
DISPERSING FERMI–ULAM MODELS

JACOPO DE SIMOI AND DMITRY DOLGOPYAT

Abstract. We study a natural class of Fermi–Ulam Models fea-
turing good hyperbolicity properties that we call dispersing Fermi–
Ulam models. Using tools inspired by the theory of hyperbolic bil-
liards we prove, under very mild complexity assumption, a Growth
Lemma for our systems. This allows us to obtain ergodicity of dis-
persing Fermi–Ulam Models. It follows that almost every orbit of
such systems is oscillatory.
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1. Introduction.

A Fermi–Ulam Model is a classical model of mathematical physics. It
describes a point mass moving freely between two infinitely heavy walls.
It is commonly assumed that one of the walls is fixed and the other one
moves periodically. We will also make this assumption. Allowing both
walls to move (with the same period) does not lead to significant new
features while making the computations more complicated. Collisions
with the walls are assumed to be elastic, therefore the kinetic energy
of the particle is conserved except at collisions with the moving wall.
We denote the distance between the two walls at time t by `(t). We
assume ` to be strictly positive, Lipschitz continuous, piecewise smooth
and one-periodic.

This model was introduced by Ulam, who wanted to obtain a simple
model for the stochastic acceleration, which according to Fermi [26, 27]
is responsible for the presence of highly energetic particles in cosmic
rays. Ulam and Wells performed numerical studies of the Fermi–Ulam
model (see [43]). The authors were interested in harmonic motion of
the walls but due to the limited power of their computers they had to
study less computationally intensive wall motions. Namely, they as-
sumed that velocity was either piecewise constant or piecewise linear,
since in that case the location of the next collision can be found by
solving either a linear or a quadratic equation. A few years after [43],
it was pointed out by Moser that if the motion of the wall is suffi-
ciently smooth (in particular, harmonic motions) then KAM theory
implies that all orbits have bounded velocities and so stochastic ac-
celeration is impossible. The precise smoothness assumptions needed
for the application of KAM theory have been worked out by several
authors [25, 30, 36, 37]. However, Moser’s argument does not apply
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to the wall motions studied in [43]. In fact, piecewise smooth motions
have been a subject of intensive numerical investigations and several
authors have reported the presence of chaotic motions for certain pa-
rameter values (see e.g. [4, 15]). The first rigorous result about the
models studied in [43] is due to Zharnitsky, who proved in [46] the ex-
istence of unbounded orbits for a range of parameter values. The next
natural question is how large is the set of orbits exhibiting stochastic
acceleration. In [17], we studied general wall motions such that the ve-
locity of the wall has only one discontinuity per period. We found1 that
the large energy behavior of this system depends crucially on the value
of a parameter which, under the assumption that the discontinuity is
at 0, takes the form

∆ = `(0)[`′(0+)− `′(0−)]

∫ 1

0

`−2(t)dt(1.1)

where the second factor amounts to the velocity jump at 0. In par-
ticular, we proved that the motion of the particle is chaotic for large
energies if ∆ 6∈ [0, 4] and it is regular for large energies if ∆ ∈ (0, 4).

While the large energy dynamical behavior depends only on the aver-
age value of `−2 and on the values of ` and its derivative at the moment
of jump (according to (1.1)), the dependence of the small energy dy-
namics on ` is more delicate. It turns out that the following property
is sufficient to ensure stochastic behavior for all energies.

Definition 1.1. A Fermi–Ulam model is said to be dispersing if there
exists K > 0 so that `′′(t) ≥ K for all t where `′′ is defined.

In this paper we study the dynamics of dispersing Fermi–Ulam mod-
els. Note that for dispersing models, the value of ∆ defined by (1.1)
is necessarily negative. Indeed, the first and the last factors are pos-
itive while the second factor is negative because periodicity implies
that `′(0−) = `′(1−) and the dispersing property implies that `′(t) is
increasing on its interval of continuity. Thus, according to [17], dispers-
ing Fermi–Ulam models are indeed stochastic for large energies. The
goal of this paper is to show that stochasticity holds even for small
energies: we will in fact prove that such systems are ergodic.

Let us now list the standing assumptions on the function ` which
will be used throughout the paper.

(a1) for any t ∈ R, `(t) > 0 and `(t) = `(t+ 1);
(a2) ` ∈ C0([0, 1]), its restriction `|(0,1) is C5-smooth and `|[0,1] can be

C5-smoothly extended to some open neighborhood of [0, 1].

1The results of [17] needed in the present paper are stated precisely in § 4.2.
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(a3) there exists K > 0 so that for any t ∈ (0, 1), `′′(t) ≥ K.

Observe that assumption (a1) implies positivity and periodicity; as-
sumption (a2) implies (in particular) that ` is Lipschitz and clarifies
the degree of smoothness that is needed; the non-smoothness point is
assumed at 0; assumption (a3) implies that the corresponding Fermi–
Ulam model is dispersing and therefore that `′(0+) 6= `′(1−).

We assume the fixed wall to be at the coordinate z = 0, and the
coordinate of the moving wall at time t to be z = −`(t). Let Ω denote
the extended phase space of the system, defined as

Ω = {X = (t, z, v) ∈ R3 s.t. − `(t) ≤ z ≤ 0}.
where z denotes the negative of the distance between the point mass
and the fixed wall, v is its velocity, with the positive direction pointing
away from the moving wall. The dynamics of the system is described
by the Hamiltonian flow Φs : Ω → Ω, which acts on Ω preserving
the volume form dt ∧ dz ∧ dv (see Section 2). Observe that if X =
(t, z, v) ∈ Ω is so that z = −`(t) (resp. z = 0), then X corresponds
to a collision with the moving (resp. fixed) wall. If v < −`′(t) (resp.
v > 0), then X corresponds to the phase point immediately before the
collision; if v > −`′(t) (resp. v < 0), then X corresponds to the phase
point immediately after the collision. If v = −`′(t) (resp. v = 0) we
have a so-called grazing collision (such collisions will be extensively
discussed in the sequel). 2

It will be more convenient to describe the dynamics on a suitable
Poincaré section. Define the collision space

M = [0, 1]× [0,∞) 3 x = (r, w).

The collision map F : (r, w) 7→ (r′, w′) can be described as follows: a
point mass which leaves the moving wall at time equal to r (mod 1)
with velocity w relative to the moving wall will have its next colli-
sion with the moving wall at time equal to r′ (mod 1) and will leave
the moving wall with relative velocity w′ (which is thus called post-
collisional relative velocity). The invariant volume form dt ∧ dz ∧ dv
induces an invariant measure µ for F where

dµ = (v + `′(t))dv ∧ dt = w dw ∧ dr.
Due to the presence of singularities (the issue will be covered in detail

in Section 3), the map F and its iterates are not defined everywhere.

2 When studying billiard flows, it is customary to identify collision points corre-
sponding to pre- and post-collisional velocities. This of course changes the topology
of Ω, but has the advantage of making the Hamiltonian flow continuous. Since we
will not make extensive use of the flow dynamics we will not take this extra step.
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It is fortunately simple to show that the singularity set is a µ-null set
(namely, a countable union of smooth curves). Therefore the dynamics
is well defined µ-almost everywhere, which is, in fact, all we need for
the study of statistical properties of the system.

In [17] we proved that every dispersing Fermi–Ulam model is recur-
rent, that is, µ-almost every point eventually visits a region of bounded
velocity; moreover, we showed that such systems are (non-uniformly)
hyperbolic for large velocities.

We now state the main result of the present work.

Main Theorem. Dispersing Fermi–Ulam models satisfying assump-
tions (a1)–(a3) and regular at infinity are ergodic.

Regularity at infinity is a technical condition which allows one to
control the combinatorics of collisions at infinity (see § 6.1 for the
definition). For the moment we note that this property depends only
on the parameter ∆ defined by (1.1). We will show in the appendix
that this condition may fail at most for countably many values of ∆. In
particular all dispersing Fermi–Ulam models with |∆| > 1

2
are regular

at infinity (see Remark 6.4).
Consider, as an example, piecewise quadratic motions studied in [43].

Thus we assume that

`(t) = 1 + a

(
{t} − 1

2

)2

,

where {·} denotes the fractional part3 . Here a is a real number that
we assume to be greater than −4 so that `(t) > 0 for all t. In this
example we have `′′(t) = 2a, thus the model is dispersing if and only if
a > 0. In this case one can compute (see [17, Example 1.1]) that

|∆|(a) = a+

√
a(a+ 4)

2
arctan

(√
a

2

)
.

Studying this function we see that |∆|(a) > 1/2 for a > 1/4. Hence, the
model is regular at infinity for all a > 0 except, possibly, a countable
set of values of a ∈ (0, 1/4) .

The foregoing discussion shows that most dispersing Fermi–Ulam
models are ergodic. In fact it is possible that dispersing Fermi–Ulam
models are ergodic regardless of their regularity properties at infinity,
but the proof of this fact would require new ideas.

3Here the time scale is fixed by the requirement that the motion is 1 periodic

and the spatial scale is fixed by the requirement that `

(
1

2

)
= 1.
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On the other hand, there are examples of non-dispersing Fermi–
Ulam model which are not ergodic (see for example ([17, Theorem 3
and Figure 2]).

Recall that an orbit {(rn, wn)}n∈Z where (rn, wn) = Fn(r0, w0) is said
to be oscillatory if lim supwn =∞ and lim inf wn <∞.
Corollary 1.2. Almost every orbit of a dispersing Fermi–Ulam Model
satisfying assumptions (a1)–(a3) and regular at infinity is oscillatory.

Φs

t

z

`(t)

Figure 1. Dynamics of a dispersing Fermi–Ulam Model

The core observation made in this paper is that the dynamics of
dispersing Fermi–Ulam Models sports remarkable geometrical similari-
ties with the dynamics of planar dispersing billiards4, although with an
unusual reflection law. Moreover, our phase space M is non-compact,
and the smooth invariant measure for F is only σ-finite. Ergodicity of
systems with singularities, preserving a smooth infinite measure is dis-
cussed for example in [39, 31, 32]. However, our system is significantly
more complicated as we explain below.

Recall first, that the study of ergodicity of uniformly hyperbolic
systems goes back to Hopf (see [28]), who analyzed the case where
the stable and unstable foliations are smooth. The Hopf argument
was extended to smooth uniformly hyperbolic systems5 by Anosov and
Anosov–Sinai [1, 2]. Hyperbolic systems with singularities are dis-
cussed in [40, 14, 29, 35, 34]. In order to use the Hopf method (which
is recalled in Section 8) one needs to ensure that most points have long
stable and unstable manifolds. A classical way to guarantee this fact
is to require that a small neighborhood of the singularity set has small

4 This is one reason why we call such models dispersing. The other explanation
in terms of geometric optics is given in § 2.4.

5 In such systems stable and unstable foliations are only Hölder continuous,
see [1].
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measure. In our case the system is non-compact, and an arbitrarily
small neighborhood of the singularity set has infinite measure, so a
different method has to be employed. A more modern approach relies
on the so called Growth Lemma, developed in [6], see [9] for a detailed
exposition. The Growth Lemma implies that each unstable curve inter-
sects many long stable manifolds and vice versa. The Growth Lemma
provides a significant improvement on the classical estimate on the
sizes of unstable manifolds and it has numerous applications to the
study of statistical properties, including mixing in finite and infinite
measure settings [13, 11, 10, 23], limit theorems [12, 24], and aver-
aging [7, 8, 22]. However, in order to prove the Growth Lemma one
needs to study the structure of the singularity set in great detail. It
turns out that the structure of singularities in dispersing Fermi-Ulam
models is quite complicated. Continuing the analogy with billiards, it
corresponds to billiards with infinite horizon and corner points. The
Growth Lemma for billiards with corners was established only recently
(see [18] for finite and [5] for infinite horizon case). Comparing to the
aforementioned class of billiards, an additional difficulty in our model
is the lack of hyperbolicity at infinity. Indeed, when the velocity is
large, the travel time is short and the expansion deteriorates. To ad-
dress this issue, an accelerated map was studied in [17] (see also [21, 20]
for related results). The main contribution of this paper is to combine
the analysis of the high energy regime studied in [17], with the analy-
sis of low energies (mostly based on the ideas of [9] and the advances
obtained in [18]) in order to prove a Growth Lemma valid for all ener-
gies. The Growth Lemma also allows us to prove absolute continuity
of the stable and unstable laminations, which is a crucial ingredient in
the proof of ergodicity via the Hopf argument. Absolute continuity is
proved in great generality for finite measure hyperbolic systems with
singularities in [29], but their results cannot be applied to our infinite
measure setting, so a different technique has to be employed.

We hope that the methods developed in this paper will be useful for
studying other hyperbolic systems preserving infinite measure (such as,
for example, the systems from [33, 47]) and that our Growth Lemma
will be useful in studying more refined statistical properties of dispers-
ing Fermi–Ulam models.

Since our analysis has many features in common with the study of
billiards, we will try, wherever possible, to employ the same notation
as in [9]. However, the arguments necessary for our system require sig-
nificant modifications in many places, which is, ultimately, the reason
for the length of this paper.
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The structure of the paper is as follows. In Section 2 we describe
basic properties of dispersing Fermi–Ulam Models, including invariant
cones and expansion rates. Section 3 discusses the structure of the
singularities of the Poincaré map. Section 4 is devoted to the high
energy regime. The results of [17] are recalled and extended. Section 5
studies distortion of the collision map and obtains regularity estimates
on the images of unstable curves. The main technical tool–the Growth
Lemma–is then proven in Section 6. This lemma is used in Section 7
to study the properties of stable and unstable laminations which lead
to the proof of Ergodicity via the Hopf argument in Section 8. Possible
directions of further research are discussed in Section 9. Appendix A
contains the proof that for all but, possibly, countably many values of
∆, the corresponding model is regular at infinity. The main issue is to
show that certain polynomials are not identically zero by estimating
their values in a perturbative regime.

A remark about our notation for constants. We will use the
symbol C# to denote a constant whose value depends only on ` (which
we assume to be fixed once and for all). The actual value of C# can
change from one occurrence to the next even on the same line.

2. Hyperbolicity

In this section we prove existence of invariant stable and unstable
cones for the dynamics and estimate the expansion of tangent vectors.
We begin with an essential property of Hamiltonian dynamics.

2.1. Involution. Since Fermi–Ulam Models are mechanical systems,
there exists a time-reversing involution. Since our system is non-
autonomous, we also need to change the time-dependence of the Hamil-
tonian function, i.e. we need to reverse the motion of the moving wall.
For any `, let ¯̀(r) = `(1 − r) denote the reversed motion, Ω̄ the cor-
responding extended phase space and Φ̄s : Ω̄ → Ω̄ the flow map cor-
responding to the reversed motion of the wall. Define I : R3 → R3 so
that I : (t, z, v) 7→ (−t, z,−v). Clearly, I(Ω) = Ω̄; moreover I is an
involution (i.e. I ◦ I = Id) which anticommutes with the flow, i.e.

I ◦ Φ−s = Φ̄s ◦ I.

Notice a trivial but important fact, that `′′ ≥ K if and only if ¯̀′′ ≥ K.

2.2. Jacobi coordinates. In billiards, in order to study the hyper-
bolic properties of the system, it is convenient to change coordinates in
Ω to so-called Jacobi coordinates (see e.g. [45]). In our case this step
is not necessary, since, the coordinates (z, v) turn out to be the Jacobi
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coordinates of our system. To fix ideas, let us write the action of the
flow on the extended phase space Ω as Φs : (t, z, v) 7→ (t + s, zs, vs). If
no collision occurs between t and t+ s, then we have

zs = z + s · v vs = v;(2.1)

differentiating the above yields dzs = dz + sdv and dvs = dv, that is,

D(t,z,v)Φ
s =

(
1 s
0 1

)
=: Us.

Assume now that between t and t+s there is exactly one collision which
occurs with the moving wall (the case of a collision with the fixed wall
is simpler and will be considered in due time as a special case). Let t̄
be the time of the collision, z̄ = −`(t̄ mod 1) be the position of the
point mass at the time of the collision, v̄− be the pre-collisional velocity
(which equals v) and v̄+ the post-collisional velocity (which equals vs);
then (see Figure 2), let

s− = t̄− t s+ = s− s− = t+ s− t̄.(2.2)

Let h(r) = −`′(r) denote the velocity of the moving wall at time r

z

zs

s−

s+ w

v̄+

h

Figure 2. Sketch of a collision with the moving wall.

(i.e. the slope of the boundary at the point of collision) and recall that
we denote by w the post-collisional relative velocity (i.e. w = v̄+ − h).
Recall also that the Reflection Law states that, upon a collision of
the particle with the wall, the relative post-collisional velocity of the
particle becomes the negative of its relative pre-collisional velocity:

w = v̄+ − h = −(v̄− − h),(2.3)
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which yields v = v̄− = h− w. In summary, we have

z = z̄ − s−v̄− zs = z̄ + s+v̄+(2.4a)

v = v̄− = h− w vs = v̄+ = h+ w.(2.4b)

Moreover, let κ(r) = `′′(r) ≥ K be the opposite6 of the acceleration of
the wall at time r; then:

dt̄ = dr dz̄ = hdr dh = −κdr.

We thus obtain, computing the differential of (2.2):

ds− = dr ds+ = −dr.

Taking the differential of (2.4), and using the above relations, we get

dz = (h− v̄−)dr − s−dv̄− dzs = (h− v̄+)dr + s+dv̄+(2.5a)

dv = −κdr − dw dvs = −κdr + dw.(2.5b)

We want to study what happens exactly during a collision, therefore
we let s−, s+ → 0+ and eliminate dr and dw using (2.3). We obtain

dz+ = −dz− dv̄+ = −Rdz− − dv̄−.

Here dz− = lim
s−→0+

dz and dz+ = lim
s+→0+

dzs, and we defined the collision

parameter R = 2κ/w > 0 following the usual notation and terminology
of billiards. From the above expression it is clear that some special care
is needed to deal with collisions with small w. If w = 0 we say that we
have a grazing collision.
Remark 2.1. Let us examine in more detail the (problematic) case of
grazing collisions. Looking at Figure 2 we observe that the case w = 0
corresponds to a situation in which the trajectory (in the (t, z)-plane)
is tangent to `(t). On the one hand, the trajectory is not affected
by the fact that the moving wall is present; on the other hand, it is
customary to still treat such trajectories as colliding with the moving
wall, since there exist arbitrarily close trajectories which will undergo a
collision. It is important to notice that, the assumption κ > 0 implies
that the motion of the wall is (locally) strictly convex; in particular
any tangency between the trajectory and the motion of the wall is
non-degenerate. In other words, for any grazing collision there exists
δ > 0 so that no collision with the moving wall will take place within
a time δ.

6 This choice of signs reflects the analogous choice which is usually made in the
billiard literature.
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Grazing collisions give rise to singularities, as will be explained in
detail later. Notice that collisions with the fixed wall yield the same
formula with R = 0.

Define now:

LR :=

(
1 0
R 1

)
.

Let τ : Ω → R>0 ∪ {∞} be the time before the next collision with
the moving wall, including grazing collisions. Clearly, τ(t, z, v) =∞ if
and only if v = 0 and −min ` < z ≤ 0. τ is well defined and positive
for all other elements of Ω. Indeed, since `′′(t) > 0 for any t, the
intersection of any line with the graph of −`(t) is necessarily discrete
(see Remark 2.1). We now assume that (t, z, v) is so that τ(t, z, v) <∞.
Let us denote by Φτ+

the flow up to the instant immediately after the
collision.7 We can write the differential D(t,z,v)Φ

τ+
as the product

(2.6) D(t,z,v)Φ
τ+

= (−1)nF+1LRUτ

where nF ∈ {0, 1} is the number of collisions with the fixed wall occur-
ring between time t and t+ τ .
Remark 2.2. Since we will employ several coordinates for vectors in R2,
we find convenient to denote, the components of a vector in coordinates
(v, z) (resp. (r, w)) by (δv, δz) (resp. (δr, δw)). The symbol d will denote
the differential of a real-valued function, whereas the symbol D will be
used to indicate the differential of a map.

2.3. Invariant cones. (See [9, § 3.8]). Since we are dealing with ma-
trices acting on R2, it is convenient to deal with slopes, rather than
vectors. Slopes of vectors (δv, δz) in Jacobi coordinates will be de-
noted by B = δz/δv and will be called p-slopes. A (non-degenerate)
matrix acts on slopes as a (non-degenerate) Möbius transformation. In
particular, let J : R \ {0} → R \ {0} denote the inversion x 7→ x−1 and
α ∈ R let Tα denote the translation x 7→ x + α. Then the matrix Uτ
induces the map J ◦ Tτ ◦ J on slopes, and LR the map TR, that is:

Uτ : B 7→ (B−1 + τ)
−1

LR : B 7→ B +R(2.7)

so we can rewrite (2.6) for p-slopes8 as follows:

B 7→ [TR ◦ J ◦ Tτ ◦ J ]B.(2.8)

7 Recall that, in general, the flow is discontinuous at collisions, see footnote 2
8 Notice that the factor (−1)

nF+1
disappears for slopes
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The above formula immediately shows that the increasing cone {B > 0}
is forward-invariant.9 By the properties of the involution, it is also clear
that the decreasing cone {B < 0} is backward-invariant (i.e. invariant
for the time-reversed flow). It is not difficult to express the invariant
cones in collision coordinates. Namely, let V denote the slope of a
vector (δr, δw) in collision coordinates, that is V = δw/δr. Then,
using equations (2.5), we obtain

(2.9) V = −κ− B−w = κ− B+w,

where B− and B+ denote respectively the pre-collisional and post-
collisional p-slopes. Thus, the cone {V ≤ −K} (induced by B− ≥ 0) is
forward-invariant and, correspondingly, {V ≥ K} (induced by B+ ≤ 0)
is backward-invariant.
Definition 2.3. Let the unstable and stable cone field be, respectively:

Cu
x = {(δr, δw) ∈ TxM s.t. −∞ < δw/δr ≤ −K}
Cs
x = {(δr, δw) ∈ TxM s.t. K ≤ δw/δr <∞}.

A curve is said to be an unstable curve, or u-curve (resp. a stable curve
or s-curve) if the tangent vector at each point is contained in Cu (resp.
Cs). A curve (either stable or unstable) curve is said to be forward
oriented if the tangent vector at each point has a positive r-component.
Remark 2.4. Observe that, in our system, unstable curves are decreas-
ing and stable curves are increasing. This unfortunately is the opposite
of the situation that arises in dispersing billiards.

Conventionally, we consider curves to be the embeddings as open
intervals, i.e. without endpoints. Our previous argument indeed shows
that

DxFC̄u
x ⊂ C̊u

Fx DxF−1C̄s
x ⊂ C̊s

F−1x,

where C̄u denotes the closure of Cu and C̊u the interior of Cu (similarly

for C̄s and C̊s). Moreover by (2.6) we gather that a forward-oriented
unstable (resp. stable) curve is sent by F (resp. F−1) to a forward-
oriented unstable (resp. stable) curve, if the ball has a collision with
the fixed wall between the two collisions with the moving wall and to
a backward-oriented unstable (resp. stable) curve otherwise.

Further, define the two (closed) cones10

Px = {(δr, δw) ∈ TxM s.t. 0 ≤ δw/δr ≤ ∞}(2.10a)

Nx = {(δr, δw) ∈ TxM s.t. −∞ ≤ δw/δr ≤ 0}.(2.10b)

9 In fact J clearly preserves such cone; moreover τ > 0 by definition and R > 0
by our hypotheses, which implies that also Tτ and TR preserve the increasing cone.

10 In the following definitions, we allow vertical vectors with δw/δr = ±∞.
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Observe that by (2.9) we have

(2.11) B+ =
κ− V
w

, B− =
−κ− V
w

.

From the above equations it follows easily that

DxFNx ⊂ Cu
Fx DxF−1Px ⊂ Cs

F−1x.(2.12)

Since Cu
x ⊂ Nx, Cs

x ⊂ Px, it follows that in (r, w)-coordinates we also
have that the decreasing cone field Nx is forward invariant and the
increasing cone field Px is backward invariant.

2.4. Geometrical interpretation of p-slopes. We recall the follow-
ing interpretation of tangent vectors (see e.g. [9, §3.7]): vectors in the
tangent space correspond to infinitesimal wave fronts. Such wave fronts
can be dispersing, flat or focusing, and these properties are reflected in
the sign of the slope B.

• dispersing wave front: nearby trajectories tend to get separated when
flowing in positive time; such fronts correspond to vectors, with B > 0
in Jacobi coordinates.
• focusing wave front: trajectories which would separate when flowing

in negative time, i.e. to trajectories which are focusing in positive
time; such fronts correspond to vectors with B < 0 in Jacobi coordi-
nates.
• flat fronts: nearby trajectories will stay at the same distance when

flowing in both positive and negative time: such fronts correspond
to vectors with B = 0.

The case B = ∞ corresponds to a completely focused front (i.e. all
trajectories are emitted from the same point).

2.5. Expansion. Jacobi coordinates are convenient coordinates on the
tangent space to the collision space M. By (2.5) it follows that(
δz
δv

)
=

(
w 0
κ −1

)(
δr
δw

)
,

(
δr
δw

)
=

(
w−1 0
κw−1 −1

)(
δz
δv

)
.

For any x ∈ M, let τ(x) ≥ 0 denote the time until the following
(possibly grazing) collision with the moving wall. Consider a vector
(δz, δv) of p-slope B+ = B at x. Then (2.1) implies that, after a
flight of duration τ , (δz, δv) 7→ (δzτ , δvτ ) where δzτ = (1 + τB)δz and
δvτ = δv. On the other hand, at a collision, we have |δz+| = |δz−|.

For non-vertical tangent vectors u = (δz, δv) we define the metric
|u| = |δz| (the so-called p-metric). We then obtain that the expansion
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of a vector u of p-slope B by the collision map in the p-metric is given
by

(2.13)
|DxΦ

τu|
|u|

=
|δzτ(x)|
|δz|

= 1 + τ(x)B.

If u ∈ Cu
x (i.e. B > R), since R is bounded below by 2K/w we obtain

the lower bound

(2.14)
|DxFu|
|u|

≥ 1 +
2K
w
τ(x).

Remark 2.5. Observe that (2.14) does not ensure any uniformity for the
expansion of unstable vectors in the p-metric. In fact for large relative
velocities τ ∼ w−1. Additionally, τ can be arbitrarily small also for
small relative velocities, because of the possibility of rapid subsequent
collisions with the moving wall.

We will see later that both these inconveniences can be circumvented
by defining an adapted metric and inducing on a suitable subset of the
collision space (see Proposition 4.20). However, before doing so, it is
necessary to study the singularities of our system.

3. Singularities

The existence of invariant cones places Fermi–Ulam Models into the
class of hyperbolic systems with singularities. This class also contains
piecewise expanding maps, dispersing billiards, and bouncing ball sys-
tems (see [9, 34, 41, 44] and references therein). In hyperbolic maps
with singularities, there is a fundamental competition between expan-
sion of vectors inside the unstable cone and fracturing caused by sin-
gularities. If fragmentation prevails, such maps can indeed have poor
ergodic properties (see e.g. [42]). Our goal is to show that this does
not happen for (most) dispersing Fermi–Ulam Models; this will be ac-
complished with the proof of the Growth Lemma in § 7.1.

In this section, we collect preliminary information about the geom-
etry of singularities11 of the collision map F .
Remark 3.1. In the following, if X ⊂ M, we will use the notation
intX (resp. clX, ∂X) to denote the topological interior (resp. closure,
boundary) of the set X with respect to the topology on R2 (and not
with respect to the relative topology on M).

11The reader familiar with dynamics of dispersing billiards will recognize certain
distinctive features of the geometry of singularities (see e.g. [9, § 2.10]).
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3.1. Local structure. Let us recall the definition of the collision map:
F(r, w) = (r′, w′) means that a point mass that leaves the moving wall
at time r with velocity w relative to the moving wall will have its next
collision with the moving wall at time given (mod 1) by r′ and will
leave the moving wall with relative velocity w′. Recall moreover that
τ :M→ R≥0 is the (lower semi-continuous) function which associates
to (r, w) the time before the next (possibly grazing) collision with the
moving wall. If one considers the preceding collision rather than the
following one in the above discussion, we obtain the definition of the
inverse map F−1.

We define the singularity set S0 to be the boundary ∂M, i.e.:

S0 = ∂M = {w = 0} ∪ {r ∈ {0, 1}}.

S0 is the set of points in the collision space for which the point mass
either just underwent a grazing collision (when w = 0), or it just left
the moving wall at an instant in which the motion of the wall is not
smooth (when r ∈ {0, 1}). Let x = (r, w) ∈ M; observe that τ(x)
is defined for all x ∈ M. There are three possibilities: the trajectory
leaving the moving wall at time r with relative velocity w may have its
next collision with the moving wall

(a) with nonzero relative velocity at an instant when the motion of
the wall is smooth. In this case F is well-defined on x and F(x) ∈
intM =M\ S0.

(b) with zero relative velocity at an instant when the motion of the
wall is smooth (see Remark 2.1). In this case F is well-defined, but
may12 be discontinuous at x (and it turns out that lim sup

x′→x
|DF|=

∞). We have F(x) ∈ {r ∈ (0, 1), w = 0} ⊂ S0; moreover τ is also
discontinuous at x.

(c) when the motion of the wall is not smooth; τ is continuous at x,
but F(x) is not defined (because the post-collisional velocity is
undefined).

We can then define

S+ = S0 ∪ {x ∈M s.t. items (b) or (c) take place}.

The above also applies to the classification of the previous collision,
which leads to the analogous definition of S−. Observe that F (resp.
F−1) is well-defined and smooth on x if and only if x ∈M\S+ (resp.
x ∈ M \ S−). We let S1 = S+ (resp. S−1 = S−) and for n > 0 we

12In fact it will be always be discontinuous, except in the case described by
Lemma 3.15.
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define, by induction:

Sn+1 = Sn ∪ F−1(Sn \ S−) S−n−1 = S−n ∪ F(S−n \ S+).

Finally, let S+∞ =
⋃
n≥0 Sn and S−∞ =

⋃
n≤0 Sn. Notice that, for

any k ∈ Z, the map Fk is well-defined and smooth on x if and only if
x ∈M \ Sk.
Lemma 3.2 (Local structure of singularities). For k > 0 the set Sk\S0

(resp. S−k \ S0) is a union of smooth stable (resp. unstable) curves.
In particular Sk (resp. S−k) is a union of smooth curves tangent13 to
the cone field P (resp. N) defined by (2.10).

We will prove the above statement for S−k. The analogues for Sk can
be obtained using the involution. Moreover, since the unstable cone is
F -invariant, it suffices to prove the statement for S−1 = S−.
Sub-lemma 3.3. Let x ∈ S− \S0, then the p-slope of S− at x = (r, w)
is given by

B = R(x) + 1/τ−1(x) > 0.(3.1a)

Equivalently, the slope in collision coordinates is given by

V = −κ(r)− w/τ−1(x) ≤ −K.(3.1b)

Proof. Observe that each curve in S− is formed by trajectories for
which either r−1 = 0, or w−1 = 0. In the first case, such trajectories
draw a wave front which is emitted from a single point, therefore it
is immediate that B+

−1 = ∞. We claim that also in the second case
B+
−1 =∞, which then immediately implies equations (3.1) using (2.8).

In fact consider two nearby trajectories which leave the wall with zero
relative velocity at times r and r′ = r+∆r. Let v and v′ = v+∆v be the
corresponding outgoing velocities. Observe that ∆v ∼ κ∆r. On the
other hand, the second trajectory at time r will have height z′ = z+∆z,
where ∆z ∼ κ(∆r)2. We conclude that B+

−1 = lim
∆r→0

∆v/∆z =∞. �

Remark 3.4. The corresponding formulae for the slopes of S+ at any
x = (r, w) ∈ S+ \ S0 are

B = −1/τ0(x) < 0(3.2a)

V = κ(r) + w/τ0(x) > K.(3.2b)

Remark 3.5. The proof of Lemma 3.2 actually shows that any curve in
Sk (resp. S−k) passing through a point x is tangent to the cone field
P ∩DFkxF−kN (resp. N ∩DF−kxFkP).

13 Here and below we say that a curve is tangent to a cone field if the tangent
to the curve belongs to the cone at every point.
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3.2. Global structure. We now begin the description of the global
structure14 of the singularity sets S±. Let us first introduce some con-
venient notation.

Let `∗ = max ` = `(0) = `(1). Since ` is strictly convex, it has a
unique critical point (a minimum), which we denote by rC ∈ (0, 1). Set
`∗ = min ` = `(rC) and xC = (rC, 0). Recall that h(r) = −`′(r) and
define

h∗=minh=lim
r→1

h(r)<0, h∗=maxh=lim
r→0

h(r)>0, h = h∗ − h∗ > 0.

We remark that in this new notation, we can write (1.1) as

∆ = −`∗h
∫ 1

0

`−2(t)dt.

Observe that the point xC is a fixed point for the dynamics: it cor-
responds to the configuration in which the point mass stays put at
distance `∗ from the fixed wall, and the moving wall hits it with speed
0 at times rC + Z. Moreover, points arbitrarily close to xC may have
arbitrarily long free flight times i.e.

lim sup
x→xC

τ(x) =∞.

Next, we identify a special region of the phase space. It is clear
that, if the relative velocity of the point mass at a collision with the
moving wall is sufficiently large, then the particle will necessarily have
to bounce off the fixed wall before colliding again with the moving wall.
On the other hand, if the velocity at a collision with the moving wall is
comparable with the velocity of the wall itself, then the particle could
have two (or a priori more) consecutive collisions with the moving wall
before hitting the fixed wall.15

Definition 3.6. A collision with the moving wall is called a recollision
if it is immediately preceded by another collision with the moving wall;
it is called a simple collision otherwise. A recollision is said to be
regular unless it undergoes a grazing collision on either the recollision
or on the previous collision or it is a collision with the singular point
xC. We denote with D−R ⊂M the open set of points corresponding to
regular recollisions and let D+

R = F−1D−R .
The following lemma provides a description of the sets D−R and D+

R .

14 The structure depends on our simplifying hypotheses on the motion of the
wall. If ` had more than one break point, the set S1 would have a much more
complicated structure, although its key features will be similar. Moreover, the
structure of Sk for k > 1 would also be essentially similar in the case we have
multiple breakpoints.

