
x ∈M , and vector fields Z1, Z2, . . . , Zq ∈ U with q = d+ d2 − 1 such that the vectors

{(Zj(x), DxZj)}qj=1

generate Rd × sld. Then there are no X invariant geometric structures.

Remark 4.6. This lemma can be applied to check that certain random systems are (co)expanding
on average. As we saw above, if X ∈ A then the corresponding Markov process on M satisfies the
Doeblin condition which directly gives a spectral gap in L2. However, the results of §7.5 show that
the spectral gap also persists for small (in a weak topology) perturbations of µ which is a new result,
cf. Remark 1.4.

Proof of Lemma 4.5. (a) Suppose there is an invariant (finite) subbundle family F ⊂ E . Then taking
v ∈ Fx we see that Fx(v) ∈ Ffx has finite support and so its law cannot have a component with a
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density. Likewise if qx is an invariant metric then qx(v, v) = qfx(Fxv, Fxv), again precluding (x, Fxv)
from having an absolutely continuous law.

(b) follows from (a) since if A has a density on SLd(R) and v is a non zero vector then the law of
Av is absolutely continuous as well.

(c) Let q be an invariant geometric structure. Note that the space of vectorfields preserving q forms
a Lie algebra. Now given Z = {Z1, . . . Zq} as in the assumption of the lemma, and T > 0, then the
random dynamical systems defined by random motion along the fields Z also preserve q. However,
the distribution of (f(x), Df(x)) has an absolutely continuous component in Rd × SLd(R) and so by
already proven part (b), Z cannot preserve q. □

We are now ready to prove Theorem 4.1.

Proof. By Theorem 4.2(c), accessibility is generic, hence by Lemma 4.3 we know that generically
volume is the unique invariant measure, so by Lemma 4.4 it suffices to verify that generically the
criterion of Lemma 4.5(c) is satisfied. As before, we can check this using jet transversality which in
fact gives a stronger statement that the condition of the theorem generically holds for all x ∈M . We
will not give a detailed argument, but explain why the argument of Theorem 4.2(c) extends to this
case. If we have two vector fields X1, X2, then if X1 is non-vanishing, then in coordinates we may write
X1 = e1. What we want to show is then that the vector fields Yi := (∂ie1X2, ∂

i
e1DX2) span Rd× sld. A

slight complication now arises because the pairs (Yi, DYi) cannot be chosen arbitrarily as the second
term is the derivative of the first. However, note that we can instead restrict to even numbered indices
Y2, Y4, . . . and still be able to choose the entries of these matrices freely. Analogously to before, we
can define a subset of the jet bundle W 1

i according to the condition that {(Yi+2k, DYi+2k)}1≤k≤d+d2−1

fail to span Rd × sld. As before, this is a positive codimension condition that is given by a union
of submanifolds of the jet bundle. Letting D = 4d+(d+d2−1) we see that the subset W 1 = W 1

d ∩
W 1
d+D ∩ · · · ∩W 1

d+(d+1)D has codimension d + 1 in the jet bundle jd+(d+2)D(M,TM ⊕ TM). By jet

transversality, we can now similarly conclude. □

Remark 4.7. In Theorem 4.1 the amount of time that each vector field is applied for is uniformly
bounded by T . There are several models considered in the literature where the times are unbounded.
For example, in piecewise deterministic Markov chains [BH12; Ben+15; Dav84] the switching time
has an exponential distribution. In the opposite direction one can make the switching rate go to zero
obtaining stochastic PDEs studied in [Bax89; Bax86; BS88; Car85]. In all those models expansion on
average is also generic, however, we cannot immediately apply Theorem 1.1 since the corresponding
measures are not concentrated on a compact set. It is likely that this Ck norms could be controlled
using appropriate growth estimates for the solution of the linearized equation, but we do not pursue
this topic here in order to simplify the presentation.

Theorem 4.1 allows us to construct coexpanding on average systems in a small neighborhood of the
identity. Similar ideas could be used to construct coexpanding on average systems near an arbitrary
diffeomorphism. Here we give one example.

Example C. Let f be a volume preserving diffeomorphism of a compact manifold M and X be a
divergence free vector field on M . Fix T > 0 and let µf,X,T be the law of ΦX(t)◦f where t is uniformly
distributed on [−T, T ].

Theorem 4.8. Suppose that f is a diffeomorphism such that for each ℓ, f has only finitely many
periodic points of period ℓ. Then for an open and dense set of vector fields X, µf,X,T is coexpanding
on average and, moreover, this measure is coclean in the sense of Definition 3.6.

Proof. Step 0. First we introduce some notation. Let Pk be the set of points in M of period less or
equal to k for f . By assumption this is a finite set. Let xn be the distribution of the point x0 after n
iterates of the random dynamics driven by µf,X,T . The plan of the argument is to check the criteria in
Definition 3.6 of cocleanness, as it then follows that the resulting dynamics is coexpanding on average
by Corollary 3.7.
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Step 1. Write Xt for the time t flow of the vector field X. Note that we can rewrite the dynamics of∏k
i=1X

tif by pushing the vector fields through f . Let a vector t⃗ = (t1, . . . , tk) ∈ Rk give the durations

of the random flows. We then define Φk (⃗t ) := XtkX̂
tk−1

k−1 · · · X̂t1
1 f

k(z) where X̂t
i = ((Dfk−i)∗X)t.

Let us first show that the image of a point f−k(z) has absolutely continuous component containing

z in its support. To do this, it suffices to show that for k sufficiently large it is generic that DΦk (⃗0)
has rank d = dimM .

For Φ to have rank d, it suffices that X, X̂k−1, . . . , X̂1 span TzM . Note that if z is a point with

f−k(z), . . . , z distinct, then having X, X̂k−1, . . . , X̂1 span TzM is a constraint on the 1-jet of X at the
points f−(k−1)(z), . . . , z. Note that if k = d, then the codimension of failing to span is codimension

1 in the space of jets. Moreover, when k = d + j the condition that X, X̂d+j−1, . . . , X̂1 fail to span
TzM is codimension j in the space of jets: this is the codimension of the condition that the all d× d
minors of a (d + j) × d matrix have determinant zero. In particular, for k = 2d + 1, the condition is

codimension d. Let W2d+1 be the space of jets of vector fields X such that X, X̂2d, . . . , X̂1 do not span
TzM for all points z ∈M \ P2d+2. Moreover, similar to the proof of Theorem 4.2, W2d+2 is the union
of finitely many manifolds in the space of 1-jets of codimension 2d+ 1. Thus by the Jet transversality
theorem (Theorem 2.5), a generic vector field X is transverse to W2d+1, and hence is disjoint from
W2d+1 because W2d+1 is codimension d+ 1. In particular, it implies that for all x0 /∈M \ P2d+2 that
the law of x2d+1 has an absolutely continuous component containing f2d+2(x0).

To see that generically for every x0 ∈M , the law of x2d+2 has an absolutely continuous component
note that generically X does not vanish on P2d+2, hence almost surely x1 /∈ M \ P2d+2, so we can
apply the result of the previous paragraph. This gives the needed conclusion for the distribution of
x2d+2.
Step 2. Next, we check that there exists kd ∈ N such that for all (x, v) with v ∈ T 1

xM , the unit
tangent bundle of M , the distribution of (xkd , vkd) has an absolute continuous component as long as
d′ is sufficiently large. We omit a detailed argument, as it is similar to the proof of Lemma 4.5, and is
an elaboration of the argument in the previous step.
Step 3. Next we show that volume is ergodic.

We claim that if Ω is an invariant set for µX,f,T -almost every map then it is also invariant by
both f and the flow Xt. Indeed, for almost every (t1, t2) ∈ [−T, T ]2 we have Xt1f(Ω) = Xt2f(Ω). It
follows that for almost every t ∈ [−2T, 2T ] we have Xtf(Ω) = f(Ω). Since the set of ts such that this
equality holds is closed by Proposition 2.6, f(Ω) is preserved by the flow of X. Hence for almost every
t Ω = Xtf(Ω) = f(Ω) so f preserves Ω as well.

