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1. Introduction

1.1. Quenched and annealed results. Let M be a closed Riemannian manifold
and consider the IID sequence of random diffeomorphisms distributed according to a
measure µ on Diff∞

vol(M) with compact support. The random dynamics is then driven
by the product measure µN on Diff∞

vol(M)N, and a particular realization of the random
dynamics is given by a word ω ∈ (Diff∞

vol(M))N. Let FN = FN
ω = fσN−1ω ◦ · · · ◦ fω.

We also consider the two point motion, which is the induced action FN
2 on M ×M

given by FN
ω × FN

ω , i.e. FN
2 (x, y) = (FN(x), FN(y)). Below we will often suppress the

dependence on ω. Denote by Hp
0(M) the space of zero mean functions that belong to

the Sobolev space of index p.
For random systems, there are two basic versions of each limit theorem: quenched

and annealed. In a quenched limit theorem, one shows that for a.e. realization ω of
the random system that the limit theorem holds. In an annealed limit theorem, one
additionally averages over the entire ensemble of possible realizations ω. Naturally, in
the quenched case, one often wants an additional estimate on the set of ω where the
limit theorem converges very slowly.

The goal of this note is to provide sufficient conditions for when quenched exponential
mixing and the quenched central limit theorem follow from the annealed versions of
these theorems, which are in principal easier to prove. The conditions that appear in
this paper are not dynamical, and hence should be widely applicable. In particular, the
results in this paper show that in the authors other work [DD25] that the central limit
theorem obtained there is a quenched central limit theorem.

We follow an approach of [DKK04]. However, our results are stronger because
[DKK04] considered a fixed observable while we obtain results which are valid for all
sufficiently smooth functions. This extension requires additional work.

The structure of the paper is the following. After some preliminaries in Section 2, we
show that annealed exponential mixing implies quenched exponential mixing in Section
3. Then in Section 5 we show how to deduce the quenched central limit theorem from
the annealed one.

1.2. Definitions. The following definitions make sense in a wider context of skew
products. Namely let σ be an automorphism of a probability space Ω preserving a
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probability measure µ and consider the map T : Ω×M 7→ Ω×M given by the formula

(1.1) T (ω, x) = (σω, fω(x)),

where for each ω the map fω ∈ Diff∞
vol(M). Then the iterates of T satisfy T n(ω, x) =

(σnω, FN
ω (x)). The two main concepts of this paper are the following.

Definition 1.1. We say that the random system T enjoys annealed exponential mixing
if there exist p ≥ 0 and α > 0 such that for all A,B ∈ Hp

0(M) we have∣∣∣∣Eµ

(∫
A(x)B(FN

ω x)dx

)∣∣∣∣ ≤ Ce−αN∥A∥Hp
0
∥B∥Hp

0
.

Definition 1.2. We say that the random system T enjoys quenched exponential mixing
if there exist p ≥ 0 and α > 0 and a random variable C(ω) such that for all A,B ∈ Hp

0

and almost every ω we have

(1.2)

∣∣∣∣∫ A(x)B(FN
ω x)dx

∣∣∣∣ ≤ C(ω)e−αN∥A∥Hp
0
∥B∥Hp

0
.

Given a function A on M denote SNA(x, ω) =
N−1∑
n=0

A(F n
ω x)

Definition 1.3. We say that the random system enjoys the annealed Central Limit
Theorem if there exists p ≥ 0 such that there is a map D : Hp

0(M) → R, which is not
identically equal to 0, such that for each A ∈ Hp

0, if x is uniformly distributed onM and

ω is distributed according to µ then
SNA(x, ω)√

N
converges as N → ∞ to the normal

distribution with zero mean and variance D(A).

Definition 1.4. We say that the random system enjoys the quenched Central Limit
Theorem if there exists p ≥ 0 such that there is a map D : Hp

0(M) → R, which is
not identically equal to 0, such that for each A ∈ Hp

0(M), there are random variables
aN(ω), qN(ω), such that for almost every ω if x is uniformly distributed on M then
SNA(x, ω)− aN(ω)

qN(ω)
converges as N → ∞ to the normal distribution with zero mean

and variance D(A).

1.3. Counterexamples. In general, quenched and annealed results are inequivalent
even for IID random maps. Our first example shows that even if the annealed dynamics
averages perfectly after a single iterate.