15 In the case of billiards this corresponds to so-called corner series.
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Lemma 3.7. Let S−R = F([rC, 1]× {0}) and S+
R = F−1([0, rC]× {0}).

Then:

(a1) S−R is a connected u-curve that leaves (0, h) with slope −∞ and
reaches xC with slope −κ(rC);

(a2) D−R is the interior of the curvilinear triangle whose sides are
the (horizontal) segment [0, rC] × {0}, the (vertical) segment
{0} × [0, h] and S−R .

(b1) S+
R is a connected s-curve that leaves xC with slope κ(rC) and

reaches (1, h) with slope ∞;
(b2) D+

R is the interior of the curvilinear triangle whose sides are
the (horizontal) segment [rC, 1] × {0}, the (vertical) segment
{1} × [0, h] and S+

R .

xC D+
R

w = h

M+
S

S+
R

M

Figure 3. The recollision region D+
R .

Proof. We prove part (a). Part (b) follows from part (a) and the prop-
erties of the involution. Let U denote the curvilinear triangle in (t, z)-
space bounded by Γ1–the wall trajectory for t ∈ [rC , 1], Γ2–the wall
trajectory for t ∈ [1, rC + 1] and Γ3–the horizontal segment joining
the highest points of those trajectories. By our convexity assump-
tion on ` and elementary geometrical considerations, any trajectory
x = (r, 0) with r ∈ [rC, 1] stays inside U . Hence its next collision
necessarily occurs on the moving wall. This in turn implies that the
u-curve S−R = F([rC, 1] × {0}) is connected (since it cannot be cut by
singularities). It is then trivial to check that F(1, 0) = (0, h), which
implies that S−R connects (0, h) with the fixed point xC. Our statements
about the tangent slope at (0, h) and xC immediately follow from (3.1b)
observing that

lim
r→1

τ((r, 0)) = 0 lim
r→r+

C

τ((r, 0)) = 1.

It remains to prove (a2). First, consider a collision that occurs at a
point (r, w) with r ∈ (rC, 1]. The incoming trajectory lies above the
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tangent to ` at r, which, in turn, lies above the graph of ` (for r′ < r)
by convexity of `. In particular it is above the graph of ` at time rC,
that is, it gets above the maximal height of the wall and its velocity
at time rC is negative. Hence, necessarily, the preceding collision will
occur with the fixed wall, proving that D−R ⊂ [0, rC] × R+. It remains
to check that any point in [0, rC]× R+ lying below S−R corresponds to
a recollision, whereas any point lying above S−R corresponds to a single
collision. So pick r ∈ [0, rC]. By (a1) there is r∗ ∈ [rC, 1] such that
F(r∗, 0) = (r, w∗) ∈ S−R . Let Γ be the trajectory (in (t, z)-space) from
(r∗, 0) to (r, w∗) and V ⊂ U be the region bounded by (a part of) Γ1,
a part of Γ2, and Γ. There are two cases.

(i) w ≤ w∗. Then the backward trajectory of (r, w) is contained in V
and so it crosses Γ1 before colliding with the fixed wall.

(ii) w ≥ w∗. Then the backward trajectory of (r, w) is above Γ so if
it crossed Γ1 this would happen at some time r′ < r∗. However by
convexity, any orbit starting at time r′ lies strictly above Γ so it can
not hit the moving wall at time r.

This concludes the proof. �

Remark 3.8. The above lemma implies that clD+
R ∩ clD−R = {xC},

i.e. the number of consecutive collisions with the moving wall is at
most 2 (except for the singular point xC, which is a fixed point of the
dynamics).
Remark 3.9. Let x0 = (r0, w0); if x0 6∈ clD+

R , then τ(x0) satisfies the
bound:

2`∗
w1 − h(r1)

=
2`∗

w0 + h(r0)
≤ τ(x0) ≤ 2`∗

w0 + h(r0)
=

2`∗

w1 − h(r1)
.(3.3)

(3.3) follows since w0 + h(r0) = w1 − h(r1) is the speed of the particle
between the collision at r0 and the next collision with the moving wall,
and `∗ ≤ `(r) < `∗. Observe moreover that w0 + h(r0) > 0, otherwise
the next collision would certainly be a recollision, since the absolute
velocity would be non-positive. On the other hand, if x ∈ D+

R , τ(x)
may be arbitrarily small.

We record in the following lemma an observation which will be useful
on several occasions.
Lemma 3.10. If x = (r, w) is so that either τ(x) ≥ 2 or τ−1(x) ≥ 2
then:

x ∈ {w < C#τ
−1/2, |r − rC| < C#τ

−1/2}.

Proof. It suffices to prove the result under the assumption τ(x) ≥ 2,
since the other case follows by applying the involution. Since τ(x) ≥ 2,
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in particular x 6∈ clD+
R ; we thus apply (3.3) and conclude that

(3.4) 0 < w + h(r) ≤ 2`∗/τ.

We also have `(r) − `∗ = O(1/τ), because otherwise (r, w) would be
in the recollision region. Since the critical point ` at rC is quadratic
(because κ(rC) > 0), it follows that |r − rC| ≤ C̄√

τ
giving the second

inclusion. It follows that |h(r)| ≤ Ĉ√
τ
. Now the first inclusion follows

from (3.4). �

Define M−
S = cl (M\ clD−R) and M+

S = cl (M\ clD+
R). The curve

S−R (resp. S+
R ) is one among the unstable (resp. stable) disjoint curves

whose union form the set S− (resp. S+). The other curves will cut
M−

S (resp.M+
S ) in countably many connected components, as we now

describe16. Let us first introduce some convenient notation: we define
the left boundary ∂lM±

S = {(r, w) ∈ ∂M±
S s.t. r ∈ [0, rC]} and the

right boundary ∂rM±
S = {(r, w) ∈ ∂M±

S s.t. r ∈ [rC, 1]}.
Lemma 3.11. There exist countably many C1-smooth unstable curves
{S−ν }∞ν=0 with the following properties

(a) S−ν ∩ S−ν′ = ∅ if ν 6= ν ′.
(b) S− = S−R ∪

⋃∞
ν=0 S−ν .

(c) S−0 is unbounded: its left endpoint approaches (0,∞) and the other
endpoint is in ∂rM−

S .
(d) S−ν for ν > 0 is compact and joins ∂lM−

S to ∂rM−
S .

(e) S−ν approaches xC for ν →∞; more precisely:

S−ν ⊂ {w < C#ν
−1/2, |r − rC| < C#ν

−1/2}.

(f) There exists c > 0 such that S−ν is tangent to the cone

Ĉuν := {−κ(r)− cν−3/2 ≤ δw/δr ≤ −κ(r)}.

The corresponding statements hold for S+ using the involution.

Proof. A point x′ can be in S− for two different reasons: its previous
collision with the moving wall x = (r, w) may have occurred either at
an integer time (item (c) in the definition of S0) or at a non-integer
time with a grazing collision (item (b) in the definition of S0). If x′ is a
recollision, then x′ ∈ S−R (and hence r ∈ [rC, 1] and w = 0), otherwise
we can choose x ∈ ∂lM+

S .

16The structure of singularities for dispersing Fermi–Ulam Models is remarkably
similar to the one described in [9, §4.10] for the singularity portrait in a neighbor-
hood of a singular point of a billiard with infinite horizon. We refer to the discussion
presented there for further insights; here we provide a qualitative description which
however suffices for our purposes.
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For any ν ∈ Z≥0 define S0
ν = {x ∈ ∂lM+

S s.t. τ(x) ∈ [ν, ν + 1]}.
Notice that F is smooth in the interior of these curves17. Observe that
∂lM+

S comprises only horizontal or vertical segments, whose tangent
vectors belong to Nx (recall (2.10b)); we thus conclude, using (2.12)
that F(intS0

ν ) is a C1-smooth unstable curve. Define

S−ν = clF(intS0
ν ).

Items (a) and (b) then follow by construction.
Next, it is easy to see that if w is sufficiently large, then the trajectory

will bounce off the fixed wall and collide with the moving wall after a
short time τ ∈ (0, 1); in particular S0

0 is unbounded while S0
ν and S−ν

are bounded for ν > 0.
Next, as w increases to ∞, the point F(0, w) = (r′, w′) where r′ is

small and w′ is large. On the other hand when x ∈ S0
0 approaches

the (only) boundary point of S0
0 , the point Fx will necessarily tend to

∂rM−
S . This proves item (c). Item (d) follows from analogous argu-

ments.
Item (e) follows by applying Lemma 3.10 to an arbitrary point in
S−ν . Finally, item (f) follows from (3.1b) and item (e). �

Lemma 3.12 (Continuation property). For each n 6= 0, every curve
S ⊂ Sn \ S0 is a part of some monotonic continuous (and piecewise
smooth) curve S∗ ⊂ Sn \ S0 which terminates on S0 = ∂M (note that
S∗ might be unbounded).

Proof. It suffices to prove the property for n > 0, since the case n < 0
follows by involution. The statement holds for n = 1 by Lemma 3.11.
We now proceed by induction. Suppose the result holds for some n > 0
and S ⊂ Sn+1 \ Sn. Then, by construction, S terminates on either S0

or Sn. However if it terminates on Sn, then by inductive hypothesis it
can be continued as a piecewise smooth curve to S0. �

The curves {S±ν }ν≥0 cut M±
S in countably many connected com-

ponents which we denote by {D+
ν } (resp. {D−ν }) and we call positive

(resp. negative) cells. Indexing is defined as follows: for ν > 0 we let
D±ν denote the component whose boundary contains S±ν−1 and S±ν and
let D±0 denote the remaining cell. The cells D+

ν admit also an intrinsic
definition as

D+
ν = int {x ∈M+

S s.t. r(x) + τ0(x) ∈ (ν, ν + 1)};(3.5)

17 Smoothness is obvious unless (0, 0) ∈ intS0ν ; even in this case it holds true,
and follows from arguments described in [9, after Exercise 4.46]
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observe that each positive cell is indexed by the number of lines r ∈ Z
which are crossed by the trajectory between the current and the next
collision in the extended phase space Ω. A similar intrinsic character-
ization can be given for the negative cells D−. We summarize in the
following lemma some properties of positive cells that follow from the
above discussion.

Lemma 3.13 (Properties of positive cells).

(a) The cells {D+
ν }ν≥0 are open, connected and pairwise disjoint.

(b) We have intM+
S \ S

+ =
∞⋃
ν=0

D+
ν .

(c) clD+
ν ∩ clD+

ν′ = ∅ if |ν − ν ′| > 1; moreover if x̄ ∈ clD+
ν ∩ clD+

ν+1,
we have either

lim
D+
ν 3x→x̄

Fx ∈ {1} × R+ lim
D+
ν+13x→x̄

Fx ∈ {0} × R+,

or

lim
D+
ν 3x→x̄

Fx ∈ [0, 1]× {0} lim
D+
ν+13x→x̄

Fx ∈ S−R .

(d) for any ν̄ there exists ε so that the ball of radius ε centered at xC

does not intersect
⋃ν̄
ν=0D+

ν .
(e) for ν > 1, we have D+

ν ⊂ {w < C#ν
−1/2, |r − rC| < C#ν

−1/2}.
Remark 3.14. Using the involution, the above lemma also describes
(with due modifications) the negative cells D−ν = FD+

ν .
Despite the fact that the singular point xC is accumulated by sin-

gularities (both forward and backward in time), we have the following
result.
Lemma 3.15. For every ε > 0 there exists a δ > 0 so that

F(B(xC, δ) \ S1) ⊂ B(xC, ε).

Proof. If x ∈ B(xC, δ) \ S1 there are two possibilities; either x ∈
B(xC, δ) ∩ D+

R or x ∈ B(xC, δ) ∩ D+
ν for some large ν. In the for-

mer case F is continuous in D+
R and lim

D+
R3x→(rC,0)

Fx = xC, so we only

need to check the latter case. However, if x ∈ D+
ν , then, by defini-

tion Fx ∈ D−ν and we conclude the proof since the cells {D−ν } also
accumulate to xC by Lemma 3.13(e) and Remark 3.14. �

In view of Lemma 3.11, a u-curve W can in principle be cut by
singularities of F in countably many connected components.18 The

18 This problem is certainly familiar to the reader acquainted with the theory of
dispersing billiards with infinite horizon.
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next lemma ensures that this may only happen in a neighborhood of
the singular point xC.
Lemma 3.16. Let x ∈ M \ {xC}. For any l > 0, the set S l cuts a
sufficiently small neighborhood of x in finitely many connected compo-
nents.

Proof. Assume that for an arbitrarily small ball U 3 x there exists
0 < l′ ≤ l so that U \ S l′−1 has finitely many connected components
and U \ S l′ has infinitely many. We conclude that there exists a con-
nected component U ′ of U \S l′−1 which is cut by S l′ in infinitely many
connected components. By definition F l′−1 is smooth on U ′ and, by
our assumption, F l′−1U ′ intersects infinitely many positive cells D+.
We gather that there exists a sequence xm ∈ U ′ ∩ F−(l′−1)D+

νm , where

νm →∞; by Lemma 3.13 we have F l′−1x′m → xC, which by Lemma 3.15
implies that x′n → xC, that is xC ∈ clU . Since U can be taken to be
arbitrarily small, we conclude that x = xC. �

For l− ≤ 0 ≤ l+, define S l−,l+ = S l− ∪ S l+ : then M\ S l−,l+ is given
by a (countable) union of connected components. A point x ∈ S l−,l+
is said to be a multiple point of S l−,l+ if it belongs to the closure of at
least three such connected components; we denote the set of multiple
points of S l−,l+ by Xl−,l+ .

Lemma 3.17. The singular point xC 6∈ Xl−,l+ for any l− ≤ 0 ≤ l+.

Proof. By Lemma 3.13 the only connected component ofM\S1 whose
closure meets xC is D+

R . This proves our statement for l− = 0, l+ = 1.

Now consider a connected component Q̂ of M \ S0,2; by definition

there exist ν, ν ′ ∈ {R, 0, 1, · · · } so that Q̂ = D+
ν ∩F−1D+

ν′ . If cl Q̂ 3 xC,
then by the above discussion ν = R, which by Remark 3.8 implies that
ν ′ 6= R. But then we would have clF−1D+

ν′ 3 xC, which by Lemma 3.15
implies that clD+

ν′ 3 xC, contradicting Lemma 3.13. The statement for
general l− and l+ then follows by applying Lemma 3.15. �

4. Accelerated Poincaré map.

The analysis of Section 2 shows that expansion of the collision map
F is small for large energies: the hyperbolicity of F is indeed rather
weak in this region. It is thus convenient to consider an induced map,
obtained by skipping over collisions that happen in the same fundamen-
tal domain for `. In this section we discuss the resulting accelerated
map F̂ . In particular, we will recall the results of [17], where the large
energy regime for piecewise smooth Fermi–Ulam Models was studied
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in detail. At the same time, we will also present some new technical
estimates which are needed for the proof of our Main Theorem.

4.1. Number of collisions per period. Recall the definition of posi-
tive and negative ν-cells given in the previous section (see (3.5)). Define
(see Figure 4):

M̂ = cl
(
M\ clD−0

)
.(4.1)

M

M̂

S−0

D−0

Figure 4. The inducing set M̂; note that the geometry
can be different depending on the properties of `. In fact,
it is possible for S−0 to terminate at {w = 0} rather than
at {r = 1} (see Remark 4.2).

Remark 4.1. Observe that ∂M̂ is the union of vertical curves, horizon-

tal curves and the unstable curve S−0 . In particular, each curve in ∂M̂
is compatible with the cone field N defined by (2.10b).
Remark 4.2. By construction, S−0 terminates on {w = 0} if and only if
clD−0 3 (1, 0), which is in turn equivalent to the following geometrical
criterion: consider the trajectory that terminates19 at the corner point
r′ = 1 tangent to ` (i.e. with v̄− = −`′(0−)). This trajectory emanates
from some point (r, w); then, by definition, clD−0 3 (1, 0) if and only if
r ∈ [0, 1). Observe that if r = 0, then S−0 terminates at (1, 0).
Remark 4.3. Observe that the curve S−0 is asymptotically 1/w-close

to {r = 0} as w → ∞; in particular µ(M̂ ∩ {w < w∗}) ∼ w∗, and

µ(M̂) =∞.

19 Recall that a trajectory that collides with the moving wall at a singularity is
undefined after the collision
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Let E0 = intM and, for any n ∈ N, define

En = {x ∈M \ Sn−1 s.t. Fkx ∈ D+
0 for any 0 ≤ k < n}.

Observe that, by construction, En ⊃ En+1 and En ⊃ FEn+1; since
D+

0 ∩ S1 = ∅, we conclude by induction that En ∩ Sn = ∅.
For any n > 0, define E∗n = En−1 \ En. Observe that, if x ∈ E∗1 \ S1,

then F is well defined and smooth at x, and moreover Fx ∈ M̂; more
generally, for any k ≥ 1, if x ∈ E∗k \Sk, then the map Fk is well defined

and smooth at x, and moreover Fkx ∈ M̂. For any x ∈ intM, define:

N̂(x) =
∑
k≥0

1Ek(x) = max{n ≥ 0 s.t. En 3 x}+ 1.

If x ∈ E∗n, our construction implies that N̂(x) = n. Finally, let

S̃+ = S0 ∪
⋃
k≥0

(Sk+1 ∩ Ek).

Observe that, for any k we have E∗k ∩ S̃+ = E∗k ∩ Sk and ∂E∗k ⊂ S̃+. In

particular, for any k > 0, the function x 7→ min{k, N̂(x)} is constant
on each connected component of M\ Sk. Moreover, by construction,
S̃+ is a countable union of C1-smooth stable curves with

S+ ⊂ S̃+ ⊂ S+∞.

By the above considerations, we conclude that if x ∈ M \ S̃+ and

N̂(x) < ∞, then F N̂(x) is well-defined and smooth at x and F N̂(x)x ∈
M̂. We now proceed to show that N̂ is finite for any x ∈ intM.
Lemma 4.4. The sets (E∗n)n>0 form a partition (mod 0) of M. More-
over for any x = (r, w) ∈ intM:

1 ≤ N̂(x) ≤ C#(w + 1).(4.2)

Proof. We claim that for sufficiently large n:

En ⊂ {w ≥ C#n− h∗}.(4.3)

Observe that (4.3) implies that⋂
k≥0

Ek = ∅;

which in particular implies that the sequence (E∗n)n>0 forms a partition
(mod 0) ofM. The estimate (4.2) also immediately follows from (4.3).

We proceed with the proof of our claim. Assume x ∈ En and let
xk = (rk, wk) = Fkx. By construction, we have for any 0 ≤ k < n
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that xk ∈ D+
0 , i.e. rk + τ(xk) ∈ (0, 1). By induction, this implies

rn = r0 +
n−1∑
k=0

τ(xk) < 1. In particular
n−1∑
k=0

τ(xk) < 1.

On the other hand, since D+
0 ∩ clD+

R = ∅, if (r, w) ∈ D+
0 , we can use

the lower bound in (3.3), which gives

(4.4) τ(r, w) ≥ 2`∗/(w + h(r)).

Let vk = wk + h(rk) be the absolute velocity after the k-th collision;
notice that since in particular xk 6∈ D+

R for 0 ≤ k < n we have vk > 0;
moreover, trivially vk ≤ v0 + 2kh∗. We conclude that

1 >
n−1∑
k=0

τ(xk) ≥
`∗
h∗

n−1∑
k=0

[ v0

2h∗
+ k
]−1

≥ `∗
h∗

log

[
1 +

2h∗n

v0

]
.

Hence,

(4.5) v0 > C#n,

which immediately implies (4.3), since v0 < w + h∗. �

Define Ŝ+ = (S̃+ ∩ M̂) ∪ ∂M̂. Lemma 4.4 implies that the map

F̂ : M̂ \ Ŝ+ → M̂ given by

F̂(x) = F N̂(x)(x),

is well defined and smooth. A completely analogous construction leads
to the definition of a set Ŝ− so that the inverse induced map F̂−1 is

defined for x ∈ M̂ \ Ŝ−. In fact we have that F̂ is a diffeomorphism

F̂ : M̂ \ Ŝ+ → M̂ \ Ŝ−. We can also define N̂− : M̂ \ Ŝ− → Z<0 so

that F̂−1(x) = F N̂−(x)(x). Observe that N̂−(x) = −N̂(F̂−1(x)).

We now proceed to define the singularity set for the map F̂k for any
k ∈ Z. This is completely analogous to the construction carried over

in § 3.1. Let Ŝ0=∂M̂, Ŝ1= Ŝ+ (resp. Ŝ−1= Ŝ−) and for any n > 0 let

Ŝn+1 = Ŝn ∪ F̂−1(Ŝn \ Ŝ−) Ŝ−n−1 = Ŝ−n ∪ F̂(Ŝ−n \ Ŝ+).

Observe that F̂k is well defined and smooth at x if and only if x ∈
M̂ \ Ŝk. Let furthermore Ŝ+∞ =

⋃
n≥0

Ŝn and Ŝ−∞ =
⋃
n≤0

Ŝn.

For any n ≥ 0, let us define N̂n : M̂ \ Ŝn → N by induction as

follows. We let N̂0(x) = 0 and, for k ≥ 1, we let

N̂k(x) = N̂k−1(x) + N̂(F̂k−1x).
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By construction F̂n(x) = F N̂n(x)(x). Then define S̃n as follows: x ∈
S̃n if either x ∈ S̃+ or F N̂(x) ∈ Ŝn−1. We extend the definition of
N̂n to M \ S̃n as follows: if n = 1 we let N̂1(x) = N̂(x); otherwise

F N̂(x)(x) ∈ M̂\ Ŝn−1 and we define N̂n(x) = N̂(x) + N̂n−1(F N̂(x)x). A

similar construction leads to the definition of N̂−n for n > 0.
Remark 4.5. It follows from our construction that if x = (r, w) is so

that N̂k(x) is defined, then, denoting once again xj = F jx:

N̂k(x) = min{n s.t. r +
n−1∑
j=0

τ(xj) ≥ k}.

Let W be an unstable curve, and n > 0; let W ′ be a connected
component of FnW ; then we can define

n̂(W ′) = max{k s.t. N̂k(x) ≤ n for all x ∈ F−nW ′}.(4.6)

We conclude this subsection with the definition of the fundamental
domains

Dn = intM̂ ∩ E∗n.(4.7)

Notice that our previous discussion shows that

Dn ∩ Sn−1 = ∅(4.8a)

Dn ∩ Ŝ+ = Dn ∩ Sn.(4.8b)

4.2. Dynamics for large energies. In this subsection we collect sev-
eral useful properties of F̂ which hold for sufficiently large values of w.
Remark 4.6. The notion of sufficiently large w will be used several times
in the paper; each time, this notion might depend on previously intro-
duced constants. In order to facilitate bookkeeping, we find convenient
to introduce the following convention: the symbol ωk (for k ∈ N) will
denote some positive real value which has to be understood to be large.
When it is not important to keep track of the value for future purposes,
we will just write ω#; notice that the value of ω# can change from one
instance to the next. We also introduce the shorthand notations

M≥ω =M∩ {w ≥ ω} M̂≥ω = M̂ ∩ {w ≥ ω}

M≤ω =M∩ {w ≤ ω} M̂≤ω = M̂ ∩ {w ≤ ω}
We now fix ω0 sufficiently large; explicit conditions on ω0 could be

obtained by inspecting the proofs in [17], but we do not pursue this
task here. In what follows ω0 is supposed to be so large that the results
stated in this section hold true. Also recall the notation

(rk, wk) = Fk(r, w).
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Proposition 4.7 (Properties of F̂ for large energies, see [17]).

(a) There exists C∗ > 1 so that for any (r, w) ∈ M≥ω0 \ S̃+ and

0 ≤ k ≤ N̂(r, w):

wk, wk − h(rk) ∈ (C−1
∗ w,C∗w).(4.9)

Accordingly, if 20, (r, w) ∈ M̂≥ω0 \ Ŝ+ then

C−1
∗ w ≤ N̂(r, w) ≤ C∗w.(4.10)

(b) ∃Ĉ so that if (r, w) ∈ M̂≥ω0 \ Ŝ+, we have |wN̂(r,w) − w| ≤ Ĉ.

Corresponding properties hold for F̂−1.

Corollary 4.8. For any (r, w) ∈ M̂ \ Ŝ+, let (r̂, ŵ) = F̂(r, w); then

|ŵ − w| ≤ C#.

Proof. The proof immediately follows combining Proposition 4.7(b) (for
large w) and (4.2) (for small w). �

In fact, in [17] we constructed a normal form for F̂ for high energies,
which we now proceed to describe. Consider the strip M = [0, 1]×R 3
(τ, I), and for ∆ ∈ R define the piecewise affine map F̂∆ : M → M
given by the formula

(4.11) F̂∆(τ, I) = (τ̄ , Ī), where

{
τ̄ = τ − I mod 1,
Ī = I + ∆(τ̄ − 1/2).

The curves {τ = I mod 1} partition M in a countable number of

fundamental domains that we denote with (D̂n)n∈Z, where the index

n is so that D̂n 3 (1/2, n). Observe that F̂∆ is continuous in each
fundamental domain. For n ∈ Z let Tn : M →M be the translation

Tn : (τ, I) 7→ (τ, I + n).(4.12)

Then D̂n = TnD̂0 and if x ∈ D̂n, we have F̂∆ = Tn ◦ F̃∆ ◦ T−n, where
F̃∆ : R2 → R2 is the affine map given by

F̃∆(τ, I) = (τ̃ , Ĩ), where

{
τ̃ = τ − I,
Ĩ = I + ∆(τ̃ − 1/2).

The relevance of the map F̂∆ comes from Theorem 4.9 below. The
theorem is essentially a more detailed statement of [17, Theorem 1].

20In fact, the following stronger statement holds (cf. [17]): the limit of N̂(r,w)
w

exists when w → ∞ and (r, w) ∈ M̂. However, the weaker estimate (4.10) is
sufficient for our current purposes.
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The reader will have no difficulty to check that [17, Section II] indeed
provides all that is needed to prove Theorem 4.9.

Below, the symbol Ok(I−1) denotes a function whose partial deriva-
tives up to order k are O(I−1).

Theorem 4.9. There exists coordinates (τ, I) on the set M̂≥ω0 so that

(a) C−1
# w < I < C#w and C−1

# < | ∂I
∂w
| < C#. Moreover, there

exists C > 0 so that if (r, w) ∈ Dn, and (r′, w′) ∈ Dn′ and
w′ − w > C, then necessarily n′ > n.

(b) the singularity lines {r = 0} and F{r = 0} are given in (τ, I)
coordinates by {τ = 0} and {τ = 1 +O5 (I−1)} respectively;

(c) if x ∈ Dn then F̂ in (τ, I)-coordinates is a O5(I−1)-perturbation
of Tn ◦ F̃∆ ◦ T−n where ∆ is given by (1.1).

The coordinates (τ, I) will be called adiabatic coordinates.

Remark 4.10. The above theorem implies that, if n is sufficiently large,
T−nDn is contained in a C#n

−1-neighborhood of D̂0. In particular, this
implies that the diameter of Dn is uniformly bounded (with respect to
n) both in Euclidean and adiabatic coordinates.

We will often drop the subscript ∆ from F̃ when this will not cause
confusion.

For future reference we include the formulas relating the adiabatic
coordinates (τ, I) to the original coordinates (r, w). Namely we have

(4.13a) I = w`(r) + a(r) +O5(w−1),

(4.13b) τ = θI +O5(w−1),

(4.13c) θ =

∫ r

0

`−2(s)ds+
b(r)

w
+O5(w−2)

where a and b are smooth functions whose precise values will not be
important for us.

The next result, proven in [17], provides the first major step toward
the proof of the ergodicity of dispersing Fermi–Ulam Models.
Theorem 4.11. ([17, Theorem 4]) Dispersing Fermi–Ulam Models are
recurrent.

4.3. Bounds for p-slopes. The invariant cones constructed in Def-
inition 2.3 do not satisfy any quantitative transversality estimate.21

we collect in this subsection several estimates that are useful in this
respect. Recall that for k ∈ Z, the notation B−k denotes the value

21 Note that, given the lack of compactness of our phase space, such estimates
may not (and in fact will not) be uniform. In order to obtain such desirable prop-
erties we need to study more in detail the evolution of p-slopes and
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of B− of the k-th iterate of the vector under consideration. Let
ω1 = max{2K, h∗, 2|h∗|, 4`∗}.

Lemma 4.12. For any w̄ ≥ ω1, there exist constants c1, c2 > 0 such
that for any x = (r, w) ∈ M, if B− ≥ 0 (and in particular for any
unstable vector):

(a) If w ≥ w̄ then B−1 ≥ K/w.

(b) If w ≤ w̄, then B−1 ≥
c1

1 + τ
. Furthermore, if x 6∈ clD+

R , we also have

the upper bound

B−1 ≤
c2

1 + τ
.

Proof. Note that by definition of ω1 and Remark 3.9, if w ≥ w̄, then
τ ≤ 1. Then, using the above assumptions on w̄, (2.8) and (2.7) imply:

B−1 = ((B− +R)−1 + τ)−1 ≥ ((B− +R)−1 + 1)−1

≥ (R−1 + 1)−1 = (w/2κ+ 1)−1 ≥ Kw−1,

which proves item (a).
Next, suppose that w ≤ w̄ and x 6∈ clD+

R . Then by Remark 3.9 and
the definition of ω1 we conclude τ ≥ `∗/w̄. In order to prove (b), we
rewrite (2.8) and (2.7) as

(4.14) B−1 =
1

τ
− 1

τ(1 + τ(B− +R))
.

Hence, using B− ≥ 0:

1

τ

(
1− 1

1 + 2K`∗/w̄2

)
≤ B−1 ≤

1

τ
,

which gives both an upper bound (e.g. choosing c2 = 1 + w̄/`∗) and a
lower bound. Finally, if x ∈ D+

R , then τ ≤ 1 and by Lemma 3.7 we
have w ≤ h. Proceeding as in (a), we obtain the lower bound:

∀x ∈ D+
R B−1 > (h/2K + 1)−1,(4.15)

from which we conclude the proof provided that c1 ≤ (h/2K+1)−1. �

Lemma 4.13. There are constants c3, c4, ε̄ such that the following
items hold. For any x = (r, w) ∈M≥ω1:

(a) i. If B−0 ≥ ε̄ then B−1 ≥ ε̄
ii. if B−0 ≤ ε̄ then B−1 ≥ B−0 + c3

w
.

(b) i. If 1/B−0 ≥ ε̄ then 1/B−1 ≥ ε̄
ii. if 1/B−0 ≤ ε̄ then 1/B−1 ≥ 1

B−0
+ c3

w
.
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(c) If x = (r, w) ∈M≥ω0 \ S̃+ and n is so that n ≤ N̂(x) and for any
0 ≤ k < n we have Fkx ∈M≥ω1:
i. If ε̄ ≤ B−0 ≤ 1

ε̄
then ε̄ ≤ B−n ≤ 1

ε̄
.

ii. If B−0 ≤ ε̄ then B−n ≥ min(nc4
w
, ε̄).

iii. If B−0 ≥ 1
ε̄

then B−n ≤ max( w
nc4
, 1/ε̄).

Proof. In this proof we drop the superscript − from B for ease of no-
tation.
(a) We have

B1 − B0 =
2κ
w

(1− τB0)− τB2
0

1 + τ
(
B0 + 2κ

w

)
so (a)ii follows from the fact that c−1

w
≤ τ ≤ c

w
, which in turn fol-

lows from (3.3) and the definition of ω1. Note that the function B 7→
R+B

1+τ(R+B)
is increasing. Hence B0 ≥ ε̄ implies B1 ≥ R+ε̄

1+τ(R+ε̄)
≥ ε̄ where

the last inequality relies on the already proven part (a)ii. This proves
(a)i.

(b) Let β0 = 1/B0 (and similarly β1 = 1/B1). Then β1 = τ + β0

1+2
β0κ
w

whence β1 − β0 = τ − 2β2
0κ

w + 2β0κ
.

Thus (b)ii follows from the fact that τ ≥ c−1

w
. Since the function

b 7→ τ + b
1+2 bκ

w

is increasing, β0 ≥ ε̄ implies β1 ≥ τ + ε̄
1+2 ε̄κ

w

≥ ε̄ where

the last step relies on the already proven part (b)ii. This proves (b)i.
(c) Item i immediately follows from (a)i and (b)i. By part (a)i we can

conclude that if Bk ≥ ε̄ for some 0 < k ≤ n, then necessarily Bn ≥ ε̄.
We can therefore assume that Bk < ε̄ for all 0 < k ≤ n. In this case
part (a)ii implies that Bk+1 ≥ Bk + c3/wk. Combining this with (4.9)
we obtain Bn ≥ B0+nC−1

∗ c3/w, proving (c)ii. The upper bound follows
by analogous considerations involving B−1

0 and part (b). �

In order to obtain some transversality estimates, we now proceed to
introduce smaller invariant cones, which are obtained by iterating the
cones Cu and Cs by the dynamics. We first define them almost every-

where on M̂, and subsequently we will use the dynamics to extend
them almost everywhere on M. Observe that since such cones are de-
fined dynamically and the dynamics is only defined almost everywhere,
it is natural for such cones to be defined only almost everywhere.

Definition 4.14. Let x ∈ M̂ \ Ŝ+; define

C̃s(x) = DF̂xF̂
−1Cs

F̂x;
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if x ∈M \ S̃+ is so that F N̂(x)x ∈ M̂ \ Ŝ+, we can define

C̃s(x) = DFN̂(x)xF
−N̂(x)C̃s(F N̂(x)x).

Observe that C̃s(x) is defined almost everywhere on M, and the con-

struction automatically yields backward invariance of C̃s. By a similar

scheme we can define a forward-invariant family C̃u(x) for a.e. x ∈M.
An unstable (resp. stable) curve will be called mature if it is tangent

to C̃u (resp. C̃s). In particular, W ⊂ M̂\Ŝ− is a mature unstable curve

if F̂−1W is unstable; likewise V ⊂ M̂ \ Ŝ+ is a mature stable curve if

F̂V is a stable curve.
Combining Lemma 4.12 with Lemma 4.13 we obtain the following

result.

