(1) Three balls are drawn from three urns. The first urn contains 1 blue and 5 red balls, the second urn contains 2 blue and 4 red balls, and the third urn contains 3 red and 3 green balls.
(a) Find the probability that 2 red balls are chosen;
(b) Let X be the number of different colors chosen. Find the distribution of X.

Solution. (a) Considering three cases depending on which ball is not read we get

$$
P(2 \text { reds })=\frac{1}{6} \frac{4}{6} \frac{3}{6}+\frac{5}{6} \frac{2}{6} \frac{3}{6}+\frac{5}{6} \frac{4}{6} \frac{3}{6}=\frac{102}{216} .
$$

(b) If there is only one color then all balls should be red. Thus

$$
P(X=1)=\frac{5}{6} \frac{4}{6} \frac{3}{6}=\frac{60}{216} .
$$

If there are three color then the last ball must be green. Considering whatever first or second ball are red we get

$$
P(X=3)=\frac{5}{6} \frac{2}{6} \frac{3}{6}+\frac{1}{6} \frac{4}{6} \frac{3}{6}=\frac{42}{216} .
$$

Hence

$$
P(X=2)=1-P(X=1)-P(X=3)=\frac{114}{216} .
$$

(2) 10000 bacteria are analyzed in the lab. It is known that the probability that a bacteria has gene A is $\frac{1}{2}$ and the probability that it has gene B is $\frac{1}{5000}$. Compute approximately the probability that
(a) 5010 or more bacteria will carry gene A ;
(b) Exactly 3 bacteria care gene B.

Solution. Let X be the number of bacteria carrying gene A and Y be the number of bacteria carrying gene B .
(a) $X \approx N(5000,2500)$, that is $X \approx 5000+50 Z$ where Z is the standard normal. Accordingly

$$
P(X \geq 5010) \approx P(Z \geq 0.2)=1-P(Z \leq 0.2) \approx 0.42
$$

(b) $Y \approx \operatorname{Pois}(2)$. Accordingly $P(Y=3) \approx \frac{2^{3}}{3!} e^{-2} \approx 0.18$.
(3) Jane finds a job which requires her to commute 5 days a week. On her way home Jane is in a harry so there is $\frac{1}{20}$ probability that she gets a speeding ticket
(a) Let X be the number of tickets Jane gets during first 6 weeks of work. Compute $E X$ and $V X$.
(b) When Jane gets three tickets she needs to attend a driving school. Find the probability that Jane gets her third ticket on her 50th commute.

Solution. (a) $X \sim \operatorname{Bin}\left(30, \frac{1}{20}\right)$. Therefore

$$
E X=30 \times \frac{1}{20}=\frac{3}{2}, \quad V X=\frac{30}{\times} \frac{1}{20} \times \frac{19}{20}=\frac{57}{40} .
$$

(b) Using the formula for negative binomial distribution with parameters 3 and $\frac{1}{20}$ we see that the answer is

$$
\binom{49}{2}\left(\frac{19}{20}\right)^{47}\left(\frac{1}{20}\right)^{3} .
$$

(4) A class has 15 boys and 20 girls. 10 theater tickets are distributed at random.
(a) Find the probability that girls have exactly 6 tickets;
(b) Amanda's lunch mates are Barbara, Cindy, Dalia and Elena. Find the conditional probability that Amanda's table gets exactly 2 tickets given that girls got exactly 6 tickets.

Solution. (a) From the formula for hypergeometric distribution we see that the answer is

$$
\frac{\binom{15}{4}\binom{20}{6}}{\binom{35}{10}} .
$$

(b) Given that the girls get 6 tickets the number of tickets obtained by Amanda's table is hypergeometric with parameters $(20,5,6)$. So the answer is

$$
\frac{\binom{5}{2}\binom{15}{4}}{\binom{20}{6}}
$$

(5) A number of misprints on a page has Poisson distribution with parameter $\frac{1}{2}$.
(a) Find the probability that exactly three of the next 10 pages will have at least two misprints.
(b) Let X be the first page which has a misprint. Find $E X$ and $V X$.

Solution. (a) The probability that a page has no misprints is $\frac{1}{\sqrt{e}}$, the probability that a page has one misprint is $\frac{1}{2 \sqrt{e}}$, therefore
the probability that a page has two or more misprints is $1-\frac{3}{2 \sqrt{e}}$. Using the formula for binomial distribution we see that the answer is

$$
\binom{10}{3}\left(\frac{3}{2 \sqrt{e}}\right)^{7}\left(1-\frac{3}{2 \sqrt{e}}\right)^{3} .
$$

(b) X has geometric distribution with parameter $1-\frac{1}{\sqrt{e}}$. Accordingly

$$
E X=\sqrt{e}, \quad V X=\left(1-\frac{1}{\sqrt{e}}\right)(\sqrt{e})^{2}=e-\sqrt{e}
$$

(6) Let X_{1} have density equal to $c_{1} x^{3}$ on $[0,1]$ and zero elsewhere and X_{2} have density equal to $c_{2} x^{10}$ on $[0,2]$ and zero elsewhere.
(a) Compute c_{1} and c_{2};
(b) Which of the two random variables above has a smaller variance?