Example 1.5. Let ωn ∈ (Td)N be uniformly distributed on Td and let fω(x) = x+ ω1.
Then xN = FN

ω x are IID uniformly distributed on Td so the system enjoys annealed
exponential mixing. However, in this case xN = x0 +WN where

(1.3) WN =
N−1∑
n=0

ωn,

so letting A = ei⟨k,x⟩, B = e−i⟨k,x⟩ for some k ̸= 0 we see that |
∫
A(x)B(FN

ω (x))dx| = 1
for all N. Thus the system does not have quenched mixing. It is also possible to show
that in that case quenched Central Limit Theorem does not hold.
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Next we give two examples where quenched exponential mixing and the quenched
central limit theorem hold, but the annealed result fails.

Example 1.6. (a) Let g be a linear Anosov map of Td. Let ωn be IID integer valued
random variables where P(ωn = −k) = 0.001

k3
for k < 0 and P(ωn = 1) = P(ωn = 2) =

1− 0.001ζ(3)

2
. Let fω = gω0 . Then FN

ω = gWN where WN is given by (1.3). Using the

.001 factor, it is easy to see that E(ωn) ∈ [1, 2], so by the Strong Law of Large Numbers
for almost every ω we have that WN > N for large N . Then

∫
A(x)B(gWNx)dx decays

exponentially due to the exponential mixing of g. On the other hand letting A and B
be as in the previous example we see that

∫
A(x)B(FWNx)dx = δWN ,0 whence

E
(∫

A(x)B(FWNx)dx

)
= P(WN = 0).

Since

P(WN = 0) ≥
2N∑
k=N

P(WN−1 = k)P(ωN−1 = −k) ≥ CN−2,

the annealed correlations for this system decay only polynomially.
(b) Now define fω as in part (a) but suppose that ωn takes values ±1 with probability

1/2. Then the quenched Central Limit Theorem holds, but annealed one fails (see
[DDKN23] for details).

We note that Examples 1.6(a) and (b) are special cases of so called generalized
(T, T−1) transformations. More information on limit theorems for these systems can
be found in [DDKN22b, DDKN22a].

1.4. Deriving annealed results from the quenched ones. Here we recall the basic
tools for deducing annealed results from the quenched ones. We will work in the general
framework of skew products (1.1).

Proposition 1.7. Suppose that the skew product (1.1) satisfies queched exponential
mixing (1.2) and that corresponding prefactor C(ω) has a power tail:

Pµ(C(ω) > R) ≤ K/Rκ,

for some K,κ > 0. Then annealed exponential mixing holds.

Proof. Note that
∣∣∫ A(x)B(FN

ω x)dx
∣∣ ≤ min

{
C(ω)e−αN , 1

}
∥A∥Hp

0
∥B∥Hp

0
. The expecta-

tion of the first factor is bounded by e−αN/2+Pµ

(
C(ω) > eαN/2

)
≤ e−αN/2+Ke−καN/2,

completing the proof. □

The next result allows us to obtain the annealed Central Limit Theorem from the
quenched one, see [DDKN22a, Lemma 5.6].

Proposition 1.8. Suppose that the skew product (1.1) satisfies the quenched Central

Limit Theorem and moreover that the quenched variance satisifes that qN(ω)/
√
N con-

verges in Law as N → ∞ to a constant q = q(A) while the quenched drift satisfies that
aN (ω)√

N
converges as N → ∞ to a normal distribution with zero mean and variance D(A).

Then the annealed Central Limit Theorem holds, that is, if ω is distributed according
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to µ and x is uniformly distributed on M then SNA(ω,x)√
N

converges in law as N → ∞ to

a normal random variable with zero mean and variance D(A) = D(A)q(A) +D(A).

1.5. Deriving quenched results from the annealed ones. Our main results allow
to obtain the quenched limit theorems from more easily accessible annealed results. We
work in the setting of IID random systems. The following are the main results of this
paper.

Theorem 1.9. Suppose that µ is a measure supported on Diffr
vol(M), r ≥ 1 and that

the associated two point motion FN
2 enjoys annealed exponential mixing, i.e. there exists

p ≥ 0 such that for A,B ∈ Hp
0(M ×M),

(1.4)

∣∣∣∣E(∫∫ A(x, y)B(FN
2 (x, y))dxdy

)∣∣∣∣ ≤ C∥A∥Hp
0
∥B∥Hp

0
e−αN .

