STAT410 Midterm 2.

(1) (a) An urn contains 6 red and 4 blue balls. 4 balls are chosen without replacement. Find the probability that 3 balls are red and one is blue.
(b) 20 students each pick 4 balls without replacement from an urn having 6 red and 4 blue balls (the urn is refilled for each new student). Let X be the number of students which draw 3 red and 1 blue ball. Compute $E X$ and $V X$.

Solution. (a) Let R be the number of red balls chosen. Then R has hypergeometric distribution with parameters 10, 6, 4. Hence

$$
P(R=3)=\frac{\binom{6}{3}\binom{4}{1}}{\binom{10}{4}}=\frac{\frac{6 \times 5 \times 4}{3!} \times 4}{\frac{10 \times 9 \times 8 \times 7}{4!}}=\frac{8}{21}
$$

(b) X has binomial distribution with parameters $\left(20, \frac{8}{21}\right)$.

Hence

$$
E X=20 \times \frac{8}{21}, \quad V X=20 \times \frac{8}{21} \times \frac{13}{21}
$$

(2) Let X and Y be independent random variables such that X has exponential distribution with parameter 1 and Y has exponential distribution with parameter 2 .
(a) Let $Z=X+Y$. Find the density of Z.
(b) Find the joint density of $U=X^{2}$ and $V=X Y$.

Solution. Note that X has density e^{-x} and Y has density $2 e^{-y}$. Hence (a)
$f_{Z}(z)=\int_{0}^{z} 2 e^{-x} e^{2 x-2 z} d x=2 e^{-2 z} \int_{0}^{z} e^{x} d x=2 e^{-2 z}\left(e^{z}-1\right)=2\left(e^{-z}-e^{-2 z}\right)$.
(b) Note that the Jacobian equals to

$$
J=\operatorname{det}\left(\begin{array}{cc}
2 x & 0 \\
y & x
\end{array}\right)=2 x^{2}=2 u
$$

Also $X=\sqrt{U}$ and hence $Y=\frac{V}{X}=\frac{V}{\sqrt{U}}$. Since X and Y are independent their joint density equals to $f_{X, Y}(x, y)=2 e^{-x} e^{-2 y}$. Hence

$$
f_{U, V}(u, v)=\frac{f_{X, Y}(x, y)}{J}=\frac{2 e^{-x} e^{-2 y}}{2 u}=\frac{e^{-\sqrt{u}} e^{-2 v / \sqrt{u}}}{u}
$$

(3) Let $X_{1}, X_{2}, X_{3}, X_{4}, X_{5}$ be independent random variables each having uniform distribution on $[0,1]$. Let M be their median (the third largest value).
(a) Find the cumulative distribution function of M.
(b) Compute EM and VM.

Solution. Recall that X has density 1 and $\operatorname{cdf} x$ on $[0,1]$. Hence using the formula for the distribution of the third largest variable we have

$$
f_{M}(m)=\frac{5!}{2!2!} m^{2}(1-m)^{2}=30\left(m^{2}-2 m^{3}+m^{4}\right)
$$

Integrating we find

$$
F_{M}(m)=30 \int_{0}^{m} 30\left(x^{2}-2 x^{3}+x^{4}\right)=30\left(\frac{m^{3}}{3}-\frac{m^{4}}{2}+\frac{m^{5}}{5}\right)=10 m^{3}-15 m^{4}+6 m^{5} .
$$

Next
$E M=\int_{0}^{1} 30\left(x^{2}-2 x^{3}+x^{4}\right) x d x=30\left(x^{3}-2 x^{4}+x^{5}\right) d x=30 \times\left(\frac{1}{4}-\frac{2}{5}+\frac{1}{6}\right)=\frac{1}{2}$
and
$E M^{2}=\int_{0}^{1} 30\left(x^{2}-2 x^{3}+x^{4}\right) x^{2} d x=30\left(x^{4}-2 x^{5}+x^{6}\right) d x=30 \times\left(\frac{1}{5}-\frac{2}{6}+\frac{1}{7}\right)=\frac{2}{7}$.
Thus

$$
V M=E\left(M^{2}\right)-(E M)^{2}=\frac{2}{7}-\frac{1}{4}=\frac{1}{28} .
$$

(4) Let (X, Y) have density equal to $\frac{3 x+y}{2}$ if $0 \leq x \leq 1,0 \leq y \leq 1$ and equal to 0 otherwise. Let $W=\max (X, Y)$.
(a) Compute the distribution of W.
(b) Find $P(W=X)$.

Solution Note that $W<w$ iff $X<w$ and $Y<w$ hence

$$
P(W<w)=\int_{0}^{w} \int_{0}^{w} \frac{3 x+y}{2} d x d y=\frac{3 w}{2} \int_{0}^{w} x d x+\frac{w}{2} \int_{0}^{w} y d y=\left(\frac{3}{4}+\frac{1}{4}\right) w^{3}=w^{3} .
$$

Also $W=X$ iff $X>Y$ and

$$
P(X>Y)=\int_{0}^{1}\left(\int_{0}^{x} \frac{3 x+y}{2} d y\right) d x=\int_{0}^{1}\left(\frac{3 x^{2}}{2}+\frac{x^{2}}{4}\right) d x=\frac{7}{4} \int_{0}^{1} x^{2} d x=\frac{7}{4} \times \frac{1}{3}=\frac{7}{12}
$$