Corollary 4.15. There are constants ω2, b̄ such that the following
holds: let W be a mature unstable curve and x ∈ W :

(a) for all n ≥ 0 such that xn ∈M≥ω2, or xn ∈ D−R , we have B−n ≥ b̄.
(b) for all n ≥ 0 such that xn 6∈ clD−R we have B−n ≤ b̄−1.

Proof. We first prove (a). Let x = (r, w) and let us first assume that
wn ≥ ω2 with ω2 ≥ max{ω0, ω1} sufficiently large (see below). Recall

the definition of N̂(x) and N̂−(x) (see paragraphs above Remark 4.5).
Then since wn ≥ ω0, Proposition 4.7(a) implies that

x′ = xn−N̂−(xn) ∈ M̂ ∩ {C
−1
∗ wn ≤ w ≤ C∗wn}.

Proposition 4.7(b) then implies

x′′ = F̂−1(x′) ∈ M̂ ∩ {C−1
∗ wn − Ĉ ≤ wn ≤ C∗wn + Ĉ}.

Using Proposition 4.7(a) again we conclude that w′′k ≥ C−1
∗ (C−1

∗ wn−Ĉ)

for all k ≤ N̂(x′′). We conclude that if we choose

ω2 > C∗(C∗max{ω0, ω1}+ Ĉ),

then w′′k ≥ max{ω0, ω1} for all k ≤ N̂2(x′′). Since by assumption22

B−
n−N̂−2(xn)

≥ 0, Lemma 4.13(a) and (c) allow to conclude that

B−n ≥ B−n−N̂−(xn)
≥ min(N̂(x′′)c4/w

′′, ε̄).

Using (4.10), we thus get B−n ≥ min(C−1
∗ c4, ε̄).

22 The assumption on W being mature guarantees this bound even if n −
N̂−2(xn) < 0; otherwise it follows by invariance of the unstable cone.
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If, on the other hand, xn ∈ D−R , we have xn−1 ∈ D+
R and by (4.15)

we conclude that B−n ≥ (h/2K + 1)−1. From the above considerations,
item (a) holds, provided that

b̄ ≤ min(C−1
∗ c4, ε̄, (h/2K + 1)−1).

The proof of item (b) follows along similar estimates: if wn ≤ ω2

and xn 6∈ clD−R , then Lemma 4.12(b) guarantees an upper bound (e.g.
assuming b̄−1 ≥ c2 = c2(ω2)). If on the other hand wn ≥ ω2, we can
argue as in part (a) using Lemma 4.13(b)-(c) and obtain an uniform
upper bound on B−n . �

Combining Corollary 4.15 with (2.9) yields that there is a constant
C̄ > 1 such that if w is sufficiently large:

C̃u(r, w) ⊂
{
−C̄w <

δw

δr
< −K − C̄−1w

}
(4.16a)

C̃s(r, w) ⊂
{
K + C̄−1w <

δw

δr
< C̄w

}
.(4.16b)

It also follows from Corollary 4.15 that:

if (r, w) 6∈ clD−R , C̃u(r, w) ⊂
{
−K − C̄w <

δw

δr
≤ −K

}
(4.17a)

if (r, w) 6∈ clD+
R , C̃s(r, w) ⊂

{
K ≤ δw

δr
< K + C̄w

}
.(4.17b)

The above inclusions imply the following transversality condition:

Corollary 4.16. For any ω#, then the cones C̃s and C̃u are uniformly
transversal in M≤ω#

wherever they are defined.

Proof. Recall (see Remark 3.8) that {xC} = clD−R ∩ clD+
R . Inclu-

sions (4.17) then imply uniform transversality onM≤ω#
\ {xC}. How-

ever, neither C̃s or C̃u are defined on xC, since since xC ∈ S0. �

As it happens, no uniform transversality condition holds in the whole
phase space, but at least it does on any bounded portion. This weak
notion of transversality is still sufficient for our purposes.

In the sequel, we will also need some information about transversality

of C̃u with the positive cone P (and of C̃s with the negative cone N).
Notice that Corollary 4.15 does not provide an upper bound on B−0 In
the recollision regionD−R . In fact, in this region B−0 may grow arbitrarily
large. However, a simple inspection of (2.7) shows that for any L > 0
sufficiently large there exists δ > 0 so that if B−1 > L then w < δ and
τ < δ. We gather that if B−1 is large, then x lies in a neighborhood of
the point (1, 0). The analysis in Lemma 3.7 allows us to conclude that
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x′ lies in a neighborhood of (0, h). We summarize the above observation
for future use in the following lemma.

Lemma 4.17. There exists B > 0 so that if W is a mature unstable
curve passing through x = (r, w) with pre-collisional p-slope B−0 , then
either B−0 < B or w > B−1.

4.4. The α±-metrics. It was observed earlier in Remark 2.5 that the
p-metric does not guarantee uniform expansion of unstable vectors for
the map F . In this section we describe a solution to this issue: we
proceed to define a pair of metrics on M, which we denote with | · |α+

and | · |α− and call the α+-metric and the α−-metric, respectively. The
key property of such metrics is (4.29) below.

Let α0, α1 > 0 be small constants which will be specified later
(see (4.34) and (4.39)). For x = (r, w), we define the functions

α±(x) = exp(α01D∓R
(x))(1 + α1 · w),

where 1D−R
(resp. 1D+

R
) is the indicator function of D−R (resp. D+

R). For

(δr, δw) ∈ TxM we define (recall that κ(r) = `′′(r)):

|(δr, δw)|α± = α±(x)(κ(r)|δr|+ |δw|).(4.18)

We now obtain relations with the Euclidean metric and the p-metric |·|p
defined at the beginning of § 2.5. Observe that, in (r, w)-coordinates,
for x = (r, w), the p-metric assumes the form |(δr, δw)|p = w · |δr|.
Note moreover that23 w = dz

dr
; we thus obtain, for any u ∈ TxM with

x = (r, w):

|u|α± = α±(x)|u|p
κ(r) + |V|

w
=(4.19a)

= α±(x)|u|E
κ(r) + |V|√

1 + V2
.(4.19b)

Given a curve W and two points x′, x′′ ∈ W we denote by dWα±(x′, x′′)
(resp. dWE (x′, x′′)) the α±-length (resp. Euclidean length) of the sub-
curve of W bounded by x′ and x′′. The notation dα±(x′, x′′) (resp.
dE(x′, x′′)) denotes the standard24 distance induced by | · |α± (resp.
| · |E).

Lemma 4.18. Let | · |E(τ,I) denote the Euclidean metric in (τ, I)-

coordinates on M̂≥ω0. There exists ω3 so that

23 This expression is obtained from equations (2.5) for s± = 0; also, since we are
considering the particle right after a collision, the quantity dz

dr is positive.
24 That is, the inf of the lengths of all curves connecting the two points.
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(a) There exists c > 0 so that for any vector u ∈ TxM̂≥ω3 we have

|u|α± ≥ c|u|E(τ,I).(4.20)

(b) There is a constant C>1 so that if u∈C̃u(x) and x=(r, w) ∈M≥ω3,
then

(4.21) C−1w|u|E(τ,I) ≤ |u|α± ≤ Cw|u|E(τ,I).

Proof. Without loss of generality, we normalize u = (δr, δw) so that
max{|δw|, |δr|} = 1. In particular, we have:

|u|α± ≥ α1 min(K, 1)w(|δr|+ |δw|) ≥ α1 min(K, 1)w.

Using equations (4.13) we can compute the differential of the map
(r, w) 7→ (τ, I) and obtain:

δI = `δw + (w`′ + a′) δr +O(w−1),(4.22a)

δτ = θδI + Iδθ +O(w−1) = θδI +
Iδr

`2
+O(w−1).(4.22b)

We conclude that δτ = w
`
δr+O(1) and δI = w`′δr+O(1), which gives:

|u|E(τ,I) ≤ Cw +O(1)

and thus part (a) follows, provided ω3 is sufficiently large.
In order to prove part (b), we will first show that for each A > 0

there is a constant C > 1 such that if u = (δr, δw) satisfies

(4.23) A−1 ≤ 1

w

|δw|
|δr|

≤ A, δr · δw < 0

then (4.21) holds. In fact, assuming (4.23), due to our normalization
condition, we conclude that |δr| ≤ A/w. It follows that both leading
terms in (4.22a) are of order 1; moreover, they have the same sign,
since δw and δr have different signs while `′(r) is negative for small r
(note that since τ ∈ [0, 1] it follows that θ = O(1/w)). The foregoing
remark also shows that the first term in (4.22b) is O(1/w) while the
second term is O(1).

In order to prove (b), it remains to note that the inclusions (4.16),
which hold if ω3 is sufficiently large, imply that (4.23) holds for a

uniform A on C̃u. �

The estimate (4.21) has the following useful consequence. Recall
(by (1.1), Definition 1.1 and below) that our assumptions guarantee
∆ < 0 and define

(4.24) Λ∆ =
T +

√
T 2 − 4

2
, where T = 2−∆
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be the leading eigenvalue of DF̂∆, where F̂∆ is defined by (4.11).

Corollary 4.19. There exists a constant Ĉ∆ so that for any n > 0

there exists ω(n) such that if x ∈ M̂≥ω(n) and u ∈ C̃u(x) then:

(4.25) |DxF̂nu|α± ≥ Ĉ∆Λn
∆|u|α± .

Proof. Fix n > 0. the discussion following (4.22a), (4.22b) shows25 that

C̃u ⊂ CIτ := {(δI, δτ) : δIδτ < 0}.

It is also straightforward to check that there is a constant C̄∆ > 0 such
that for u ∈ CIτ :

|DxF
n
∆u|E(τ,I) ≥ C̄Λn

∆|u|E(τ,I).

By Theorem 4.9, for sufficiently large w, DF̂∆ is O(w−1)-close to

DF̂ ; we conclude that if ω(n) is sufficiently large:

|DF̂nu|E(τ,I) ≥
C̄∆

2
Λn

∆|u|E(τ,I).

We then apply (4.21) to conclude that for any u ∈ C̃u(x), x = (r, w):

|DF̂nu|α± ≥ C−2 ŵn
w

C̄∆

2
Λn

∆|u|α± ,

with the notation (x̂n, ŵn) = F̂n(x,w). Then assuming ω(n) > 2Ĉn,

where Ĉ is the constant obtained in Proposition 4.7(b):

ŵn
w
≥ w − Cn

w
≥ 1− Ĉn

ω(n)
≥ 1

2
,

we conclude that (4.25) holds with Ĉ∆ = C−2C̄∆/4. �

The α± metrics are Finsler metrics and they have the advantage of
being Lyapunov metrics, in the sense that they are strictly monotone
for the (forward or backward, respectively) iterations of F̂ , as will be
proven in Proposition 4.20 below.

For x = (r, w) ∈ M, denote x′ = (r′, w′) = Fx and for u ∈ TxM we

let u′ = DxFu ∈ Tx′M. Likewise, for x ∈ M̂, we denote x̂ = (r̂, ŵ) =

F̂(x) and for u ∈ TxM̂ we let û = Dx̂F̂ û ∈ Tx̂M̂.
Proposition 4.20. The α±-metrics satisfy the following properties:

(a) | · |α± is (uniformly) equivalent to (1 + α1w)| · |E. In particular
| · |α+ and | · |α− are equivalent to each other.

25 Recall that the leading term in (4.22b) is the second one and that δw and δr
have different signs.
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(b) F satisfies the following expansion estimate for any u ∈ Cux:

|u′|α±
|u|α±

≥ α±(x′)

α±(x)

(
1 + τ

2K
w′

)
(4.26a)

≥ e−α0
1 + α1w

′

1 + α1w

(
1 + τ

2K
w′

)
.(4.26b)

Moreover if w′ is sufficiently small, for any u ∈ Cux:

|u′|α±
|u|α±

≥ C#

w′
.(4.27)

Additionally there exists Λ∗ > 1 so that for any x ∈M≥C∗ω2 \ S̃+

(where C∗ is given by Proposition 4.7), uu ∈ Cux and 0 ≤ n ≤ N̂(x):

|DxFnuu|α+ < Λ∗|uu|α+ .(4.28)

(c) If α0 and α1 are sufficiently small, then the map F̂ is uniformly
hyperbolic with respect to the α±-metrics and the expansion is
monotone in the following sense: there exists Λ > 1 so that for

any x ∈ M̂, uu ∈ Cux and any us ∈ Csx:

|DxF̂uu|α+ > Λ|uu|α+ |DxF̂−1us|α− > Λ|us|α− .(4.29)

Proof. Item (a) immediately follows from (4.19b) since the quantity

(κ(r) + V)/
√

1 + |V|2 is bounded above and away from 0 for arbitrary
vectors. In order to prove the remaining items it is convenient to in-
troduce an auxiliary metric, which we denote with | · |∗ and is given by
the expression:

(4.30) |(δr, δw)|∗ = α±(x)−1|(δr, δw)|α± = κ(r)|δr|+ |δw|.

Recall that by (2.13), (2.11), and (2.7) we have

|u′|p
|u|p

= 1 + τB+, (B−)′ =
B+

1 + τB+

where τ = τ(x), B+ = B+(u), and (B−)′ = B−(u′). Hence, if u ∈ Cu
x ,

then (4.19a) and (2.11) give

|u′|∗
|u|∗

= (1 + τB+)
w

w′
κ′ − V ′

κ− V
=

1 + τB+

B+

2κ′ + (B−)′w′

w′
=

= 1 +
2κ′

(B−)′w′
,(4.31)
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where for ease of notation we denoted κ = κ(x) (resp. κ′ = κ(x′)) and
V = V(u) (resp. V ′ = V(u′)). Since (B−)′ ≤ 1/τ we conclude:

|u′|∗
|u|∗

≥ 1 + τ
2K
w′
,(4.32)

from which equations (4.26) immediately follow.
In order to prove (4.27), notice that if w′ is sufficiently small, then

Lemma 4.17 implies that B−1 is bounded from above. Now (4.31) im-
mediately implies (4.27).

Next, we show (4.28). Notice that by Proposition 4.7(a) and Corol-
lary 4.15(a), if x = (r, w) ∈ M≥C∗ω2 , then B−n is bounded from below

for any 0 ≤ n ≤ N̂(x). Using (4.31) we thus gather that, for some
uniform Λ∗1 > 1:

|un|∗
|u|∗

≤
n∏
k=1

(
1 + Cw−1

k

)
≤ (1 + CC∗w

−1)N̂(x) ≤ Λ∗1,

where in the last step we used Lemma 4.4. Then once again using
the definition of | · |α+ , we obtain (4.28) and we conclude the proof of
item (b). Observe moreover that (4.32) gives the trivial bound

|û|∗ ≥ |u′|∗ ≥ |u|∗.

We proceed now to the proof of item (c). We first prove the statement
for unstable vectors. Define another auxiliary norm | · |∗∗.

|u|∗∗ = exp(α01D−R
(x))|u|∗.

We now claim that we can choose α0 > 0 so that we have

|û|∗∗
|u|∗∗

≥ exp(α0).(4.33)

If the above bound holds, we obtain item (c). In fact, observe that

|û|α+

|u|α+

=
1 + α1ŵ

1 + α1w

|û|∗∗
|u|∗∗

.

Using Corollary 4.8, we can choose α1 > 0 so small that

min
(r,w)∈M̂

1 + α1ŵ

1 + α1w
> exp(−α0/2).(4.34)

(4.34) together with (4.33) yields the first estimate of (4.29) with Λ =
exp(α0/2). The corresponding estimate for stable vectors is obtained
by observing that the involution maps the α−-metric for F to the α+-
metric for F−1. This concludes the proof of (c).
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It remains to prove (4.33). First of all observe that, by definition

|û|∗∗
|u|∗∗

= exp(α0(1D−R
(x̂)− 1D−R

(x)))
|û|∗
|u|∗

.

Notice moreover that if x ∈ D+
R we have, by definition, Fx ∈ D−R ⊂ M̂

which yields x̂ = x′. Since D−R ∩ D
+
R = ∅, we conclude that

|û|∗∗
|u|∗∗

= exp(α0)
|u′|∗
|u|∗

≥ exp(α0) for any x ∈ D+
R .

On the other hand, if x 6∈ D+
R we have

|û|∗∗
|u|∗∗

≥ exp(−α0)
|û|∗
|u|∗

.

It thus suffices to show that we can choose α0 so that

|û|∗
|u|∗
≥ exp(2α0) for any x 6∈ D+

R .(4.35)

In order to do so, we combine (3.3) and (4.32) to obtain

|u′|∗
|u|∗

≥ 1 +
4K`∗

w′(w + h(r))
for any x 6∈ D+

R .(4.36)

Let ω# = C∗ω0, where C∗ is provided by Proposition 4.7. Consider two
cases:

(1) If w < ω#, let Λ0 = 1+
4K`∗

(ω# + 2h∗)2
. Since w′ < w+2h∗, by (4.36)

we have, for x 6∈ D+
R ,

(4.37) |û|∗ > Λ0|u|∗.
(2) Assume now that w ≥ ω#: in this case the expansion of just one

iterate of F does not suffice and one needs to take into account several
iterates. Namely, (4.31) and Lemma 4.13(c) give

|û|∗
|u|∗

=
|uN̂(x)|∗
|u|∗

≥ 1 + 2KC
−1
∗
w

N̂(x)∑
k=1

[B−k ]−1 > Λ1,(4.38)

where we used (4.9) in the first inequality, (4.10) in the last inequal-
ity and Λ1 > 1 is a uniform quantity. Notice that we can invoke
Lemma 4.13(c) since we assume w > ω# and thus wk > ω0 for any

0 < k ≤ N̂(x) by (4.9).
Combining (4.37) and (4.38) we obtain (4.35) provided that

exp(2α0) < min{Λ0,Λ1}.(4.39)

This completes the proof of the proposition. �



40 JACOPO DE SIMOI AND DMITRY DOLGOPYAT

We note the following bound: for any L > 0 there exists Cα± > 1 so
that for any unstable (or stable) curve W such that |W |E < L, and for
any x′, x′′ ∈ W :

1 ≤
dWα±(x′, x′′)

dα±(x′, x′′)
≤ Cα± .(4.40)

In fact, the lower bound is immediate by definition of distance; the
upper bound is obtained as follows: since unstable (resp. stable) curves
are decreasing (resp. increasing), we have:

1 ≤ dWE (x′, x′′)

dE(x′, x′′)
≤ 2.

Thus (4.40) follows by the equivalence of dα+ with (1 +α1w)dE proved
in Proposition 4.20(a) and the bound on the length of W .
Remark 4.21. From now on, in an attempt to simplify the notation, we
drop the superscripts ± from the α±-metric and we will always consider
α = α+.

We now establish some properties of the α-metric which will be useful
in the sequel.
Lemma 4.22. For any L > 0 there exists C > 0 so that the following
holds. Let n > 0 and W ⊂ M \ Sn be an unstable curve. Let Wk =
FkW and assume that |Wn|E < L. Let x′, x′′ ∈ W and denote x′k =
Fkx′ (likewise for x′′); then:

dWα (x′0, x
′′
0) ≤ CdWn

α (x′n, x
′′
n)(4.41a)

n∑
j=0

d
Wj

E (x′j, x
′′
j ) ≤ CdWn

α (x′n, x
′′
n).(4.41b)

Proof. Since W ⊂ M \ Sn, we already observed (see the paragraphs

above Lemma 4.4) that the function x 7→ min(n, N̂(x)) must be con-

stant on W . Let N̂(W,n) denote this constant value. Let us begin by
proving an auxiliary result.
Sub-lemma 4.23. For any L > 0, there exists C > 0 such that if
n′ ≤ N̂(W,n) and |Wn′ |E < L, then

dWα (x′0, x
′′
0) ≤ CdWn′

α (x′n′ , x
′′
n′).(4.42)

Proof. Let x′0 = (r′0, w
′
0) and choose ω# sufficiently large. We consider

two cases:
(a) If w′0 > ω#, then Proposition 4.7(a) ensures that w′k/w

′
0 ∈

(C−1
∗ , C∗) for any 0 ≤ k ≤ N̂(W,n). Since |Wn′ |E < L, applying

Proposition 4.7(a) again (to the inverse map) we conclude that a sim-
ilar bound holds for every x0 on W0. Since ω# is chosen sufficiently
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large, α(xk) = 1 + α1 · wk for any xk on the subcurve of W joining x′k
to x′′k. Iterating (4.26a) we thus find, for unstable vectors tangent to
W and Fn′W :

|un′|α
|u0|α

≥ α(xn′)

α(x0)
.

This yields (4.42) in this case, since the ratio on the right hand side is
uniformly bounded from below (once again since wn′/w0 ∈ (C−1

∗ , C∗)).
(b) Assume w′0 ≤ ω#. Lemma 4.4 gives a uniform upper bound on

N̂(x′0) (hence on N̂(W,n)). Notice that for any x = (r, w) ∈ W0:

w ≤ ω# + 2N̂h + L.

Otherwise Fn′x = (rn′ , wn′) would satisfy wn′ > ω# + N̂h + L, but
this is impossible by construction, since w′n′ ≤ ω# +n′h and we assume
|Wn′ |E < L. We now apply Proposition 4.20(b) and conclude:

dW0
α (x′0, x

′′
0) ≤ en

′α0(1 + α1(ω# + L+ 2N̂h)) · dWn′
α (x′n′ , x

′′
n′)

≤ CdWn′
α (x′n′ , x

′′
n′),

which yields (4.42) also in this case. �

In order to obtain (4.41a), it suffices to observe that given W ⊂
M\Sn, we can always write Fn = Fn+ ◦F̂ l ◦Fn− for some l ≥ 0, n− =

N̂(W,n) and n+ = n − N̂l+1(x) for any x ∈ W (recall the definition

of N̂k given in the paragraph above Remark 4.5). Then (4.41a) follows

from (4.42) and from the uniform hyperbolicity of F̂ .

The proof of (4.41b) is similar. We again decompose Fn=Fn+◦F̂ l◦Fn−
and then correspondingly we divide the sum into blocks where each
block corresponds to one iteration of F̂ , or by Fn− and Fn+ for the
first and last block respectively.

Let 0 ≤ m < n be the starting index of some block and let k ≤
N̂(x′m). We claim that:

(4.43)
m+k∑
j=m

d
Wj

E (x′j, x
′′
j ) ≤ CdWm+k

α (x′m+k, x
′′
m+k).

In order to prove the claim, we again consider two cases. Let ω# be
sufficiently large.

(a) If w′m > ω# there might be many bounces during each period
of the wall, i.e. k is not uniformly bounded. Assuming ω# to be suf-
ficiently large and using Proposition 4.20(a), (4.26a), Lemma 4.4 and
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Proposition 4.7, together with (4.41a) we have

m+k∑
j=m

d
Wj

E (x′j, x
′′
j ) ≤ C̄

[
m+k∑
j=m

d
Wj
α (x′j, x

′′
j )

w′j

]

≤ ¯̄CdWm+k
α (x′m+k, x

′′
m+k)

N̂(x′m)

w′m
≤ ¯̄̄
CdWm+k

α (x′m+k, x
′′
m+k).

This proves that (4.43) in case (a).
(b) Assume w′m ≤ ω#. By Proposition 4.20(a) dE and dα are equiv-

alent for small energies and by (4.41a) we obtain

m+k∑
j=m

d
Wj

E (x′j, x
′′
j ) ≤ C

m+k∑
j=m

dWj
α (x′j, x

′′
j ) ≤ CkdWm+k

α (x′m+k, x
′′
m+k)

which proves (4.43) since k is uniformly bounded.

By (4.43) we can write

n∑
j=0

d
Wj

E (x′j, x
′′
j ) ≤ C

l∑
l′=0

d
F̂ lWn−
α (F̂ l′x′n− , F̂

l′x′′n−) + CdWn
α (x′n, x

′′
n).

By the uniform expansion of the α-metric shown in Proposition 4.20(c)
the sum on the right hand side is a geometric sum, whence:

n∑
j=0

d
Wj

E (x′j, x
′′
j ) ≤ Cd

Wn−n+
α (x′n−n+

, x′′n−n+
) + CdWn

α (x′n, x
′′
n)

from which we conclude the proof using once again (4.41a). �

Using the properties of the involution and the fact that the α±-
metrics are equivalent to each other, we obtain the following corollary.
Corollary 4.24. For any L > 0, there exists C > 0 so that the fol-
lowing holds. Let n > 0 and W ⊂ M \ Sn be a curve so that FnW
is a stable curve. Let Wk = FkW and assume that |Wk|E < L for all
0 ≤ k ≤ n. Let x′, x′′ ∈ W and denote x′k = Fkx′ (likewise for x′′).
Then the following estimates hold.

dWn
α (x′n, x

′′
n) ≤ CdWα (x′0, x

′′
0)(4.44a)

n∑
k=0

dWk
E (x′k, x

′′
k) ≤ CdWα (x′0, x

′′
0).(4.44b)

As it is clear, e.g. from (4.26a), the expansion of unstable curves can
be arbitrarily large if the curve is cut by a grazing singularity. However,
as in the case of billiards (see [9, Exercise 4.50]), this divergence of the
expansion rate is integrable, as we show in the following lemma.
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Lemma 4.25 (Expansion control for unstable curves).

(a) For any L > 0, there exists a constant C > 1 so that for any un-
stable curve W ⊂M with |W |α < L and any connected component
W ′ ⊂ FW , we have

|W ′|α ≤ C|W |1/4α .(4.45)

(b) if W is as in the previous item and we assume additionally that
W ⊂ D+

R , or W ⊂ D+
0 , then for any connected component W ′ ⊂

FW , we have |W ′|α ≤ C|W |1/2α .

(c) For any L > 0 there exists a constant Ĉ > 1 so that for any unsta-

ble curve W ⊂ M̂ with |W |α < L and any connected component

Ŵ ⊂ F̂W , we have

|Ŵ |α ≤ Ĉ|W |1/4α .

(d) For any δ∗ ∈ (0, 1) and k > 0 there exists δ = δ(δ∗, k) ∈ (0, δ∗) so
that for any unstable curve W with |W |α ≤ δ, if W ′ is a connected

subcurve of FnW , where n is so that n ≤ min
x∈F−nW ′

N̂k(x), then

|W ′|α ≤ δ∗. If W ⊂ M̂, this in particular applies to the case

where W ′ is a connected component of F̂kW .

The corresponding estimates for stable curves hold true.

Proof. We begin with item (a). Let us first prove this result with the
α-metric replaced by the auxiliary metric | · |∗ defined by (4.30). Let
ω# be sufficiently large and assume first that W ⊂ M≥ω#

. Then
by (4.31) and Lemma 4.12(a) we conclude that the expansion along W
can be at most 1 + 2κ′w/κw′ which is uniformly bounded from above.
Hence |W ′|∗ ≤ C|W |∗; by definition of | · |∗ we have |W ′|α ≤ C ′|W |α
and since |W |α < L we can conclude that |W ′|α ≤ C ′L1/2|W |1/2α and

|W ′|α ≤ C ′L3/4|W |1/4α .
We now consider the case W \ M≥ω#

6= ∅. Let σ and σ′ be the
arc-length parameters on W and W ′ respectively (with respect to | · |∗-
metric). Fix a large T > 1 and consider two subcases.

(i) τ ≤ T on W : in this case Lemma 4.12 gives a uniform lower
bound on B−1 and hence (4.31) implies that

∣∣dσ′
dσ

∣∣ ≤ ĉ
w′

. Let w̃′ denote
the minimal w′ on W ′ and σ̃′ parametrize the point where the minimum
is achieved. Since |V| ≥ K it follows that

w′ ≥ w̃′ + c|σ′ − σ̃′|.
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Hence ∣∣∣∣dσ′dσ

∣∣∣∣ ≤ c̄

|σ′ − σ̃′|
.

Integrating the above estimate we obtain |W ′|2∗ ≤ C ′|W |∗, from which
we conclude that |W ′|2α ≤ C ′′|W |α, using (4.30) and the fact that the
function α is bounded on w ≤ ω#. Using once again that |W |α < L as

in the case above we conclude that |W ′|α ≤ C ′′L1/2|W |1/4α .
(ii) τ > T somewhere on W . Then there is a (large) ν ∈ N such that

r+τ(W ) ⊂ (ν, ν+1), i.e. W ′ ⊂ D−ν . In this case Lemma 4.12(b) shows
that, on W ′, B−1 is of order 1/ν; thus repeating the argument from the
previous subcase we obtain

(4.46) |W ′|2∗ ≤ Cν|W |∗.

On the other hand, by Lemma 3.13(e) and Remark 3.14, since W ′ ⊂
D−ν , we gather

(4.47) |W ′|2∗ ≤
C̄2

ν
.

Multiplying (4.46) and (4.47) we obtain the result for | · |∗, from which
we obtain (4.45) by arguments similar to the ones given above.

The proof of item (b) follows from the fact that if W ⊂ D+
R or

W ⊂ D+
0 then max

x∈W
τ(x) ≤ 1; thus case (ii) from the proof of item (a)

does not occur.

Let us now present the proof of item (c). First of all, if W ⊂ M̂≥C∗ω2

the result immediately follows by (4.28). Thus we can assume that W

lies in some bounded subset M̂≤ω#
; in particular by Lemma 4.4 we

have supx∈W N̂(x) ≤ C#ω#

Fix a small η > 0 and, as usual, denote (rk, wk) = F k(r, w). By
Lemma 3.13(e) and Remark 3.14 we can choose η > 0 so small that if
wk > η, then τ(rk−1, wk−1) < T , where T is the constant chosen in item
(a). Moreover, we choose η so small that D−0 ∩ {w < η} ⊂ D+

R . Let

V̂ = F̂−1Ŵ ⊂ W and, for 0 < k ≤ N̂(V̂ ), let V̂k = FkV̂ . Assume first

that for every 0 < k∗ ≤ N̂(r, w) we have V̂k ⊂ {w > η}. Inspecting

the proof of item (a) then yields |V̂k|α < C|V̂k−1|α for 0 < k ≤ N̂(V̂ ).

Since N̂(V̂ ) < N∗ we conclude that |Ŵ ′| < CC#ω#|W |, which suffices
to prove item (c) in this case.
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Let now 0 < k∗ ≤ N̂(r, w) be the smallest k so that V̂k∗ ∩{w < η} 6=
∅; then the above argument yields |V̂k∗−1| < CC#ω#|W |. Then we have
two possibilities:

• V̂k∗ ⊂ M̂. Then the previous collision happened in a different fun-
damental domain; since we assume k > 0, we must have k∗ = N̂(V̂ )

and applying item (a) to V̂k∗−1 we conclude that |W ′|α ≤ Ĉ|W |1/4.

• V̂k∗ ⊂ D−0 : by our assumption on η, this implies that V̂k∗ ⊂ D+
R ,

which then implies that k = N̂((r, w)) − 1. Since V̂k∗−1 ⊂ D+
0 , we

can apply item (b) to both V̂k∗−2 and V̂k∗−1 and conclude once again

that |W ′|α ≤ Ĉ|W |1/4.

Item (d) follows from item (c) since composition of Hölder functions
is still Hölder. �

Lemma 4.26.

(a) For any ν̄, there exists δ = δ(ν̄) > 0 so that for any u-curve
W ⊂M with |W |α < δ, FW has at most 3 connected components
that are not contained in

⋃
ν>ν̄ D−ν .

(b) There exists ω4 and δ > 0 so that if |W |α < δ and W ⊂ M≥ω4,
then W intersects at most two E∗n’s.

(c) For any ν̄ sufficiently large, there exists δ = δ(ν̄) > 0 and K > 0

so that for any u-curve W ⊂ M̂ with |W |α < δ, F̂W has at most
K connected components that are not contained in

⋃
ν>ν̄ D−ν .

Proof. We begin with the proof of item (a). By Proposition 4.20(a),
it suffices to prove the statement for the Euclidean metric | · |E. Let
W ′ = W \D+

R . By Lemma 3.7(a2), W ′ is connected. Since D+
R∩S+ = ∅,

we conclude that F(W ∩ D+
R) ⊂ D−R is also connected. Therefore

it can contribute to at most one connected component, which is not
in
⋃
ν>ν̄ D−ν . Hence, it suffices to prove that there exists δ > 0 so

that if |W ′|E < δ, W ′ ∩ D+
R = ∅, then FW ′ has at most 2 connected

components that are not contained in
⋃
ν>ν̄ D−ν . Otherwise there would

be a sequence of curves W ′
n converging to a point which would intersect

at least three D+
ν , with ν ≤ ν̄. Hence it would intersect at least two

S+
ν , with ν ≤ ν̄. Since S+

ν are closed sets, we conclude that two curves
S+
ν and S+

ν′ must intersect, but this is impossible by Lemma 3.11(a).
In order to prove item (b), let us assume that W intersects at least

three consecutive E∗n’s: let us denote them by E∗n−1, E∗n and E∗n+1; in
particular it must be that W intersects both Sn and Sn+1. This implies
that Fn+1W will have a component W ′ that joins S0 to S−1, and thus
|W ′|α > c for some uniform c > 0 (see (4.20)). However, provided that
ω4 is sufficiently large, (4.28) guarantees that the expansion of Fn+1 is
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bounded above by (Λ∗)2. We conclude if W intersects more than 2 of
the E∗n, then |W |α > c/(Λ∗)2.

We now proceed to the proof of (c). Fix ω# sufficiently large. If
W ∩M≤ω#

6= ∅ and |W |α < 1, then Lemma 4.4 allows to conclude

that N̂(x) ≤ N∗ where N∗ = C#ω#. By part (a) there exists δ∗ so
that if |W |α < δ∗, then FW has at most 3 connected components
not contained in

⋃
ν≥ν̄ D−ν . Moreover by Lemma 4.25(b), we can find

δ = C#δ
4N∗
∗ so that any connected component of FnW , for 0 ≤ n ≤ N∗

is not larger than δ∗. Finally, observe that if ν̄ is sufficiently large,

then D−ν ⊂ M̂ for any ν ≥ ν̄. We can conclude by induction that F̂W
has at most 3N∗ components not contained in

⋃
ν≥ν̄ D−ν , provided that

|W |α < δ.
Assume, on the other hand that W ⊂ M≥ω#

. According to The-
orem 4.9, if |W |E(τ,I) < 1/2, then W lies in at most 2 fundamental

domains Dn, and therefore F̂W has at most 2 connected components.
By (4.20), there exists δ > 0 so that if |W |α < δ, then |W |E(τ,I) < 1/2.
We conclude that (c) holds for large w. �

We conclude this section with a useful result about singularities (this
statement corresponds to [9, Lemma 4.55] for our system.)