Then F satisfies quenched exponential mixing, that is, for all s ≥ 0 there exists β such
that for almost every ω there exists C = C(ω) such that for all A,B ∈ Hs

0

(1.5)

∣∣∣∣∫ A(FN
ω x)B(FN+k

ω x)dx

∣∣∣∣ ≤ CN∥A∥Hs
0
∥B∥Hs

0
e−βk.

Next we discuss the quenched CLT. For this we will need to describe the variance of
the resulting distribution. Given a function B on M ×M let

SN
B (x, y) =

n∑
n=1

B(F nx, F ny),

and let

(1.6) D(B) = E
(∫

B2dxdy

)
+ 2

∞∑
k=1

E
(∫

B(x, y)B(Fkx, Fky)dxdy

)
.

In the proof of Theorem 1.10 below, we will apply this formula where B has either
the special form B(x, y) = A(x) − A(y) or B(x, y) = A(x). In these cases a simple
calculation using that

∫∫
A(x)A(F k(y)) dx dy = 0 yields that

(1.7) D(A(x)− A(y)) = 2D(A) and D(A(x)) = D(A).

Theorem 1.10. Suppose that (1.4) holds and for each function B(x, y) ∈ Hs
0(M ×M)

we have that SN
B satisfies the Central Limit Theorem with polynomial convergence of

characteristic functions, that is: there exists η > 0 such that for each ξ

(1.8) E
(∫∫

eiS
N
B (x,y)ξ/

√
Ndxdy

)
= e−D(B)ξ2/2 +O

(
N−η

)
.

Then with probability 1, for each A ∈ Hs
0 it holds that as N → ∞ that N−1/2SN(A)

converges to a normal random variable with zero mean and variance D(A).
The same result holds with Hs

0 replaced by Cs
0—the space of zero mean Hölder func-

tions.

We note that the hypotheses of Theorem 1.10 hold for systems with spectral gap
[Gou15, Thm. 3.7], see the discussion in the proof of [DD25, Thm. 7.13] for details.
Hence we obtain:
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Corollary 1.11. If the generator of the two point motion has a spectral gap on Hs
0

for some s ∈ R then quenched exponential mixing holds on Hp
0 with p > 0, and the

quenched Central Limit Theorem holds for Cr functions with r > |s|.
Acknowledgments. The first author was supported by the National Science Founda-
tion under Award No. DMS-2202967. The second author was supported by the National
Science Foundation under award No. DMS-2246983.

2. Preliminaries

In this section we recall some standard facts and introduce notation that will be used
below.

2.1. Harmonic Analysis. Below we will make extensive use of the Sobolev spaces
Hp

0. In particular, in all the arguments below we will work with a fixed Fourier basis
M of L2(M). These are the eigenfunctions φi of the Riemannian Laplacian ∆. We fix
a basis φi of eigenfunctions of the Laplacian ∆ that are normalized so that ∥ϕi∥L2 = 1.
For a zero integral function A write A =

∑
i aiφi, where each ai ∈ R. Then we define

the s-Sobolev norm by:

(2.1) ∥A∥Hs
0
=
∑
i∈N

|ai|2 λsi .

Below we will use some basic estimates on these functions, such as

(2.2) ∥ϕi∥Hp = λ
p/2
i and ∥ϕi∥C0 ≤ Cλ

d/2
i ,

which follow from the Sobolev embedding theorem.
Below we will make use of the Weyl law for the eigenvalue of the Laplacian. One

consequence is the following, which we state as a lemma as we will use it several times.

Lemma 2.1. (Weyl Law) Suppose that M is a Riemannian manifold of dimension d
and {λi}i∈N are the eigenvalues of the Laplacian. Then there exists C such that the
number of eigenvalues of norm at most λ is at most Cλd/2. In particular,∑

i

λti

is finite as long as t < −d/2.
Proof. To begin, let bn the number of eigenvalues of magnitude less than or equal to

n. Then the sum in question is bounded above by
∑
n∈N

n−α(bn − bn−1) where α = −t.

Summation by parts shows that
N∑

n=0

n−α(bn − bn−1) = n−αbn −
N∑

n=0

(n−α − (n− 1)−α)bn.