We now show that the random dynamics generated by Φ2d+1(⃗t) from Step 1 is ergodic. From this
ergodicity of µf,X,T follows easily: if Ω is the invariant set as above then vol(Ω) ∈ {0, 1} and the
ergodicity follows from Proposition 2.4.

So let µ̂ be the measure on Diff∞
vol(M) defined by Φ2d+1(⃗t) and consider the Markov process {yn}

on M defined by yn = gnyn−1 where {gn} are IID diffeomorphisms distributed according to µ̂. We
will show that this process is exponentially mixing in the sense that for each y′, y′′ ∈M the measures
µ̂n ∗ δy′ and µ̂n ∗ δy′′ are exponentially close with respect to the variational distance. To this end it
suffices to show that there exists n0 and a ball B ⊂M such that for each n ≥ n0 there is a constant ρn
such that for each initial point y0 the distribution of yn has an absolutely continuous component with
density bounded from below by ρn. We first show this when initial state is bounded away from P2d+1.
Note that the proof of Step 1 shows that generically for each y0 ̸∈ P2d+1 the distribution of y1 has a
continuous component with density positive in a ball centered at y0 with radius r(y0). Let Gη be the
set of points whose distance from P2d+1 is at least η. By compactness there exists r̄ such that r(y0) ≥ r̄
for y0 ∈ Gη and moreover the density on the corresponding components is at least ρ̄. Decreasing r̄ if
necessary we can find a small ball B(ȳ, r̄) which is completely contained in Gη. Since M is connected
for small η there exists n1 such that for each y0 ∈ Gη there exists a sequence y0, y1, . . . , yn1

= ȳ such
that the distance between the consecutive points is less than r̄/3. This proves the claim for y0 ∈ Gη
and n ≥ n1 with the lower bound on the density equal to (ρ̄miny∈M vol(B(y, r̄/3)))

n1 . Next, if η is
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sufficiently small then there exists q > 0 such that for each y0 ̸∈ Gη the probability that y1 ∈ Gη is at
least q proving the result for all y0 ∈M with n0 = n1 + 1.

Step 4. We now conclude that µf,X,T is coclean. Indeed, we showed in Step 1 that the distribution
of x2d+d has an absolutely continuous component. In Step 3 we showed that volume is ergodic, and in
Step 2, because (x, v) has an absolutely continuous component there cannot be a volume measurable
invariant subbundle of T ∗M . Hence the measure µf,X,T is coclean and thus coexpanding on average
by Corollary 3.7. □

Using similar ideas, we can show that the Pierrehumbert model studied in [BCG23] is coexpanding on
average. The model originates in the paper [Pie94]. The Pierrehumbert model is a random composition
of vertical and horizontal sinusoidal shears, where the shears each have have independent, uniformly
random phase shifts. Formally, this model is described as follows.

Example D. Let T2 = [0, 2π)2 be the torus and τ be a positive parameter. Then we define two
measures µH and µV on Diff∞

vol(T2). The measure µH is given by the pushforward of normalized
Lebesgue measure on [0, 2π) by the map

t 7→ (x, y) 7→ (x+ τ sin(y + t), y),

and µV is the pushforward of the normalized Lebesgue measure on [0, 2π) by

t 7→ (x, y) 7→ (x, y + τ sin(x+ t)).

Then the Pierrehumbert model is the random dynamics of the measure µ = µV ∗ µH .

Proposition 4.9. The Pierrehumbert model is coexpanding on average.

Proof. Due to Corollary 3.12 it suffices to check that µ is expanding on average. We verify this by
checking the criterion in Proposition 3.4 for conservative maps: we show that there is no measurable
a.s. invariant Riemannian metric or family of vector bundles. An easy computation shows that for the
Pierrehumbert system the distribution of f(x) is absolutely continuous for each x and, moreover, the
system is accessible. Therefore by the argument of Lemma 4.4 a measurable structure can be promoted
to a smooth one, so it suffices to show that there are no smooth invariant geometric structures of either
of the two types mentioned above.

Suppose that V is a smooth family of differentiable line bundles that is almost surely invariant
under µ. By Remark 3.5 it follows that over any point V may contain at most two lines. Since the
action on Grasmannians is one-to-one the number of lines does not depend on the point.

Note that the image of q := (0, 0) under µV is equal to ([−τ, τ ] mod 2πZ) × {0} and many images
have multiplicity at least two 2. Moreover the differentials at these images are different. Namely, if
p(z) := (z, 0) ∈ [−τ, τ ] × {0}, then there exist two shears f1 and f2 such that f1q = f2q = p(z) and

Df1(q) =

[
1 d(z)
0 1

]
Df2(q) =

[
1 −d(z)
0 1

]
,

where d(z) =
√

1 − z2. Below we introduce the slope coordinate on the unit tangent bundle defined by

ζ = x/y. In these coordinates, the matrix

[
1 d
0 1

]
acts on the projective space by ζ 7→ ζ + d.

Suppose that the family V (·) consists of two lines. Call their slopes L1 and L2. We claim that it
then follows that V contains more than two line contradicting Remark 3.5. Indeed consider z where
d(z) is defined and not equal to 0. There are two cases:
(i) if ζ1 :=L1(q) ̸=∞ and L2(q)=∞, then Dfj(q)L2 = ∞ while Df1(q)ζ1̸=Df2(q)ζ1;
(ii) If ζ1 = L1(q) < ζ2 = L2(q) are both finite then ζ1 − d(z) < ζ1 + d(z) < ζ2 + d(z).

So, in either case we get at least three lines.
If V consists of a single line, then similarly to the case (i) above V (q) should be vertical. But the

same reasoning applied to µH shows that V (q) must be horizontal giving a contradiction.
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The case of an invariant measurable Riemannian metric is similar. If we had such a metric g we can

represent gq by a quadratic form corresponding to a matrix

[
a b
b c

]
. Then the pushforwards of this

metric by f1 and f2 to (z, 0) correspond to the the matrix[
1 0

±d(z) 1

] [
a b
b c

] [
1 ±d(z)
0 1

]
=

[
a ±ad(z) + b

±ad(z) + b ad2(z) ± 2bd(z) + c

]
.

As the images of gq by Df1(q) and Df2(q) should coincide we must have a = b = 0. A similar argument
using the horizontal shears gives c = 0. □

We close this subsection with an additional example, showing that a notoriously difficult to study
system, the Chirikov-Taylor standard map, becomes expanding on average after perturbation.

Example E. The following random system on T2 is considered in [BXY17]

(4.1) f(x, y) = (Lψ(x) − y + ω, x)

where ψ : T → R is a function such that all critical points of both ψ and ψ′ are non-degenerate (and,
hence there are finitely many such points), and ω is uniformly distributed on [−ε, ε].

Proposition 4.10. [BXY18] Given δ > 0, and ψ as above there exists L1 such that if L ≥ L1 and
ε > Lδ−1 then the random system (4.1) is coexpanding on average.

Proof. By Proposition 3.11 it suffices to show that the above system is expanding on average. To this
end we note that [BXY18, Prop. 9] shows that integral (3.2) is bounded from below by a quantity of
order lnL for every stationary measure on the projective extension of (4.1). □

We note that the results of [BXY18; BXY17] are much stronger than Proposition 4.10. In particular
they get some information about the size of Lyapunov exponents and they can handle the dissipative
systems where the second component in (4.1) equals bx for b ̸= 1. The results of our paper show
in particular that mixing obtained in [BXY18] persists for small weak* perturbation of (4.1). In
particular, it persists for discrete approximations (of a sufficiently large cardinality). In this respect
we would like to mention that [Chu20] constructs explicit discrete perturbations of the standard map
which are (co)expanding on average.

4.2. Homogeneous systems and their perturbations. In this section, we explain that many al-
gebraic systems as well as their perturbations are coexpanding on average. The expanding on average
property has been known for random matrix products for a long time. For example, if µ is a com-
pactly supported measure on SL(d,R) that is strongly irreducible and contracting, the random matrix
products arising from µ are expanding on average [BL85, Cor. III.3.4] (Recall that a linear action is
called strongly irreducible if it does not preserve a family of linear subspaces, and it is called contract-
ing if it does not preserve a positive definite quadratic form). It was observed in [GM89] that the
invariant structures described above are defined by polynomial equations and so the irreducibility and
contraction properties hold if the support of µ generates a Zariski dense subgroup of SL(d,R).

