Midterm 2 sample problems.

No calculators will be allowed on the midterm, however you can bring one sheet (size A4) with formulas. Midterm will cover chapters 4,5 and 6 from the book.
(1) Three balls are drawn from three urns. The first urn contains 1 blue and 5 red balls, the second urn contains 2 blue and 4 red balls, and the third urn contains 3 red and 3 green balls.
(a) Find the probability that 2 red balls are chosen;
(b) Let X be the number of different colors chosen. Find the distribution of X.
(2) 10000 bacteria are analyzed in the lab. It is known that the probability that a bacteria has gene A is $\frac{1}{2}$ and the probability that it has gene B is $\frac{1}{5000}$. Compute approximately the probability that
(a) 5010 or more bacteria will carry gene A ;
(b) Exactly 3 bacteria care gene B.
(3) Jane finds a job which requires her to commute 5 days a week. On her way home Jane is in a harry so there is $\frac{1}{20}$ probability that she gets a speeding ticket
(a) Let X be the number of tickets Jane gets during first 6 weeks of work. Compute $E X$ and $V X$.
(b) When Jane gets three tickets she needs to attend a driving school. Find the probability that Jane gets her third ticket on her 50th commute.
(4) A class has 15 boys and 20 girls. 10 theater tickets are distributed at random.
(a) Find the probability that girls have exactly 6 tickets;
(b) Amanda's lunch mates are Barbara, Cindy, Dalia and Elena. Find the conditional probability that Amanda's table gets exactly 2 tickets given that girls got exactly 6 tickets.
(5) A number of misprints on a page has Poisson distribution with parameter $\frac{1}{2}$.
(a) Find the probability that exactly three of the next 10 pages will have at least two misprints.
(b) Let X be the first page which has a misprint. Find $E X$ and $V X$.
(6) Let X_{1} have density equal to $c_{1} x^{3}$ on $[0,1]$ and zero elsewhere and X_{2} have density equal to $c_{2} x^{10}$ on $[0,2]$ and zero elsewhere.
(a) Compute c_{1} and c_{2};
(b) Which of the two random variables above has a smaller variance?
(7) The lifetime of a light bulb (measured in days) has exponential distribution with parameter $1 / 100$.
(a) Find the distribution of the lifetime measured in hours;
(b) If the bulb is installed on a Wednesday at noon, find the probability that it will burn out on a Monday.
(8) The amount of sales at a department store on a given day has normal distribution with mean 30000 and standard deviation 3000. Find the probability that the store sold
(a) more than 31000 worth of goods;
(b) between 28000 and 32000 worth of goods.
(9) Let X_{1} and X_{2} be independent each having denisity equial to $2 x$ if $0 \leq x \leq 1$ and equal to 0 otherwise.
(a) Find $P\left(X_{1}>2 X_{2}\right)$.
(b) Find the distribuition of $X_{1}+X_{2}$.
(10) Let $X_{1}, X_{2} \ldots X_{n}$ be independent each having denisity equial to $2 x$ if $0 \leq x \leq 1$ and equal to 0 otherwise.
(a) Let N be the first time $X_{N}>\frac{2}{3}$. Find $E X$ and $V X$.
(b) Let $n=5$ and let $X_{(1)}>X_{(2)}>X_{(3)}>X_{(4)}>X_{(5)}$ be the corresponding order statistics. Find $P\left(X_{(3)}>X_{(4)}+0.1\right)$.
(11) Let (X, Y) have density $x+y$ if $0 \leq x \leq 1,0 \leq y \leq 1$ and equal to zero otherwise.
(a) Find the marginal distribution of X.
(b) Are X and Y independent.
(c) Find the distribution of $Z=X / Y$.