Solution. (a) We have

$$
c_{1}=\left(\int_{0}^{1} x^{3} d x\right)^{-1}=4, \quad c_{2}=\left(\int_{0}^{2} x^{10} d x\right)^{-1}=\frac{11}{2^{11}}
$$

(b) We have

$$
E X_{1}=\int_{0}^{1} 4 x^{3} d x=\frac{4}{5}, E\left(X_{1}^{2}\right)=\int_{0}^{1} 4 x^{5} d x=\frac{2}{3}
$$

Hence

$$
V X_{1}=\frac{2}{3}-\left(\frac{4}{5}\right)^{2} \approx 0.0267
$$

On the other hand

$$
E X_{2}=\frac{11}{2^{11}} \int_{0}^{2} x^{11} d x=\frac{2^{12}}{12} \frac{11}{2^{11}}=\frac{11}{6}, \quad E\left(X_{2}^{2}\right)=\frac{11}{2^{11}} \int_{0}^{2} x^{12} d x=\frac{2^{13}}{13} \frac{11}{2^{11}}=\frac{44}{13} .
$$

Hence

$$
V X_{2}=\frac{44}{13}-\left(\frac{11}{6}\right)^{2}=\frac{11}{468} \approx 0.0235
$$

Thus $V X_{2}<V X_{1}$.
(7) The lifetime of a light bulb (measured in days) has exponential distribution with parameter $1 / 100$.
(a) Find the distribution of the lifetime measured in hours;
(b) If the bulb is installed on a Wednesday at noon, find the probability that it will burn out on a Monday.

Solution. (a) Let X be the lifetime in days and Y be the lifetime in hours. Then $Y=24 X$ hence $Y \sim \operatorname{Exp}\left(\frac{1}{100} \frac{1}{24}\right)=\operatorname{Exp}\left(\frac{1}{2400}\right)$.
(b) Considering each Monday separately we get

$$
\begin{gathered}
P(\text { Burn out on Monday })=\sum_{k=0}^{\infty} P(4.5+7 k \leq X \leq 5.5+7 k)= \\
\quad \sum_{k=0}^{\infty}\left[e^{-0.045-0.07 k}-e^{-0.045-0.07 k}\right]=\frac{e^{-0.045}-e^{-0.055}}{1-e^{-0.07}} .
\end{gathered}
$$

(8) The amount of sales at a department store on a given day has normal distribution with mean 30000 and standard deviation 3000. Find the probability that the store sold
(a) more than 31000 worth of goods;
(b) between 28000 and 32000 worth of goods.

Solution. Let X be the amount of sales. Then $X=30000+$ $3000 Z$ where Z is the standard normal random variable. Thus
(a) $P(X>31000)=P\left(Z>\frac{1}{3}\right)=1-P\left(Z<\frac{1}{3}\right) \approx 0.37$,
(b) $P(2800<X<3200)=P\left(-\frac{2}{3}<Z<\frac{2}{3}\right)=$
$P\left(Z<\frac{2}{3}\right)-P\left(Z<-\frac{2}{3}\right)=2 P\left(Z<\frac{2}{3}\right)-1 \approx 0.50$.
(9) Let X_{1} and X_{2} be independent each having density equial to $2 x$ if $0 \leq x \leq 1$ and equal to 0 otherwise.
(a) Find $P\left(X_{1}>2 X_{2}\right)$.
(b) Find the distribuition of $X_{1}+X_{2}$.

Solution.

(a) $P\left(X_{1}>2 X_{2}\right)=\int_{0}^{1} 2 x_{1}\left(\int_{0}^{x_{1} / 2} 2 x_{2} d x_{2}\right) d x_{1}=\int_{0}^{1} 2 x_{1} \frac{x_{1}^{2}}{4} d x_{1}=\int_{0}^{1} \frac{x_{1}^{3}}{2}=\frac{1}{8}$.
(b) The possible values of Z are from 0 to 2 . We consider two cases. (I) $0 \leq z \leq 1$:

$$
f(z)=\int_{0}^{z} 2 x 2(z-x) d x=4 \int_{0}^{z}\left(x z-x^{2}\right) d x=4\left(\frac{z^{2}}{2}-\frac{z^{2}}{3}\right)=\frac{2 z^{2}}{3} .
$$

(II) $1 \leq z \leq 2$.