By the Weyl Law, bn ≤ nd/2. Thus the sum is convergent as long as α > d/2. □

We will also use below the usual Sobolev embedding theorem:

Lemma 2.2. (Sobolev embedding theorem) Let M be a closed, smooth Riemannian
manifold. Then: Cs(M) ⊂ Hs(M) ⊂ Cs−d/2(M).
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2.2. Probability. Throughout the rest of the paper, we will write P and E for the
probability and expectation of a random variable; when we do this we are exclusively
taking expectations over the random dynamics ω.

We will use a couple of different concentration inequalities. The first one is Azuma’s
inequality.

Proposition 2.3. [Ste97, Thm. 1.3.1] (Azuma’s inequality) Suppose that X1, . . . , Xn

is a martingale difference sequence. Then

P

(∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣ ≥ λ

)
≤ 2 exp

(
−λ2

2
∑n

i=1 ∥Xi∥2L∞

)
.

The second concentration inequality applies to sums of Bernoulli random variables.

Proposition 2.4. [CL06, Thm. 4] Let X1, . . . , Xn be independent random variables

with P(Xi = 1) = pi and P(Xi = 0) = 1− pi. Let X =
n∑

i=1

Xi. Then

P(X ≥ E(X) + λ) ≤ exp

(
− λ2

2(E(X) + λ/3)

)
.

3. Exponential Mixing

Here we show that exponential mixing of the two point motion implies exponential
mixing. The idea is that one can study the decay of correlations of for a basis of Hp

0

comprised of eigenfunctions of the Laplacian, and deduce that most words exhibit good
decay for all the low modes in this basis.

Proof of Theorem 1.9. By interpolation it is sufficient to prove the result for s suffi-
ciently large, so we assume in the computations below that s > p+ (3d/2).

Let φj be an orthogonal basis consisting of eigenfunctions of ∆. Then ∆φj=λ
2
jφj,

∥φj∥L2 = 1 and ∥φj∥Hp
0
= λpj . Denote

(3.1) ρi,j,n,k =

∫
(φi ◦ F n)(φj ◦ F n+k)dx.

Then

E(ρi,j,n,k) = E(ρi,j,0,k) = O
(
λpiλ

p
je

−αk
)
,

E(ρ2i,j,n,k) = E(ρ2i,j,0,k) =
∫∫

φi(x)φi(y)φj(F
kx)φj(F

ky)dxdy = O
(
λ2p+d
i λ2p+d

j e−αk
)

where we have used 2-point mixing (1.4) for the function ψ(x, y) = φi(x)φi(y), which
satisfies

∥ψ∥Hp ≤ ∥ψ∥Cp ≤ C∥φi∥2Cp ≤ C∥φi∥2Hp+d/2
0

= C
(
λ
p+d/2
i

)2
.

See, e.g. [Hör76, Thm. A.7] for the second inequality, ∥φ1φ2∥Ck ≤ C∥φ1∥Ck∥φ2∥Ck .
Hence by Chebyshev’s inequality for any β > 0,

(3.2) P
(
|ρi,j,n,k| > nλp+t

i λp+t
j e−βk

)
≤ Cn−2λd−2t

i λd−2t
j e−(α−2β)k.
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From Lemma 2.1,
∑

i λ
−α
i is finite for α > d/2. By the Borel Cantelli Lemma the above

events could happen only finitely many times if t > d. Hence for such t, and almost
every ω, there exists Nω such that for n ≥ Nω and all i, j, k:

(3.3) |ρi,j,n,k| ≤ nλp+t
i λp+t

j e−βk.

Decomposing A =
∑

i aiφi, B =
∑

j bjφj, we obtain using (3.3) that∣∣∣∣∫ A(FNx)B(FN+kx)dx

∣∣∣∣ ≤ Ne−βk
∑
i,j

|ai| |bj|λp+t
i λp+t

j = Ne−βk

[∑
i

|ai|λp+t
i

][∑
j

|bj|λp+t
j

]
.

Note that
(3.4)∑

i

|ai|λp+t
i ≤

(∑
i

|ai|2λ2si

)1/2(∑
i

λ2p+2t−2s
i

)1/2

≤ ∥A∥Hs
0

(∑
i

λ2p+2t−2s
i

)1/2

.

As before, by the Weyl Law the last term is finite for s > p+ t+ d/2. If this condition

on s holds, then we obtain the same estimate on
∑
j

|bj|λp+t
j as well.