Lemma 4.27. Let W ⊂ M be an unstable curve; then S+∞ ∩W is
dense in W . The corresponding statement holds for an arbitrary stable
curve and S−∞. In particular S+∞ and S−∞ are dense in M.

Proof. We prove the lemma for an unstable curve W and S+∞ (the
statement for stable curves and S−∞ follows by the properties of the
involution).

Assume by contradiction that there exists an unstable curve W ⊂
M\S+∞. Let x ∈ W and N = N̂(x). Then W ′ = FNW ⊂ M̂ is an un-
stable curve (of positive length) and by forward-invariance ofM\S+∞

we gather that W ′ ⊂ M̂ \ S+∞ ⊂ M̂ \ Ŝ+∞, hence, F̂n|W ′ is smooth
for every n > 0. By Proposition 4.20(c) the length of the unstable

curve F̂nW ′ would then grow arbitrarily large as n→∞. Since unsta-

ble curves are decreasing, by definition of M̂ and of the α-metric, the

above means that, for any w, there exists n so that F̂nW ′ ∩M̂≥w 6= ∅.
But Remark 4.10 then implies (choosing w sufficiently large) that F̂nW ′

intersects non-trivially at least two fundamental domains Dk, which in
turn means that F̂n+1|W ′ is discontinuous, which contradicts our as-
sumptions. �

4.5. Stable and unstable manifolds. We now proceed to define sta-
ble and unstable manifolds : a stable (resp. unstable) C1 curve W is
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said to be a stable manifold (resp. unstable manifold) if W ∩ S+∞ = ∅
(resp. W ∩S−∞ = ∅). Stable and unstable manifolds enjoy some useful
properties:
Lemma 4.28. Let W be a stable manifold. Then it satisfies the fol-
lowing properties:

(a) FnW is a stable curve for any n ≥ 0;
(b) lim

n→∞
|FnW |α = 0.

The analogous statement holds for unstable manifolds.

Proof. Assume by contradiction that there exists n > 0 and a point
x ∈ W so that the tangent vector of FnW at Fnx does not belong
to the stable cone Cs

Fnx. Then it follows from (2.12) that the tangent
vector of Fn+2W at Fn+2x is unstable. By continuity, the same holds
for nearby points. Hence we can find an unstable curve V ⊂ Fn+2W ;
by definition of stable manifold V ⊂ Fn+2(M\S+∞) and by forward-
invariance ofM\S+∞ we conclude V ∩S+∞ = ∅, but this contradicts
Lemma 4.27. We conclude that item (a) holds.

In order to show item (b), let L = |W |α; note that, although there
is no uniform bound on the length of a stable manifold, the length of
any such curve is finite. Then, by Proposition 4.20, for any k > 0 and
x ∈ W , if n > Nk(x), then |FnW |α < LΛ−k proving (b). �

Next, we show that the Euclidean length of unstable and stable man-
ifolds is uniformly bounded.

Lemma 4.29 (Euclidean length of unstable manifolds). There is LE>
0 so that if W is an unstable (resp. stable) manifold, then |W |E < LE.

Proof. We prove the statement for unstable manifolds. Since W is
an unstable manifold, W ∩ S+∞ = ∅, thus there exists N̂W so that

N̂(x) = N̂W for any x ∈ W . Hence W ′ = F N̂WW ⊂ Dn for some
n. By Remark 4.10, there exists L > 0 so that |W ′|E < L; hence,
Lemma 4.22 implies that |W |α ≤ C|W ′|α for some C = C(L).

By Proposition 4.20(a) and Proposition 4.7(a) we gather:

C−1
#

|W ′|E
|W |E

<
|W ′|α
|W |α

< C#
|W ′|E
|W |E

,

hence |W |E ≤ C#
|W |α
|W ′|α

L ≤ C#CL =: LE. �
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5. Distortion estimates

The previous sections dealt with C1 estimates for the dynamics of
Fermi–Ulam Models. However, it is well known that, in order to ob-
tain good statistical properties of hyperbolic maps, one needs a higher
regularity than C1 for the purpose of controlling e.g. distortion. The
necessary results about higher derivatives of the iterates of F̂ are pre-
sented in this section.

5.1. Homogeneity strips. In order to control distortion of u-curves,
we introduce the so-called homogeneity strips Hk ⊂ M. Fix k0 ∈ N
sufficiently large, to be specified later (see the proof of Lemma 6.10 in
Section 6 for the precise restrictions on k0), and define

H0 = {(r, w) ∈M s.t. w > k−2
0 }.

For k ≥ k0 define

Hk = {(r, w) ∈M s.t. w ∈ ((k + 1)−2, k−2]}.

By Proposition 4.20(b), we gather that if Fx ∈ Hk, the expansion rate
along unstable vectors at x for the α-metric is bounded below by C#k

2.
Moreover that there exists ν∗ > 0 so that D±ν ∩H0 = ∅ for any ν > ν∗.

As it is customary in the theory of billiards, we need to treat the
boundaries of Hk as auxiliary (or secondary) singularities. For k ≥ k0,

denote by Sk = (0, 1) × {k−2} and put S =
⋃
k≥k0

Sk. Then we let

S0
H = S0 ∪ S and for any n > 0 we let:

SnH = Sn ∪
n⋃

m=0

F−m(S \ S−m), S−nH = S−n ∪
n⋃

m=0

Fm(S \ Sm).(5.1)

Remark 5.1. Observe that FS (resp. F−1S) is a countable union of
stable (resp. unstable) curves that accumulate on the singular curves
S−1 \S0 (resp. S1 \S0). Each curve also terminates on S−1 (resp. S1).
In particular each SnH is a closed set.

As in Section 4, we now extend these definitions to the induced map.
First, define

S̃+
H = S0

H ∩
⋃
k≥0

(Sk+1
H ∩ Ek),

then let Ŝ+
H = (S̃+

H ∩M̂)∪∂M̂. By a similar construction we can define

Ŝ−H . Then for any n > 0 we let:

Ŝn+1
H = ŜnH ∪ F̂−1(ŜnH \ Ŝ−) Ŝ−n−1

H = Ŝ−nH ∪ F̂(Ŝ−nH \ Ŝ
+).(5.2)



DISPERSING FERMI–ULAM MODELS 49

An unstable (or stable) curve W is said to be weakly homogeneous if W
belongs to only one strip Hk. As mentioned above, we will consider the
curves SnH (resp. ŜnH) to be auxiliary singularities of the map Fn (resp.

F̂n) in the following sense: given a set E, we will call H-component of

FnE (resp. of F̂nE) a connected component of Fn(E\SnH) (resp. F̂n(E\
ŜnH)). Observe in particular that ifW is an unstable (resp. stable) curve,
and n > 0, then any H-component W ′ of FnW (resp. F−nW ) is so that
F−kW ′ (resp. FkW ′) is a weakly homogeneous unstable (resp. stable)

curve for any 0 ≤ k < n. Analogous statements hold for F̂ .

5.2. Unstable curves. In this section we study regularity properties
of unstable curves. By (2.9), it suffices to establish the regularity of
the p-slope B−. In order to do so, we find convenient to introduce the
following notion: an unstable curve W is said to be K-admissible if B−
is K-Lipschitz (with respect to the α-metric) on W \ D−R and (B−)−1

is K-Lipschitz (with respect to the α-metric) on26 W ∩ D−R .
Using the involution, we can analogously define the class of stable

K-admissible curves. In this section we focus on properties of unstable
curves. Corresponding statements for stable curves follow using the
involution; such properties will be used in Section 7.

Proposition 5.2. For each K > 0 there exists K̄ > 0 such that the
following holds. Let W be a weakly homogeneous mature unstable curve
that is K-admissible. Then, for any n > 0, any H-component of FnW
is K̄-admissible.

Proof. Recall that for any x ∈ W \ Sn we denote with B−n (x) the value
of B− of the curve FnW at the point Fnx. In this proof we drop the
superscript “−” in B−n in order to simplify the notation. We have,
using (2.7), that Bn = G(τn−1,Bn−1,Rn−1) where

G(τ,B,R) =
B +R

1 + τ(B +R)
.

26 In case that either W \ D−R or W ∩ D−R is empty, we assume the Lipschitz
condition to be trivially satisfied.
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A direct computation gives

G(τ,B′,R)−G(τ,B′′,R) =
(B′ − B′′)

(1 + τ(B′ +R))(1 + τ(B′′ +R))
,(5.3a)

G(τ,B,R′)−G(τ,B,R′′) =
(R′ −R′′)

(1 + τ(B +R′))(1 + τ(B +R′′))
,(5.3b)

G(τ ′,B,R)−G(τ ′′,B,R) =
(B +R)2(τ ′′ − τ ′)

(1 + τ ′(B +R))(1 + τ ′′(B +R))
.(5.3c)

Let Wn be a H-component of FnW and for 0 ≤ k ≤ n let Wk =
Fk−nWn; let x′, x′′ ∈ W0 and for 0 ≤ k ≤ n let x′k = Fkx′ and
x′′k = Fkx′′. Observe that by construction x′k and x′′k belong to the
same homogeneity strip. We can further assume W0 to be sufficiently
short so that dE(x′k, x

′′
k) ≤ 1 for any 0 ≤ k ≤ n (otherwise we can

partition W0 into smaller subcurves which satisfy this requirement).
By construction, for any 0 ≤ k < n, the curve Wk is contained in a
single cell D−ν . In particular each Wk is either contained or disjoint
from D−R .

Now, for 0 ≤ k < n we are going to define δk ≥ 0 as follows. Fix a
large number ω# > 0. If Wk ⊂ D+

R we let δk = 0. Otherwise, Wk ⊂ D+
ν

for some ν 6= R and we let δk = `∗/max{ω#, w
′
k}. Observe that, if

ω# is sufficiently large, (3.3) implies that δk is a lower bound on τ(y)
among all points y ∈ D+

ν so that dE(y,Wk) ≤ 1. Finally, let

∆′k = 1 + δk

(
B′k +

K
w′k

)
, ∆′′k = 1 + δk

(
B′′k +

K
w′′k

)
.

Later (in § 5.4) we will consider the case where x′k and x′′k do not
necessarily belong to a common unstable curve. In this case we define
δk based on the properties of the curve containing x′k. We thus state
the next lemma under more general assumptions than needed in the
current setting.
Lemma 5.3. Let W ′ and W ′′ be two mature unstable curves; let x′ ∈
W ′ and x′′ ∈ W ′′; let n > 0 be so that for any 0 ≤ k ≤ n the points x′k
and x′′k belong to the same cell D−ν , to the same homogeneity strip and
dE(x′k, x

′′
k) < 1. Then the following estimates hold for 1 ≤ k ≤ n:

(a) If x′k 6∈ D−R , then

|B′k − B′′k | ≤
|B′k−1 − B′′k−1|

∆′k−1∆′′k−1

+ C
[
dE(x′k−1, x

′′
k−1) + dE(x′k, x

′′
k)
]
.

(b) If x′k ∈ D−R , then∣∣∣∣ 1

B′k
− 1

B′′k

∣∣∣∣ ≤ C
[
|B′k−1 − B′′k−1|+ dE(x′k−1, x

′′
k−1) + dE(x′k, x

′′
k)
]
.(5.4)
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Moreover, if additionally k 6= n:∣∣B′k+1 − B′′k+1

∣∣ ≤ |B′k−1 − B′′k−1|
∆′k∆

′′
k

+

+ C
[
dE(x′k−1, x

′′
k−1) + dE(x′k, x

′′
k) + dE(x′k+1, x

′′
k+1)

]
.

Before giving the proof of the above lemma, let us see how it yields
Proposition 5.2. In our case W ′ = W ′′ = W0. Let us first assume that
W0 ∩ D−R = ∅. We consider two possibilities: either Wn ∩ D−R = ∅ or
Wn ⊂ D−R .

In the first case, iterating the estimates of parts (a) and (b) of the
lemma we get, since x′n 6∈ D−R :

|B′n − B′′n| ≤
|B′0 − B′′0 |∏n−1
j=0

[
∆′j∆

′′
j

] + C
n∑
j=0

dE(x′j, x
′′
j )(5.5)

≤ |B′0 − B′′0 |+ C
n∑
j=0

dE(x′j, x
′′
j ).

≤ Kdα(x′0, x
′′
0) + C

n∑
j=0

dE(x′j, x
′′
j ).

≤ C(K + 1)dα(x′n, x
′′
n).

where in the last passage we invoked Lemma 4.22.
In the second case, we iterate the estimates of parts (a) and (b) until

step n− 1 and use (5.4) at the last step, which gives:∣∣∣∣ 1

B′n
− 1

B′′n

∣∣∣∣ ≤ C
|B′0 − B′′0 |∏n−1
j=0

[
∆′j∆

′′
j

] + C
n∑
j=0

dE(x′j, x
′′
j )

from which we conclude as above.
We now consider the case W0 ⊂ D−R . Since W0 ⊂ D−R , and D−R ∩
D+

R = {xC}, we conclude that W0 ∩ D+
R = ∅ and so δ0 > 0. Therefore

Lemma 5.3(a) gives

|B′1 − B′′1 | ≤
∣∣∣∣ 1

B′0
− 1

B′′0

∣∣∣∣ B′0B′′0∆′0∆′′0
+ C [dE(x′0, x

′′
0) + dE(x′1, x

′′
1)] .

Notice that

B′0B′′0
∆′0∆′′0

≤ B′0B′′0
(1 + δ0B′0)(1 + δ0B′′0)

≤ 1

δ2
0

.

Combining the last two estimates we get

|B′1 − B′′1 | ≤ C

[∣∣∣∣ 1

B′0
− 1

B′′0

∣∣∣∣+ dE(x′0, x
′′
0) + dE(x′1, x

′′
1)

]
.



52 JACOPO DE SIMOI AND DMITRY DOLGOPYAT

We then argue as in the other case (for each of the two subcases in-
volving Wn), but starting from k = 1 and we obtain the result. �

It remains to establish Lemma 5.3.

Proof of Lemma 5.3. (a) We have

B′k − B′′k =
[
G(τ ′k−1,B′k−1,R′k−1)−G(τ ′k−1,B′′k−1,R′k−1)

]
+
[
G(τ ′k−1,B′′k−1,R′k−1)−G(τ ′k−1,B′′k−1,R′′k−1)

]
+
[
G(τ ′k−1,B′′k−1,R′′k−1)−G(τ ′′k−1,B′′k−1,R′′k−1)

]
= I + II + III.

We now estimate each of these three terms separately using (5.3).

|I| =
|B′k−1 − B′′k−1|

(1 + τ ′k−1(B′k−1 +R′k−1))(1 + τ ′k−1(B′′k−1 +R′k−1))
≤
|B′k−1 − B′′k−1|

∆′k−1∆′′k−1

.

Let us now consider the second term. We have

|II| =
|R′k−1 −R′′k−1|

(1 + τ ′k−1(B′′k−1 +R′k−1))(1 + τ ′k−1(B′′k−1 +R′′k−1))

≤
|R′k−1 −R′′k−1|

(1 + τ ′k−1R′k−1)(1 + τ ′k−1R′′k−1)
.

The numerator equals

2

∣∣∣∣κ′k−1w
′′
k−1 − κ′′k−1w

′
k−1

w′k−1w
′′
k−1

∣∣∣∣ ≤ 2
κ′k−1|w′k−1 − w′′k−1|

w′k−1w
′′
k−1

+ 2
|κ′k−1 − κ′′k−1|

w′′k−1

.

We split the discussion in two cases:

(A) If |w′k−1| ≤ 2 then we obtain

|R′k−1 −R′′k−1| ≤ C
|r′k−1 − r′′k−1|+ |w′k−1 − w′′k−1|

w′k−1w
′′
k−1

.

Since δk−1 > δ# = `∗/ω# (because w′k−1 < 2 < ω# if ω# is suffi-
ciently large)

|II| ≤
CdE(x′k−1, x

′′
k−1)(

1 +
2δk−1κ

′
k−1

w′k−1

)(
1 +

2δk−1κ
′′
k−1

w′′k−1

)
w′k−1w

′′
k−1

≤
C̄dE(x′k−1, x

′′
k−1)

δ2
k−1κ

′
k−1κ

′′
k−1

≤ ¯̄CdE(x′k−1, x
′′
k−1).

(B) Otherwise, if w′k−1 > 2 then we bound the numerator from above
by C̄dE(x′k−1, x

′′
k−1) and the denominator from below by 1, which

also yields |II| ≤ ¯̄CdE(x′k−1, x
′′
k−1).
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To estimate (III), consider two cases.
(A) If w′k−1 < ω# then:

|III| ≤
(B′′k−1 +R′′k−1)2|τ ′k−1 − τ ′′k−1|
(1 + δk−1(B′′k−1 +R′′k−1))2

≤
|τ ′′k−1 − τ ′k−1|

δ2
k−1

≤
|r′k−1 − r′′k−1|+ |r′k − r′′k |

δ2
#

where in the last step we used the fact that, since x′k and x′′k belong to
the same cell D−ν , we have |τ ′k−1 − τ ′′k−1| ≤ |(r′k − r′k−1) − (r′′k − r′′k−1)|
and the fact that if w′k−1 < ω#, then δk−1 > δ#.

(B) If w′k−1 > ω#, then Corollary 4.15(b) allows us to estimate the
numerator of (5.3c) from above by C[|r′k−1 − r′′k−1|+ |r′k − r′′k |] and the
denominator by 1, obtaining:

|III| ≤ C[|r′k−1 − r′′k−1|+ |r′k − r′′k |].

Hence, either in case (A) or case (B) we conclude that

|III| ≤ CdE(x′k−1, x
′′
k−1) + dE(x′n, x

′′
n),

which completes the proof of part (a).
In order to prove part (b), we begin by estimating |B′k−B′′k | in terms

of |B′k−1 − B′′k−1|.
If x′k−1 ∈ H0 (and thus x′′k−1 ∈ H0 by assumption) then we have

(5.6) |B′k − B′′k | ≤ |B′k−1 − B′′k−1|+ C
[
dE(x′k−1, x

′′
k−1) + dE(x′k, x

′′
k)
]

because we can bound from below the denominators of I, II and III by
1, and the numerators of II and III are

O
(
dE(x′k−1, x

′′
k−1)

)
and O

(
dE(x′k−1, x

′′
k−1) + dE(x′k, x

′′
k)
)

respectively due to a lower bound on w′k−1 and w′′k−1 and the upper
bound on B′′k−1 given by Corollary 4.15 (since xk ∈ D−R , we have xk−1 6∈
D−R). Combining (5.6) with the already established part (a) for x′k+1 6∈
D−R we obtain the estimates of part (b) in case x′k−1 ∈ H0 (note that we
have uniform lower bounds on B′k and B′′k , so that also (5.4) follows).

Next, we consider the case x′k−1, x
′′
k−1 ∈ Hj for some j > 0. Then

C−1w′k−1 ≤ w′′k−1 ≤ Cw′k−1. Observe that our assumptions give a
uniform upper bound on w′k−1 and uniform upper bound on B′k−1. In
fact, since x′k ∈ D−R , it follows that x′k−1 ∈ D+

R . Thus F−1x′k−1 6∈ D+
R

(this follows from Remark 3.8, because xC 6∈ Hj for any j). Hence the
required upper bound on B′k−1 follows from Lemma 4.12(b), since we
assume W to be mature.
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Since B′k−1 is uniformly bounded, assuming k0 in the definition of
the homogeneity strips to be sufficiently large, we have the following
estimates

c
R′k−1

1 + τ ′k−1R′k−1

≤ B′k ≤ c−1 R′k−1

1 + τ ′k−1R′k−1

,
c

wk−1

≤ R′k−1 ≤
c−1

wk−1

.

Hence

(5.7)
c̄

wk−1 + τk−1

≤ B′k ≤
c̄−1

wk−1 + τk−1

.

Without loss of generality we may assume that τ ′k−1 ≥ τ ′′k−1. Then (5.7)
shows that

(5.8) B′k ≤ CB′′k .

We now estimate I, II and III as follows.

|I| ≤ |B′k−1 − B′′k−1|,

|II| ≤
CdE(x′k−1, x

′′
k−1)(w′k−1)−2(

1 +
cτ ′k−1

w′k−1

)2 ≤ C(B′k)2dE(x′k−1, x
′′
k−1),

|III| ≤
C
[
dE(x′k−1, x

′′
k−1) + dE(x′k, x

′′
k)
]

(w′k−1w
′′
k−1)−1(

1 +
cτ ′k−1

w′k−1

)(
1 +

cτ ′′k−1

w′′k−1

)
≤ CB′kB′′k

[
dE(x′k−1, x

′′
k−1) + dE(x′k, x

′′
k)
]
.

Here the first inequality for III holds since w′k−1 and w′′k−1 are compara-
ble, because the x′k−1 and x′′k−1 belong to the same homogeneity strip,
while the second inequalities in the estimates of both II and III follow
from (5.7).

Combining these estimates with (5.8) we conclude that27

(5.9) |B′k − B′′k | ≤

|B′k−1 − B′′k−1|+ CB′k(B′k + B′′k)
[
dE(x′k−1, x

′′
k−1) + dE(x′k, x

′′
k)
]
,

which yields (5.4) since we have a uniform lower bound on B−k in the
recollision region (see Lemma 4.12). Combining the above bound with

27 Observe that (5.9) holds trivially also if x′k−1 ∈ H0, by (5.6) and the fact
that we have a uniform lower bound on B′k, as the flight time τ ′k−1 is bounded (see

Lemma 4.12)
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the bound at step k + 1 already established in part (a), we conclude

|B′k+1 − B′′k+1| ≤
|B′k−1 − B′′k−1|

∆′k∆
′′
k

+ C
[
dE(x′k, x

′′
k) + dE(x′k+1, x

′′
k+1)

]
+

+ C
B′kB′′k

(1 + δkB′k)(1 + δkB′′k)

[
dE(x′k−1, x

′′
k−1) + dE(x′k, x

′′
k)
]
.

Since

B′k
1 + δkB′k

≤ 1

δk
,
B′′k

1 + δkB′′k
≤ 1

δk

part (b) follows, because in the region under consideration, 1/δk is
bounded above uniformly in k. �

The proof of Lemma 5.3 provides some additional useful information
which we record for a future use.
Lemma 5.4. Fix a large constant K.

(a) For any δ̄ > 0 there is a constant K(δ̄) such that if W is a weakly
homogeneous mature unstable curve that is K-admissible, Wn is
an H-component of FnW contained in D−R , and τn−1 ≥ δ̄ on Wn

then B−n is K(δ̄) Lipschitz on Wn.
(b) There exist constants T0 and K2 such that if T ≥ T0, W is a

weakly homogeneous mature unstable curve that is K-admissible,
Wn is an H-component of FnW , and τn−1 ≥ T on Wn then B−n |Wn

is K2/T
2 Lipschitz.

Proof. Part (a) holds since the assumption that x′k 6∈ D−R is only used
in Lemma 5.3 to obtain a uniform lower bound on the flight time, and
such bound is now explicitly assumed.

Moreover, the assumptions in part (b) allow us to estimate δ2 in the
denominators of I, II, and III by T 2 obtaining

|B′n − B′′n| ≤ C
|B′n−1 − B′′n−1|+ dE(x′n−1, x

′′
n−1) + dE(x′n, x

′′
n)

T 2

≤ C̄
|B′n−1 − B′′n−1|+ dE(x′n, x

′′
n)

T 2
.

It remains to note that we have a uniform Lipschitz bound on B−n−1.
In fact, if Wn−1 6⊂ D−R then this bound follows from Proposition 5.2.
If Wn−1 ⊂ D−R then the bound follows from the already established
part (a). Indeed, the fact that τn ≥ T implies (provided that T is
sufficiently large) that Wn−1 is contained in a neighborhood of xC ;
since, as we observed in the proof of Lemma 3.7 we have

lim
D−R3x→xC

τ(x) = 1,
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assuming T sufficiently large, we conclude τn−1 > 1/2, which gives the
necessary lower bound on τn−1. �

Corollary 5.5. There exists a constant K̂ > 0 such that if W is an
unstable manifold, then W is K̂-admissible.

Proof. Let (nk)
∞
k=0 be a strictly increasing sequence of positive numbers

such that F−nkW 6⊂ D−R . We will now show that there exists K > 0
so that B−n0 is K-Lipschitz on F−n0W . This implies that F−n0W
is K-admissible, and by Proposition 5.2 we can conclude that W is
K̂-admissible, with K̂ = K̄(K).

For any x′, x′′ ∈ F−n0W , arguing as in (5.5) we obtain that:

∣∣B′−n0
− B′′−n0

∣∣ ≤ ∣∣B′−nk − B′′−nk∣∣∏−n0−1
j=−nk

[
∆′j∆

′′
j

] + C

−n0∑
j=−nk

dE(x′j, x
′′
j ).(5.10)

Notice that F−n0W is also an unstable manifold, thus Lemma 4.29
implies that |F−n0W |E < LE. Hence we can apply Lemma 4.22, and
conclude that the second term of the right hand side is smaller than
Cdα(x′−n0

, x′′−n0
) . On the other hand, the first term tends to 0 as

k →∞, since the numerator is bounded above by Corollary 4.15 while
the denominator tends to infinity due to Proposition 4.20. �

We now declare an unstable curve W admissible if |W |E < 2LE

(given in Lemma 4.29) and if it is 2K̂-admissible, where K̂ is the one
given in Corollary 5.5.

5.3. Unstable Jacobian. Given a mature unstable curve W , n ∈ Z
and x ∈ W \ Sn, denote

JWFn(x) =
|DxFnu|α
|u|α

the Jacobian of the restriction of the map Fn to W at the point x in
the α-metric (here u denotes a non-zero vector tangent to W at x).

Lemma 5.6. Given L > 0, there exists K̄ > 0 so that for any mature
admissible unstable curve W ⊂M\(S−∪S1

H) with |W |α ≤ L, lnJWF
is a Hölder function of constant K̄ and exponent 1/12 with respect to
the α-metric on W . Moreover, let W ′ be a subcurve of W which is
mapped by F l to a H-component of F lW . If l ≤ N̂(x) for any x ∈ W ′

then the restriction lnJWF l|W ′ is a Hölder function of constant K̄ and
exponent 1/12 with respect to the α-metric on W ′.
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Proof. In this proof we again drop the superscript − from B for ease
of notation. In view of (4.30) and (4.31), we have

JWF(x) = exp
(
α0(1D+

R
(x)− 1D−R

(x))
)
H(x,Fx),

where

HW (x, x̄) =
(B̄w̄ + 2κ̄)(1 + α1w̄)

B̄w̄(1 + α1w)
(5.11)

is a function on W ×W , where W = FW , B̄ is the p-slope of W̄ at the
point x̄, and κ̄ = κ(r̄).

Observe that the exponential term multiplyingH is actually constant
on W , because our assumptions on W imply that W ∩S± = ∅ and thus
W is either contained in or disjoint from D−R or D+

R .
We claim that

lnHW = ln(B̄w̄ + 2κ̄) + ln(1 + α1w̄)− ln B̄ − ln w̄ − ln(1 + α1w)

(5.12)

is uniformly 1/3-Hölder on W ×W .
Suppose first that W ∩ D−R = ∅. Let (x′, x̄′) and (x′′, x̄′′) be two

points on W ×W . Note that for any a > 0, the function ζ 7→ ln(ζ)
is Lipschitz on ζ ≥ a with constant a−1. Therefore ln(1 + α1w) (and
similarly ln(1 + α1w̄)) is uniformly Lipschitz on W (resp. on W ) with
respect to the Euclidean metric (and thus to the α-metric). Observe
that by the lower bound for large energies in Corollary 4.15 (and since
κ̄ ≥ K) we have that B̄w̄ + 2κ̄ ≥ C(w̄ + 1). Hence the upper bound of
Corollary 4.15 and the fact that x̄′ 6∈ D−R give

| ln(B̄′′w̄′′ + 2κ̄′′)− ln(B̄′w̄′ + 2κ̄′)|

≤ C

∣∣B̄′′w̄′′ − B̄′w̄′∣∣+ |κ̄′ − κ̄′′|
w̄′ + 1

≤ C|B̄′′ − B̄′|+ Cdα(x̄′, x̄′′),

from which we obtain a uniform Lipschitz estimate on ln(B̄w̄ + 2κ̄),
using Proposition 5.2. Next, if W ⊂ H0, then w̄ > C and thus ln w̄ is
uniformly Lipschitz. On the other hand, if W ⊂ Hk for some k > 0,

then k3|w̄′−w̄′′| ≤ C, which implies k2|w̄′−w̄′′| ≤ C|w̄′ − w̄′′|1/3. Since
w̄ > (k + 1)−2, we obtain

| ln w̄′ − ln w̄′′| ≤ Ck2|w̄′ − w̄′′| ≤ C̄|w̄′ − w̄′′|1/3.
Finally ∣∣ln B̄′ − ln B̄′′

∣∣ =

∣∣∣∣ln B̄′B̄′′
∣∣∣∣ ≤ |B̄′ − B̄′′|B̄′′

.
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Let T be the constant from Lemma 5.4(b). If the flight time is less than
T then we can estimate the numerator by K∗dα(x̄′, x̄′′) (where K∗ is

the K̄ given by Proposition 5.2 for K = 2K̂) while the denominator is
uniformly bounded from below due to Lemma 4.12 (for small w′) and
Corollary 4.15 (for large w′). On the other hand, if the flight time is
greater than T then the numerator is less than K2dα(x̄′, x̄′′)/T 2 due to
Lemma 5.4(b) while the denominator is of order T−1 by Lemma 4.12.

This completes then proof of the fact that lnHW is uniformly 1/3-
Hölder on W × W in the case W ∩ D−R = ∅. In fact, our analysis
shows that all terms in (5.12) are Lipschitz except for ln w̄ which is
1/3–Hölder.

The analysis in case W ⊂ D−R is similar except that we rewrite

B̄w̄ + 2κ̄

B̄
= w̄ + 2

κ̄

B̄
.

Then Proposition 5.2 implies that the above expression is Lipschitz
with respect to the α-metric. Lemma 4.17 yields that it is uniformly
bounded from below, which implies that ln(w̄+ 2κ̄/B̄) is Lipschitz and
therefore that lnHW is 1/3-Hölder even in the case W ⊂ D−R .

To prove the Hölder continuity of lnJWF it remains to note that,
in view of Lemma 4.25(a), the map F|W is uniformly 1/4–Hölder with
respect to the α-metric.

We now proceed to the proof of the second statement. Observe that

JWF l(x) = exp
(
α0(1D+

R
(x)− 1D+

R
(xl))

)
HW,l(x,Fx, · · · ,F lx),

where HW,l(x0, x1, · · · , xl) =
l−1∏
j=0

HFjW (xj, xj+1). Once again, the ex-

ponential term multiplying HW,l is constant on W ′. The proof of the
first statement shows that lnHW (x, x̄) is 1/3-Hölder for any mature
admissible unstable curve W , therefore we conclude that

lnHW,l(x0, x1, · · · , xl) =
l−1∑
j=0

lnHFjW (xj, xj+1)

is also 1/3-Hölder. By Lemma 4.25(c), the map x 7→ (x,Fx, · · · ,F lx)

is 1/4-Hölder (by the assumption that l < N̂(x) for any x ∈ W ′). As
before, we conclude that lnJWF l|W ′ is 1/12-Hölder. �

Let n > 0, W ⊂ M be a mature unstable curve with the property
that F−nW is a mature unstable curve and let x̃ ∈ W be a reference
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point on W . Then we can define a density ρn(x) for any x ∈ W as
follows:

ρn(x) =
JWF−n(x)

JWF−n(x̃)
=

n∏
j=1

JWF(F−jx)

JWF(F−jx̃)
.

Lemma 5.7. (a) Given L > 0, there is a constant K̃ > 0 such that the
following holds. Let V be a mature admissible unstable curve so that
W = FnV belongs to a single H-component and |W |α < L. Then for
any x ∈ W :

‖ ln ρn(x)‖C1/12(W ) ≤ K̃.

(b) Let W be an unstable manifold (that is, in particular F−nW is
an unstable curve for all n) with |W |α < L. Then ρn converges when
n→∞ along a sequence of times such that F−nW 6⊂ D−R to a limiting
density ρ∞ and ln ρ∞ is Hölder continuous.

Remark 5.8. In this paper we will only use part (a) of the above lemma.
We decided to include part (b) as well since the proofs of both items are
similar and part (b) may be useful for studying statistical properties
of Fermi–Ulam Models (cf. [9, Section 7]).
Remark 5.9. In Lemma 4.29 we mentioned that the Euclidean length of
unstable manifolds is uniformly bounded. Such a bound is unavailable
for the α-length, therefore we will not be able to drop the bounded
α-length assumption in our discussion.

Proof. The statement would easily follow from Lemma 5.6 if F were
uniformly hyperbolic. Since this is not the case, we need to follow a
strategy similar to the proof of Lemma 4.22. Namely, we partition the
interval [1, · · · , n] into blocks with good hyperbolicity properties.

First of all, by Lemma 4.22 there exists C > 1 so that for any
0 ≤ m ≤ n, |F−mW |α < CL. Moreover, since F−mW ∩ Sm = ∅, we

already observed that the function x 7→ min{m, N̂(x)} is constant on

F−mW . Let n0 be the constant value of min{n, N̂(x)} on V , n1 be

the constant value of min{n, N̂1(x)} − n0 and so on, until we obtain
n0, · · · , np > 0 so that n0 + · · · + np = n and for any 0 < l < p,

n0 + n1 + · · ·+ nl = N̂l(x) for any x ∈ V . We can thus rewrite:

ρn(x) =

p∏
j=0

JWFnj(F−n+n0+···+nj−1x̃)

JWFnj(F−n+n0+···+nj−1x)
.

Then we can write, for any x′, x′′ ∈ W :∣∣ ln ρn(x′′)− ln ρn(x′)
∣∣
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=
∣∣∣ p∑
j=0

lnJWFnj(F−n+n0+···+nj−1x′′)− lnJWFnj(F−n+n0+···+nj−1x′)
∣∣∣.