Example F. Consider the following diffeomorphisms of Td: fj(x) = Ajx+ bj where Aj are elements
of SL(d,Z) and bj are vectors in Td.

Proposition 4.11. If the group generated by (A1, . . . , Am) is Zariski dense then the above tuple is
coexpanding on average and mixing.

Proof. The corresponding action on T ∗T is given by ((AT1 )−1, . . . , (ATm)−1) which also generate a
Zariski dense subgroup. So by the foregoing discussion this action (f1, . . . , fm) is coexpanding on
average. To show that the action is mixing it suffices to show for each k1, k2 ∈ Zd

E
(∫

exp(2πi⟨k1, fnωx⟩) exp(2πi⟨k2, x⟩)dx
)

→ 0



CONSERVATIVE COEXPANDING ON AVERAGE DIFFEOMORPHISMS 23

as n→ ∞. However, the above expression equals to

E
(∫

exp(2πi(⟨Sn(ω)k1 + bn(ω) + k2, x⟩)dx
)

where Sn(ω) = A∗
ωn
. . . A∗

ω1
is the linear part and bn(ω) is the corresponding translational part. Since

the action of (A∗
1, . . . , A

∗
m) is expanding on average ∥Snk1 + k2∥ tends to infinity almost surely, and

hence the probability that Snk1 + k2 = 0 goes to 0 as n→ ∞. □

Example G. Let G be a real algebraic semisimple group without compact factors, and consider the
action of G by left translation on M = G/Γ where Γ is a cocompact lattice. Let µ be a measure
supported on a compact subset of G and consider random translations on M x 7→ gx, where g ∈ G is
distributed according to µ.

Proposition 4.12. Let H denote the Zariski closure of the group generated by supp(µ). If H is
semisimple with no center and no compact factors, then µ is expanding and coexpanding on average
and mixing.

Proof. The proof is similar to the proof of Proposition 4.11 but we use the adjoint representation of
G instead of the natural action of SLd(R) on Rd.

The expansion and coexpansion on average follow from [EL, Remark on p. 3]. To see that the
volume is mixing we need to show that for each pair of zero mean L2 functions ϕ and ψ on M

E
(∫

ϕ(x)ψ(Snx)dx

)
→ 0

where Sn = gn . . . g1 and {gn} are IID distributed according to µ. From expansion on average it follows
that projection of Sn on each simple factor of G tends to infinity, so by the Howe–Moore Theorem
[Zim84, Thm. 2.2.20] the expression in parenthesis tends to 0 almost surely proving mixing. □

Remark 4.13. In fact much stronger results are known for Examples F and G. In particular, [BQ11,
Thm 1.1] tells that volume and periodic measures are only invariant measures for µ which is much
stronger than mixing.

Also a minor modification of the proofs of Propositions 4.11 and 4.12 using the large deviations
bounds (see [BQ16, §12.5]) shows that the actions of those examples are, in fact, exponentially mixing.

Theorem 1.1 gives a different proof of exponential mixing, which also work for small non linear
perturbation of Examples F and G.

Example H. Small perturbation of isometries were studied in [DeW24; DK07]. The following di-
chotomy is obtained.

Theorem 4.14. Suppose that M is an isotropic manifold of dimension at least 2 and let (R1, . . . , Rm)
be a tuple topologically generating the connected component of the identity of the isometry group of
M . Let (f1, . . . , fm) be a C∞ small volume preserving perturbation of (R1, . . . , Rm). Then either the
perturbed maps are simultaneously conjugated back to isometries, or the perturbed random system is
is both expanding on average and coexpanding on average.

This fact is not stated explicitly in these papers, so we will sketch the argument here, even though
it has been known to the experts for some time.

By Proposition 3.3, in order to check the expansion on average condition, we need to verify that
for all stationary measures ν on P(TM), that on the projectivization of the tangent bundle of M the
following integral is strictly positive:

(4.2)

∫∫ n∑
i=1

ln ∥Dfiv∥ dν(v) dµ(f) > a

for some a > 0.
The main argument in [DeW24; DK07] is a KAM scheme for producing a conjugacy that simulta-

neously linearizes the diffeomorphisms (f1, . . . , fm). Each step of the KAM scheme is able to proceed
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as long as there is an ergodic stationary measure ν for which the integral (4.2) is close to zero in a
precise quantitative sense.

This is due to [DeW24, Prop. 26], which gives an expression for the integral of an arbitrary stationary
measure ν on P(TM) that is independent of ν up to negligible terms The key feature of the argument
in [DeW24] is that the KAM scheme can proceed as long as the first line in equation (18) of [DeW24]
is small compared to the second line. If the KAM procedure can be run indefinitely then the fj are
simultaneously conjugated to rotations. If that procedure stops then the main term in Prop. 26 comes
from the first line of equation (18) and hence it is strictly positive.

Thus if the KAM procedure fails, then (4.2) holds, which shows that µ is expanding on average.
The fact that µ is also coexpanding on average follows from Proposition 3.11 and [DeW24, Thm. 40]
which shows that the integrals (3.3) for k = 1 and k = d− 1 are of the same order (note that the term
Λd in [DeW24, eqn. (93)] is zero in the volume preserving case).

Remark 4.15. Note that the same arguments work if we had instead started with the tuple (R−1
1 , . . . , R−1

m )
and its perturbation (f−1

1 , . . . , f−1
m ). Thus if (R1, . . . , Rm) is a tuple of isometries of an isotropic mani-

fold as above, and (f1, . . . , fm) is its C∞-small volume preserving perturbation then either (f1, . . . , fm)
can be simultaneously conjugated to isometries, or the tuple is expanding on average, coexpanding on
average, as well as expanding and coexpanding backwards, too.

4.3. Products. In this subsection we show how to construct new examples of coexpanding on average
systems from the existing one. As an application we verify that if µ is expanding on average, then so
is the associated k-point motion.

We start by recording several properties of expanding and coexpanding on average systems.

Lemma 4.16. For a measure µ on Aut(E), the property of being expanding on average is independent
of the metric on E .

Proof. Suppose that F distributed according to a measure µ is expanding with respect to metric ∥ · ∥
and let ∥ · ∥′ be a different metric. The expansion of E is equivalent to saying that for each non-zero
vector E[ln ∥FNω v∥] ≥ λ ln ∥v∥. Iterating we see that for each k ∈ N, E[ln ∥FNkω v∥] ≥ kλ ln ∥v∥. By
compactness there is a constant C such that for each v, C−1∥v∥ ≤ ∥v∥′ ≤ C∥v∥. It follows that
E[ln ∥FNkω v∥′] ≥ kλ ln ∥v∥′ − 2 lnC. Taking k large we conclude that µ is expanding on average with
respect to ∥ · ∥′. □

Lemma 4.17. Suppose that M1,M2 are closed manifolds, M = M1 ×M2, and that µ is probabil-
ity measure with compact support on Diff1(M) that is supported on diffeomorphisms of the form
f(x1, x2) = (f1(x1), f2(x2)). Then µ is (co)expanding on average iff its projections µj to Diff(Mj) are
(co)expanding on average.

Note that the fj need not be independent. For example, consider k-point motion where M (k) =
M ×M × · · · ×M (k times) and F (x1, . . . xk) = (f(x1), . . . , f(xk)). Applying Lemma 4.17 to this
example we obtain:

Corollary 4.18. The k point dynamics is expanding on average iff the original dynamics is expanding
on average.

Proof of Lemma 4.17. If µ is expanding on average then so are µj as follows by considering vectors of
the form (v1, 0) and (0, v2) respectively.

Conversely, suppose that µj are expanding on average. Let Nj be the time realizing the expansion
for µj and λj be the expansion constant. Set N = N1N2. Consider a metric

∥(v1, v2)∥′ = max(∥v1∥, ∥v2∥).

Take v = (v1, v2) and suppose that ∥v1∥ ≥ ∥v2∥. Then

E[ln ∥DfNω (v1, v2)∥′] ≥ E[ln ∥DfN1,ω(v1)∥] ≥ λ1∥v∥1 = λ1∥(v1, v2)∥′.