Note that if s > p+(3d/2), we can choose t so that both t > d and s > p+ t+(d/2),
so the above estimate holds and we obtain the result. □

Corollary 3.1. Under the assumptions of Theorem 1.9, for almost every ω we have
that for each A ∈ Hs

0 with s > p+ (3d)/2 and for almost all x:

N∑
n=1

A(F n
ω x) = O

(
N1/2+ε

)
.

Proof. This follows from (1.5) and [DDKN22b, Lemma 8.1]. That lemma says that if

Xn is a stationary sequence of random variables such that E[(
N∑

n=1

Xn)
2] ≤ CN2ρ then

SN/N
max{ρ,1/2}+ϵ converges almost surely to zero. We apply this fact to the random

variablesXn = A◦F n
ω (x) where ω is fixed and x is uniformly distributed onM . By(1.5)

we have for i ≤ j that |E[XiXj]| ≤ min(Cωie
−|j−i|∥A∥Hs

0
, ∥A∥2C0). Summing over i and

j we conclude that there exists Cω such that E[(
∑n

i=1Xi)
2] ≤ Cω(n lnn)∥A∥2Hs

0
and the

conclusion follows. □

Remark 3.2. Note that if A is fixed first then the result follows from annealed mixing
and Fubini Theorem, the novelty of this result is that the set of ωs of full measure could
be taken independent of A.

4. Asymptotic Variance

To show the equivalence of the quenched and annealed versions of the central limit
theorems we need to control the growth of quenched variances.

Let SN(A)(x) =
N∑

n=1

A(F nx).
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Lemma 4.1. Under the hypotheses of Theorem 1.9, for any s > p+3d/2 the following
holds.

(a) For almost every ω and all A ∈ Hs
0 there exists K = K(ω) such that

(4.1) VN(A) :=

∫
S2
N(A)(x)dx ≤ KN∥A∥2Hs

0
.

(b) For almost every ω and all A ∈ Hs
0

lim
N→∞

VN(A)

N
= D2(A) :=

∫
A2dx+ 2

∞∑
k=1

E
(∫

A(x)A(F kx)dx

)
.

Proof. As in the proof of Theorem 1.9 let φi be a basis of eigenfunctions of ∆ with
∥ϕi∥L2 = 1. Define ρi,j,n,k as in (3.1). Let

VN,i,j :=

∫ ( N∑
n=1

φi(F
nx)

)(
N∑

m=1

φj(F
mx)

)
dx =

∑
n,n+k∈{1,...,N}

ρi,j,n,k.

We claim that with probability 1, there exists C(ω) such that for all i and j and
N ∈ N:

(4.2) |VN,i,j| ≤ C(ω)Nλp+t
i λp+t

i .

We will obtain this estimate by estimating the probability that each ρi,j,n,k is large and
then applying the Borel-Cantelli lemma. To this end, we define

VN,i,j,k :=
∑

0≤n≤N−k

ρi,j,n,k.

First, we estimate VN,i,j,k where |k| ≥ N0.1, which are the easiest. Recall from (3.2),
that for all t,

(4.3) P
(
|ρi,j,n,k| > λp+t

i λp+t
j e−βk

)
≤ C1λ

d−2t
i λd−2t

j e−(α−2β)k.

The sum of the probabilities that one of the events in the previous line occurs for some
N, i, j and k ≥ N0.1 is∑

i,j∈N

∑
N∈N

∑
0≤n≤N

∑
N0.1≤k≤N−k

λd−2t
i λd−2t

j e−(α−2β)k ≤
∑
i,j∈N

λd−2t
i λd−2t

j .(4.4)

So, for t > 3d/4 and 0 < β < α/2, it follows from Lemma 2.1 that the above sum is
finite. By the Borel-Cantelli Lemma for any 0 < η < α − 2β there are only finitely
many i, j, n and k > N0.1 such that |ρi,j,n,k| > λp+t

i λp+t
j e−βk. Thus it follows that for

almost every ω, there exists C(ω) such that for all N, i, j, and k ≥ N0.1:

(4.5) |VN,i,j,k| =

∣∣∣∣∣ ∑
0≤n≤N−k

ρi,j,n,k

∣∣∣∣∣ ≤ C(ω)λp+t
i λp+t

j e−βk.