≤ C#

p∑
j=0

dα(F−n+n0+···+nj−1x′,F−n+n0+···+nj−1x′′)1/12

≤ C#dα(F−npx′,F−npx′′)1/12 + C#

p−1∑
j=0

dα(F̂−jF−npx′, F̂−jF−npx′′)1/12

+ C#dα(F−nx′,F−nx′′)1/12,

where we used Lemma 5.6 in the first inequality. Using Proposi-
tion 4.20(c) and Lemma 4.22 allows us to conclude the proof of part (a).
To prove part (b) consider two times n1 < n2 such that F−n2W 6⊂ D−R
and F−n1|W = F̂−l1F−n∗ with F−n∗W ⊂ M̂. Then:

|ln ρn2(x)− ln ρn1(x)| =
∣∣∣ln ρn2−n1(F̂−n1x)

∣∣∣
=
∣∣∣ln ρn2−n1(F̂−n1x)− ln ρn2−n1(F̂−n1x̃)

∣∣∣
≤ K̃dα(F̂−n1x, F̂−n1x̃)1/12 ≤ Cθl1(dα(x, x̃))1/12,

where the first inequality relies on Corollary 5.5, the already established
part (a) and the second inequality relies on Proposition 4.20(c). �

The next bound immediately follows from Lemma 5.7.

Corollary 5.10 (Distortion bounds). Let L > 0; there exists CD > 0 so
that the following holds. Let V be a mature unstable admissible curve,
Wn be an H-component of FnV so that |Wn|α < L and Vn = F−nWn.
Then, for any measurable set E ⊂M:

e−CD|Wn|1/12
α

LebWn(E)

LebWn(Wn)
≤ LebVn(F−nE)

LebVn(Vn)
≤ eCD|Wn|1/12

α
LebWn(E)

LebWn(Wn)
,

where LebV denotes Lebesgue measure on the curve V with respect to
the α-metric.

5.4. Holonomy map. Recall the definitions of stable and unstable
manifolds given in § 4.5; a C1-curve W is called a homogeneous stable
manifold if it is a stable manifold and for each n, FnW is contained in
one homogeneity strip. Homogeneous unstable manifolds are defined
similarly, with Fn replaced by F−n. Observe in particular that W is
a homogeneous stable manifold if it is stable and W ⊂ M \ S+∞

H . A
completely analogous characterization holds for homogeneous unstable
manifolds.
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At this point we do not know how often the points have stable and
unstable manifolds, this issue will be addressed in § 7.2. Below we
discuss how the expansion of unstable curves changes when we move
along stable manifolds. We denote by W s(x) the maximal homoge-
neous stable manifold passing through the point x. Let W1,W2 be two
admissible mature unstable curves. Let

(5.13) Ωj = {x ∈ Wj : W s(x) ∩W3−j 6= ∅}.
Of course, by transversality, a stable curve can intersect an unstable
curve in at most one point, hence we can define:

(5.14) H : Ω1 → Ω2 so that W s(x) ∩W2 = {H(x)}.

Observe that H commutes with F (and thus with F̂); moreover, the
following holds:

Lemma 5.11. Let W1 and W2 be two admissible mature unstable curves
as above; the holonomy map H is continuous in Ω1.

We will prove the above lemma in § 7.3, together with other prop-
erties of the holonomy map. For the moment we proceed to obtain an
estimate that will be useful in the sequel. We assume that W1 and W2

are close to each other so that dα(x,Hx) ≤ d for some small d > 0.
Define

Jn(x) =
JW2F̂n(Hx)

JW1F̂n(x)
=

n−1∏
j=0

JF̂jW2
F̂(F̂ jHx)

JF̂jW1
F̂(F̂ jx)

.(5.15)

By Lemma 5.11, Jn(x) is continuous for any n. In fact, we have

Lemma 5.12. (a) Jn converges uniformly on Ω1 to some function
J(x), which we call the Jacobian of the holonomy map. More pre-
cisely: there exist constants C > 0, θ < 1 such that for any two mature
unstable curves W1 and W2 as above, any x ∈ Ω1 and any n > 0,

|J(x)− Jn(x)| ≤ Cθn.

In particular the above implies that J is a bounded continuous function.

(b) For any ε̄ > 0 there is δ̄ > 0 such that if x′ ∈ Ω1, x
′′ = Hx′ ∈ Ω2,

d(x′, x′′) ≤ δ̄ and |(B−0 )′ − (B−0 )′′| ≤ δ̄ then for any n > 0∣∣∣∣∣
n−1∏
l=0

JF̂jW2
F̂(F̂ lx′′)

JF̂jW1
F̂(F̂ lx′)

− 1

∣∣∣∣∣ ≤ ε̄.

Remark 5.13. In this paper we will not use part (b) of this lemma, but
the proof follows from similar arguments, and part (b) could be useful
in future developments.
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Proof. Once again, in this proof we drop the superscript − from B for
the ease of notation.

For x′ ∈ W1 and l ≥ 0, let us denote x′l = F̂ lx′ = F N̂l(x′)x′ and let
x′′ = Hx′. With this notation we have

J(x′) =
∞∏
l=0

JF̂jW2
F̂(x′′l )

JF̂jW1
F̂(x′l)

.

Observe that since x′′ ∈ W s(x′), the points x′l and x′′l belong to the
same cell D− for any l ≥ 0. In particular x′l ∈ D−R if and only if

x′′l ∈ D−R (and likewise for D+
R) and N̂l(x

′′) = N̂l(x
′); we thus define

ml = N̂l(x
′′) = N̂l(x

′).
Using (5.11) we can then write∣∣∣∣∣ln J − ln

n−1∏
l=0

JF̂jW2
F̂(x′′l )

JF̂jW1
F̂(x′l)

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

j=mn

[
lnHW2(x′′j , x

′′
j+1)− lnHW1(x′j, x

′
j+1)

]∣∣∣∣∣ .
Inspecting the proof of Lemma 5.6 we obtain the following estimate∣∣∣∣∣ln J − ln

n−1∏
l=0

JF̂jW2
F̂(x′′l )

JF̂jW1
F̂(x′l)

∣∣∣∣∣ ≤ C
∞∑
l=n

dα(x′ml , x
′′
ml

)1/12 + C
∞∑
l=n

ml+1−1∑
j=ml

Ξj,

where we defined

Ξj =


|B′j − B′′j |

min{1,B′′j }
if x′j 6∈ D−R ,∣∣∣∣ 1

B′j
− 1

B′′j

∣∣∣∣ otherwise.

Accordingly, we need good bounds on Ξj. Such bounds will be obtained
by different arguments depending on whether x′j 6∈ D−R (case A) or

x′j ∈ D−R (case B).
Let us first consider case A. Observe that since x′j−1 and x′′j−1 lie

on the same stable manifold, they belong to the same cell D−ν , where
ν ∼ τ ′j−1 for large ν. Next, Lemma 4.12 and Corollary 4.15 imply that
B′′j can be small only if ν (and, hence, τ ′′j−1) is large and in this case

B′′j is of order ν−1. Since x′j−1 and x′′j−1 belong to the same cell D−ν ,
we have |τ ′j−1 − τ ′′j−1| ≤ 1 and by Lemma 3.13(e) and Remark 3.14 we
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conclude that w < C#ν
−1/2. Hence, applying (2.7), we gather:

|B′j − B′′j | =
∣∣((B′j−1 +R′j−1)−1 + τ ′j−1)−1 − ((B′′j−1 +R′′j−1)−1 + τ ′′j−1)−1

∣∣
≤
∣∣((B′j−1 +R′j−1)−1 + τ ′j−1)− ((B′′j−1 +R′′j−1)−1 + τ ′′j−1)

∣∣
τ ′j−1τ

′′
j−1

≤
|τ ′j−1 − τ ′′j−1|+ |(B′j−1 +R′j−1)−1 − (B′′j−1 +R′′j−1)−1|

τ ′j−1τ
′′
j−1

≤ C#
1 + C#ν

−1/2

ν2
≤ C#ν

−2.

Thus
|B′j − B′′j |
B′′j

≤ Cν|B′j − B′′j | ≤ C|B′j − B′′j |1/2.

Hence, regardless of the smallness of Bj, it suffices to obtain good
bounds for |B′j − B′′j |.

Let ml ≤ j < ml+1 and let ̃ be a number close to m(l/2) such that
x′̃ 6∈ D−R . Set θ̄ = Λ−1 ∈ (0, 1). Since x′j 6∈ D−R , iterating the estimates
of parts (a) and (b) of Lemma 5.3, we get∣∣B′j − B′′j ∣∣ ≤ ∣∣B′̃ − B′′̃ ∣∣∏j−1

k=̃ [∆′k∆
′′
k]

+ C

j−1∑
k=̃

dE(x′k, x
′′
k)

≤
∣∣B′̃ − B′′̃ ∣∣∏j−1
k=̃ [∆′k∆

′′
k]

+ Cdα(x′ml/2 , xml/2).(5.16)

≤
∣∣B′̃ − B′′̃ ∣∣∏j−1
k=̃ [∆′k∆

′′
k]

+ Cθ̄l/2dα(x′, x′′),(5.17)

where in the second inequality we have invoked Corollary 4.24 and in
the last inequality we used uniform contraction of stable manifolds by F̂
with respect to the α-metric (which follows from Proposition 4.20(c)).

Note that the proof of Proposition 4.20 only relied on (4.32) in order
to bound the expansion rate. Therefore, proceeding similarly to the
proof of Proposition 4.20 (see in particular (4.38)), we conclude that

there is a constant θ̂ < 1 such that

j−1∏
k=̃

[∆′k∆
′′
k] ≥ θ̂−l/2. On the other

hand by Corollary 4.15 (since x′̃ 6∈ D−R), we gather

|B′̃ − B′′̃ | = O(1).(5.18)

Accordingly

(5.19) |B′j − B′′j | = O(θ̄l/2)
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for ml ≤ j < ml+1. Plugging this estimate into (5.16) and summing
over l ≥ n, we conclude the proof of part (a) in case A by choosing

θ = max(θ̄, θ̂)1/24.
Next consider case B. By (5.4), which holds in D−R , we have∣∣∣∣ 1

B′j
− 1

B′′j

∣∣∣∣ ≤ C|B′j−1 − B′′j−1|+ Cdα(x′j−1, x
′′
j−1).

Since x′j−1 6∈ D−R we can apply the estimates of case A to control
B′j−1 − B′′j−1 to conclude the proof of part (a) in case B.

The proof of part (b) is similar, except that we replace (5.18) by a
sharper estimate for |B′̃ − B′′̃ |. Namely, if x′0 6∈ D−R , then (5.5) gives

|B′̃ − B′′̃ | ≤
|B′0 − B′′0 |∏̃−1
k=0 [∆′k∆

′′
k]

+ C

̃∑
l=0

dα(x′ml , x
′′
ml

) ≤ C̄δ̄.

If x′0 ∈ D−R we obtain a similar bound by invoking (5.5) up to j = 1.
Accordingly |B′j − B′′j | = O(θ̄l/2δ̄) for ml < j < ml+1. Plugging this

estimate into (5.16) and summing for l ≥ 0 we obtain part (b). �

6. Expansion estimate

In this section we prove an expansion estimate for unstable curves
which is used in the proof of the so-called Growth Lemma (Lemma 7.2
below). The section is organized as follows. In § 6.1 we define the
notion of regularity at infinity, which appears in the statement of our
Main Theorem and will be used crucially in the proof of the expansion
estimate. In § 6.2 we state the expansion estimate as Proposition 6.5.
The proof of this proposition is divided in two lemmas, which are proved
in the final three subsections of this section.

6.1. Complexity at infinity. Recall that Theorem 4.9 states that
for large values of w, F̂ is well approximated by the map F̂∆ defined
by (4.11). In order to obtain results about the complexity of F̂ near

∞, we thus proceed to study the complexity of the map F̂∆. From now
on, we will assume ∆ to be fixed given by (1.1).

Recall the definition of fundamental domains D̂n given in § 4.2, and
define, for any k > 0

(6.1) D̂n0,n1,··· ,nk−1
=

k−1⋂
j=0

cl (F̂−j∆ D̂nj).

A k-tuple (n0, n1, · · · , nk−1) is called ∆-admissible if D̂n0,n1,··· ,nk−1
6= ∅

and if we say that (n0, n1, · · · , nk−1) is a k-itinerary of x ∈ D̂n0,n1,··· ,nk−1
.
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We stress that the sets D̂n0,n1,··· ,nk−1
are not pairwise disjoint (their

boundaries might overlap), hence some points might have more than

one itinerary. For x ∈ cl (D̂0) we define Kk(∆, x) to be the number of
possible k-itineraries of x that begin with n0 = 0.
Remark 6.1. Observe that Kk(∆, x) is in general larger than the max-
imum number of singularity lines of order k meeting at the point x (a
number usually referred to as complexity). In fact, for some exceptional
values of ∆ (e.g. ∆ = −1) we can find x so that Kk(∆, x) = 2k. On
the other hand, for any ∆, the number of singularity lines meeting at
any point is bounded above by 2k (see [17, Proof of Theorem 2] and
also [11]).

We define k-virtual complexity of ∆ at infinity as

Kk(∆) = max
x∈cl (D̂0)

Kk(∆, x).(6.2)

Remark 6.2. The number Kk(∆) is crucial in our analysis since it con-
trols the number of components in which an arbitrarily small curve can
be cut not just by F̂ but an arbitrarily small perturbation of F̂ . See
Figure 5: both panes show a neighborhood of the point (1/2, 1/2). The
left and right pane show the singularity portrait (up to k = 5 iterates)

of F̂∆=−1 and F̂∆=−(1+ε) respectively. As ε → 0 the nearly parallel
lines shown in the right pane slide and coalesce at the center. Observe
that the complexity of the center in the left pane is 2k, the complexity
of any point in the right pane is bounded by 3, but any short unsta-
ble curve passing sufficiently near the center is cut by singularities in
an exponential (in k) number of curves provided that ε is sufficiently
small. The k-virtual complexity Kk(∆) indeed bounds the number of
such curves. On the other hand, since each point on the orbit of x
belongs to at most two fundamental domains, it follows that

(6.3) Kk(∆) ≤ 2k.

Definition 6.3. A Fermi–Ulam model is regular at infinity if

lim sup
k→∞

Kk(∆)

Λk
∆

= 0

where Λ∆ is the expansion of the limiting map F̂∆ defined by (4.24).
A model is superregular at infinity if there exists a constant C so

that for any k ∈ N we have Kk(∆) ≤ C.
Remark 6.4. We will show in Appendix A that for all except possibly
countably many ∆, the map F̂∆ is superregular at infinity. However,
the result of Appendix A does not make it easy to check that a given
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value of ∆ is regular. On the other hand (6.3) shows that F̂∆ is regular
at infinity provided that Λ∆ > 2, that is, if |∆| > 1

2
(see (4.24)).

Recall that the involution defined in § 2.1 conjugates F−1 to the
Poincaré map of the time reversed Fermi–Ulam Model corresponding
to ¯̀(r) = `(1 − r). Note that the parameter ∆ defined by (1.1) is the
same for ` and ¯̀. In particular, the Fermi–Ulam Model is regular at
infinity if and only if the reversed model is regular at infinity. Therefore
all results of this section formulated for unstable curves of F are valid
also for stable curves of F (that are unstable curves of F−1).

6.2. Expansion estimate. In order to properly formulate the main
result of this section we need some definitions. Let W be an unstable
curve; then FW (resp. F̂W ) consists of a (finite or) countable union
of connected components. Recall that any such component may in
principle be further cut by auxiliary singularities in a countable number
of shorter curves which we call H-components.

We denote by {Wi,n}i∈N (resp. {Ŵi,n}i∈N) the H-components of FnW
(resp. F̂nW ). Given an H-component Ŵi,n of F̂nW , we can uniquely

define N̂i,n > 0 so that

F̂n|F̂−nŴi,n
= F N̂i,n|F̂−nŴi,n

.

Finally, we denote by Λi,n (resp. Λ̂i,n) the minimum expansion, with

respect to the α-metric, of Fn (resp. F̂n) on F−nWi,n (resp. F̂−nŴi,n).

Given an unstable curve W ⊂ M (resp. W ⊂ M̂), and n > 0, we
define:

Ln(W ) =
∑
i

1

Λi,n

, L̂n(W ) =
∑
i

1

Λ̂i,n

.

Figure 5. Comparison of virtual complexity and stan-
dard complexity
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Then we let

Ln(δ) = sup
W :|W |α≤δ

Ln(W ), L̂n(δ) = sup
W :|W |α≤δ

L̂n(W ),

Ln = lim
δ→0
Ln(δ), L̂n = lim

δ→0
L̂n(δ)

(the limits in the last line exist since Ln and L̂n are decreasing func-

tions of δ). It follows from the definition that Ln (resp. L̂n) is a sub-
multiplicative sequence, i.e.

Ln+m ≤ LnLm L̂n+m ≤ L̂nL̂m.(6.4)

Proposition 6.5 (Expansion estimate). There exists C > 0 such that

L̂1 < C.(6.5)

Moreover, if the Fermi–Ulam model is regular at infinity then there
exists n̄ > 0 so that

L̂n̄ < 1,(6.6)

and there exists C ′ > 0 so that for any n > 0 we have L̂n < C ′.
The rest of this section is devoted to the proof of Proposition 6.5.

We will follow the strategy described in [18]. Recall the definition of
the homogeneity strips Hk given in § 5.1.

Definition 6.6. Let W be an unstable curve. An H-component Wi,n

(resp. Ŵi,n) of FnW (resp. F̂nW ) is said to be regular if for any 0 ≤ q <

n (resp. 0 ≤ q < N̂i,n) we have that F−qWi,n ⊂ H0 (resp. F−qŴi,n ⊂
H0) and nearly grazing otherwise.

Observe that the notion of regularity depends on the choice of the
constant k0 introduced in § 5.1; in particular, the number of regular H-
components is a non-decreasing function of k0.
Lemma 6.7. Let W be a u-curve and N > 0. Then any connected
component of FNW (resp. F̂NW ) contains at most one regular H-
component.

Proof. Let us first prove the statement for connected components of
FNW. We give a proof by induction on N . The statement is true if
N = 1. Indeed, the intersection of any connected u-curve with H0

is necessarily connected, hence out of the H-components in which a
connected component of FW is cut by secondary singularities, at most
one can be regular.

Assume now by induction that the statement holds for N , and let

W̃ ′ be a connected component of FN+1W . Let W̃ be the connected

component of FNW which contains F−1W̃ ′. By inductive hypothesis,
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either W̃ contains no regular H-component (and thus so does W̃ ′ and
the statement holds), or it contains only one regular H-component,

which we denote by W ∗ ⊂ W̃ . Then any regular H-component of W̃ ′

has to be contained in the connected u-curve FW ∗∩W̃ ′. Since at most
one of the H-components of this curve can be contained in H0 (and thus
can be regular), we conclude the proof for N + 1.

Finally, the statement for F̂NW follows from the statement for FNW .
Namely, suppose that for some N, F̂NW contains two regular H-
components. Denote their preimages by W ′ and W ′′. Then F̂NW ′ =
FN ′W ′ and F̂NW ′′ = FN ′′W ′′. Suppose without loss of generality
that N ′ ≤ N ′′ then FN ′W has two regular H-components giving the
contradiction. �

Definition 6.8. Given an unstable curve W and n > 0, we define the
regular n-complexity of W (resp. the induced regular n-complexity of

W ), denoted by Kreg
n (W ) (resp. K̂reg

n (W )) to be the number of regular

H-components of FnW (resp. F̂nW ). If n = 0 we set conventionally

Kreg
0 (W ) = K̂reg

0 (W ) = 1. Finally, define

Kreg
n (δ) = sup

W :|W |α≤δ
Kreg
n (W ), K̂reg

n (δ) = sup
W :|W |α≤δ

K̂reg
n (W );

Kreg
n = lim

δ→0
Kreg
n (δ), K̂reg

n = lim
δ→0

K̂reg
n (δ)

(as before the limits in the last line exist by monotonicity).
Remark 6.9. Given an unstable curve W , recall the standard definition
of n-complexity of W as the number of connected components of FnW .
Lemma 6.7 implies that regular complexity does not exceed standard
complexity. Observe moreover that while standard complexity is non-
decreasing in n, regular complexity is not necessarily so (e.g. the image
of a regular component of FnW may contain no regular component).
Finally, all the above quantities are non-decreasing in k0.

For future use, we note that Lemmata 4.26(a) and 6.7 imply that,
provided k0 is sufficiently large and δ is sufficiently small, the following
trivial estimate holds:

Kreg
n (δ) ≤ 3n.(6.7)

Let us now define Lreg, L̂reg (resp. L∗, L̂∗) as we did above for L and

L̂, but summing only on regular (resp. nearly grazing components).
For instance:

L∗n = lim
δ→0

sup
W :|W |α≤δ

∑
i

∗ 1

Λi,n

,
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where
∑∗ denotes that the sum is restricted only to nearly grazing

components. The following lemmata will allow us to prove Proposi-
tion 6.5.

Lemma 6.10 (Control for nearly grazing components). For any N > 0
and ε > 0, we can choose k0 large enough in the definition of homo-
geneity strips so that L∗n < ε for any 0 < n ≤ N .

Lemma 6.11 (Bound on regular complexity). If the Fermi–Ulam model
is regular at infinity, there exists n̄ > 0 such that if δ is sufficiently
small then for each k0

(6.8) L̂reg
n̄ (δ) ≤ 1

2
.

The proofs of the above lemmata are independent of each other.
Lemma 6.10 is proved in § 6.3, the proof of Lemma 6.11 occupies §§ 6.4
and 6.5.

Observe that Lemma 6.10 allows us to prove that

L1 <∞.(6.9)

In fact, L1 = Lreg
1 + L∗1. By Lemma 6.10, the second term can be

made as small as needed, and by Lemma 4.26(a), provided that |W |α
is small enough, the first term is at most 3 · Λ−1, where Λ is a lower
bound for (4.26b).

Combining these two results yields28 the proof of the Expansion Es-
timate:

Proof of Proposition 6.5. Let W be an unstable curve so that |W |α < δ
with δ > 0 sufficiently small. Recall that Λ is the minimal expansion
of F̂ in the α-metric (see (4.29)). Observe that by definition, for any
n > 0

L̂n(W ) = L̂reg
n (W ) + L̂∗n(W ).

In view of Lemma 6.11 it is enough to show that, if δ is sufficiently
small, we have L̂∗n < 1/2 for all 0 < n ≤ n̄ where n̄ is from Lemma 6.11.

By Proposition 4.7 there exists w̄ = w̄(n̄) so that, if W ⊂ M̂≥w̄,

then F̂nW has no nearly grazing H-components for any 0 < n ≤ n̄.
Since by Corollary 4.8, the velocity of the particle increases by at most
O(1) for each iteration of F̂ , we conclude that for each nearly grazing
component, the maximal velocity on this component during the first n̄
iterations of F̂ is bounded by C#(w̄+ n̄). Now (4.2) implies that there

28 The proof given below is similar to the one used in [18, Main Theorem].
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exists a uniform n̄′ ∼ n̄(w̄+ n̄) so that N̂i,n ≤ n̄′ for any nearly grazing

H-component Ŵi,n. Thus∑
i

∗ 1

Λ̂i,n

=
n̄′∑
k=1

∑
i:N̂i,n=k

∗ 1

Λ̂i,n

≤
n̄′∑
k=1

∑
j

∗ 1

Λj,k

.

Hence, it is sufficient to apply Lemma 6.10 with N = n̄′ and ε = 1/(4n̄′)
to obtain both (6.5) (with C = K + 1/2) and (6.6).

The uniform bound on L̂n for all n follows since L̂m+n ≤ L̂mL̂n.
Namely, let n = pn̄+ r, where 0 ≤ r < n̄. Then

L̂n ≤ L̂pn̄ · L̂r1 ≤ C n̄. �

6.3. Control of nearly grazing components.

Proof of Lemma 6.10. We prove the lemma by induction on N . Let us
first assume N = 1 and let W̃ ′ be a connected component (rather than
an H-component) of FW . If we restrict to H-components contained in
W̃ ′, then by (4.27) we obtain∑

i

∗ 1

Λi,1

≤
∑
k≥k0

C#k
−2
0 = C#k

−1
0 .

Were the number of connected components W̃ ′
i of FW uniformly bounded,

our claim would thus be proved. As we already observed, this is not
the case. Fix n∗ sufficiently large. Lemma 4.26(a) ensures that, except
for finitely many (i.e. 3) connected components of FW , all the others
will intersect cells D−ν with ν ≥ n∗. Moreover, by Lemma 3.13(e) D−ν
will intersect only homogeneity strips Hk for k > C#ν

1/4. Denote by
W[ν,k],1 the H-component of FW such that W[ν,k],1 ⊂ Hk ∩ D−ν . Then
using (4.32), estimating the flight time by ν and the relative velocity
by k−2 we conclude that the expansion of W[ν,k],1 satisfies

Λ[ν,k],1 > C#νk
2.

We thus gather that, if n∗ is sufficiently large and W is sufficiently
short, then∑

i

∗ 1

Λi,1

≤ C#k
−1
0 +

∑
ν≥n∗

∑
k≥C#ν1/4

1

Λ[ν,k],1

≤ C#k
−1
0 +

∑
ν≥n∗

C#ν
−5/4 ≤ C#(k−1

0 + n−1/4
∗ ).

The last expression can then be made as small as needed by choosing
k0 and n∗ sufficiently large. We thus obtained our base step: for any
ε > 0, if k0 is sufficiently large we have L1 < ε.
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Using the above notation, we assume by inductive hypothesis that
for any ε > 0 we can choose k0 large enough in the definition of homo-
geneity strips so that L∗n < ε and we want to show that L∗n+1 < ε. In
order to prove the inductive step, observe that for any u-curve W , we
have the following inductive relation summing over the H-components
Wi,1 of FW :

L∗n+1(W ) ≤
∑

i:Wi,1 is reg.

1

Λi,1

L∗n(Wi,1) +
∑
i

∗ 1

Λi,1

Ln(Wi,1).(6.10)

By Proposition 4.20(b), there exists 0 < Λ < 1 so that Λi,n > Λn for
any n > 0. Thus, for any δ ∈ (0, 1) sufficiently small, (6.7) and our
inductive assumption imply the following rough bound on Ln(δ):

Ln(δ) ≤ 3n

Λn + L∗n(δ) ≤ 2
3n

Λn .(6.11)

Using Lemma 4.25(a) we get that if |W |α < δ, then |Wi,1|α < C∗δ
1/4.

Hence by (6.10) and using once again (6.7), if |W |α < δ:

L∗n+1(δ) ≤
∑

i:Wi,1 is reg.

1

Λi,1

L∗n(C∗δ
1/4) +

∑
i

∗ 1

Λi,1

Ln(C∗δ
1/4)

≤ 3

Λ
L∗n(C∗δ

1/4) + L∗1(W )Ln(C∗δ
1/4).

Using the inductive hypothesis and (6.11), taking lim infδ→0 we gather
that L∗n+1 < C#ε, which concludes the proof of the inductive step. �

6.4. Control on regular complexity. In this section we prove that
we can bound the induced regular complexity K̂reg

n , needed to prove
Lemma 6.11, by means of two other quantities. One is the virtual
complexity introduced in Subsection 6.1 and the other is the pointwise
complexity, which we now proceed to define.

Let x ∈M and let Qn be a connected component ofM\Sn so that
clQn 3 x. We say that Qn is n-regular at x if

lim
Qn3x′→x

F lx′ ∈ clH0 for all 0 < l ≤ n;

otherwise Qn is said to be nearly grazing at x.

Definition 6.12. Given a point x ∈ M and n > 0, we define the
n-regular complexity at x, denoted with Kreg

n (x), to be the number of
components ofM\Sn whose closure contain x and that are n-regular
at x. We then define:

Kreg
n = sup

x∈M
Kreg
n (x).
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Observe that also this notion of complexity is monotone with respect
to k0: by increasing k0 we allow more components to be regular, thus
the regular complexity is non-decreasing as a function of k0.

We now proceed to define corresponding notions for the induced
dynamics. Recall that Ŝn denotes the singularity set of F̂n and let

Q̂n be a connected component of M̂ \ Ŝn. By the discussion prior

to Lemma 4.4 we conclude that there exists N̂n(Q̂n) so that for any

x ∈ Q̂n we have F̂n(x) = F N̂n(Q̂n)(x). Suppose now that x ∈ cl Q̂n; we

say that Q̂n is n-regular at x if

lim
Q̂n3x′→x

F lx′ ∈ clH0 for all 0 < l ≤ N̂n(Q̂n).

Define K̂reg
n (x) to be the number of connected components of M̂ \ Ŝn

whose closure contains x and which are n-regular at x. Set

K̂reg
n = sup

x∈M̂
K̂reg
n (x).(6.12)

Once again, this notion of complexity is monotone with respect to k0.
If the phase spaceM were compact (as it is in the case of dispersing

billiards) then K̂reg
n (see Definition 6.8) and K̂reg

n would coincide (see
case (a) in the proof of Lemma 6.13 below). Since our phase space is
not compact, we need a more careful analysis.

Lemma 6.13. Suppose that there exists n̄ > 0 so that for each choice
of k0:

(6.13) K̂reg
n̄ <

Λn̄

2
and Kn̄(∆) ≤ ĈΛn̄

∆

4

where Λ is the minimal expansion in α-metric, Λ∆ is the expansion of
the limiting map, defined by (4.24), and Ĉ is from Corollary 4.19, then
there exists δ so that (6.8) holds.

Proof. Assume by contradiction that for any n and any δ0 there exists
0 < δ < δ0 so that

L̂reg
n (δ) >

1

2
.

In particular, for n = n̄, there exists a sequence (W (m))m>0 of unstable

curves so that |W (m)|α → 0 as m → ∞ and L̂reg
n̄ (W (m)) > 1

2
for any

m > 0. Observe that

L̂reg
n̄ (W ) ≤ K̂reg

n̄ (W )

mini Λi,n̄

.(6.14)
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Pick arbitrary points x(m) ∈ W (m). After possibly passing to a subse-
quence we can assume that one of the two possibilities below hold.

(a) the sequence x(m) is bounded;
(b) the sequence x(m) tends to infinity.

We analyze these two cases separately.
Case (a). In this case we estimate the denominator of (6.14) by Λn̄

obtaining

K̂reg
n̄ (W ) >

Λn̄

2
.(6.15)

Since the sequence x(m) is bounded, combining (6.7) with (4.2) we

gather that (K̂reg
n̄ (W (m)))m>0 is also a bounded sequence. We can there-

fore assume (possibly passing to a subsequence) that K̂reg
n̄ (W (m)) = Kn̄

for all m.
As noted earlier, the set M̂ \ Ŝ n̄ is the union of a countable number

of connected components. By Lemmata 3.13 and 4.4, to each such
component29 Q̂ we can uniquely associate a N̂n̄(Q̂)-tuple

ν̄(Q̂) = (ν0, ν1, · · · , νN̂n̄(Q̂)−1) where νi ∈ {R, 0, 1, · · · }
so that

Q̂ = M̂ ∩
N̂(Q̂)−1⋂
l=0

F−lD+
νl
.

For 0 ≤ i < Kn̄, denote by W
(m)
i the preimage under F̂ n̄ of the i-th

regular H-component of F̂ n̄W (m). Let Q̂
(m)
i be so that W

(m)
i ⊂ Q̂

(m)
i :

notice that by Lemma 6.7, Q̂
(m)
i 6= Q̂

(m)
j if i 6= j.

Since F̂ n̄W (m)
i is regular, there exists some ν∗ > 0 (depending on k0)

so that νl(Q̂
(m)
i ) ∈ {R, 0, 1, · · · , ν∗} for all 0 < l ≤ N̂n̄(Q̂

(m)
i ). Since the

sequence (W (m))m is bounded, we conclude by (4.2) that (N̂n̄(Q̂
(m)
i ))m

is also a bounded sequence.
Since there are only finitely many Q̂’s which satisfy these require-

ments, we can always assume (extracting a subsequence if necessary)

that Q̂
(m)
i = Q̂

(m′)
i for any m,m′; for ease of notation we will denote

such connected components simply by Q̂i.

Let us now choose arbitrarily points x
(m)
i ∈ W

(m)
i ⊂ Q̂i. Since

(x
(m)
i )m is a bounded sequence, we can assume (extracting a subse-

quence if necessary) that x
(m)
i → x̄i for some x̄i ∈ cl Q̂i. On the other

29We drop the subscript n̄ as this is fixed once and for all and will not cause any
confusion
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hand, since |W (m)|α → 0 and | · |α is equivalent to the Euclidean norm
if w is bounded, it must be that x̄i = x̄j for every 0 ≤ i, j < Kn̄. We
call this common limit point x̄.

Since F̂ n̄W (m)
i is regular, we conclude that each of the Q̂i’s is regular

at x̄. We conclude that Kn̄ ≤ K̂reg
n̄ (x̄) ≤ K̂reg

n̄ , which contradicts (6.15)
by the first estimate in (6.13).

Case (b). In this case we estimate the denominator of (6.14) using
Corollary 4.19; note that since x(m) tends to infinity, we can always
assume that w > ω(n̄) holds, where ω(·) is obtained in Corollary 4.19.
We thus obtain

L̂reg
n̄ (W ) ≤ K̂reg

n̄ (W )

Ĉ∆Λn̄
∆

.

Observe that if we show K̂reg
n̄ (W (m)) ≤ 2Kn̄(∆) for all but finitely

many m’s, then (6.8) follows from the second estimate in (6.13). We
proceed by contradiction and assume (possibly extracting a subse-
quence) that |W (m)|α → 0, min

W (m)
w →∞, but

K̂reg
n̄ (W (m)) ≥ 2Kn̄(∆) + 1 for all m > 0.

Recall the definition (see (4.7)) of the fundamental domains Dn={x∈
M̂ s.t. N̂(x) = n}. Similarly to (6.1), we define, for k > 0:

Dn0,n1,··· ,nk−1
=

k−1⋂
j=0

F̂−jDnj .

A k-tuple (n0, n1,· · ·, nk−1) is said to be F̂-admissible ifDn0,n1,··· ,nk−1
6=∅.