The case where ∥v1∥ ≤ ∥v2∥ is similar. □
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5. Comparing operators using symbols.

In this section, we will describe tools for comparing operators by comparing their symbols pointwise.
We begin with Lemma 5.1 that allows us to essentially take a square root of a symbol. Then we

prove a technical lemma that allow us to change the side of an inequality that a compact operator
appears on. Finally, we obtain the main result of this section, which compares the norms of operators
by comparing their symbols.

Lemma 5.1. Suppose that for m ∈ R, that A is an elliptic operator in Ψm(M) whose principle symbol
is positive for ∥ξ∥ ≥ 1. Then there exists an elliptic C ∈ Ψm/2(M) such that A = C∗C + K, where
K : Hs → Hs−m is compact.

Proof. Modifying if necessary A by a compact, smoothing operator, we can assume the principal
symbol is positive. Take C=Op(

√
σA) where σA is the principle symbol of A. Then A−CC∗∈Ψm−1

and so it maps Hs to Hs−m+1. □

Lemma 5.2. Suppose B1 and B2 are Hilbert spaces and that A,B : B1 → B2 are bounded linear
operators such that B is Fredholm and there is a compact operator K such that

(5.1) ∥Aϕ∥2 ≤ ∥Bϕ∥2 + ⟨Kϕ, ϕ⟩.

Then for all ϵ > 0 there exists a compact operator Kϵ : B1 → B2 such that

∥(A+ Kε)ϕ∥ ≤ (1 + ϵ)∥Bϕ∥.

Proof. Since K is compact and B is Fredholm there is a finite codimension subspace V of B1 such that
for ϕ ∈ V,

∥Aϕ∥2 ≤ ∥Bϕ∥2 + ⟨Kϕ, ϕ⟩ ≤ (1 + ϵ)2∥Bϕ∥2.
Let U be an orthogonal complement to V with respect to the scalar product ⟨Bϕ,Bϕ⟩. Denoting by
Π the projection to V along U we get

∥AΠϕ∥20 ≤ (1 + ε)2∥BΠπϕ∥20 ≤ (1 + ε)2∥Bϕ∥20
where the first inequality holds since Πϕ ∈ V and the second inequality holds by the definition of Π
using U . Since A−AΠ has finite rank, the result follows. □

Lemma 5.3. Suppose s ∈ R, M is a closed Riemannian manifold, and A and B are pseudodifferential
operators in Ψs(M) with associated principal symbols a(x, ξ) and b(x, ξ). Suppose that B is elliptic
and that there exist λ and r such that for all x ∈ M and |ξ| > r in T ∗

xM , |a(x, ξ)| ≤ λb(x, ξ). Then
for all ϵ > 0 there exists a compact/smoothing operator Kϵ : H−∞(M) → C∞(M) such that for all
ϕ ∈ Hs(M),

∥Aϕ∥20 ≤ (λ+ ϵ)∥Bϕ∥20 + ⟨Kϵϕ, ϕ⟩.

Proof. By definition, we are interested in,

(λ+ ε)2∥Bϕ∥20 − ∥Aϕ∥20 = λ2⟨Aϕ,Aϕ⟩ − ⟨Bϕ,Bϕ⟩.

Now let A∗ and B∗ denote the formal adjoints of A and B. While not by definition the actual adjoint,
these operators are closed and the closure is adjoint to A and B with respect to the (regularized) L2

pairing, see [Shu01, Sec. I.8.2], hence

(λ+ ε)2∥Bϕ∥20 − ∥Aϕ∥20 = ⟨((λ+ ε)2B∗B −A∗A)ϕ, ϕ⟩.

Now by our assumption concerning the symbols, (λ + ε)2B∗B − A∗A is an elliptic operator in Ψ2s.
Thus by Lemma 5.1, there exist elliptic C ∈ Ψs and compact K such that (λ2B∗B−A∗A) = C∗C+K.
This implies that

(5.2) (λ+ ε)2∥Bϕ∥20 − ∥Aϕ∥20 = ∥Cϕ∥20 + ⟨Kϕ, ϕ⟩,

which is the needed conclusion. □
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6. Main Estimates

In this section, we prove the essential spectral gap in a series of steps. First, we show how the
expanding on average condition relates to a specific estimate on the action of the symbol of the
operator ∆−s. Then we use the comparison inequality to compare with the symbol of ∆−s, proving
the essential spectral gap.

Lemma 6.1. Suppose that µ is a coexpanding on average measure on Diff1(M) with compact support.
Then there exists s0 > 0 and C such that for all 0 < s < s0, there exists 0 < η(s) < 1 such that for
each n ∈ N, each x ∈M and each ξ ∈ T 1∗

x M , the unit cotangent bundle

(6.1)

∫
∥(Dxf

∗)−1(ξ)∥−s dµn(ω) ≤ Cηn.

Proof. We give a proof in the case N = 1 in the definition of the expanding on average property. For
other N the proof follows by adjusting the constant C.

Define the function h(s, ξ) : (−1, 1) × T 1∗M → R by

(s, ξ) 7→
∫

∥(Dxf
∗)−1ξ∥−s dµ(ω).

Note that h(0, ξ) = 1, and that

∂h

∂s
(0, ξ) =

∂

∂s

∫
∥(Df∗)−1ξ∥−s dµ(ω) =

∫
− ln ∥(Df∗)−1ξ∥ dµ(ω) < −λ < 0.

Thus there exists s0 > 0 such (6.1) follows for s ∈ [0, s0] for n = 1 with C = 1. For larger n, the
needed conclusion follows by induction. □

Remark 6.2. For a diffeomorphism f there is a natural action on C∞
c (M) viewed as both functions

and distributions. Unless f is volume preserving, the map induced by pulling back a smooth function
as a smooth function, and the map pulling back a smooth function as a distribution need not coincide.
See e.g. [Trè80, Eq. I.3.13]. This coincidence is used implicitly below.

The following lemma allows us to combine operators with nonnegative principle symbol. The topol-
ogy on Sm(M) is the usual Fréchet topology on symbols. Below, one can just think of having uniform
bounds in equation (2.1) over the entire family.

Lemma 6.3. Suppose that M is a Riemannian manifold, s ∈ R, and that {Ai}i∈I is a precompact
family of elliptic pseudodifferential operators on M in symbol class Ss(M) with non-negative principle
symbol, indexed by a probability space (I, dµ). Then for all ϵ > 0, there exists an operator B ∈ Ψs(M)
with non-negative principle symbol and a (compact) smoothing operator K ∈ Ψ−∞ such that for any
ϕ ∈ Hs(M), ∫

∥Aiϕ∥20 dµ ≤ ∥Bϕ∥20 + ⟨Kϕ, ϕ⟩.

and

(6.2) |σB |2 ≤ (1 + ϵ)

∫
|σAi

(ξ)|2 dµ.

Proof. As before, for each A in the support of µ, there is its formal adjoint A∗. Then we may write∫
∥Aiϕ∥20 dµ =

∫
⟨Aiϕ,Aiϕ⟩ dµ = ⟨

(∫
A∗Adµ

)
ϕ, ϕ⟩.

Define B̂ by taking

B̂ = (1 + ϵ)Op

(∫
σA∗σA dµ

)
.

Then as in the proof of Lemma 5.3 because σB is greater than (1 + ϵ) times the principal symbol of∫
A∗Adµ, there exists an operator K in Ψ−∞(M), such that∫

∥Aiϕ∥20 dµ ≤ ⟨B̂ϕ, ϕ⟩ + ⟨Kϕ, ϕ⟩.
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We can then apply Lemma 5.1 to B̂ to find B satisfying B̂ = B∗B+ K̃ whose symbol satisfies (6.2). □

Lemma 6.4. Suppose that µ is a coexpanding on average measure on Diff∞
vol(M) with compact

support. Then for all 0 < λ < 1, there exists n ∈ N and r such that if we write ∆ for the usual
Laplacian, and write σ∆−s(x, ξ) for the principal symbol of ∆−s, then for all x ∈ M and |ξ| > r in
T ∗
xM ,

(6.3)

∫
|σ(∆−s)f (x, ξ)|2 dµn(f) ≤ λ|σ∆−s(x, ξ)|2.