We now turn to the terms where k < N0.1, for which the ρi,j,n,k decay slower. We
study VN,i,j by dividing into the sum of two terms, one that experiences a good correla-
tion decay, V ′

N,i,j, and another that does not, V ′′
N,i,j. Below, we will use repeatedly the
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observation that ρi,j,n,k is independent of ρi,j,n+ℓ,k as long as ℓ ≥ k. To take advantage
of this observation, for |k| ≤ N0.1, let

ρ′i,j,n,k = ρi,j,n,k1|ρi,j,n,k|≤λ
p+(t/2)
i λ

p+(t/2)
j e−β|k| , ρ′′i,j,n,k = ρi,j,n,k1|ρi,j,n,k|>λ

p+(t/2)
i λ

p+(t/2)
j e−β|k| ,

V ′
N,i,j,k =

∑
0≤n≤N−k

ρ′i,j,n,k, V ′
N,i,j,k,ℓ =

∑
n≡ℓ mod k
0≤n≤N−k

ρ′i,j,n,k,

V ′′
N,i,j,k =

∑
0≤n≤N−k

ρ′′i,j,n,k, V ′
N,i,j,k,ℓ =

∑
n≡ℓ mod k
0≤n≤N−k

ρ′′i,j,n,k,

V ′
N,i,j =

∑
0≤k≤N

V ′
N,i,j,k, V ′′

N,i,j =
∑

0≤k≤N

V ′′
N,i,j,k.

We begin with the term V ′
N,i,j,k that experiences a fast decay of correlations. From

the definition of ρ′i,j,n,k, these terms are bounded by λ
p+(t/2)
i λ

p+(t/2)
j e−β|k|. As these terms

are also independent, they form a submartingale. From the bound on the ρ′i,j,n,k, it then
follows from Azuma’s inequality, Proposition 2.3, that there exists c > 0 such that:

P
(
V ′
N,i,j,k,ℓ ≥ N .9λp+t

i λp+t
j e−β|k|/4) ≤ 2 exp

[
−cN .8eβ|k|/2λtiλ

t
j

]
.

By bounding the left hand side of the following inequality by at least one of the events
in the previous line happening, and summing over the at most N0.1 residue classes mod
k, we get

(4.6) P
(
V ′
N,i,j,k ≥ Nλp+t

i λp+t
j e−β|k|/4) ≤ 2|k| exp

[
−cN .8eβ|k|/2λtiλ

t
j

]
.

Next, we estimate the terms V ′′
N,i,j,k with slow decay. Note that by the definition of

ρ′′i,j,n,k and (4.3)

P(ρ′′i,j,n,k ̸= 0) ≤ Cλp−t
i λp−t

j e−η|k|.

Also, trivially from (2.2),

(4.7) |ρ′′i,j,n,k| ≤ ∥φi∥C0∥φj∥C0 ≤ Cλ
d/2
i λ

d/2
j .

First, we estimate V ′′
N,i,j,k,ℓ. As before, the ρ′′i,j,n,k are independent for different n ≡ l

mod k. From (4.7), it follows that:

P(V ′′
N,i,j,k,ℓ ≥ λp+t

i λp+t
j N |k|−5)

≤ P

 ∑
n≡ℓ mod k
0≤n≤N−k

1|ρi,j,n,k|>λ
p+t/2
i λ

p+t/2
j e−β|k| ≥ λ

p+t−d/2
i λ

p+t−d/2
j N |k|−5


≤ P(A(i, j, N, k, ℓ) ≥ 2Q(i, j, N, k))

Let us obtain an estimate on the expectation of A(i, j, N, k, ℓ).

E[A(i, j, N, k, ℓ)] ≤
∑

n≡ℓ mod k
0≤n≤N−k

P(ρ′′i,j,n,k ̸= 0) ≤
∑

n≡ℓ mod k
0≤n≤N−k

Cλp−t
i λp−t

j e−η|k| ≤ Nλp−t
i λp−t

j e−η|k|
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Note that for as long as t is sufficiently large, it follows that E[A(i, j, n, k)] ≤ Q. Hence,

P(A(i, j, N, k, ℓ) ≥ 2Q(i, j, n, k)) ≤ P(A(i, j, N, k, ℓ) ≥ E[A(i, j, N, k, ℓ)] +Q(i, j, n, k))

As A(i, j, N, k, ℓ) is the sum of independent Bernoulli random variables, we can apply
Theorem 2.4. In particular, as E[A(i, j, N, k, ℓ)] +Q(i, j, N, k) ≤ 2Q, we find that:

(4.8) P(A(i, j, N, k, ℓ) ≥ 2Q(i, j, n, k)) ≤ exp

(
−Q2

4Q

)
But this gives that

(4.9) P(V ′′
N,i,j,k,ℓ ≥ λp+t

i λp+t
j N |k|−5) ≤ exp(−λp+t−d/2

i λ
p+t−d/2
j N |k|−5 /4).