If x ∈ Dn0,n1,··· ,nk−1
, we say that (n0, n1, · · · , nk−1) is the30 k-itinerary

of x. Define a sequence (Nm)m so that W ′(m):= W (m) ∩DNm 6= ∅ and

K̂reg
n̄ (W ′(m)) ≥ Kn̄(∆)+1. Such a sequence exists since any sufficiently

short unstable curve intersects at most two domains DN . Passing to
the (τ, I)-coordinates and taking a subsequence we may assume that

T−NmW
′(m) converges to some point x̄ ∈ cl (D̂0), where Tn is the trans-

lation map defined in (4.12). The convergence in the α-metric implies
convergence in the (τ, I)-Euclidean metric by (4.20).

30 In § 6.1 we gave similar definitions for domains given in terms of the normal
form. It must be noted that here we do not take the closure in the definition of the
Dn0,n1,··· ,nk−1

’s, hence we can define the itinerary (as opposed as an itinerary) of a
point x. The reason for this mismatch is that the Dn’s are defined dynamically (as

opposed to the geometric definition of D̂n), and thus their boundary carry some
dynamical information which we want to preserve.
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Since F̂ n̄ is continuous on the set of points with a given itinerary,

it follows that there are points x
(m)
1 , x

(m)
2 . . . x

(m)
Kn̄(∆)+1 ∈ W ′(m) having

different k-itineraries. Possibly by extracting a subsequence, we may
thus assume that for 1 ≤ l ≤ Kn̄(∆) + 1

x
(m)
l ∈ DNm,Nm+n1,l...Nm+nn̄−1,l

,

that is, that the itinerary depends on Nm only via the shift by Nm. But
then, Theorem 4.9 implies that x̄ ∈ D̂0,n1,l...nn̄−1,l

for every l, therefore
Kn̄(x̄) ≥ Kn̄(∆) + 1, which contradicts the definition of Kn̄(∆). �

6.5. Linear bound on regular complexity. In this section we prove
a linear bound for K̂reg

n defined by (6.12).
Lemma 6.14. For any n > 0 we have, independently on k0:

K̂reg
n < 4n+ 2.(6.16)

The above lemma is the key result used to prove Lemma 6.11

Proof of Lemma 6.11. By Lemma 6.14, we can find n∗ so that for any
n̄ > n∗ we have 4n̄+2 ≤ Λn̄/2. Since the Fermi–Ulam Model is regular
at infinity (Definition 6.3), we conclude that for n̄ sufficiently large
(and larger than n∗) the second condition in (6.13) holds. Lemma 6.11
follows. �

The induced regular complexity K̂reg
n bounds the number of con-

nected components of M̂ \ Ŝn that are regular at any point x. Since
such connected components are bounded by C1 curves, it is possible to
formulate an equivalent infinitesimal definition, which we now describe.

For x ∈M, denote by ΘxM the unit tangent circle at x. We identify
each element of u ∈ ΘxM with the equivalence class of C1-curves inM
which emanate from x with a tangent vector that is a positive multiple
of u. Of course ΘxM embeds naturally in TxM; this embedding defines
a topology on ΘxM. Observe that if x ∈ intM, then ΘxM = S1, but
if x ∈ S0, then ΘxM is a closed quarter-circle if x = (0, 0) or x = (1, 0)
and a closed half-circle otherwise. All such sets will be considered with
the counterclockwise orientation. Similarly, we define, for any x ∈ M̂,

the set ΘxM̂.
A C1-curve in M emanating from x thus naturally induces an el-

ement of ΘxM. In particular if x ∈ Sn, then the curves in Sn cut
ΘxM into a number of connected components which we call tangent
sectors. With a slight abuse of notation we write ΘxM \ Sn to de-
note ΘxM\ {u1, · · · , up} where the ui’s are the unit vectors induced
by the curves of Sn which meet at x. Similar considerations apply to

M̂ and Ŝn.
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More generally, given two elements u−6=u+ ∈ ΘxM let V = V(u−, u+)
denote the set of directions lying between u− and u+ with respect to
the counterclockwise orientation. This set will be called the tangent
sector centered at x bounded by u− and u+. Conventionally, we also
introduce the notion of empty sector V = ∅ and full sector V = ΘxM.
A curve Γ which emanates from x with unit tangent vector u ∈ V is
said to be compatible with V.
Note that all sufficiently short curves compatible with V ⊂ Θx(M\Sn)
necessarily belong to the same connected component Qn. Likewise, all

sufficiently short curves compatible with V ⊂ Θx(M̂ \ Ŝn) necessarily

belong to the same connected component Q̂n = Q̂n(V). We denote

N̂n(V) = N̂n(Q̂n(V)).
Let V ⊂ Θx(M \ Sn) and Γ be a curve compatible with V. By

construction we have that lim
Γ3x′→x

F lx′ is well defined and independent

of Γ for any 0 ≤ l ≤ n. Let us denote this limit point xlV. Likewise, if

V ⊂ Θx(M̂ \ Ŝn), we can uniquely define xlV for any 0 ≤ l ≤ N̂n(V).
Let V ⊂ Θx(M\ Sn). We can define for any 0 ≤ l ≤ n the image

sector Vl ⊂ ΘxlV
(M\ S−l,n−l) as follows. Let Γ be a curve compatible

with V. By construction lim
Γ3x′→x

Dx′F l is a well defined linear map

independent of the choice of Γ for any 0 ≤ l ≤ n. We denote its
action on ΘxM by F lx,V∗ : ΘxM → ΘxlV

M. Then, with an abuse of

notation we denote with F l∗V the sector F lx,V∗V. A similar construction

yields, for any V ⊂ ΘxM̂ \ Ŝn and any 0 ≤ l ≤ n the definition of

F̂ l∗V ⊂ Θ
x
N̂l(V)

V
(M̂ \ Ŝ−l,n−l).

A tangent sector V ⊂ ΘxM\Sn is said to be Fn-regular if it is non-
empty and xlV ∈ clH0 for any 0 < l ≤ n. Otherwise, we say that the

sector is nearly grazing. Likewise, a tangent sector V ⊂ Θx(M̂ \ Ŝn)

is said to be F̂n-regular if it is non-empty and xlV ∈ clH0 for any

0 < l ≤ N̂n(V).
Of course the above definitions are compatible with the ones given

previously for Qn and Q̂n in the sense that a sector V ∈ Θx(M\Sn) is
Fn-regular if and only if the corresponding connected component Qn is

n-regular at x, and a sector V ∈ Θx(M̂\Ŝn) is F̂n-regular if and only if

the corresponding connected component Q̂n is n-regular at x. This im-
mediately follows by our construction unless the connected component
joins x with a cusp (i.e. the corresponding sector is empty). But then
we claim that the component must necessarily be nearly grazing at x.
In fact, it is easy to see that if the sector generated by a connected
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component Q̂n is degenerate, then there exists 0 < l ≤ N̂n(Q̂n) so that
DF l|Q̂n is singular as we approach x. Since DF is singular only at

{w = 0}, Q̂n cannot be regular at x.
In particular, the regular complexity Kreg

n is the maximum number
of Fn-regular sectors in which Sn cuts ΘxM for any x ∈ M. The
corresponding statement holds true for K̂reg

n .

Definition 6.15. A tangent sector V(u−, u+) ⊂ ΘxM (or V(u−, u+) ⊂
ΘxM̂) is said to be good if

(i) u+, u− ∈ Nx (recall definition (2.10b)) and
(ii) the angle between u− and u+ does not exceed π.

A good tangent sector V(u−, u+) is said to be active if u− and u+

belong to different quadrants, and inactive if they belong to the same
quadrant.

Observe that an active good sector contains either the first or the
third quadrant (in particular, the stable cone); inactive sectors do not
intersect these quadrants. In particular, since future singularities are
unions of stable curves (Lemma 3.2), if a good sector V ⊂ ΘxM (resp.

V ⊂ ΘxM̂) is inactive, then for any k > 0 we have V ⊂ Θx(M\ Sk)
(resp. V ⊂ Θx(M̂ \ Sk)).

Good sectors satisfy the following invariance property.

Lemma 6.16. Let V ⊂ ΘxM be a good sector, and V \ S1 =
⋃s
i=1 Vi.

Then each image sector F∗Vi is good. Similarly, if V ⊂ ΘxM̂, and
V\Ŝ1 =

⋃s
i=1 Vi, we have that each image sector F̂∗Vi is a good sector.

Proof. First of all observe that the image by a linear map of a sector
of angle at most π is a sector of angle at most π. We conclude that
item (ii) in Definition 6.15 holds for each of the image sectors.

Let u be one of the boundary vectors of Vi. There are two possibil-
ities: either u is one of the boundary vectors of V, or it is induced by
S1. In the first case, u ∈ Nx and thus (2.12) implies that its image
FVi∗u ∈ Cu

FVix
⊂ NFVix

. In the second case, we have by construction

that FVi∗u is tangent to some curve in S−1. Lemma 3.2 then implies
that also in this case FVi,∗u ∈ NFVix

, which concludes the proof of the
first part. The second part follows from identical considerations. �

Remark 6.17. Lemma 6.16 implies in particular that if V ⊂ Θx(M\Sk)
is a good sector, then F l∗V is also a good sector for any 0 ≤ l ≤ k.

The linear bound (6.16) will be obtained by means of the following
lemma, whose proof we briefly postpone.

Lemma 6.18.
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(a) Let x ∈ M \ {xC}. Any active good tangent sector V ⊂ ΘxM is
cut by S1 in at most two F-regular sectors. The F-image of at
most one of them is active.

(b) Let x ∈ M̂ \ {xC}. Any active good tangent sector V ⊂ ΘxM̂ is

cut by Ŝ1 in at most three F̂-regular sectors. The F̂-image of at
most one of them is active.

We can now prove the main result of this subsection.

Proof of Lemma 6.14. First observe that Lemma 3.15 implies that if x
is sufficiently close to xC, then Fx is also close to xC, which implies

that N̂(x) = 1 and that F̂x 6∈ H0. Hence, no sector V ⊂ ΘxM̂ can be

F̂ -regular. We can thus assume x ∈ M̂ \ {xC}.
Cutting ΘxM̂ along the vertical direction we obtain (up to) 2 good

sectors (recall Remark 4.1); of course both sectors might be active.
Let V denote one such active sector. We now show inductively that

for any k > 0, the singularity set Ŝk cuts V in at most (2k + 1) F̂k-
regular sectors, and the F̂k-image of at most one of them is active.
Lemma 6.18(b) proves our claim for k = 1. In order to proceed with our
proof, we need to set up some notation: for any k ≥ 1, the singularity

set Ŝk cuts V in a number sk of sectors (V(k)
0 ,V(k)

1 , · · · ,V(k)
sk−1); let rk

denote the number of such sectors that are F̂k-regular. Without loss

of generality we can take them to be (V(k)
0 ,V(k)

1 , · · · ,V(k)
rk−1).

Assume now, by induction, that our claim holds for k; we gather that
rk ≤ 2k + 1 and that the image of at most one of the regular sectors
is active. If no sector is active, no further cutting is allowed, so we are
done. Hence we assume that one sector is active and without loss of
generality we let it be indexed as V(k)

0 .

Consider now the F̂k+1-regular sectors (V(k+1)
0 ,V(k+1)

1 , · · · ,V(k+1)
rk+1−1)

obtained by cutting V by Ŝk+1. By definition of F̂k+1-regularity, for

any 0 ≤ i < rk+1 there exists 0 ≤ j < rk so that V(k+1)
i ⊂ V(k)

j .

However, if Ŝk+1 cuts V(k)
j , then it must be that its F̂k-image is cut

by Ŝ1, but this is only possible if said image is active, i.e. if j = 0.
Applying Lemma 6.18(b) to this sector, we thus conclude that it can
be cut into at most three regular sectors and that the image of at most
one of them is active. This in turn proves that rk+1 ≤ rk + 2. This
proves our claim for k + 1.

Since ΘxM̂ consists of at most two active sectors we conclude that
x has at most 2(2n + 1) regular sectors when cut by Ŝn. Since x was
arbitrarily, this proves (6.16). �
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Proof of Lemma 6.18. We first show how item (b) follows from item (a).

Recall that F̂ is the first return map of F to the set M̂, which is defined
in (4.1). Recall also (see (4.8)) that Dn ∩ Sn−1 = ∅ for any n > 0, and

that Dn∩ Ŝ1 = Dn∩ (F−(n−1)S1). Since by definition
⋃
n≥0 clDn = M̂

and clDn ∩ clDn′ = ∅ unless |n− n′| ≤ 1, there are two possibilities:

(i) there exists a unique n so that x ∈ clDn;
(ii) x ∈ clDn ∩ clDn+1 for some n.

Assume first that possibility (i) holds. SinceDn∩Sn−1 = ∅, we conclude

that Ŝ1 cuts V in as many (regular) sectors as S1 cuts DxFn−1V. This
shows that, in this case, item (a) implies item (b).

Next, suppose that possibility (ii) holds. Also in this case x 6∈ Sn−1,
so we can define the sector V∗ = DxFn−1V. By item (a), the singu-
larity set S1 cuts V∗ in at most two F -regular sectors (V∗0,V∗1). By
Lemma 6.16 the image of both of them is a good sector and of the im-
age of at most one of them (say V∗0) may be active. Since x ∈ clDn+1,
some of these sectors may belong to Dn+1; for such sectors we need to
consider the cutting by S2. If V∗0 is disjoint from Dn+1 or its image is
not active, we are done, since no further cutting can take place. On the
other hand, if V∗0 belongs to Dn+1 and its image is active, it might be
cut by S2 into further sectors. Applying (a) to FV∗0 we gather that S2

can cut V∗0 into at most two F2-regular sectors, the F2-image of both
of them is a good sector and of at most one of them is active. This
proves that (a) implies (b) also in case (ii). Note that we have at most
two sectors in case (i) and at most three in case (ii).

It remains to prove item (a). If x 6∈ S1, or x ∈ S0 \ cl (S1 \ S0), the
map F is smooth in a neighborhood of x and the statement immediately
follows.

We thus assume that x ∈ cl (S1 \ S0). Recall (see Lemma 3.11(a-b))
that x can belong to at most one of the S+

ν and, possibly, to S+
R .

If x ∈ S+
R , then, by definition of S+

R , D+
R induces a sector which is

not F -regular. Hence, only cells D+
ν can induce F -regular sectors and

by Lemma 3.13 there are only two possibilities:

(a) there exists a unique ν so that x ∈ clD+
ν .

(b) there exist two consecutive cells D+
ν and D+

ν+1 so that x ∈ clD+
ν ∩

clD+
ν+1 (and x does not intersect the closure of any other cell.)

This already establishes that V is cut by S1 in at most two F -regular
sectors. We now need to prove that at most one of their images is
active. Observe that if V is cut in fewer than two regular sectors, there
is nothing to prove. This is the situation, in particular, in case (a).
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Figure 6. The three possible cutting cases for V by S1

in regular sectors (on the left), and their images (on the
right) by the two induced maps FV0∗ and FV1∗ respec-
tively.

In case (b), we necessarily have that x ∈ S+
ν . We subdivide the

argument into two further subcases: (i) x 6∈ S+
R ; (ii) x ∈ S+

R .
In case (i), S+

ν cuts V in exactly two sectors, induced by D+
ν and

D+
ν+1. Notice that these two sectors have a common boundary vector,

which is induced by S+
ν : we can then write the two sectors as V0 =

V(u−, uS) and V1 = V(uS , u+) (see Figure 6, first and second row). We
say we are in case i′ if V contains the first quadrant (see first row of
Figure 6) and in case i′′ if V contains the third quadrant (see second
row of Figure 6).

Consider first case i′. By inspection we gather that V0 is induced
by D+

ν+1 and V1 is induced by D+
ν . Since we assume both sectors to be
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regular, Lemma 3.13(c) implies that

lim
y→x
FV0x ∈ {0} × R+, lim

y→x
FV1x ∈ {1} × R+.

Thus the image FV0∗uS (resp. FV1∗uS ) is a vertical vector. Moreover,
since uS lies in the first quadrant, then both its images are vertical
vectors pointing upwards. The other boundary vector of each Vi is one
of the original vectors u±, and thus its image is unstable. Since FVi∗ is
orientation preserving, we conclude that only one of the images of Vi’s
can be an active sector (see again Figure 6, row 1).

Case i′′ is completely analogous. In this case V0 is induced by D+
ν

and V1 is induced by D+
ν+1. Once again, since both sectors are regular,

we gather by Lemma 3.13(c) that

lim
y→x
FV0x ∈ {1} × R+ lim

y→x
FV1x ∈ {0} × R+.

Hence the image Fx,V0∗uS (resp. DFx,V1∗uS ) is a vertical vector. More-
over, since uS lies in the third quadrant, then both its images are ver-
tical vectors pointing downwards. The other boundary vector of each
Vi is one of the original vectors u±, and thus its image is unstable.
Since FVi∗ is orientation preserving, we conclude that only one of the
images of Vi’s can be an active sector (see Figure 6, second row). This
completes the proof in case (i).

In case (ii), combining Lemma 3.11 (we need the part concerning
S+!) with Lemma 3.7 we gather that x is the right endpoint of S+

ν .
Therefore S+

ν will cut V only if V contains the third quadrant. Thus, if
V contains the first quadrant, then S+

ν does not cut V. Hence V could
only be cut by S+

R . By the earlier discussion in this case V, contains at
most one regular sector, concluding the proof in this case.

It remains to consider the more difficult case in which V contains the
third quadrant (Figure 6, bottom row). Since x is the right endpoint
of S+

ν , we conclude that the vector induced by S+
ν must meet with S+

R

on the left. Therefore the two regular sectors are V0 = V(u−, uS) and
V1 = V(uS , uR). As in case i′′, we have that V0 is induced by D+

ν and
V1 is induced by D+

ν+1; the vector uR is induced by S+
R . Following the

same reasoning as in case i′′ above, we conclude that the image FV0∗uS
(resp. FV1∗uS ) is a vertical vector pointing downwards. The image
FV0∗u− is of course unstable and belongs to the second quadrant. The
image of uR is also in N (as it will be induced by some curve in S−1)
and points downwards. Hence, only V′0 is active.

This concludes the argument in case (ii) and finishes the proof. �
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7. Invariant manifolds.

The expansion estimate proved in the previous section is the main
ingredient for the so-called Growth Lemma (Lemma 7.2). In turn the
Growth Lemma constitutes the backbone for proving ergodicity using
the Hopf argument, as will be done in the next section. The Hopf argu-
ment relies on existence of a large set of points having sufficiently long
stable and unstable manifolds. The present section contains necessary
results about the existence of stable and unstable manifolds as well as
regularity of partition of the phase space into stable and unstable man-
ifolds. In this section we always assume that the Fermi–Ulam model is
regular at infinity. As a notational convention, in this section we drop
the superscripts from dWα (·, ·), as they can be unambiguously recovered
from the context.

7.1. The Growth Lemma. In this section we state and prove a ver-
sion of the Growth Lemma for our system. This lemma allows us to
obtain, in the next subsection, a good lower bound on the length of
stable and unstable manifolds passing through most of the points.

Let W be an unstable curve and x ∈ W . We define rW (x) as the
α-length of the shortest of the two subcurves x subdivides W into. The
function rW (x) measures, in an appropriate way, the distance of x to
the boundary of W . Observe that if W is weakly homogeneous, we
have, by (4.40), rW (x) < C#dα(x,S).

Observe moreover that

LebW (rW (x) < ε) = min{2ε,LebW (W )}(7.1)

(recall that LebW denotes Lebesgue measure on the curve W with
respect to the α-metric).

Given an unstable curve W, a point x ∈ W and n ≥ 0, we define
Wn(x) as follows. If x ∈ SnH we let Wn(x) = ∅; otherwise we let Wn(x)
to be the H-component of FnW that contains Fnx (recall the discussion
before Proposition 6.5). Then we define rW,n(x) = rWn(x)(Fnx) (or 0 if
Wn(x) = ∅).

Likewise, given an unstable curve W , x ∈ W and n ≥ 0, we define

Ŵn(x) and r̂W,n as follows. Recall the definition of N̂n given before

Remark 4.5. If N̂n(x) is not defined, we let Ŵn(x) = ∅ and r̂W,n(x) = 0.

Otherwise we let Ŵn(x) = WN̂n(x)(x) and r̂W,n(x) = rW,N̂n(x)(x).

Lemma 7.1. We have rW,0 = r̂W,0 = rW and

rW,n(x) < C#dα(Fnx,S).(7.2)
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Moreover, there exists C > 1, so that if FnW is a single H-component,
then for any x ∈ W :

rW,n(x) > C−1Λn̂(FnW )rW (x),(7.3)

where Λ is the constant appearing in (4.29) and n̂ was defined in (4.6).

Proof. The first two items follow immediately from the definition and
our previous observation. We thus need to prove (7.3). By definition
rW,n(x) = |W ′

n(x)|α, where W ′
n(x) is shortest subcurve of Wn(x) join-

ing Fnx with ∂Wn(x). Since FnW is a single H-component, we con-
clude that Wn(x) = FnW . Thus W ′

n(x) connects xn with ∂FnW , and
F−nW ′

n(x) connects x with ∂W . In particular |F−nW ′
n(x)|α ≥ rW (x).

Then the proof follows from (4.41a), (4.29) and the definition of n̂. �

The following is the classical Growth Lemma.

Lemma 7.2 (Growth Lemma for r̂). Suppose that the Fermi–Ulam
model is regular at infinity. Then there exist 0 < θ < 1 and C > 0 so
that for any sufficiently short mature admissible unstable curve W ⊂
M, any ε > 0 and any n > 0

LebW (r̂W,n(x) < ε) ≤ CεLebW (W ) + CLebW (rW (x) ≤ θnε) .(7.4)

Proof. The proof of the Growth Lemma follows via relatively stan-
dard arguments (see [9, §§5.9 and 5.10]) from the expansion estimate
(Proposition 6.5) and the distortion bounds proved in Corollary 5.10.

Recall the definition of L̂n given right before Proposition 6.5, and let
n̄ be the number appearing in Proposition 6.5. We fix δ ∈ (0, 1) to be
sufficiently small so that

(7.5) θ̄ = e2CDδ
1/12L̂n̄ < 1

(where CD is the constant appearing in Corollary 5.10) and so that δ is
smaller than the δ obtained by Lemma 4.25(d) with δ∗ = 1 and k = n̄.

Let us first assume that W ⊂ M̂ and that |W |α < δ. Then we claim
that there exists C̄ > 0 so that for any ε > 0:

LebW (r̂W,n̄(x) < ε) < C̄εLebW + LebW (rW (x) < e−CDδ
1/12

θ̄ε).(7.6)

As we observed in Corollary 5.10, our distortion bounds on unstable
curves depend on their length. In this proof we will need very fine
distortion bounds, and it will then be necessary to work only with
sufficiently short unstable curves. This entails a partitioning for H-
components that we now proceed to describe. Let {Wi} denote the set
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of H-components of F̂ n̄W . We partition each Wi into a number

ki =

⌊
|Wi|α
δ

⌋
+ 1

of subcurves of equal α-length so that each subcurve has α-length be-
tween δ/2 and δ. We denote the resulting subcurves Wij. Observe
that if |Wi|α < δ, ki = 1, and no shortening takes place. We call

such subcurves shortened H-components of F̂ n̄W . We will shorten the
H-components inductively every n̄ steps of the induced map F̂ . By
our choice of δ, this guarantees that at each intermediate step, no H-
component will have α-length exceeding 1. Given x ∈ W , we will then
denote by Ŵ ′

n(x) the shortened H-component of F̂nW whose interior

contains F̂nx (or ∅ if some image of x lies on an endpoint of a short-

ened subcurve). We then define r̂′W,n(x) = rŴ ′n(x)(F̂nx). Observe that

r̂′W,n̄ < r̂W,n̄, so that proving (7.6) for r̂′W,n will imply (7.6) for r̂W,n. Let
Bij ⊂ Wij be the ε-neighborhood (in the α-metric) of the boundary of
each Wij; in particular LebWij

(Bij) ≤ 2ε. Then

LebW (r̂′W,n̄(x) < ε) =
∑
ij

LebW (F̂−n̄Bij).

By the distortion estimates of Corollary 5.10∑
ij

LebW (F̂−n̄Bij) ≤ eCDδ
1/12
∑
ij

LebW (F̂−n̄Wij)
LebWij

(Bij)

LebWij
(Wij)

≤ 2eCDδ
1/12

ε
∑
ij

ki
LebW (F̂−n̄Wij)

LebWi
(Wi)

.

Split the above sum as I + II where I stands for the sum over the
components where the artificial subdivision was applied and II stands
for the sum over the short components where no artificial subdivi-
sion is needed. Note that the sum in I is over components satisfying
LebWi

(Wi) ≥ δ and so

I ≤ 2δ−1eCDδ
1/12

ε
∑
ij

LebW (F̂−n̄Wij) ≤ C̄εLebW (W )

where we defined C̄ = 2δ−1eCDδ
1/12

. On the other hand in II there is
no subdivision so Wij = Wi. Therefore

II ≤ 2eCDδ
1/12

ε
∑
i

LebW (F̂−n̄Wij)

LebWi
(Wi)

≤ 2eCDδ
1/12

εL̂n̄.
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Using (7.1) and our definition (7.5) of θ̄ , we conclude that

LebW (r̂′W,n̄(x) < ε) < C̄εLebW + LebW (rW (x) < e−CDδ
1/12

θ̄ε),(7.7)

which, as noted earlier, implies (7.6).
We now proceed to show that for any k > 0:

LebW (r̂′W,kn̄(x) < ε) ≤ eCDδ
1/12 1− θ̄k

1− θ̄
· C̄εLebW (W )+(7.8)

+ LebW (rW (x) ≤ θ̄kε).

For k = 1 (7.8) follows from (7.7). Let us assume by induction that (7.8)
holds for k and prove it for k+ 1. Let W ′ be a shortened H-component

of F̂kn̄W . By construction W ′ ⊂ M̂ and |W ′|α < δ. Applying (7.6) to
W ′ we gather:

LebW ′(r̂
′
W ′,n̄(y) < ε) ≤ C̄εLebW ′(W

′) + LebW ′(r̂W ′(y) ≤ e−CDδ
1/12

θ̄ε).

Let W ′′ = F̂−kn̄W ′, then by Corollary 5.10, we conclude that:

LebW ′′(r̂
′
W ′′,(k+1)n̄(x) < ε) ≤ eCDδ

1/12

C̄εLebW ′′(W
′′)

+ eCDδ
1/12

LebW ′′(r̂
′
W ′′,kn̄(x) < e−CDδ

1/12

θ̄ε).

Summing over all W ′′’s and applying the inductive hypothesis yields:

LebW (r̂′W,(k+1)n̄(x) < ε) ≤

eCDδ
1/12

C̄εLebW (W ) + eCDδ
1/12

LebW (r̂′W,kn̄(x) < e−CDδ
1/12

θ̄ε) ≤

eCDδ
1/12

C̄
1− θ̄k+1

1− θ̄
εLebW (W ) + eCDδ

1/12

LebW (rW (x) < e−CDδ
1/12

θ̄k+1ε),

which proves (7.8) for k + 1. Hence we can write:

LebW (r̂′W,kn̄(x) < ε) ≤ CεLebW (W ) + LebW (rW (x) ≤ θ̄kε).(7.9)

where C = C̄eCDδ
1/12

/(1− θ).
We now extend this estimate to iterates that are not multiples of n̄.

We begin by obtaining a bound on LebW (r̂′W,s(x) < ε) for s < n̄. Notice
that no partitioning into short curves occurs before step n̄, therefore if
{Wi} denotes the set of H-components of F̂ sW , we have

LebW (r̂′W,s(x) < ε) = LebW (r̂W,s(x) < ε) =
∑
i

LebW (F̂−sBi),

where Bi is a ε-neighborhood of the boundary of Wi. Then we proceed
as before. Since |W |α < δ, we are guaranteed that |W ′|α < 1. Thus,
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applying the distortion bounds in Corollary 5.10, we gather:∑
i

LebW (F̂−sBi) ≤ 2eCDε
∑
i

LebW (F̂−sWi)

LebWi
(Wi)

≤ 2eCDεL̂s.

Applying once again (7.1), and observing that L̂s is bounded uniformly
in s, by Proposition 6.5, yields:

LebW (r̂W,s(x) < ε) ≤ LebW (rW (x) < C#ε).(7.10)

Now, for any m > 0, we write m = kn̄ + s, with 0 ≤ s < n̄. Apply-
ing (7.10) to each shortened component W ′ of F̂kn̄W yields:

LebW ′(r̂W ′,s(y) < ε) ≤ LebW ′(rW ′(x) < C#ε).

Taking W ′′ = F̂−kn̄W ′ ⊂ W , and applying the distortion bounds:

LebW ′′(r̂W ′′,kn̄+s(x) < ε) ≤ eCDδ
1/12

LebW ′′(r
′
W ′′,kn̄(x) < C#ε).

Now summing over all W ′′ and applying (7.9), we finally conclude that

LebW (r̂W,kn̄+s(x) < ε) ≤ eCDδ
1/12

CεLebW (W ) + LebW (rW (x) ≤ C#θ̄
kε).

Choosing θ = θ̄1/n̄ and C = C#θ
−1 yields (7.4) under the assumption

W ⊂ M̂ and |W |α < δ.

Now, observe that, given an unstable curve W , for any x ∈ W , Ŵ1(x)

is either ∅ or it is a curve W ′ ⊂ M̂. By Lemma 4.25(d) it is possible
to assume that W is so short that each W ′ is such that |W ′|α < δ.
By applying once again the distortion argument, we deduce that (7.4)
holds in the general case, by suitably increasing the constants. �

We are now going to complement the Growth Lemma above (which

involves iterates of W by F̂) with some estimates on the length of the
iterates of unstable curves by F . More precisely, let W be an unstable
curve and x ∈ W . Define

r̄W (x) = min
0≤n<N̂(x)

rW,n(x),

with the convention that if N̂(x) is undefined, then r̄W (x) = 0.

Lemma 7.3 (Transient growth control). There is C > 0 so that for any
sufficiently short mature admissible unstable curve W and any ε < δ

LebW (r̄W (x) < ε) < LebW (rW (x) < Cε).

Proof. The proof follows from distortion arguments similar to the ones
given in the proof of the Growth Lemma. Assume that |W |α < δ.
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Recall that the constant ω4 was introduced in Lemma 4.26(b). As-

sume first that W ∩ M̂≤ω4 6= ∅. Then there exists N∗ = C#ω4 so that

N̂(x) < N∗ for any x ∈ W . Thus:

LebW (r̄W (x) < ε) ≤
N∗−1∑
n=0

LebW (rW,n(x) < ε).

We proceed to obtain a bound on LebW (rW,n(x) < ε). Let us fix n > 0
and let {Wi} denote the set of H-components of FnW ; let Bi ⊂ Wi be
the ε-neighborhood of the boundary of Wi. Then

LebW (rW,n(x) < ε) =
∑
i

LebW (F−nBi).

Assuming |W |α < δ, we are guaranteed that each component Wi satis-
fies |Wi|α < 1. Hence by our distortion bounds (Corollary 5.10)∑

i

LebW (F−nBi) ≤ 2eCDε
∑
i

LebW (F−nWi)

LebW (Wi)

≤ 2eCDεLn(W ) ≤ LebW (rW (x) < eCDLnε).

By (6.4), Ln ≤ Ln1 . Thus Ln ≤ max{1,LN∗1 }, which is bounded
by (6.9). This concludes the proof of the lemma in the case of low
energies.

Next, consider the case W ⊂ M̂≥ω4 6= ∅. Then if δ sufficiently
small, by Lemma 4.26(b), W intersects at most two cells E∗n. Such cells

partition W in (at most) two subcurves W1 and W2 so that N̂(x) = N∗
for all x ∈ W1 and N̂(x) = N∗ + 1 for all x ∈ W2, for some N∗ > 0.
Note that

LebW (r̄W (x) < ε) ≤ LebW (r̄W1(x) < ε) + LebW (r̄W2(x) < ε).

Consider r̄W1(x). By construction W1 ⊂ E∗N∗ . Since E∗N∗ ∩S
N∗−1 = ∅,

we gather that FnW1 is connected for any 0 ≤ n < N∗. Thus, (7.3)
ensures that rW1,n(x) ≥ C−1rW1(x) for any n < N∗, and therefore
r̄W1(x) ≥ C−1rW1(x). By the same token r̄W2(x) ≥ C−1rW2(x). Hence

LebW (r̄W (x) < ε) ≤ LebW (rW < 2Cε)

which concludes the proof of the lemma. �

In order to obtain bounds on the length of stable and unstable man-
ifolds, we will need some results similar to the ones presented above,
but for slightly different functions r. We now proceed to define them
and link their properties to the ones of the functions r that have been
investigated above.
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Recall the properties of the singularity sets S± outlined in Lemma 3.11
and define, for N ≥ 0:

S+
(N) = S0 ∪ S+

R ∪
N⋃
ν=0

S+
ν .

For x ∈ W let us define rW (x,S+
(N)) as follows. If x ∈ S+

(N) we set

rW (x,S+
(N)) = 0. Otherwise S+

(N) cuts W into finitely many subcurves.

Let W ′ be the subcurve that contains x and rW (x,S+
(N)) = rW ′(x).

Observe that necessarily rW (x,S+
(N)) ≤ rW (x). Finally define31

r∗W (x) = inf
N>0
{N3/2rW (x,S+

(N))}.

Notice that r∗W (x) ≤ rW (x), and it could, in principle, be much
smaller than rW . However, the measure of points where this possibility
occurs is under control thanks to the following bound.

Lemma 7.4. There exists C > 0 so that for any unstable curve W and
any 0 < ε < δ

LebW (r∗W (x) < ε) ≤ LebW (rW (x) < Cε).

Proof. By Lemma 3.11, we conclude that the set {r∗W (x) < ε} is con-
tained in the union of
• 2 intervals of α-length ε at the boundary of W
• an interval of α-length 2ε centered at each point of W ∩ (S+

R ∪S
+
0 );

• an interval of α-length 2ν−3/2ε centered at each point of W ∩ S+
ν

for ν > 0.
Hence

LebW (r∗W (x) < ε) < 2ε(1 + 2 +
∑
ν>0

ν−3/2) < 2C#ε.

