STAT410 Midterm 2.

(1) (a) An urn contains 6 red and 4 blue balls. 4 balls are chosen
without replacement. Find the probability that 3 balls are red
and one is blue.

(b) 20 students each pick 4 balls without replacement from
an urn having 6 red and 4 blue balls (the urn is refilled for each
new student). Let X be the number of students which draw 3
red and 1 blue ball. Compute EX and V X.

Solution. (a) Let R be the number of red balls chosen. Then
R has hypergeometric distribution with parameters 10, 6, 4. Hence
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(b) X has binomial distribution with parameters (20, ).
Hence
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(2) Let X and Y be independent random variables such that X has
exponential distribution with parameter 1 and Y has exponen-
tial distribution with parameter 2.

(a) Let Z = X + Y. Find the density of Z.
(b) Find the joint density of U = X% and V = XY.

Solution. Note that X has density e™® and Y has density
2¢7Y. Hence (a)

fz(2) = / 2e ey = 2€2Z/ e“dr = 2e" (" —1) = 2(e *—e *).
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(b) Note that the Jacobian equals to
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Also X = /U and hence Y = % = Y Since X and Y are
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independent their joint density equals to fxy(z,y) = 2e e~ W,
Hence
fX,Y x,y Qe Te~2Y efx/aefzy/\/a
Fo(uyv) = PXr@y) _ |

J 2u U



(3) Let X3, X5, X3, X4, X5 be independent random variables each
having uniform distribution on [0, 1]. Let M be their median
(the third largest value).

(a) Find the cumulative distribution function of M.
(b) Compute EM and VM.

Solution. Recall that X has density 1 and cdf = on [0, 1].
Hence using the formula for the distribution of the third largest
variable we have

fu(m) = 5—!m2(1 —m)? = 30(m? — 2m® +m?).
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Integrating we find
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(4) Let (X,Y) have density equal to 22 if 0 <2 < 1,0 <y < 1
and equal to 0 otherwise. Let W = max( Y.
(a) Compute the distribution of W.
(b) Find P(W = X).

Solution Note that W < w iff X < w and Y < w hence
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Also W = X iff X >Y and
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