Now summing over each possible residue class ℓ mod k, it follows that

(4.10) P(V ′′
N,i,j,k ≥ λp+t

i λp+t
j Nk−4) ≤ k exp(−λp+t−d/2

i λ
p+t−d/2
j N |k|−5 /4).

We now apply the Borel-Cantelli Lemma to V ′
N,i,j,k and V ′′

N,i,j,k. Observe from equa-
tions (4.6) and (4.10) that

P
(
V ′
N,i,j,k ≥ Nλp+t

i λp+t
j e−β|k|/4)+ P

(
V ′′
N,i,j,k ≥ λp+t

i λp+t
j Nk−4

)
≤
∑
i∈N

∑
j∈N

∑
N∈N

∑
k≤N0.1

k
[
exp

(
−cN .8eβ|k|/2λtiλ

t
j

)
+ exp(−λp+t−d/2

i λ
p+t−d/2
j N |k|−5 /4)

]
This is finite as long as t > d/2. Thus for all but finitely many tuples (N, i, j, k), with
k ≤ N0.1, it follows that both

V ′
N,i,j,k ≤ Nλp+t

i λp+t
j e−β|k|/4 and V ′′

N,i,j,k ≤ λp+t
i λp+t

j Nk−4.

From the above line and (4.5), it follows that for t > 3d/4 and 0 < β < α/2 for a.e. ω,
that there exists C(ω) such that that for all N, i, j, k:

(4.11)
VN,i,j,k

Nλp+t
i λp+t

j

≤

{
C(ω)
k4

if k ≤ N0.1

Ce−β|k| if k > N0.1.

From the definitions it follows that |VN,i,j| ≤ 2
∑

0≤k≤N |VN,i,j,k|. Summing over k we
conclude that there exists t > 3d/4 such that for a.e. ω there exists D(ω) such that for
all N , i, and j,

(4.12) |VN,i,j| ≤ DNλp+t
i λp+t

j .

To conclude, we can expand an arbitrary A ∈Hs
0 as A =

∑
j ajφj and argue as in

the proof of Theorem 1.9 to obtain part (a) of the lemma; this gives the constraint
s > p+ (3d/2).

We now start the proof of (b). Define

(4.13) VN(A,B) :=

∫ ( N∑
i=1

A ◦ F k

)(
N∑
j=1

B ◦ F j

)
dx.

Due to bilinearity, we will write VN(A) = VN(A,A) as

VN(A,A) =
∑
i,j

aiajVN(φi, φj).
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To use this, we begin with the following claim.

Claim 4.2. For a.e. ω and each i, j,

lim
n→∞

VN(φi, φj)

N
=

∫
φiφj dx+

∑
1≤k

E
[∫

φi(x)φj(F
k(x)) dx

]
+E

[∫
φi(F

k(x))φj(x) dx

]
Proof. To begin, observe that:

VN(ϕi, ϕj) =

∫ N∑
n=1

ϕiϕj +
N∑
k=1

∑
0≤n≤N−k

ϕi(F
nx)ϕj(F

n+k(x)) + ϕi(F
n+k(x))ϕj(F

n(x)) dx

=

∫
Nϕiϕj dx+

N∑
k=1

VN,i,j,k + VN,j,i,k

By the ergodic theorem, almost surely,

N−1VN,i,j,k → E
[∫

ϕiϕj ◦ F k dx

]
Thus we would like to show that the following line is dominated, so we can pass to

the limit:

N−1VN(ϕi, ϕj) =

∫
ϕiϕj dx+

N∑
k=0

[
VN,i,j,k

N
+
VN,j,i,k

N

]
.