Proof. Recall from §2.2 the change of variables formula saying that if A is a pseudodifferential operator
with principal symbol a(x, ξ) : T ∗M → R, and f ∈ Diff∞(M), then Af has principal symbol b(x, ξ) =
a(f(x), (Df∗)−1ξ).

Let bn denote the left hand quantity in equation (6.3). Choose 2s and n such that (6.1) in Lemma
6.1 holds for Cηn < λ. Then, for a unit covector ξ ∈ T ∗M ,

bn(x, ξ) =

∫
|σ∆−s(f(x), (Dxf

∗)−1(ξ))|2 dµn(f)

=

∫
∥(Dxf

∗)−1ξ∥−2s dµn(f)

≤ Cηn(s)(σ∆−s(x, ξ))2 ≤ λ(σ∆−s(x, ξ))2.

By homogeneity of bn(x, ξ) and of estimate (6.1), the same estimate holds for all ∥ξ∥ ≥ 1. Thus we
are done. □

We can now apply this estimate to study the essential spectral radius of the transfer operator.

Proof of Theorem 1.1. Recall that by definition G(ϕ) =
∫
ϕ ◦ fω dµ(ω). As in equation (2.2), we also

have the action on operators, which we denote by L. From before, we are interested in ∥Gnϕ∥−s. We
will take n to be some potentially large number to be chosen later. Then using a version of Jensen’s
inequality for Hilbert spaces ([Per74, Thm. 1.1]) to pass to the second estimate, we find that:

∥Gnϕ∥2−s = ∥∆−s
∫
ϕ ◦ f dµn(f)∥20 ≤

∫
∥∆−s(ϕ ◦ f)∥20 dµn(f).

But due to volume preservation,∫
∥∆−s(ϕ ◦ f)∥20 dµn(f) =

∫
∥(∆−s(ϕ ◦ f)) ◦ (f)−1∥20 dµn(f)(6.4)

=

∫
∥((∆−s)fϕ∥20 dµn(f).

By Lemma 6.3, there exists a pseudodifferential operator B ∈ Ψ−s and a compact operator K1 such
that ∥Gnϕ∥2−s ≤ ∥Bϕ∥20 + ⟨K1ϕ, ϕ⟩, and

(6.5) |σB(x, ξ)|2 ≤ (1 + ϵ)

∫
|σ(∆−s)f (x, ξ)|2 dµn(f).

We now compare the symbols of B and ∆−s. For any 0 < λ < 1, as long as n is sufficiently large, by
Lemma 6.4 applied to the right hand side of equation (6.5), it follows that |σB | ≤ λ|σ∆−s | restricted
to frequencies |ξ| > r for some r.

We now conclude using the symbol comparison lemmas. As |σB | ≤ λ|σ∆−s |, it follows from Lemma
5.3 applied to B that for all ϵ > 0 there exists a compact, smoothing operator Kϵ such that

∥Gnϕ∥2−s ≤ ∥Bϕ∥20 + ⟨K1ϕ, ϕ⟩ ≤ (λ+ ϵ)∥∆−sϕ∥20 + ⟨(Kϵ + K1)ϕ, ϕ⟩

Recalling that ∥∆−sϕ∥20 = ∥ϕ∥2−s, we then find by Lemma 5.2 that there exists a compact operator K2

such that

∥(Gn + K2)ϕ∥2−s ≤ (λ+ 2ϵ)∥ϕ∥2−s,
which establishes essential spectral gap since λ+ 2ϵ < 1 if λ and ϵ are sufficiently small. □
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We note that the proof given above in fact shows the following Lasota-Yorke inequality

(6.6) ∥Gnϕ∥−s ≤ ηn∥ϕ∥−s + Cn∥ϕ∥−s̄
where s̄ = s+ 1

2 > s and the constants η and C are uniform in some neighborhood of µ. This estimate
will be useful in the next section.

7. Applications of essential spectral gap

7.1. Essential spectral gap on L2. The proof of the following theorem uses the interpolation results
recalled in Subsection 2.5.

Theorem 7.1. Suppose that µ and µ−1 are both coexpanding on average measures on Diff∞
vol(M)

with compact support. Then there exists s0 > 0 such that the induced action on Hs(M) has essential
spectral gap for all s ∈ [−s0, s0].

Proof of Theorem 7.1. To begin, note that if Gµ denotes the action on functions of µ then G∗
µ = Gµ−1 .

Next, due to the essential spectral radius being bounded by θ < 1, there is a decomposition of H−s0

into two subspace H−s0
<θ and H−s0

>θ such that H−s0
>θ is finite dimensional and H−s0

<θ has essential spectral
radius less than θ. Then we can consider the adjoint action of Gµ−1 on Hs0 . The adjoint has the same
essential spectrum, moreover, it preserves a corresponding decomposition ofHs0 into two corresponding
pieces Hs0

<θ ⊕Hs0
>θ. Recall from above that G∗

µ−1 = Gµ. Now we can apply Lemma 2.1, and interpolate

between H−s0 and Hs0 to get the Sobolev space Hs for any s ∈ (−s0, s0) by equation (2.6). By the
lemma, the interpolated operator G has essential spectral gap on L2 as long as it has it on Hs and
H−s. All that one needs to check is that the interpolated operator is indeed the operator given by the
composition with the dynamics, but this is clear because C∞ functions are dense in Hs0 , H−s0 , and
Hs. □

Remark 7.2. Note that due to (2.7) under the hypotheses of Theorem 1.1 we also obtain spectral
gap on the Besov spaces Bs2q for q ≥ 1 and s ∈ [−s0, s0].

7.2. Pair correlation. Recall that a measure preserving map F is totally ergodic if F q is ergodic for
all q ∈ N.

Theorem 7.3. Let µ be a coexpanding on average measure on Diff∞
vol(M) with compact support.

(a) Suppose that the measure µ is weak mixing in the sense explained in §2.6. Then the random
walk defined by µ on M is exponentially mixing. Specifically, there exists s > 0, C > 0, and 0 < λ < 1
such that for ϕ ∈ Hs

0 and ψ ∈ H−s
0 , the Sobolev spaces of zero mean,

|⟨ϕ,Gnψ⟩| ≤ Cλn∥ϕ∥Hs∥ψ∥H−s .

In particular, this implies that for any fixed α > 0, and zero mean ϕ, ψ ∈ Cα(M),

|⟨ϕ,Gnψ⟩| ≤ Cλn∥ϕ∥Cα∥ψ∥Cα .

(b) The same conclusion holds if we only assume that the skew product defined by (2.8) is totally
ergodic.

Proof. (a) By Theorem 1.1 there exists s > 0 such G acting on H−s has essential spectral gap. From
the spectral decomposition theorem, e.g. [RS90, Sec. 148], we can decompose H−s into two G invariant
pieces H1 and H2 so that H1 contains the part of the spectrum of modulus at least 1 and the action on
H2 has has spectral radius smaller than some η < 1. There is a corresponding invariant decomposition
in the dual space Hs for the action of the adjoint G∗, which we denote H∗

1 and H∗
2 . Note that H1 and

H∗
1 are finite dimensional from the assumption of essential spectral gap. Given ϕ ∈ Hs

0 and ψ ∈ H−s
0 ,

decompose ϕ = ϕ1 + ϕ2, ψ = ψ1 + ψ2 where ϕ1 ∈ H∗
1 , ϕ2 ∈ H∗

2 , ψ1 ∈ H1 and ψ2 ∈ H2.

(7.1) |⟨ϕ,Gnψ⟩| ≤ |⟨ϕ1,Gnψ1⟩| + |⟨ϕ2,Gnψ2⟩|
Any element of H∗

1 is an element of L2 that satisfies Gn∗ϕ1 = reiθϕ1 for some real r ≥ 1 and θ. As the
f preserve volume, this adjoint is given by ϕ 7→

∫
ϕ ◦ f−1 dµ(f). Arguing as in §2.6 we get that r = 1
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and ϕ1 ◦ f−1 = eiθϕ1 for µ almost every f . Now our assumption about weak mixing implies that ϕ1
must be constant, and hence 0 by assumption of zero integral.