Since LebW (rW (x) < Cε) ≤ 2Cε we conclude that

LebW (r∗W (x) < ε) ≤ LebW (rW (x) < Cε). �

Using the above lemma, it is possible to obtain a Growth Lemma
and transient growth control for r∗. Let W be an unstable curve and
x ∈ W . For n ≥ 0 we define r∗W,n(x) as follows: if x ∈ SnH we let
r∗W,n(x) = 0; otherwise Wn(x) 6= ∅ and we set

r∗W,n(x) = r∗Wn(x)(Fnx).

31 The motivation for this definition will become clear to the reader in the proof
of Lemma 7.9
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Likewise, given n ≥ 0, if N̂n(x) is not defined, we let r̂∗W,n(x) = 0.
Otherwise we define

(7.11) r̂∗W,n(x) = r∗
W,N̂n(x)

(x).

Finally, let x ∈ W . If N̂(x) is undefined, set r̄∗W (x) = 0. Otherwise let

r̄∗W (x) = min
0≤n<N̂(x)

r∗W,n(x).

We now prove for r̄∗ the bounds of Lemma 7.3.

Lemma 7.5. There exists C > 0 so that for any sufficiently short
mature admissible unstable curve W ⊂M and any 0 < ε < δ we have:

LebW (r̄∗W (x) < ε) < LebW (rW (x) < Cε).(7.12)

Proof. Assume |W |α < δ; let ω# be sufficiently large and consider first
the case where W ∩ M≥ω#

6= ∅. Then if δ ≤ 1, Proposition 4.7(a)

implies that for any x ∈ W and any 0 ≤ n < N̂(x), Fnx ∈ M≥ω#/C .
Notice that Lemma 3.11 and the construction of E∗n guarantees that
E∗n∩S+ = ∅ unless n = 1. By Lemma 3.11(d) S+

ν is compact for ν > 0.
Therefore for large enough ω#, the only possible curve of S+ that
intersects with E∗1 ∩M≥ω#/C is S+

0 , but S+
0 ⊂ ∂E∗1 ; we conclude that

E∗1 ∩M≥ω#/C ∩S+ = ∅. We thus proceed as in the proof of Lemma 7.3.
If ω# is sufficiently large and δ sufficiently small, by Lemma 4.26(b),
W intersects at most two cells E∗n; such cells partition W in (at most)
two subcurves W1 and W2. Then

LebW (r̄∗W (x) < ε) ≤ LebW (r̄∗W1
(x) < ε) + LebW (r̄∗W2

(x) < ε).

Notice that FnWi will belong to only one cell E∗ν for any n involved in
the definition of r̄∗Wi

. By the argument above, we gather that r̄∗Wi
= r̄Wi

.
Now we conclude arguing as in the proof of Lemma 7.3.

Next, consider the case W ⊂M≤ω#
. Then there exists N∗ = C#ω#

so that N̂(x) < N∗ for any x ∈ W . Thus:

LebW (r̄∗W (x) < ε) ≤
N∗−1∑
n=0

LebW (r∗W,n(x) < ε).

Lemma 7.4 then implies that

LebW (r̄∗W (x) < ε) ≤
N∗−1∑
n=0

LebW (rW,n(x) < Cε).

Now arguing as in the proof of Lemma 7.3, we obtain (7.12) in the
second case. �
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7.2. Size of invariant manifolds. Recall that an unstable curve W
is a homogeneous unstable manifold if W ⊂ M \ S−∞H (resp. a stable
curve W is a homogeneous stable manifold if W ⊂ M \ S+∞

H ). By
Lemma 4.28 we have |F−nW |α → 0 as n → ∞ (resp. |FnW |α → 0
as n → ∞). Given x ∈ M, we denote by W u(x) (resp. W s(x)) the
maximal homogeneous unstable (resp. stable) manifold containing x
(or ∅ if such manifold does not exist). Conventionally, we consider
such curves without the endpoints.

We now give a convenient characterization of W s(x) and W u(x). The
construction closely follows [9, §4.11], and we refer the reader to that
section for additional properties. For x ∈ M \ S−∞H , and n > 0, we
denote by QH

−n(x) the connected component of the open set M\ S−nH
that contains x. Naturally, QH

−n(x) ⊃ QH
−(n+1)(x) for any n. Moreover

QH
−n(x) is compact for any n sufficiently large, possibly depending on

x.32 An analogous construction yields the definition of QH
n (x) for n > 0.

To simplify our exposition, we drop the superscript H from QH for the
remainder of this section33.

Lemma 7.6. Let x ∈M\S−∞H and (Wn)n>0 be a sequence of admissible
unstable curves passing through x such that Wn = FnVn where Vn is
unstable and Vn ⊂ Qn(F−nx) (hence in particular Wn ⊂ Q−n(x)).
Then, there exists a subsequence (Wnk)k>0 that converges in C1 to a
subcurve of W u(x). Analogous statements hold for stable curves and
stable manifolds.

Proof. We prove the lemma as stated; the corresponding statements for
stable curves and manifolds follow by involution. First, we can assume
that there exists η > 0 so that |Wn|α > η (otherwise, the statement
trivially holds by choosing a subsequence so that |Wnk |α → 0, which
converges to x).

By definition of admissible curve (see the first paragraph of § 5.2),
and Arzela–Ascoli Theorem, we can extract a subsequence Wnk that
converges in the C1-topology to some C1-curve W ; as usual, W de-
notes the limit curve without the endpoints. We now show that W ⊂⋂
n>0Q−n(x), which will conclude the proof of the lemma, since in par-

ticular this fact implies W ∩ S−∞H = ∅. First of all, by construction,

we have that W ⊂
⋂
n>0Q−n(x): otherwise there would exist n̄ > 0

32 Compactness holds since, for n sufficiently large (e.g. n > N̂(x) +

N̂(F N̂(x)(x))), the set F N̂(x)Qn(x) is contained in some fundamental domain Dm,
and such sets are bounded (see e.g. (4.10)).

33 This introduces a slight abuse of notation with the sets Qn defined in § 6.4.
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and infinitely many curves Wn so that Wn 6⊂ Q−n̄(x), which contra-
dicts our hypothesis. Assume now that there exists x′ ∈ W such that
x′ 6∈

⋂
n>0Q−n(x), i.e. there exists n∗ so that x′ ∈ ∂Q−n∗(x); in par-

ticular x′ ∈ S−n∗H . By Remark 3.5, ∂Q−n∗(x) is comprised of curves
compatible with N ∩ DFn∗P. On the other hand, W is a limit of
unstable curves Wnk that are compatible with DFnkCu; observe that
near x′ the cone N ∩DFn∗P is transverse to the cone DFnkCu if k is
sufficiently large (this holds by strict invariance of the unstable cones).
It follows that for arbitrarily large k, the curve Wnk will intersect (and
thus terminate on) ∂Q−n∗(x) arbitrarily close to x′; we conclude that
x′ is an endpoint of W , which contradicts our assumption �

If W u(x) = ∅ we define ru(x) = 0. Otherwise, x subdivides W u(x)
in two subcurves, we denote by ru(x) the α-length of the shortest sub-
curve. Define rs(x) similarly.

To obtain lower bounds for rs and ru we need to introduce some
notation. Given x ∈ M, define the functions E± : M→ R so that if
x ∈ Hk ∩ D±ν , then E±(x) = (ν + 1)(k2 + 1). More precisely

E±(x) =
∑
k

(k2 + 1)1Hk∩D±R
+
∑
k,ν

(k2 + 1)(ν + 1)1Hk∩D±ν (x),

where 1A denotes the indicator of the set A.
E± controls the contraction and expansion of stable and unstable

vectors by DF as follows.

Lemma 7.7. There exists a constant C > 0 such that

C−1E−(Fx) <
|DxFuu|α
|uu|α

< CE−(Fx) ∀x ∈M \ S+, uu ∈ Cux

(7.13a)

C−1E+(F−1x) <
|DxF−1us|α
|us|α

< CE+(F−1x) ∀x ∈M \ S−, us ∈ Csx.

(7.13b)

Proof. It suffices to show (7.13a), then (7.13b) follows by involution.
If Fx ∈ D−R , then the lower bound follows34 from (4.27) and the upper
bound follows from (4.31) and Corollary 4.15(a). Next, suppose Fx =
(r′, w′) 6∈ D−R . If w′ > ω2 (where ω2 is defined in Corollary 4.15), then
our estimates follow35 from Corollary 4.15 and (4.31). If, on the other

34 Since Fx ∈ D−R , then | · |α and | · |∗ are uniformly equivalent.
35 Observe that, even though in this region | · |α and | · |∗ are not uniformly

equivalent, we still have

C−1#

|DxFu|α
|u|α

<
|DxFu|∗
|u|∗

< C#
|DxFu|α
|u|α
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hand, w′ ≤ ω2, we have w < ω2 + C# and since x 6∈ clD−R , we obtain
the estimates using Lemma 4.12(b) and (4.31). �

Given x ∈M and n ∈ Z, we denote with ds
α(x,SnH) (resp. du

α(x,SnH))
the length (in the α-metric) of the shortest36 stable (resp. unstable)
curve which connects x with SnH.

For x ∈ M, let Λu
n(x) be the minimal expansion of unstable vectors

by DxFn. Similarly, let Λs
n(x) be the minimal expansion of stable

vectors by DxF−n. Notice that there exists Λ > 0 so that for any
n > 0 and x ∈M

Λs
n(x) > Λ, Λu

n(x) > Λ(7.14)

(see e.g. Proposition 4.20). Moreover, by definition, for any 0 < m < n:

Λu
n(x) ≥ Λu

m(x)Λu
n−m(Fmx) Λs

n(x) ≥ Λs
m(x)Λs

n−m(F−mx).

Hence by (7.13), for any n ≥ 1

Λu
n(x) ≥ C−1E−(Fx)Λu

n−1(Fx),(7.15a)

Λs
n(x) ≥ C−1E+(F−1x)Λs

n−1(F−1x).(7.15b)

Lemma 7.8. For any L > 0 there exists a constant c > 0 such that

rs(x) ≥ min{L, c inf
n>0

Λs
n(Fnx)dsα(Fnx,S−1

H )},

ru(x) ≥ min{L, c inf
n>0

Λu
n(F−nx)duα(F−nx,S1

H)}.

Proof. The proof of the lemma is a combination of the arguments given
in [9, Lemma 4.67, (4.61), Exercise 5.19 and (5.58)].

Let us prove the statement for ru (the statement for rs follows as
usual by the properties of the involution). We may further assume
that x ∈ M \ S−∞H (otherwise the right hand side of the inequality
is 0 and the statement holds trivially). As before, for any n, we let
Q−n(x) be the connected component of M\ S−nH containing the point
x. Clearly Qn(F−nx) = F−n(Q−n(x)) is the connected component of

M\SnH containing the point F−nx. Let n∗ be so large that Q−n∗(x) is
compact. For n > n∗, F−nW u(x) ⊂ Qn(F−nx); let V ′n be an arbitrary
continuation as a mature unstable curve of F−nW u(x) to ∂Qn(F−nx).

We further assume that V ′n is K̂-admissible37. Then W ′
n = Fn(V ′n)

is an admissible unstable continuation of W u(x) that terminates on
∂Q−n(x). Let us fix ε > 0. By Lemma 7.6 we can choose n so that the

36 The existence of such a curve follows from the fact that the stable (resp.
unstable) cone is closed and that the singularity set is closed.

37By Corollary 5.5, F−nW u(x) is K̂-admissible and we can choose our continu-
ation to satisfy this requirement
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α-length of each component of Wn \W u(x) is smaller than ε (otherwise
W u(x) would not be maximal). Wn is divided by the point x into two
subcurves; denote with W the shortest one (in the α-metric). By our
construction and (4.19b) we gather that ru(x) ≥ |W |α − ε. Since ε is
arbitrary, it suffices to show that

|W |α ≥ min{L, c inf
n>0

Λu
n(F−nx)du

α(F−nx,S1
H)}.

The above bound trivially holds if |W |α ≥ L. Let us thus assume
that |W |α < L and for 0 ≤ m ≤ n let Vm = F−mW . Since Vn
terminates on SnH, there exists m ∈ [1, n] so that Vm joins F−mx with
S1
H. We thus gather

|W |α =
|W |α
|Vm|α

|Vm|α ≥ C#Λu
m(F−mx)|Vm|α

≥ C#Λu
m(F−mx)du

α(F−mx,S1
H)

where we used distortion estimates obtained in Corollary 5.10. �

The statement we are about to prove below (Lemma 7.9) is the
analog of [9, Exercise 5.69], but there are some differences which are
due to two separate issues. First of all the statement of that exercise is
incorrect: the strategy presented in [9, §5.5] has a gap and needs to be
corrected (see [3] for a proposed solution). Second, the argument would
need a non-trivial adaptation to our specific case because of the nature
of our singularities (presence of corner points, non-compactness). We
thus proceed to give in detail the statement and the proof of what is
needed for our analysis. In order to simplify our notation we denote,
as usual, xn = Fnx.

Lemma 7.9. There exists a constant C > 0 so that

(a) for any mature unstable curve W ⊂ M, any n ≥ 2 and any
x ∈ W \ Sn:

Λs
n(xn)dsα(xn,S−1

H ) ≥ C min{Λs
n(xn)rW,n(x),(7.16a)

Λs
n−1(xn−1)r∗W,n−1(x),

Λs
n−2(xn−2)rW,n−2(x)}.

(b) for any unstable curve W ⊂ M that is the image of a mature
unstable curve and any x ∈ W \ S1:

Λs
1(x1)dsα(x1,S−1

H ) ≥ C min{Λs
1(x1)rW,1(x), r∗W (x), rW (x)4}.(7.16b)

Proof. Recall that S−1
H is a closed set (see Remark 5.1). In particular

the distance ds
α(xn,S−1

H ) is attained as |V |α, where V = V (xn) is a
stable curve which joins xn to some point z ∈ S−1

H . By definition
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(see (5.1)) we have S−1
H = S ∪ F(S \ S+) ∪ S−. Hence there are three

possibilities:
(a) z ∈ S; (b) z ∈ F(S \ S+); (c) z ∈ S−.
We begin with case (a). By definition it holds that |V |α ≥ dα(xn,S).

Using (7.2) we thus conclude that ds
α(xn,S−1

H ) ≥ C#rW,n(x).
In cases (b) and (c) we consider V ′ = F−1V . Then V ′ is a weakly

homogeneous stable curve and, by (7.13):

|V |α ≥
C#|V ′|α
E+(xn−1)

.

In case (b), V ′ links xn−1 to some point z′ ∈ S, so |V ′|α ≥ dα(xn−1,S)
and using (7.15b) we gather that:

Λs
n(xn)ds

α(xn,S−1
H ) ≥ C#Λs

n−1(xn−1)dα(xn−1,S).

Using again (7.2) we thus conclude that

Λs
n(xn)ds

α(xn,S−1
H ) ≥ C#Λs

n−1(xn−1)rW,n−1(x).

Finally, we consider case (c). Then V ′ is a stable curve linking xn−1

to some38 point z′ ∈ S+. We consider two possibilities:

(c′) xn−1 ∈ D−R and z′ ∈ {0} × [0, h];
(c′′) otherwise.

In case (c′), observe that since V ′ is a stable curve, it is increasing,
and the assumptions in (c′) imply that V ′ ⊂ D−R (see Lemma 3.7).
We have now to deal separately with the case n = 1 and n > 1. If
n > 1, consider V ′′ = F−1V ′. Observe that V ′′ ⊂ D+

R is a stable (once
again, increasing) curve, which joins xn−2 ∈ D+

R to z′′ ∈ {r = 1}. The
expansion of DF−1 along V ′ is bounded above39 by C#E

+(xn−2) (since
xn−2 ∈ D+

R and it is the lowest point on V ′′). We conclude that

|V ′|α ≥ C#
|V ′′|α

E+(xn−2)
.

Hence, |V ′′|α ≥ dα(xn−2, {r = 1}). Now xn−2 cuts Wn−2(x) into two
subcurves. Let W ′

n−2(x) denote the subcurve to the right of xn−2;
then by definition |W ′

n−2(x)| ≥ rW,n−2(x). Notice that W ′
n−2(x) ⊂ D+

R ,
thus W ′

n−2(x) ∩ D−R = ∅. Corollary 4.15 then implies that we have
uniform transversality of W ′

n−2(x) with any vertical line, which allows
to conclude that

dα(xn−2, {r = 1}) ≥ C#|W ′
n−2(x)|α ≥ C#rW,n−2(x).

38 Note that F−1 is undefined on S− so we cannot quite say that z′ = F−1z
39 Remarkably, the geometry still allows us to obtain an upper bound on expan-

sion despite the fact that V ′′ is not, a priori, weakly homogeneous
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Hence in case (c′) and if n > 1:

Λs
n(xn)ds

α(xn,S−1
H ) ≥ C#Λs

n−2(xn−2)rW,n−2(x)}.

If n = 1 (which corresponds to item (b) in the statement), we need
to modify the above argument as follows. Applying parts (a) and
(b) of Lemma 4.25 to the stable curve V ′ ⊂ D−R (note that |V ′| has
uniformly bounded α-length since D−R is bounded; the same holds for
V ′′ = F−1V ′ ⊂ D+

R) we obtain

|V ′|α ≥ C#|V ′′|2α;

Then arguing as before (with Wn−2 replaced by F−1W , that is guar-
anteed to be a mature unstable curve by our assumption), we conclude
that |V ′′|α ≥ C#rF−1W (x−1).

Applying once again parts (a) and (b) of Lemma 4.25 to F−1W
(which lies in D+

R and thus has uniformly bounded α-length), we see
that rW (x) ≤ C#rF−1W (x−1)1/2, from which we conclude that

rs(x) = |V ′|α ≥ C#rW (x)4.

We now estimate |V ′|α in case (c′′). We claim that

|V ′|α ≥ C# inf
N>0

N3/2d(xn−1,S+
(N)).(7.17)

The above holds trivially if z′ ∈ S+
(1). Otherwise, there exists ν > 1

so that z′ ∈ S+
ν . This implies that V ′ ⊂ D+

ν′ where either ν ′ = ν or
ν ′ = ν + 1. Since D+

ν′ is bounded if ν ′ > 1 (see Lemma 3.13(e)), V ′ lies
in a region where w is bounded and so the α-metric and the Euclidean
metric are equivalent.

Moreover, the angle between V ′ and S+
ν is bounded above by Cν−3/2.

Indeed the slope of S+
ν is controlled by Lemma 3.11(f) while the slope of

V ′ also satisfies the estimate of Lemma 3.11(f) due to (2.9), Lemma 3.13(e),
and Lemma 4.12(b). Thus dα(xn−1,S+

ν ) ≤ C#ν
−3/2|V ′|α. Since

dα(xn−1,S+
(ν)) ≤ dα(xn−1,S+

ν ), we obtain (7.17).

By Lemma 3.2 S+
(N) is a union of curves compatible with the cone

P. Moreover, since we are in case (c′′), xn−1 6∈ D−R (and therefore
Wn−1(x) ∩ D−R = ∅). Hence by Corollary 4.15, Wn−1(x) is uniformly
transversal to any curve in P and we conclude that

dα(xn−1,S+
(N)) ≥ C#rWn−1(x)(xn−1,S+

(N)).

This yields

|V ′|α ≥ C# inf
N>0

N3/2rWn−1(x)(xn−1,S+
(N)) = C#r

∗
W,n−1(x).
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Therefore

Λs
n(xn)ds

α(xn,S−1
H ) ≥ C#Λs

n−1(xn−1)r∗W,n−1(x)

concluding the proof. �

Using the two estimates above we obtain lower bounds on the length
of stable (resp. unstable) manifolds passing through most points on any
given unstable (resp. stable) mature admissible curve. The following
corollary is analogous to [9, Theorems 5.66–5.67, §5.12].

Corollary 7.10. There is C > 0 so that the following statements hold:
(a) for any admissible mature unstable curve W ⊂ M and ε > 0

with the property that for every x ∈ W we have dα(Fx,S−1
H ) > Cε,

then

LebW (rs(x) ≤ ε) < C#ε.

(a’) for any admissible mature unstable curve W ⊂ M that is the
image of a mature unstable curve and any ε > 0:

LebW (rs(x) ≤ ε) < C#ε
1/4.

(b) for any η > 0 there exists k > 0 so that: let W ⊂ M be an
admissible mature unstable curve and ε > 0 with the property that for
every x ∈ W we have dα(Fnx,S−1

H ) > Cε for any 0 ≤ n ≤ N̂k(x); then

(7.18) LebW (rs(x) ≤ ε) ≤ ηε.

(c) for any admissible mature stable curve W ⊂ M and ε > 0 with
the property that for every x ∈ W we have dα(F−1x,S1

H) > Cε, then

LebW (ru(x) ≤ ε) < C#ε.

(c’) for any admissible mature stable curve W ⊂M that is the pre-
image of a mature stable curve and any ε > 0:

LebW (ru(x) ≤ ε) < C#ε
1/4.

(d) for any η > 0 there exists k > 0 so that: let W ⊂ M be an
admissible mature stable curve and ε > 0 with the property that for
every x ∈ W we have dα(Fnx,S1

H) > Cε, for any N̂−k(x) < n ≤ 0;
then

LebW (ru(x) ≤ ε) ≤ ηε.

Proof. We prove parts (a), (a’) and (b). Parts (c), (c’) and (d) follow
by identical arguments by considering F−1. Combining Lemmata 7.9
and 7.8 (with L = 1) with the estimate rW,n(x) ≥ r∗W,n(x) we obtain

rs(x) ≥ min{1, cΛs
1(Fx)ds

α(Fx,S−1
H ), C inf

n≥0
Λs
n(Fnx)r∗W,n(x)}.(7.19)
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Define C = c−1Λ−1 (recall (7.14)) to ensure that if dα(Fx,S−1
H ) > Cε,

then cΛs
1(Fx)ds

α(Fx,S−1
H ) > ε. Then, under the assumptions of (a), if

ε < 1, then the only possibility for rs(x) ≤ ε is that the third term in
the right hand side of the above expression is small. In case of (a’), we
can apply Lemma 7.9(b) to bound the second term above and obtain

rs(x) ≥ min{1, crW (x)4, C inf
n≥0

Λs
n(Fnx)r∗W,n(x)}.

Using (7.1), we then conclude that

LebW (rW (x) < Cε1/4) ≤ C#ε
1/4.

We are hence left to estimate the measure of points where the third
term of (7.19) is small. Observe that if N̂m is not defined on some
x ∈ W for some m, then x ∈ S∞. Since W ∩ S∞ is countable, the
set of such x’s forms a zero Lebesgue measure set on W and can be
neglected. We can thus assume that N̂m(x) is defined for any m and
we can write, recalling the definition of Λ in (4.29):

inf
n≥0

Λs
n(Fnx)r∗W,n(x) = inf

m≥0
inf

N̂m(x)≤n<N̂m+1(x)
Λs
n(Fnx)r∗W,n(x)

≥ inf
m≥0

Λs
N̂m(x)

(F N̂m(x)x) min
N̂m(x)≤n<N̂m+1(x)

Λs
n−N̂m(x)

(Fnx)r∗W,n(x)

≥ C# inf
m≥0

Λm min
N̂m(x)≤n<N̂m+1(x)

Cr∗W,n(x) ≥ C# inf
m≥0

Λmr̄∗
W,N̂m(x)

(x).

Hence:

LebW (inf
n≥0

Λs
n(Fnx)r∗W,n(x) < ε) ≤

∑
m≥0

LebW (r̄∗
W,N̂m(x)

(x) < Λ−mε).

Using Lemma 7.5 and recalling the definition of r̂W,m (see (7.11)) we
obtain∑

m≥0

LebW (r̄∗
W,N̂m(x)

(x) < Λ−mε) ≤
∑
m≥0

LebW (r̂W,m(x) < CΛ−mε).

Then by the Growth Lemma 7.2 we can estimate

LebW (r̂W,m(x) < CΛ̂−mε) ≤ CΛ−mεLebWW + CθmΛ−mε.

Summing over m and collecting all the above estimates we get

LebW (inf
n≥0

Λs
n(Fnx)r∗W,n(x) < ε) ≤ Cε.

This proves items (a) and (a’).
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The proof of item (b) is similar to the proof of item (a). Once again

we can neglect the points x ∈ W where N̂m is not defined for some m.
Next,

rs(x) ≥ min{1, min
1≤n<N̂k(x)

cΛs
n(Fnx)ds

α(Fnx,S−1
H ),(7.20)

C inf
n≥N̂k(x)

Λs
n(Fnx)r∗W,n(x)}.

Choose k so that C#Λk < η. The assumption of part (b) and the
previous definition of C yield:

min
1≤n<N̂k(x)

cΛs
n(Fnx)ds

α(Fnx,S−1
H ) ≥ ε

so only the last term in (7.20) could be small. On the other hand
arguing as in part (a) we gather

LebW

(
inf

n≥N̂k(x)
Λs
n(Fnx)r∗W,n(x)<ε

)
≤
∑
m≥k

LebW

(
r̂W,m(x)<

Cε

Λm

)
≤ C#ε

Λk

completing the proof. �

7.3. Absolute continuity of the holonomy map. In this subsec-
tion we discuss regularity properties of the holonomy map. In this

subsection W1,W2 ⊂ M̂ will denote two mature admissible unstable
curves which are close to each other. More precisely, fix a small number
d > 0. Let H be the holonomy map defined by (5.14) and recall the
sets Ω1 ⊂ W1,Ω2 ⊂ W2 defined by (5.13). We assume that

sup
x1∈Ω1

dα(x1,Hx1) ≤ d.(7.21)

First, we provide the proof of the continuity of the holonomy map.

Proof of Lemma 5.11. Fix x1 ∈ Ω1 arbitrarily. By definition of the
Holonomy Map, the points x1 and x2 = Hx1 have the same itinerary
(as defined in the proof of Lemma 6.13). In other words, there exists
a sequence of natural numbers (nk)

∞
k=1 so that for any k > 0, the

points F̂kx1 and F̂kx2 lie in the same fundamental domain Dnk (defined
in (4.7)).

For any ε > 0 we fix K > 0 large enough to be determined later.
Let W 2,K be the (maximal) H-component of F̂KW2 containing F̂Kx2.

Then, for any 0 ≤ k < K we have F̂−kW 2,K⊂DnK−k . Proposition 4.7
implies that nK <C#K (the constant C# depends on W ). By Re-
mark 4.10 and (4.21) we get |W 2,K |α<C#nK<C#K. Since, by (4.29),

F̂ uniformly expands unstable curves, |F̂−KW 2,K |α < C#KΛ−K . We

can thus assume K to be so large that |F̂−KW 2,K |α < ε.
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Now, since Ω1 ∩ ŜK = ∅, there exists δ > 0 so that for any x ∈
Ω1 and any x′ so that dW1

α (x, x′) < δ, then x and x′ have the same
K-itinerary. If, moreover x′ ∈ Ω1, then also Hx′ has the same K-
itinerary. In particular Hx′ ∈ F̂−KW 2,K (because W 2,K is maximal)
and thus dW2

α (Hx,Hx′) < ε. Since ε and x are arbitrary, the proof is
complete. �

Recall the definition of the Jacobian J(x) of the Holonomy Map
(see (5.15) and Lemma 5.12. Lemma 5.12 shows that J(x) is continu-
ous, but in the sequel we will need a slightly stronger property called
dynamical Hölder continuity. We define it as follows: for any n > 0,

given x ∈ M̂\ŜnH (resp. x ∈ M̂\Ŝ−nH ), denote by Q̂H
n (x) (resp. Q̂H

−n(x))

the connected component40 of M̂ \ ŜnH (resp. M̂ \ Ŝ−nH ) containing x.

Given two points x, y ∈ M̂, we define the induced forward separation
time41

ŝ+(x, y) = min{n ≥ 0 s.t. y 6∈ Q̂H
n (x)};

In particular y ∈ W s(x) if and only if ŝ+(x, y) =∞.

Lemma 7.11 (See [9, Proposition 5.48]). For any W1 and W2 as above

there are constants C > 0 and θ̂ ∈ (0, 1) so that for any x, y ∈ W1:

| log J(x)− log J(y)| < Cθ̂ŝ
+(x,y).

Proof. If x = y the statement is trivial; otherwise ŝ+(x, y) < ∞. Let
n = ŝ+(x, y). Without loss of generality we assume n to be even
(otherwise we replace n with n− 1 and we change a bit the constants
below). Then by Lemma 5.12(a) we conclude that J(x) − Jn/2(x) <

Cθn/2. For 0 ≤ k ≤ n let W 1,k be the (maximal) H-component of F̂k
containing F̂k(x). As observed in the proof of Lemma 5.11, |W 1,n/2|α <
CnΛ−n/2; the same estimate holds for |W 2,n/2|. Observe that nΛ−n/2 <

C#Λ−n/3 and thus by Lemma 5.6 | log Jn/2(x)−log Jn/2(y)| < C#Λ−n/36.
Collecting the above estimates proves the lemma. �

Recall that LebW denotes the Lebesgue measure induced by the α-
metric.
Proposition 7.12. (Absolute Continuity-1) For φ ∈ L1(W1):∫

Ω1

φ(x1)dLebW1(x1) =

∫
Ω2

φ(H−1x2)J(H−1x2)dLebW2(x2).

40 So far we had defined Qn(x), Q̂n(x) and QH
n(x); now we finally introduce the

fourth kind of cell Q
41 With the convention that min ∅ =∞
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Corollary 7.13. If A ⊂ Ω1 has zero LebW1-measure, then

LebW2(HA) = 0.

Proof. Let B = HA and assume by contradiction that mesB > 0.
Then since J is bounded from below42, Proposition 7.12 implies that

LebW1A = LebW1(H−1B) =

∫
B

J(H−1x2)dLebW2(x2) > 0. �

Proof of Proposition 7.12. For ease of notation, we will denote with dx
the integration with respect to dLebW1(x) (or dLebW2(x), as will be
clear from the context). First of all, by the Riesz–Markov–Kakutani
representation theorem we can assume that φ ∈ C(W1). Moreover, by
the usual linearity arguments, we can further assume that φ is non-
negative.

Choose ε > 0 arbitrarily and let n > 0 large to be specified later.
Recall that shortened H-components were defined in the proof of the
Growth Lemma 7.2. Let {Wj1} denote the set of shortened H-components

of F̂nW1. Recall in particular that |Wj1|α < 1. For any j, let Vj1 =

F̂−nWj1 ⊂ W1 and denote Ωj1 = Ω1 ∩ Vj1. Observe that |Vj1|α < Λ−n

by (4.29). In particular, by uniform continuity of φ, if n is sufficiently
large43 (depending on ε) then, choosing x̄j ∈ Vj1 arbitrarily yields44∫

Ω1

φ(x1)dx1 =
∑
j

∫
Ωj1

φ(x1)dx1 =
∑
j

φ(x̄j)LebW1(Ωj1)± ε.

By the Growth Lemma 7.2, given ε > 0 we can find η > 0 such that∑
j

φ(x̄j)LebW1(Ωj1) =
∗∑
j

φ(x̄j)LebW1(Ωj1)± ε,

where
∑∗ denotes the sum over indices j so that |Wj1|α ≥ η. Note

that we can assume without loss of generality that η < ε.
By using Lebesgue Density Theorem and Severini–Egoroff Theorem,

we can conclude that, for large enough n > 0

∗∑
j

φ(x̄j)LebW1(Ωj1) =
∗∗∑
j

φ(x̄j)LebW1(Ωj1)± ε

42 Lemma 5.12 implies a uniform upper bound, and exchanging the roles of W1

and W2 yields the desired lower bound
43 Recall that admissible curves have bounded Euclidean length, hence they have

bounded α-length by Proposition 4.20(a)
44 Here and below the notation A = B ± ε means that |A−B| ≤ ε.
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where
∑∗∗ denotes the sum over indices j satisfying

(7.22) |Wj1|α ≥ η and LebW1(Ωj1) ≥ (1− ε)|Vj1|α.

For such curves, we can further assume that x̄j ∈ Ωj1. Collecting the
above estimates, we gather:∫

Ω1

φ(x)dx =
∗∗∑
j

φ(x̄j) |Vj1|α +O(ε).(7.23)

Let us fix j so that (7.22) holds. We want to show that there exists

a homogeneous subcurve Wj2 ⊂ F̂nW2 which is sufficiently long and

so that LebWj2
(F̂nΩ2) ' LebWj1

(F̂nΩ1). Recall the definition of Q̂H
n (x)

given above in this subsection. Let x1 ∈ Ωj1 and y1 = F̂nx1 ∈ Wj1.

Observe that, by construction, Wj1 ⊂ Q̂H
−n(y1) and Vj1 ⊂ Q̂H

n (x1).
Let x2 = Hx1 ∈ W2. Then x1 and x2 are connected by a stable

manifold, which by definition cannot cross the boundary of Q̂H
n . We

conclude that x2 ∈ Q̂H
n (x1), which in turn implies that W2 ∩ Q̂H

n (x1) is

non-empty. Transversality of unstable curves and the boundary of Q̂H
n

(composed of stable curves) then imply that W2∩ Q̂H
n (x1) is connected,

and since F̂n is smooth on Q̂H
n (x1), we conclude that F̂n(W2∩Q̂H

n (x1)) is

an H-component of F̂nW2, that we denote by W̃j2. Let Ṽj2 = F̂−nW̃j2.

Since x1 is arbitrary, we conclude that H(Ωj1) ⊂ Ω2 ∩ Ṽj2. In other

words: for any shortened H-component Wj1 of F̂nW1, there exists a

unique H-component W̃j2 of F̂nW2 to which Wj1 can be linked by
stable manifolds.