$$
\begin{gathered}
f(z)=\int_{z-1}^{1} 2 x 2(z-x) d x=4 \int_{z-1}^{1}\left(z x-x^{2}\right) d x=4\left[\frac{z\left(1-(z-1)^{2}\right)}{2}-\frac{1-(z-1)^{3}}{3}\right] \\
4\left[\frac{2 z^{2}-z^{3}}{2}-\frac{2-3 z+3 z^{2}-z^{3}}{3}\right]=\frac{2}{3}\left[6 z^{2}-3 z^{3}-4+6 z-6 z^{2}+2 z^{3}\right] \\
=\frac{2}{3}\left[-4+6 z-z^{3}\right]=\frac{-8+12 z-2 z^{3}}{3} .
\end{gathered}
$$

(10) Let $X_{1}, X_{2} \ldots X_{n}$ be independent each having denisity equial to $2 x$ if $0 \leq x \leq 1$ and equal to 0 otherwise.
(a) Let N be the first time $X_{N}>\frac{2}{3}$. Find $E X$ and $V X$.
(b) Let $n=5$ and let $X_{(1)}>X_{(2)}>X_{(3)}>X_{(4)}>X_{(5)}$ be the corresponding order statistics. Find $P\left(X_{(3)}>X_{(4)}+0.1\right)$.

Solution. (a) $P\left(X>\frac{2}{3}\right)=1-\frac{4}{9}=\frac{5}{9}$. Thus $X \sim \operatorname{Geom}\left(\frac{5}{9}\right)$. Accordingly

$$
E X=\frac{9}{5}, \quad V X=\frac{\frac{4}{9}}{\left(\frac{5}{9}\right)^{2}}=\frac{36}{25} .
$$

(b) The joint density of $X_{(3)}$ and $X_{(4)}$ equals to $240\left(1-x_{3}^{2}\right)^{2} x_{3} x_{4}^{3}$. Therefore

$$
\begin{aligned}
& P\left(X_{(3)}>X_{(4)}+0.1\right)=240 \int_{0.1}^{1}\left(x_{3}-2 x_{3}^{3}+x_{3}^{5}\right)\left(\int_{0}^{x_{3}-0.1} x_{4}^{3} d x_{4}\right) d x_{3} \\
& =60 \int_{0.1}^{1}\left(x_{3}-2 x_{3}^{3}+x_{3}^{5}\right)\left(x_{3}-0.1\right)^{4} d x_{3} \\
& =60 \int_{0.1}^{1}\left(x-2 x^{3}+x^{5}\right)\left(0.0001-0.004 x+0.06 x^{2}-0.4 x^{3}+x^{4}\right) d x \\
= & 60 \int_{0.1}^{1}\left(0.0001 x-0.004 x^{2}+0.0598 x^{3}-0.392 x^{4}+1.0001 x^{5}+0.796 x^{6}-1.94 x^{7}-0.4 x^{8}+x^{9}\right) d x \\
= & 60\left(\frac{0.0001\left[1-(0.1)^{2}\right]}{2}-\frac{0.004\left[1-(0.1)^{3}\right]}{3}+\frac{0.0598\left[1-(.01)^{4}\right]}{4}-\frac{0.392\left[1-(0.1)^{5}\right.}{5}\right. \\
+ & \left.\frac{1.0001\left[1-(0.1)^{6}\right]}{6}+\frac{0.796\left[1-(0.1)^{7}\right]}{7}-\frac{1.94\left[1-(0.1)^{8}\right]}{8}-\frac{0.4\left[1-(0.1)^{9}\right]}{9}+\frac{1-(0.1)^{10}}{10}\right) .
\end{aligned}
$$

(11) Let (X, Y) have density $x+y$ if $0 \leq x \leq 1,0 \leq y \leq 1$ and equal to zero otherwise.
(a) Find the marginal distribution of X.
(b) Are X and Y independent?
(c) Find the distribution of $Z=X / Y$. Solution.

$$
\text { (a) } \quad f_{X}(x)=\int_{0}^{1}(x+y) d y=x+\frac{1}{2}
$$

(b) Similarly to (a) we have $f_{Y}(y)=y+\frac{1}{2}$. Since $\left(x+\frac{1}{2}\right)\left(y+\frac{1}{2}\right) \neq$ $x+y X$ and Y are NOT independent. (c) We consider two cases. (I) $z<1$. Then

$$
P(Z>z)=\int_{0}^{z}\left(\int_{x / z}^{1}(x+y) d y\right) d x=\frac{z}{3}+\frac{z^{2}}{6} .
$$

Hence $P(Z \leq z)=1-\frac{z}{3}-\frac{z^{2}}{6}$.
(II) $z>1$. Then $P(Z \leq z)=P\left(Y / X>\frac{1}{z}\right)$. By symmetry

$$
P\left(Y / X>\frac{1}{z}\right)=\frac{1 / z}{3}+\frac{(1 / z)^{2}}{6}=\frac{1}{3 z}+\frac{1}{6 z^{2}} .
$$