For the second term in (7.1) we have exponential decay because the norm of Gn on H2 is at most
ηn for large n. Thus |⟨ϕ,Gnψ⟩| ≤ ηn∥ϕ∥Hs∥ψ∥H−s

0
, as desired.

(b) Suppose now that F : Σ×M → Σ×M is ergodic but G does not have a spectral gap. It is easy to
see that the set eigenvalues corresponding to eigenfunctions depending only on the M coordinate form
an abelian group (cf. [CFS82, Theorem 12.1.1(1)]). Since G has an essential spectral gap on H−s the
space of eigenfunctions in H−s and hence in L2 is finite dimensional. Therefore, the aforementioned
group is finite, and so there exists q such that all eigenfunctions are q-th roots of unity. It follows that
all eigenfunctions are invariant by F q and so F q is not ergodic. □

7.3. Multiple mixing. We can now check multiple mixing.

Corollary 7.4. Under the assumptions of Theorem 7.3, there exists a constant 0<θ<1 such that for
all d ∈ N, there is a constant C such that for all zero mean ϕ0, ϕ1 . . . ϕd−1 ∈ C1(M), all zero mean
ϕd ∈ H−s, and for all 0=n0<n1<. . .<nd we have:∣∣∣∣Eµ [∫ ϕ0Gm1 (ϕ1 (Gm2ϕ2 . . . ϕd−1 (Gmdϕd))) dx

]∣∣∣∣ ≤ CθL

d−1∏
j=0

∥ϕj∥C1

 ∥ϕd∥H−s ,

where mj = nj − nj−1 and L = min
j
mj .

Proof. We proceed by induction. For d = 1 the result holds due to Theorem 7.3.
For d > 1, let ψ = ϕd−1Gmdϕd. Note that in the proof of Theorem 7.3 we established that H1 is triv-

ial, since the only eigenfunction of modulus 1 is 1, which is orthogonal to zero mean functions. Accord-
ingly ∥Gmdϕd∥H−s≤C1θ

md∥ϕd∥H−s . Since multiplication by a C1 function is a bounded operator on
H−s, with the norm bounded by the C1 norm of the function, we have ∥ψ∥H−s≤C2θ

md∥ϕd−1∥C1∥ϕd∥H−s .
ψ need not have zero mean but we can split it as ψ1 + ψ2 where ψ1 = ⟨ψ, 1⟩1 and ψ2 has zero mean.
Hence applying the inductive assumption for d− 2 and d− 1 respectively, and noticing that

⟨ψ, 1⟩ =

∫
ϕd−1Gmdϕd dx = O (∥ϕd−1∥C1∥ϕd∥H−sθmd)

we obtain the result. □

7.4. Non-mixing systems. Without assuming ergodicity we have the following consequence of co-
expansion on average.

Corollary 7.5. Suppose that µ is a coexpanding on average measure on Diff∞
vol(M) with compact

support. Then there exists q > 0 and a finite collection of disjoint positive measure subsets M1, . . .Ml

of M of total measure 1 such that for each j, F q preserves Σ ×Mj and the restriction of F q to this
set is totally ergodic.

Proof. If F is totally ergodic, there is nothing to prove, so we suppose that F is not totally ergodic.
Then there exists q such that F q is not ergodic. As is standard for random systems, we say that a set
is invariant if it is invariant modulo vol-null sets. By Proposition 2.4, there is a set M̃ ⊂ M which is
invariant by almost all fqω. Note that the space of functions depending only on x which are invariant
mod zero by almost all fqω is finite dimensional (its dimension does not exceed the dimension of H1

∗
from the proof of Theorem 7.3). Hence the σ-algebra of invariant sets is finitely generated, so there

are finitely many sets M̃1, M̃2, . . . M̃l̃ which are invariant and such that the restriction of F q to Σ×M̃j

is ergodic. If F q is totally ergodic restricted to these sets, we are done. Otherwise there is q̂ > 1 such
that, applying Proposition 2.4 again, we could split M̃j = M̂j1

⋃
· · ·
⋃
M̂jkj so that M̂ji are invariant

under F q̂ and F q̂ is ergodic on Σ×M̂ji, and the splitting is non trivial in the sense that at least one

M̃j is split into more than one piece.
Continuing this procedure we obtain finer and finer subpartitions of M. Since the number of elements

in every partition is at most dimension of H∗
1 , this process stops after finitely many steps. □
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7.5. Stability of mixing. Let K be a compact set of coexpanding on average measures such that for
(6.6) holds for µ ∈ K. Consider the following Wasserstein type function on the space of measures

d(µ, µ̃) = inf

∫
π

√
[dC2(f, f̃) + dC2(f−1, f̃−1)]dπ(f, f̃).

where the infimum is over all measures π with marginals µ and µ̃.

Theorem 7.6. Suppose µ ∈ K is a coexpanding on average measure on Diff∞
vol(M) with compact

support such that the associated operator G has no eigenvalues on the unit circle in H−s
0 , the space of

zero mean distributions. Then the same holds for any measure µ̃ which is sufficiently close to µ with
respect to d metric.

We start with some notation. Let µ̃ be a measure such that δ := d(µ, µ̃) is small. Denote G := Gµ,
G̃ := G̃µ̃. We need an auxiliary estimate.

Lemma 7.7. (a) There is a constant K such that for s, s̄ from (6.6)

∥Gϕ− G̃ϕ∥−s̄ ≤ Kδ∥ϕ∥s.

(b) For each n there is a constant Kn such that ∥Gnϕ− G̃nϕ∥−s̄ ≤ Knδ∥ϕ∥s.

Proof. (a) For Sobolev spaces of positive indices this is proven in [Bal00, Lemma 2.39]. The result for
negative indices follows by duality. Namely, given ψ ∈ H s̄ we have∣∣∣⟨Gϕ− G̃ϕ, ψ⟩

∣∣∣ =
∣∣∣⟨ϕ,G∗ψ − G̃∗ψ⟩

∣∣∣ ≤ ∥ϕ∥s∥(G∗ − G̃∗)ψ∥s
The second factor can be rewritten as

∥(G∗ − G̃∗)ψ∥−s =

∥∥∥∥∫ [ψ ◦ f−1 − ψ ◦ f̃−1
]
dπ

∥∥∥∥
−s

≤
∫ ∥∥∥ψ ◦ f−1 − ψ ◦ f̃−1

∥∥∥
−s
dπ

≤
∫
K

√
dC2(f−1, f̃−1)dπ∥ψ∥−s̄ ≤ Kδ∥ψ∥−s̄

proving part (a).

(b) follows from (a) by writing Gn − G̃n =

n−1∑
j=0

[
Gn−jG̃j −Gn−j−1G̃j+1

]
. □

Proof of Theorem 7.6. This follows from Proposition 2.3. Indeed (2.10) follows from the inequality
∥Gn∥−s ≤ C max

f
∥Df∥−s which can be obtained by interpolation. (2.11) follows from (6.6), (2.12)

holds due to Theorem 1.1, and (2.13) holds by Lemma 7.7. □

7.6. Genericity of exponential mixing. Using the decomposition from Corollary 7.5, we can show
that if the coexpanding on average condition is generic among tuples, then so is ergodicity. Recall that
we associate with a tuple the random dynamical system that assigns equal weight to each element of
the tuple.

Proposition 7.8. Suppose that the coexpanding on average condition is dense in Diff∞
vol(M)m, the

space of m-tuples, then stable exponential mixing is dense in the space of (m+ 1)-tuples.

Proof. By assumption, the coexpanding on average condition is dense among m-tuples. In fact, for
a tuple (f1, . . . , fm, g), it is dense that (f1, . . . , fm) is coexpanding on average both forwards and
backwards. Thus by Theorem 7.1 the operator G associated to the full tuple has essential spectral gap
on L2, as it is the average of two operators of norm 1, one having this property.