The Bounded Distortion Corollary 5.10 and the fact that |Wj1|α < 1
imply that for some C > 1 and any index j so that (7.22) holds:

LebWj1
(F̂nΩj1) ≥ (1− Cε)|Wj1|α.(7.24)

In particular, there exists two points a1, b1 ∈ Wj1 ∩ F̂nΩ1 that lie less
than Cε|Wj1|α away from each of the boundary points of Wj1. Other-

wise, F̂nΩj1 would miss an interval of α-length larger than Cε|Wj1|α
in Wj1, which is impossible by (7.24). Let W j1 be the subcurve of Wj1

bounded by a1 and b1; then the triangle inequality yields:

|W j1|α ≥ (1− 2Cε)|Wj1|α.(7.25)

Since by construction a1 and b1 belong to Wj1 ∩ F̂nΩj1, we can find

a2, b2 ∈ W̃j2 ∩ F̂nΩ2 so that a2 = F̂nHF̂−na1 and b2 = F̂nHF̂−nb1. In
particular dα(a1, a2) ≤ dΛ−n and dα(b1, b2) ≤ dΛ−n. Let W j2 denote

the subcurve of W̃j2 bounded by a2 and b2. By the triangle inequality
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and (4.40), choosing n sufficiently large with respect to η we conclude
that

|W j2|α = dW̃j2
α (a2, b2) ≥ C−1

α |W j1|α − 2dΛ−n > C−1
α |W j1|α/2.(7.26)

Observe, moreover, that a similar argument shows that

|W j2|α ≤
3

2
Cα|W j1|α.

In particular, W j2 has uniformly bounded α-length (and Euclidean
length).

We now proceed to show that F̂nΩ2 ∩W j2 is large, more precisely
we will show that there exists C > 0 so that

LebW j2
(F̂nΩ2) ≥ (1− Cε)|W j2|α.(7.27)

First of all, we show that any sufficiently long stable manifold passing
through a point of W j2 will necessarily cross W j1; more precisely we

claim that: if z ∈ W j2 satisfies rs(z) > 4C2
αdΛ−n, then z ∈ F̂nΩ2.

Define the box B̄j as the region bounded by W j1, W j2 and the two
stable manifolds connecting the corresponding boundary points. We
claim that

diam αF̂−nB̄j ≤ 3Cαd(7.28)

In fact, F̂−nB̄j is bounded by V js = F̂−nW js (for j = 1, 2), which
are two subcurves of Wj, and two stable manifolds connecting the
corresponding endpoints. By the triangle inequality, the α-diameter
of F̂−nB̄j is bounded above by the sum of the lengths of the four
boundary curves. By the uniform expansion estimate (4.29) we have
|V js|α < C#Λ−n (recall that |W js|α < C#), and combining (7.21)
and (4.40) for stable manifolds we gather that the length of the sta-
ble manifolds connecting the endpoints is at most Cαd. Choosing n
sufficiently large yields (7.28).

Assume by contradiction that z ∈ W j2 is such that rs(z) > 4C2
αdΛ−n

but z 6∈ F̂nΩ2 (hence W s(z)∩W j1 = ∅). Since stable manifolds cannot
intersect each other, we conclude that there exists a piece of the stable
manifold W s(z) of length at least 4C2

αdΛ−n contained in B̄j.

Since, by construction, B̄j ⊂ Q̂H
−n(z), we conclude by the invariance

of stable manifolds using the uniform expansion estimate (4.29) that

F̂−nB̄j contains a stable manifold of length at least 4C2
αd. In view of

(4.40), this contradicts (7.28) proving the claim.
At this point, Corollary 7.10(a’) yields:

LebW j2
(rs(z) ≤ 4C2

αdΛ−n) < C#(dΛ−n)1/4.
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By (7.26) and (7.22), choosing n so that dΛ−n < (εη)4, we gather

LebW j2
(z : W s(z) ∩W j1 6= ∅) ≥ (1− C#ε)|W j2|α,

which, at last, implies (7.27).
Combining (7.24) and (7.25) we conclude that there exists C̄ (for

instance taking C̄ = 6C would do), so that

LebW j1
(F̂nΩ1) > (1− C̄ε)|W j1|α.

Therefore there exist points z
(0)
1 , · · · , z(N)

1 ∈F̂nΩ1∩W j1, where z
(0)
1 = a1

and z
(N)
1 = b1 so that for k = 0, · · · , N − 1:

(7.29)
C̄

2
ε|W j1|α < dW j1

α (z
(k)
1 , z

(k+1)
1 ) <

3C̄

2
ε|W j1|α

(otherwise, F̂nΩ1 would miss an interval of length larger than C̄ε|W j1|).
Let z

(k)
2 = F̂nHF̂−nz(k)

1 ; let W
(k)

j1 (resp. W
(k)

j2 ) be the subcurves in

which the points {z(k)
1 } (resp. {z(k)

2 }) partition W j1 (resp. W j2).
Our previous arguments and the fact that stable manifolds cannot

cross each other imply that z
(k)
2 ∈ W j2 and, moreover,

(7.30) dα(z
(k)
1 , z

(k)
2 ) ≤ dΛ−n.

Take n so large that

(7.31) dΛ−n < 0.01ε2η.

Observe that (7.25) implies that |W j1|α > η/2. Thus using (4.40), the
triangle inequality, (7.29), (7.30) and (7.31) yield

(7.32) |W (k)

j2 |α ≤ Cαdα(z
(k)
2 , z

(k+1)
2 ) < 2CαC̄ε|W j1|α.

Indeed it is possible to obtain a better estimate as follows. Assume first
that W j1 (and thus W j2) does not lie in D−R . Since the curves are ad-
missible then B−j1 and B−j2 are Lipschitz functions with respect to the α-
distance. By the estimates in the proof of Lemma 5.12 (namely, (5.19))

we also gather that |B−j1(z
(k)
1 )−B−j2(z

(k)
2 )| can be made arbitrarily small

taking n sufficiently large. We conclude, since B− is bounded and us-
ing (7.32) and (7.31) that
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|W (k)

j2 |α=
∫ r

(k+1)
2

r
(k)
2

α(z)(2κ(r) + B−(r)w)dr

=

∫ r
(k+1)
1

r
(k)
1

α(z)(2κ(r) + B−(r)w)dr +O(dΛ−n)

=|W (k)

j1 |α(1 +O(ε)),(7.33)

where above we denoted z
(k)
i = (r

(k)
i , w

(k)
i ). The case in which W j1 and

W j2 lie in D−R follows from analogous arguments, but integrating in dw
and using the fact that 1/B−j1 and 1/B−j2 are Lipschitz functions.

Recall the notation V js = F̂−nW js. Letting V
(k)

js = F̂−nW (k)

js and

x̄
(k)
js = F̂−nz(k)

s , we get:

|V j1|α =

∫
W j1

JWj1
F̂−n(x)dx =

∑
k

|W (k)

j1 |αJWj1
F̂−n(z

(k)
1 )(1 +O(ε1/12))

where we have used the Hölder continuity of lnJWF−n given by Lemma 5.7(a)
in the second equality. Then by (7.33) we can proceed

|V j1|α =
∑
k

|W (k)

j2 |αJWj1
F̂−n(z

(k)
1 )(1 +O(ε1/12))

=
∑
k

|V (k)

j2 |α
JWj1

F̂−n(z
(k)
1 )

JWj2
F̂−n(z

(k)
2 )

+ |V j2|αO(ε1/12) (Hölder cont. of lnJWF−n)

=
∑
k

|V (k)

j2 |α

[
n−1∏
l=0

JF̂ lW2
F̂(F̂ lHx̄(k)

j1 )

JF̂ lW1
F̂(F̂ lx̄(k)

j1 )

]
+ |V j2|αO(ε1/12)

=
∑
k

|V (k)

j2 |αJ(x̄
(k)
j1 ) + |V j2|α

[
O(ε1/12) +O(θn)

]
(Lemma 5.12(a))

= |V j2|α(J(x̄j) +O(ε1/12) +O(θn) +O(θ̂n))

where in the last step we used Lemma 7.11 and the fact that, by con-

struction, ŝ+(x̄j, x̄
(k)
j1 ) ≥ n. Assuming that n is sufficiently large and

summing over j we conclude that:

∗∗∑
j

φ(x̄j)|V j1|α =
∗∗∑
j

φ(x̄j)|V j2|α J(x̄j) +O(ε1/12).
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The Bounded Distortion Corollary 5.10 and (7.27) yield:

∗∗∑
φ(x̄j)|V j2|αJ(x̄j) ≤

∗∗∑
LebW2(Ω̄j2)φ(x̄j)J(x̄j) +O(ε),

where we define Ω̄j2 = Ω2 ∩ V j2.
Using (7.23) we conclude:∫

Ω1

φ(x)dx ≤
∗∗∑
j

LebW2(Ω̄j2)φ(x̄j)J(x̄j) +O(ε1/12).(7.34)

By Lemmata 5.11 and 5.12(a), the function ψ(x) = φ(H−1x)J(H−1x)
is non-negative and integrable. Recall that x̄j was chosen arbitrarily
in Vj1; in particular we can choose x̄j ∈ V j1 ∩ Ωj1 so that φ(x̄j)J(x̄j)
is not larger than the average of ψ on Ω̄j2:

LebW2(Ω̄j2)φ(x̄j)J(x̄j) ≤
∫

Ω̄j2

φ(H−1y)J(H−1y)dy.

It follows that∫
Ω1

φ(x)dx ≤
∑
j

∫
Ω̄j2

φ(H−1y)J(H−1y)dy +O(ε1/12)

≤
∫

Ω2

φ(H−1y)J(H−1y)dy +O(ε1/12).

where the last step follows since V j2 are disjoint,
⋃
j

V j2 ⊂ Ω2 and both

φ and J are non negative. Since ε > 0 is arbitrary, we obtain∫
Ω1

φ(x)dx ≤
∫

Ω2

φ(H−1y)J(H−1y)dy.

By symmetry, exchanging the roles of W1 and W2:∫
Ω2

φ(H−1y)J(H−1y)dy ≤
∫

Ω1

φ(H(H−1x))
J(H(H−1x))

J(x)
dx =

∫
Ω1

φ(x)dx

and Proposition 7.12 follows. �

7.4. Absolute continuity of stable lamination. Consider a smooth
local coordinate system (a, b) in a small domain in the phase space such
that the curves {b = const} are unstable. Define the set

Rb1,b2 = {x : b1 ≤ b(x) ≤ b2 and

W s(x) ∩ {b = b1} 6= ∅, W s(x) ∩ {b = b2} 6= ∅}.
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Consider another coordinate system45 (u, s) on Rb1,b2 such that

x(u, s) = W s(x(u, b1)) ∩ {b = s}
where x(u, b1) is the restriction of our coordinate system on the curve
{b = b1}.

Define the measure dν = duds on Rb1,b2 . For i = 1, 2, let46

Ωi = Rb1,b2 ∩ {b = bi}, and define the sets:

Zu1,u2 = {x ∈ Rb1,b2 : u1 ≤ u(x) ≤ u2},
Zu1,u2;s1,s2 = {x ∈ Rb1,b2 : u1 ≤ u(x) ≤ u2, s1 ≤ s(x) ≤ s2},
Zu1,u2;s = {x ∈ Rb1,b2 : u1 ≤ u(x) ≤ u2, s(x) = s},
Zu;s1,s2 = {x ∈ Rb1,b2 : s1 ≤ s(x) ≤ s2, u(x) = u}.

Note that the measure ν is defined on a fractal set Rb1,b2 and it
does not have the smooth density with respect to the restriction of the
Lesbegue measure on this set. However, it is sufficiently regular for our
purposes as we will see below.
Proposition 7.14. (Absolute Continuity-2) The measure ν is
equivalent to the restriction of the Lebesgue measure on Rb1,b2 .

Proof. Note that all smooth measures are equivalent, so below Leb will
denote the measure defined by dLeb = da db. Note that

ν(Zu1,u2;s1,s2) = νZu1,u2;b1
([u1, u2] ∩ Ω1)(s2 − s1),

where νA is the restriction of the measure ν on the set A. By Proposi-
tion 7.12, we have

Leb(Zu1,u2;s1,s2) =

∫ s2

s1

Leb{b=s}(Zu1,u2;s)ds

=

∫ s2

s1

∫
[u1,u2]∩Ω1

JHs(x(u, b1))duds,

where JHs is the Jacobian of the holonomy map Hs : Ω1 → Zu1,u2;s.
Since J(Hs) is uniformly bounded from above and below, there is a

constant K > 1 such that for each [u1, u2], [s1, s2] we have

K−1 ≤ ν(Zu1,u2;s1,s2)

Leb(Zu1,u2;s1,s2)
≤ K,

proving the proposition. �

Corollary 7.15. The following are equivalent

45Note that in contrast with coordinates (a, b) considered above, the new coor-
dinate system is only defined on a fractal set Rb1,b2 .

46Note that Ω1 = {x ∈ W1 : W s(x) ∩ W2 6= ∅} where Wj = {b(x) = bj}.
Therefore the notation Ω is consistent with (5.13).
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(a) Leb(A) = 0
(b) for almost every x, mes(A ∩W s(x)) = 0.
(c) for almost every x, mes(A ∩W u(x)) = 0.

Proof. We prove the equivalence of (a) and (b). The equivalence of (a)
and (c) follows from analogous arguments.

It suffices to prove the result under the assumption that A ⊂ Rb1,b2

for some b1, b2. But then

Leb(A) = 0⇔ ν(A) = 0⇔ for a.e. (u, s) ∈ Ω1×[b1, b2] mes(A∩Zu;b1,b2) = 0

⇔ for a.e. x ∈ Rb1,b2 mes(A ∩W s(x)) = 0. �

8. Ergodicity

Proof of the Main Theorem. Fix a large number R. Let M̂R ⊂ M̂ be
a bounded region such that

• M̂ ∩ {w < R} ⊂ M̂R;

• M̂ ∩ {w < 2R} ⊃ M̂R

• ∂M̂R consists of curves in Ŝ−.

The existence of a region with the properties specified above follows
because by Theorem 4.9, the map F̂ is well approximated for large en-
ergies by the map F̃∆ given by (4.11) (where the adiabatic coordinates
I and τ are given by (4.13)), and the singularities of F̃−1

∆ are the lines
I + τ + ∆

(
τ − 1

2

)
= m, m ∈ Z and each line separates the phase space

into two connected components.

By Theorem 4.11 the first return map F̃R : M̂R → M̂R is well
defined for sufficiently large R. In order to prove ergodicity of F̂ , it is

thus enough to show that F̃R is ergodic for every R sufficiently large.

Let R0 be the set of points x ∈ M̂R such that for any continuous
function A, the limits

Ā+(x) = lim
n→∞

1

n

n−1∑
j=0

A(F̃ jRx), Ā−(x) = lim
n→∞

1

n

n−1∑
j=0

A(F̃−jR x)

exist and are equal. We shall call the common limit Ā(x). By the
Birkhoff Ergodic Theorem, the set R0 has full Lebesgue measure in

M̂R. For j > 0 define47

Rj = {x ∈ Rj−1 : LebWu(x)(Rc
j−1) = LebW s(x)(Rc

j−1) = 0}.

47 Here and elsewhere in Section 8 Ac denotes the complement of the set A in

M̂R, that is M̂R \A.



108 JACOPO DE SIMOI AND DMITRY DOLGOPYAT

By Corollary 7.15, Leb(Rc
j) = 0 for all j > 0. Note that since ∂M̂R

is a union of curves in Ŝ−, (un)stable manifolds for F̃R are given by

the intersection of (un)stable manifolds48 for F̂ with M̂R.
We now define the following equivalence relation: for x1, x2 ∈ R0,

we let x1 ∼ x2 if and only if Ā(x1) = Ā(x2) for all continuous functions

A on M̂R. If x ∈ M̂R, we denote with Σ(x) the equivalence class of

x. To prove that F̃R is ergodic it suffices to show that there exists an

equivalence class of full measure in M̂R.

For K > 0, let Q be a connected component of M̂ \ (ŜKH ∪ Ŝ−KH ).

By construction, both F̂K and F̂−K are continuous on Q; moreover,
for each −K ≤ k ≤ K, we have that N̂k is a constant function on Q
and for any N̂−K ≤ n ≤ N̂K , the image FnQ is contained in a single
homogeneity strip. We call Q a homogeneous K-cell. Observe that,

by definition, if Q is a homogeneous K-cell and Q ∩ M̂R 6= ∅, then

necessarily Q ⊂ M̂R. Moreover, since M̂R is compact, the Euclidean
length and α-length are equivalent; we will use Euclidean length (and
distance) for the rest of this section.

Since M̂R ⊂ M̂≤2R, Corollary 4.16 yields uniform transversality
between the mature stable and mature unstable cones. In particular,
for any R > 0, there exists L > 0 so that the following holds: for any

x, x′ ∈ M̂R, let W be a mature stable curve passing through x and W ′

a mature unstable curve passing through x′. If rW (x) > Ld(x, x′)/2
and rW ′(x

′) > Ld(x, x′)/2, then W ∩W ′ 6= ∅.
Observe that for any homogeneous K-cell Q, x ∈ Q and N̂−K(x) <

n < N̂K(x):

d(Fnx,Fn∂Q) ≤ d(Fnx,S1
H),

d(Fnx,Fn∂Q) ≤ d(Fnx,S−1
H )

In fact if e.g. the first inequality did not hold, FnQ would intersect
non trivially S1

H, but this means that either F would not be continuous
on FnQ, or that Fn+1Q intersects two homogeneity strips. Neither of
these possibilities is allowed by our construction.

Lemma 8.1 (Local Ergodicity). There exists K > 0 (depending on R)

such that any homogeneous K-cell Q ⊂ M̂R is contained (mod 0) in a
single equivalence class.

48 As a matter of fact, unstable manifolds are indeed the same, but stable man-

ifolds might get truncated if they cross ∂M̂R
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Proof. Let us fix K large enough to be determined later, and let Q
denote an arbitrary homogeneous K-cell. Let

d(K)(x, ∂Q) = min
N̂−K(x)<n<N̂K(x)

d(Fnx,Fn∂Q).

Fix a small δ > 0 to be specified later and define

Qδ = {x ∈ Q : d(K)(x, ∂Q) > δ}.

Observe that Qδ 6= ∅ provided that δ is sufficiently small and that
Leb(Q \Qδ)→ 0 as δ → 0. Then for any ε > 0 define:

Rε = {x ∈ R2 : ru(x) ≥ ε, rs(x) ≥ ε}.
We claim that there exists C > 0 so that for any δ > 0 and sufficiently
small ε > 0,

Leb(Qδ \ Rε) < Cε.(8.1)

In fact, assume that ε > 0 is so small (relative to δ) that for any
x ∈ Qδ we have dα(Fx,S−1

H ) > Cε (where C is the constant found in
Corollary 7.10).

Let us foliate Qδ with mature admissible unstable curves; for each
such curve W , Corollary 7.10(a) implies that

LebW (rs(x) < ε) < C#ε.

Integrating over the curves, we get that Leb(Qδ \ {rs(x) < ε}) < C#ε.
Similarly, foliating with mature admissible stable curves and apply-
ing Corollary 7.10(c), we obtain an analogous estimate for ru, which
yields (8.1).

Lemma 8.2. For any small η̄ > 0, there exist K > 0 and ε0 > 0 such
that for any 0 < ε < ε0, any homogeneous K-cell Q:

(a) if x ∈ Qδ then
Leb(B(x, ε) ∩RLε)

Leb(B(x, ε))
> 1− η̄;

(b) If x ∈ RLε ∩Qδ then
Leb(B(x, ε) ∩ Σ(x))

Leb(B(x, ε))
> 1− η̄ where Σ(x) is

the equivalence class defined at the beginning of the present section.

Proof. To prove part (a), fix η to be specified later and let K be the
k given by Corollary 7.10(b), with the above choice of η. Let x ∈ Qδ;
by choosing ε0 sufficiently small (depending on δ), we can guaran-
tee that any point x′ ∈ B(x, ε) satisfies49 dα(Fnx′,S−1

H ) > CLε for

any 0 < ε < ε0 and 0 ≤ n ≤ N̂k(x), where C is the constant pro-
vided by Corollary 7.10. Foliate B(x, ε) by mature admissible unstable

49 Recall that the α-metric and the Euclidean metric are equivalent
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curves and disintegrate Leb|B(x,ε) on such unstable curves. Then Corol-
lary 7.10(b) implies that on any such unstable curve W

LebW (rs(x) ≤ Lε) ≤ ηLε.

Integrating over all unstable curves we conclude that

Leb(B(x, ε) ∩ {rs(x) < Lε}) ≤ ηLε2.

By foliating with mature admissible stable curves and applying Corol-
lary 7.10(d), we conclude that the corresponding statement holds for
ru. Collecting these two estimates we gather:

Leb(B(x, ε) ∩RLε)

Leb(B(x, ε))
> 1− 2Lη

π
.

Choosing a η = πη̄/2L, we conclude the proof of item (a). To prove
part (b), it suffices to show that

(8.2) if x′ ∈ B(x, ε) and x, x′ ∈ RLε then x′ ∈ Σ(x).

Indeed (8.2) implies that B(x, ε) ∩ Σ(x) ⊃ B(x, ε) ∩ RLε, and so item
(b) follows from item (a).

To prove (8.2) observe that the choice of L guarantees that the sta-
ble holonomy map π from W u(x) to W u(x′) is defined on a non-empty
subcurve W ⊂ W u(x). Let W ′ = π(W). Since x, x′ ∈ R2 it follows
that almost every point in both W and W ′ belongs to R1. Now Corol-
lary 7.13 implies that there is a point y ∈ R1 such that π(y) ∈ R1 (in
fact, LebW almost every point has these properties). It follows that
x ∼ y ∼ π(y) ∼ x′ proving (8.2). �

We now continue the proof of Lemma 8.1. We assume K is such that
that Lemma 8.2 holds with η̄ = 1

10000
. Then for any x ∈ RLε ∩Qδ

Leb(B(x, ε) ∩ Σ(x))

Leb(B(x, ε))
≥ 9999

10000
.

Assume now that

(8.3) x1, x2 ∈ RLε ∩Qδ and d(x1, x2) ≤ 3ε

100
.

Elementary geometry implies that

Leb(B(x1, ε) ∩B(x2, ε))

Leb(B(x1, ε))
>

1

2
.

Thus (B(x1, ε)∩Σ(x1))∩(B(x2, ε)∩Σ(x2)) fills at least 25% of B(x1, ε).
In particular, Leb(Σ(x1) ∩ Σ(x2)) > 0. Therefore (8.3) implies that
x1 ∼ x2.
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Next, given arbitrary x1, x2 ∈ RLε ∩Qδ, we will construct a chain of
points

(8.4) z1, z2, · · · , zN ∈ RLε ∩Qδ

such that z1 = x1, zN = x2 and d(zj, zj+1) < 3ε/100. Once such chain
is constructed, it follows that any x1, x2 ∈ RLε ∩ Qδ are equivalent.
Then since ε can be taken arbitrarily small, (8.1) implies that almost
every x1, x2 ∈ Qδ are equivalent. By the same token, since δ can be
taken arbitrary small it follows that Q contains an equivalence class of
full measure. It remains to construct the chain (8.4). Take an arbitrary
sequence of points x1 = y1, y2, . . . , yN = x2 such that d(yj, yj+1) ≤ ε

100
.

By Lemma 8.2(b) there exist points zj ∈ B(yj,
ε

100
) such that zj ∈

RLε∩Qδ (because Leb(B(yj, ε/100)) = Leb(yj, ε)/10000. Moreover we
can take z1 = x1, zN = xN . By the triangle inequality d(zj, zj+1) ≤ 3ε

100

showing that the chain (zj)
N
j=1 has the required properties. �

We now continue the proof of our Main Theorem. By Lemma 8.1 for

all sufficiently large R there exists K>0 and a full-measure set E⊂M̂R

so that each equivalence class in E is a union of K-components (mod
0).

We now prove that E consists of a single equivalence class. Let Ê ⊂
E be an equivalence class; of course F̃RÊ = Ê. Moreover there exists
Ê∗ which is a union of homogeneous K-cells so that Leb(Ê∗ \ Ê) = 0.

Then, consider F̃±2(K+1)
R Ê∗. Observe that the boundary ∂F̃2(K+1)

R Ê∗

consist of curves in ∂M̂R and unstable curves, whereas ∂F̃−2(K+1)
R Ê∗

consists of curves in ∂M̂R and stable curves. By invariance of Ê, the

sets F̃±2(K+1)
R Ê∗ are equal (mod 0). We conclude that the boundaries

are necessarily contained in ∂M̂R. Since M̂R is connected, we conclude

that Ê∗ = M̂R. �

Remark 8.3. Another approach of deducing ergodicity from local er-
godicity (Lemma 8.1) is due to Chernov and Sinai [14]. If there is
more than one equivalence class there would be a curve Γ which is an

arc of a discontinuity curve for some F̃ j with |j| ≤ K which separates
two classes E1 and E2. In particular, there is a point x ∈ Γ and a
small neighborhood U of x which consists of only two components of
E: E1 and E2 which lie on different sides of Γ. Suppose for example
that j ≤ 0 so that, by Lemma 3.2, Γ is an unstable curve. Then we

can assume (after possibly changing x), that F̃K is continuous near x,
where K is from Lemma 8.2. For l ∈ {1, 2}, let Σl =

⋃
y∈ElW

s(y).
Arguing as in the proof of Lemma 8.2 we conclude that Σ1 ∩ Σ2 has
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positive measure. This shows that in fact, E1 and E2 are equivalent,

giving a contradiction. Hence E consists of a single class and so F̃R is
indeed ergodic.

9. Open problems

In this section we present possible directions of further research.

(I) In this paper we showed ergodicity of a class of piecewise smooth
Fermi–Ulam models. In principle we believe that this result can be gen-
eralized to a broader, and more natural, class of wall motions. More
precisely, it should be possible to adapt our arguments to treat motions
that satisfy the same convexity conditions in the domains of smooth-
ness, but with more than one non-smoothness point, provided that all
of them are convex (i.e. the derivative has a positive jump). It is
more delicate to understand the behavior of Fermi–Ulam Models with
non-convex singularity points, since in principle Proposition 6.5 might
fail in this case (similarly to what happens for dispersing billiards with
corner points and infinite horizon, see [5]). Indeed our proof of Propo-
sition 6.5 relies on the global structure of singularities established in
§ 3.2 and the arguments of the subsection rely on convexity of singular
points at several places. Moreover, the results of [17] would also need
to be generalized to prove, e.g. recurrence for systems with non-convex
singularity points. Thus, further non-trivial investigation is required
to understand the case of non-convex singular points.

(II) Corollary 1.2 says that almost every orbit is oscillatory. Thus,
for a typical orbit, the energy takes both large and small values at
different moments of time. It is of interest to understand both rate of
growth of energy and statistics of returns similarly to what is done in
[8, 24].

(III) In Fermi–Ulam models the point mass keeps colliding with the
moving wall due to the presence of the fixed wall (a hard core con-
straint). It is possible to ensure the recollisions via a soft potential.
Some results about large energy dynamics of particles in soft potentials
are obtained in [16, 19, 38]. It is assumed in the above cited papers that
the motion of the wall is smooth. One could also consider piecewise
smooth wall motions where ergodicity seems likely under appropriate
conditions.

(IV) This paper deals with the case where the velocity of the wall
has a jump. From the physical point of view it is natural to consider
also the case where acceleration has jump, but this seems much more
difficult since the energy change is much slower for large energies in
this case.
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Appendix A. Regularity at infinity

In this appendix we show that most Fermi–Ulam Models are super-
regular at infinity. In particular, Lemma A.1 below implies that for
each one-parameter family of functions `(a, t) satisfying the hypothe-
ses of the Main Theorem such that the map a 7→ ∆(a) is smooth and
satisfies appropriate non-degeneracy condition (for example, it is suffi-
cient that there is m > 0 such that for each a at least on among the first
m derivatives of ∆ at a is non zero), all but countably many parameter
values are supperregular at infinity. Recall from Definition 6.3 that
the ping-pong is superregular at infinity if there exists a constant C so
that for any k ∈ N we have Kk(∆) ≤ C where Kk(∆) is the k-virtual
complexity of ∆ at infinity defined by (6.2).

Lemma A.1. For any k, the set of ∆ such that Kk(∆) > 3 is discrete.
In order to explain the proof more clearly, we first introduce a con-

venient change of coordinates. Let

ξ = τ − 1/2, η = I − τ + 1/2.

If x ∈ D̂n0,··· ,nk−1
we can express the orbit {xl = F̂ l

∆x}0≤l<k in (ξ, η)
coordinates as:

ξl+1 = −(ηl − nl), ηl+1 = κ(ηl − nl) + ξl + nl

where κ = (2 − ∆) > 2. Let us define η̃l = ηl − nl ∈ [−1/2, 1/2] and
the reduced itineraries νl = nl+1 − nl. Then

ξl+1 = −η̃l, η̃l+1 = κη̃l + ξl − νl.(A.1)

Iterating, we obtain

η̃l = Pl(κ)η̃0 + Pl−1(κ)ξ0 −
l−1∑
j=0

Pl−j−1(κ)νj(A.2)

where Pl satisfies the recursive relation Pl+2 =κPl+1−Pl, with P0(κ)=1
and P1(κ) = κ. In particular, Pl is a monic50 polynomial of degree l.

(A.1) can be rewritten as follows

η̃l = −ξl+1 ξl = η̃l+1 − κη̃l + νl = κξl+1 + η̃l+1 + νl.(A.3)

Comparing (A.1) and (A.3) we obtain the following analogue of (A.2)

ξ0 = Pl(κ)ξl + Pl−1(κ)η̃l +
l−1∑
j=0

Pj(κ)νj.(A.4)

50 i.e. the coefficient of degree l is equal to 1.
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Proof of Lemma A.1. Assume that Kk(∆, x) > 3. Then x admits 4 dif-
ferent itineraries, i.e. four different choices of k-tuples which we denote

with n̄(0), n̄(1), n̄(2), n̄(3) respectively where n(j) = (n
(j)
0 , n

(j)
1 , . . . , n

(j)
k−1).

Without loss of generality we will assume51 that n̄
(i)
0 6= n̄

(j)
0 for some

0 ≤ i, j < 4. Observe that n̄
(i)
0 can take only two possible values (in

case ηl ∈ Z + 1/2). There are thus two possibilities, which can be
described (again without loss of generality) as follows:

(a) n̄
(0)
0 = n̄

(1)
0 6= n̄

(2)
0 = n̄

(3)
0 ,

(b) n̄
(0)
0 = n̄

(1)
0 = n̄

(2)
0 6= n̄

(3)
0 .

Let us first tackle case (a). Let m′ (resp. m′′) denote the least index so

that n̄
(0)
m′ 6= n̄

(1)
m′ (resp. n̄

(2)
m′′ 6= n̄

(3)
m′′). By (A.2) we conclude that

η̃
(0)
m′ = Pm′ η̃

(0)
0 + Pm′−1ξ

(0)
0 −

m′−1∑
j=0

Pm′−j−1ν̄
(0)
j ,

η̃
(2)
m′′ = Pm′′ η̃

(2)
0 + Pm′′−1ξ

(2)
0 −

m′′−1∑
j=0

Pm′′−j−1ν̄
(2)
j .

Observe that by assumption η̃
(0)
0 = −η̃(2)

0 , so that one of the numbers

is −1
2

and the other is +1
2

(otherwise n̄
(0)
0 = n̄

(2)
0 ) and ξ

(0)
0 = ξ

(2)
0 .

Multiplying the first equation by Pm′′−1 and the second one by Pm′−1

and subtracting we obtain

Pm′′−1η̃
(0)
m′ − Pm′−1η̃

(2)
m′′ = (Pm′Pm′′−1 + Pm′′Pm′−1)η̃

(0)
0 +O(κm

′+m′′−2)

Since η̃
(0)
0 , η̃

(0)
m′ , η̃

(2)
m′′ = ±1/2 and Pl is monic, we conclude that the above

condition can be written in the form

Q(κ; η̃
(0)
0 , η̃

(0)
m′ , η̃

(2)
m′′ , ν̄

(0)
0 , · · · , ν̄(0)

m′−1, ν̄
(2)
0 , . . . , ν̄

(2)
m′′−1) = 0(A.5)

where Q is a nonzero polynomial of degree m′ + m′′ − 1 in κ. Note
that for any fixed k, R > 2 and 2 ≤ κ < R the number of different
reduced itineraries {ν̄(i)}i≤k is bounded by some function N(k,R). For
each itinerary the equation (A.5) has at most m′ + m′′ − 1 ≤ 2k − 1
solutions. It follows that there are at most (2k − 1)N(k,R) values
of κ ∈ (2, R) such that ∆ = 2 − κ satisfies Kk(∆, x) > 3 and the
alternative of case (a) holds.

Let us now consider case (b). We claim that in this case one of the

itineraries (e.g. ν̄(0)) is such that there exists l < m with η̃
(0)
l = ±1/2

and η̃
(0)
m = ±1/2. In fact let l be the least index so that n̄

(i)
l 6= n̄

(j)
l

51 Otherwise we consider F̂mx rather than x, where m is the least index so that

n̄
(i)
m 6= n̄

(j)
m for some 0 ≤ i, j < 4.
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for some i 6= j≤2, which implies that η̃
(i)
l = ±1/2 for i = 0, 1, 2. On

the other hand, n̄
(i)
l can take only two possible values, thus we can

assume without loss of generality that n̄
(0)
l = n̄

(1)
l . But n̄(0) and n̄(1)

differ so there must exist m > l so that n̄
(0)
m 6= n̄

(1)
m , which implies that

η̃
(0)
m = ±1/2.
Thus by (A.2) we have

η̃(0)
m = Pm−lη̃

(0)
l + Pm−l−1ξ

(0)
l −

m−l−1∑
j=0

Pm−l−j−1ν̄
(0)
l+j

while (A.4) and the fact that ξ
(0)
1 = −η̃(0)

0 give

−η̃(0)
0 = Pl−1ξ

(0)
l + Pl−2η̃

(0)
l +

l−2∑
j=0

Pj ν̄
(0)
j+1.

Multiplying the first equation by Pl−1 and the second by Pm−l−1 and
subtracting we obtain

Pl−1η̃
(0)
m +Pm−l−1η̃

(0)
0 = (Pm−lPl−1 − Pm−l−1Pl−2)η̃

(0)
l +O(κm−2).

Once again the above condition can be written in the form

Q(κ; η̃
(0)
0 , η̃

(0)
l , η̃(0)

m , ν̄
(0)
0 , · · · , ν̄(0)

m ) = 0

where Q is a nonzero polynomial of degree m − 1. Using the same
arguments as in case (a) we conclude the proof. �
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[24] D. Dolgopyat, D. Szász, and T. Varjú. Recurrence properties of planar Lorentz
process. Duke Math. J., 142(2):241–281, 2008.
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