From Corollary 7.5 applied to (f1, . . . , fm) we see that there exists q and a finite partition {Mf
i , . . . ,M

f
l }

such that the restriction of the q-th power of the dynamics of (f1, . . . , fm) to this set is totally ergodic.
Similarly to the proof of Theorem 7.3, once we have an essential spectral gap, in order to obtain expo-
nential mixing, it suffices to show that in fact every power of the dynamics generated by (f1, . . . , fm, g)
is ergodic. Hence we must show that for each power of the dynamics, the σ-algebra of a.s. invariant



CONSERVATIVE COEXPANDING ON AVERAGE DIFFEOMORPHISMS 31

sets is trivial. This σ-algebra is a coarsening of the algebra I generated by the partition {Mf
i }1≤i≤l.

Since I is finite, we need to show that for each nontrivial A ∈ I, a generic map does not preserve A,
but this follows from Proposition 2.6. □

The argument presented above can be applied to show the genericity of exponential mixing in other
settings as well.

Proof of Theorem 1.6. Suppose that (R1, . . . , Rm−1) generates Isom(M). By Theorem 4.14, its per-
turbation is either isometric or (generically) coexpanding on average. Suppose we extended the tuple
with an extra map (R1, . . . , Rm−1, Rm), and then perturbed to obtain a tuple (f1, . . . , fm−1, fm). If
(f1, . . . , fm−1) is not simultaneously conjugated back to isometries, then this tuple is coexpanding on
average forwards and backwards. Hence Proposition 2.6 shows that possibly after a further C∞ small

perturbation f̃m of fm the resulting dynamics of (f1, . . . , fm, f̃m+1) is stably exponentially mixing. As
generating tuples (R1, . . . , Rm−1) are dense in Isom(M) by [Fie99, Thm. 1.1], Theorem 1.6 follows. □

7.7. Dissipative perturbations. Due to the spectral gap small dissipative perturbations of coex-
panding on average conservative systems must have an absolutely continuous invariant measure with
a density in Hs, s > 0. We note that in [Bro+24, Thm. A] the authors exhibit an open set of
(co)expanding on average random systems on T2 such that

(i) There is an absolutely continuous stationary measure;
(ii) Any stationary measure is either absolutely continuous or finite.

They conjecture that the same conclusion holds for arbitrary mildly dissipative expanding on average
systems on surfaces.

Our result below extends (i) to arbitrary dimension (for coexpanding systems). However, our
methods do not give (ii) even in dimension two since the a priori regularity of non-atomic stationary
measures obtained in [BR17] is insufficient to conclude that the measure is in H−s for small s.

We also note that for higher dimensional systems where could be stationary measure supported
on proper submanifolds. A simple example is provided by a k point motion discussed in §4.3 which
preserves generalized diagonals. It is an important open question if fractal stationary measures are
also possible in either conservative or mildly dissipative setting (cf. [Bro+25, Conjecture 1.1.12]).

Theorem 7.9. Let µ be a coexpanding on average measure on Diff∞
vol(M). Then there exists δ > 0

such that if µ̃ is a C1 small perturbation of µ supported on diffeomorphisms in Diff∞(M) satisfying
that for each x ∈M

(7.2) |det(Dxf) − 1| ≤ δ,

then:

(a) The generator G̃ of µ̃ process has an essential spectral spectral radius smaller than 1.
(b) The random system generated by µ̃ has an absolutely continuous invariant measure in Hs for some

small s > 0.

Proof. To prove (a) we note that the only place where the volume preservation was used in the proof
of Theorem 1.1 is (6.4) where we used that the composition with fnω preserves L2-norm. Under the
volume preservation assumption (7.2), the norm of the composition on L2 is increased by at most a
factor of (1 + δ)n which is sufficient for the argument as long as (1 + δ)η < 1.

To prove (b) note that G̃1 = 1 and by part (a), 1 is an eigenvalue of finite multiplicity. It follows

that it is also eigenvalue of finite multiplicity of the adjoint operator L̃, which acts on Hs, s > 0. In

particular, there exists an L̃ invariant function ϕ ∈ Hs. Multiplying ϕ by i if necessary we may assume

that ℜ(ϕ) ̸= 0. Since ℜ(ϕ) is preserved by L̃ we may assume from the beginning that ϕ is real. By the

same argument we may assume that ϕ+ := max(ϕ, 0) is not identically zero. We claim that ϕ+ ≤ L̃ϕ+.
Indeed if ϕ(x) > 0 then (L̃ϕ+)(x) ≥ (L̃ϕ)(x) = ϕ(x) = ϕ+(x). On the other hand if ϕ(x) ≤ 0 then

(L̃ϕ+)(x) ≥ 0 = ϕ+(x) proving the claim. The claim implies that

⟨ϕ+, 1⟩ ≤ ⟨L̃ϕ+, 1⟩ = ⟨ϕ+, G̃1⟩ = ⟨ϕ+, 1⟩.
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But this is only possible if the inequality is in fact equality, that is, L̃ϕ+ = ϕ+. Thus the measure with
density ϕ+ is a stationary measure of our Markov chain. □

Remark 7.10. Of course, if our random system is totally ergodic, then by Keller–Liverani stability

result, all L̃ invariant functions (real or complex) are proportional, so in that case the stationary
measure is unique.

7.8. Central limit theorem. In this subsection, we deduce the central limit theorem from the spec-
tral gap.

Theorem 7.11. Suppose that M is a closed manifold and that µ is a compactly supported measure
on Diff∞

vol(M) that is coexpanding on average and weak mixing. Then

(a) (CLT) The associated random dynamical system satisfies the central limit theorem. Namely let
ϕ : M → R be a zero mean Hölder function. Then for z ∈ R,

lim
N→∞

(µN ⊗ vol)

(
(ω, x) :

N−1∑
n=0

ϕ(fnωx) ≤
√
Nz

)
=

∫ z

0

gσ(s)ds

where

(7.3) σ2 = σ2(ϕ) = ∥ϕ∥2L2 + 2

∞∑
n=1

⟨ϕ,Gnϕ⟩L2 ,

and gσ is the density of the normal random variable with zero mean and variance σ2.

(b) (Berry–Esseen bound) Moreover there is a constant K such that if ϕ is a zero mean C1 function
with σ2(ϕ) ̸= 0, then for all z ∈ R,∣∣∣∣∣(µN ⊗ vol)

(
(ω, x) :

N−1∑
n=0

ϕ(fnωx) ≤
√
Nz

)
−
∫ z

0

gσ(s)ds

∣∣∣∣∣ ≤ K√
N
.

(c) If, in addition, µ−1 is also coexpanding on average, then both CLT and Berry–Essen bound hold
for L∞ observables.

Proof. Part (b) follows by [Gou15, Theorem 3.7] which says that the Berry–Esseen bound holds pro-
vided that G has spectral gap on some Banach space B, 1 is a simple eigenvalue of G, and, denoting
Gt(ψ) = G

(
eitϕψ

)
, we have that the map t 7→ Gt is C3 in the strong operator norm in Aut(B). Take

B = H−s. Then the essential spectral gap holds by Theorem 1.1, the second condition holds due
to Theorem 7.3 since µ is weak mixing, and the last condition holds because eitϕ is the sum of its
Taylor series and multiplication by ϕ, and hence ϕk, define bounded operators in H−s with at most
exponentially growing norms.

Next, under the assumption of part (c), the generator has a spectral gap on L2 by Theorem 7.1. Now
part (c) follows from [Gou15, Theorem 3.7], this time with B = L2, and the fact that multiplication
by an L∞ function is a bounded operator on L2.

Part (a) follows from part (b) and Proposition 7.12 below. □

Proposition 7.12. Suppose that xn is a Markov process with state space M , and B is a space
of zero mean functions on M where the generator G has summable correlations in the sense that

|⟨Gnϕ, ψ⟩| ≤ a(n)∥ϕ∥∥ψ∥ with
∑
n

a(n) < ∞. If there is a dense set D ⊂ B such that for all ϕ ∈ D,

N−1/2
N−1∑
n=0

ϕ(xn) converges in law as N → ∞ to a normal random variable with zero mean and variance

σ2(ϕ) given by (7.3) then the same holds for all ϕ ∈ B.
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Proof. In the course of the proof we will denote SN (ϕ) =

N−1∑
n=0

ϕ(xn) and let Φσ(z) be the cumulative

distribution function of the normal random variable with zero mean and variance σ2. In the Big-O
terms below, the implied constants depend only on the a(n) unless otherwise noted.

Take ϕ ∈ B. Recall that ∥Sn(ϕ)∥2L2 = Nσ2(ϕ) + O(∥ϕ∥2L2). If σ2(ϕ) = 0, then
SN (ϕ)√

N
converges to

0 due to the Chebyshev inequality.
Next, suppose that σ2(ϕ) ̸= 0. Take z ∈ R and ε > 0 and choose ψ ∈ D such that ∥η∥ ≤ ε4 where

η = ϕ− ψ.
Then

P
(
SN (ψ)√

N
≤ z − ε

)
− P

(∣∣∣∣SN (η)√
N

∣∣∣∣ ≥ ε

)
≤ P

(
SN (ϕ)√

N
≤ z

)
≤ P

(
SN (ψ)√

N
≤ z + ε

)
+ P

(∣∣∣∣SN (η)√
N

∣∣∣∣ ≥ ε

)
.

Since a straightforward computation using the summability of the correlations gives σ(ψ) = σ(ϕ) +
Oϕ(ε4), we see that for large N ,

P
(
SN (ψ)√

N
≤ z + ε

)
≤ Φσ(ψ)(z + ε) + ε ≤ Φσ(ϕ)(z) + Cε.

Similarly,

P
(
SN (ψ)√

N
≤ z − ε

)
≥ Φσ(ϕ)(z) − Cε.

Also since σ2(η) = O(ε4), the Chebyshev inequality tells us that P(|η| > ε) = O(ε2).

Combining the above estimates gives that P
(
SN (ϕ)√

N
≤ z

)
= Φσ(ϕ)(z) +Oϕ(ε). Since ε is arbitrary

the result follows. □

7.9. Quenched properties. The results described so far pertain to the averaged (annealed) dynam-
ics. However, if ergodic properties of the two point motion are well understood, one can derive quenched
results, which we discuss briefly in this subsection. We say that the random dynamics has quenched
exponential mixing on a Banach space B of functions on M if there exists a constant θ < 1 and random
variable C(ω) such that for almost all ω and all zero mean functions ϕ, ψ ∈ B we have∣∣∣∣∫ ϕ(x)ψ(fnωx)dx

∣∣∣∣ ≤ C(ω)θn∥ϕ∥B∥ψ∥B.

We say that the random dynamics satisfies the quenched Central Limit Theorem on B if there exists
a quadratic form D on B which is not identically zero such that for almost every ω and all zero mean
functions ϕ ∈ B, then if x is uniformly distributed on M , the distribution of SωNϕ(x)/

√
N converges

in law to a normal random variable with zero mean and variance D(ϕ).

Theorem 7.13. Suppose that µ is a coexpanding on average measure on Diff∞
vol(M) such that the two

point system is totally ergodic. Then the random dynamics defined by µ enjoys quenched exponential
mixing on Hs for s > 0 and the quenched Central Limit Theorem on C1.

Proof. By Corollary 4.18 the two point motion is coexpanding on average as well. Hence by Theo-
rem 1.1 the two point motion has essential spectral gap on H−t for small positive t. From the total
ergodicity assumption together with Theorem 7.3(b) the generator has a spectral gap on H−t for small
positive t. Now the result follows from [DD25] which says that a spectral gap on Ht implies the
quenched exponential mixing on Hs for s > 0 and quenched Central Limit Theorem on Cr for r > |t|.
□
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8. Back to the introduction

Here we explain how the results stated in the introduction follow from the main results of our
paper. Theorem 1.1 was proven in Section 6, while Theorem 1.6 was proven in §7.6. We now show the
remaining results.

Proof of Corollary 1.2. Suppose that µ is a coexpanding on average measure that is totally ergodic.
Then any perturbation µ̃ of µ has the same properties by Theorem 7.6. Thus µ̃ is multiple exponential
mixing by Corollary 7.4, and satisfies the central limit theorem by Theorem 7.11. □

Proof of Theorem 1.3. Let G be the set of coexpanding on average totally ergodic measures. These
measures are strongly chaotic as was explained above. Also G is open by Theorem 7.6. To see that
it is dense note that it is proven in [Ell23] that for each open set U in the space of Diff∞

vol(M) there
exists a clean measure µ0 supported on U (see also Theorem 4.8 of the present paper). Thus for each
measure µ on U and each ε > 0 the measure µε = εµ0 + (1 − ε)µ belongs to G by Corollary 3.7. Thus
G is dense. □

Proof of Corollary 1.5. The fact that the examples described in the corollary are coexpanding on
average and totally ergodic follow from Propositions 4.11, 4.12 and Theorem 4.14 respectively. The
strong chaoticity follows from Corollary 7.4 and Theorem 7.11. The same properties hold for µ−1 since
µ−1 belongs to the same class as µ. Now the spectral gap on L2 follows from Theorem 7.1. □
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measures on groups (Oberwolfach, 1981). Vol. 928. Lecture Notes in Math. Springer, Berlin-
New York, 1982, pp. 258–303.

https://doi.org/10.1215/S0012-7094-07-13633-0
https://doi.org/10.1215/S0012-7094-07-13633-0
https://doi.org/10.1007/s00220-015-2554-y
https://doi.org/10.1090/S0002-9939-99-04959-X
https://doi.org/10.1070/RM1989v044n05ABEH002214
https://doi.org/10.1070/RM1989v044n05ABEH002214
https://doi.org/10.1090/pspum/089/01487
https://doi.org/10.1017/S0143385705000374
https://doi.org/10.1017/S0143385705000374
https://doi.org/10.1007/BF02450281
https://doi.org/10.1007/978-1-4684-9175-3
https://doi.org/10.1007/978-1-4684-9175-3
https://doi.org/10.2307/1996575


38 REFERENCES

[Led86] Francois Ledrappier. “Positivity of the exponent for stationary sequences of matrices”.
Lyapunov exponents (Bremen, 1984). Vol. 1186. Lecture Notes in Math. Springer, Berlin,
1986, pp. 56–73. doi: 10.1007/BFb0076833.

[Led84] Francois Ledrappier. “Quelques propriétés des exposants caractéristiques”. École d’été de
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matics. Birkhäuser Verlag, Basel, 1984, pp. x+209. doi: 10.1007/978-1-4684-9488-4.

Department of Mathematics, The University of Maryland, College Park, MD 20742, USA

Email address: dewitt@umd.edu, dolgop@umd.edu

https://doi.org/10.1090/S0273-0979-1981-14880-1
https://doi.org/10.1093/qmath/hau009
https://doi.org/10.1088/0951-7715/14/5/306
https://doi.org/10.1017/CBO9781139976602
https://doi.org/10.1017/CBO9781139976602
https://doi.org/10.1016/j.anihpc.2012.11.002
https://doi.org/10.1007/BF02808180
https://doi.org/10.1007/978-1-4684-9488-4

	1. Introduction
	1.1. Overview of the main results.
	1.2. Related Results
	1.3. Comments on the proof

	2. Background
	2.1. Symbols and the Operators
	2.2. The Pullback
	2.3. Elliptic Operators
	2.4. Sobolev Norms
	2.5. Interpolation inequalities
	2.6. Weak mixing of random systems
	2.7. Perturbation of the essential spectrum.
	2.8. Ergodicity
	2.9. Transversality.
	2.10. Measure Theory

	3. Expanding on average conditions
	3.1. Bundle maps associated to a random system
	3.2. Characterization of Expansion on Average

	4. Examples
	4.1. Random flows
	4.2. Homogeneous systems and their perturbations
	4.3. Products

	5. Comparing operators using symbols.
	6. Main Estimates
	7. Applications of essential spectral gap
	7.1. Essential spectral gap on square integrable functions
	7.2. Pair correlation
	7.3. Multiple mixing.
	7.4. Non-mixing systems.
	7.5. Stability of mixing.
	7.6. Genericity of exponential mixing.
	7.7. Dissipative perturbations.
	7.8. Central limit theorem.
	7.9. Quenched properties.

	8. Back to the introduction
	References