By (4.11), the terms VN,i,j,k/N are dominated since |VN,i,j,k| /N is bounded independent
of N by C(ω)k−4 which is summable in k. So we can pass to the limit and conclude
that almost surely:

lim
N
N−1VN(φi, φj) =

∫
φiφj dx+

∑
k

E
[∫

ϕi ◦ F kϕj dx

]
+ E

[∫
ϕiϕj ◦ F k dx,

]
as desired. □

Let us now conclude by using the claim. As before write A =
∑

i∈N aiφi. Then we
do the following computation, which we will subsequently justify:

(4.14) lim
N→∞

VN(A,A)

N
= lim

N→∞

∑
i,j∈N

aiaj
VN(φi, φj)

N

(4.15)

=
∑
i,j∈N

aiaj

(∫
φiφj dx+

∑
1≤k

[∫
φi(x)φj(F

k(x)) dx

]
+ E

[∫
φi(F

k(x))φj(x) dx.

])

(4.16) =

∫
A2 dx+ 2

∑
1≤k

E
[∫

A(x)A(F k(x)) dx

]



12 JONATHAN DEWITT AND DMITRY DOLGOPYAT

In order to pass from the first line to the second, we need to know that
∑
i,j

aiajVN(ϕi, ϕj)/N

is dominated. This follows from the estimate on VN(ϕi, ϕj) = VN,i,j in (4.11), which
says that for t > 3d/4,

∑
i,j

|ai| |aj| |VN(ϕi, ϕj)|
N

≤
∑
i,j

|ai| |aj|D(ω)λp+t
i λp+t

j ≤ D(ω)

(∑
i

|ai|λp+t
i

)(∑
j

|aj|λp+t
j

)

But by (3.4), the terms in parentheses are finite as long as s > p + t + d/2, which we
can ensure as we chose s > p+ 3d/2. Thus we can pass from (4.14) to (4.15).

Next we need to check that the expression in (4.15) is absolutely summable in i, j, k
so we can rearrange it to pass to line (4.16). Note that∑

i,j,k

|ai| |aj|
∣∣∣∣E [∫ ϕiϕj ◦ F k dx

]∣∣∣∣ ≤∑
i,j,k

|ai| |aj| ∥ϕi∥Hp∥ϕj∥Hpe−αk

(4.17) ≤ C
∑
i,j

|ai| |aj|λp/2i λ
p/2
j = C

[∑
i

|ai|λp/2i

]2
where we have used the exponential mixing hypothesis in the first inequality. For the
right-hand expression in (4.17), consider:

(
∑
i

|ai|λp/2i ) ≤ (
∑
i

|ai|2 λp+t
i )1/2(

∑
i

λ−t
i )1/2.

The right term is finite as long as t > d/2 by Lemma 2.1. In order to take t > d/2
and have the left term be finite as well, we need that A ∈ Hs where s > p + d/2 by
definition of the Sobolev norm. Thus as A ∈ Hs by assumption, (4.17) is summable, so
we may pass to line (4.16) and we are done. □

We now record an additional estimate on D(A) that will be useful later.

Lemma 4.3. Suppose as in Theorem 1.9 that we have annealed mixing on Hp
0. Define

D(A,B) :=

∫
AB dx+ 2

∞∑
k=1

E
[∫

AB ◦ F k dx

]
,

so that D(A,A) = D(A). Then for any A,B ∈ Hp
0, it follows that:

|D(A)−D(B)| = |D(A−B,A+B)| ≤ ∥A−B∥Hs
0
∥A+B∥Hs

0
.

Proof. There are two facts used above. The first is thatD(A)−D(B) = D(A−B,B+A).
This follows from exponential mixing in (1.4), which shows that the series defining these
two quantities are absolutely convergent and hence can be rearranged. The second is
the estimate D(A,B) ≤ C∥A∥Hp

0
∥B∥Hp

0
which holds because the norm of the kth term

in the definition of D is ∥A∥Hp
0
∥B∥Hp

0
e−αk from annealed exponential mixing (1.4). □
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5. Central Limit Theorem

We are now ready to prove Theorem 1.10.

Proof. To fix the notation, we prove the result for Sobolev spaces; the proof for smooth
functions is identical.

We divide the proof into several steps, each of which simplifies what we must check
until we have reduced to checking convergence of the characteristic function at rational
frequencies.

Step 1. Let Nm = ma with a > 1/η where η is the convergence rate in (1.8). It
suffices to prove that for a.e. ω and each A ∈ Hs

0(M) that (Nm)
−1/2SNm(A) converges

to N (0,D(A)).

Indeed, suppose that we have convergence along this subsequence. Then, given an
arbitrary N choose m so that Nm ≤ N < Nm+1. Then

SN√
N

=
SNm√
Nm

+
SN − SNm√

N
+

SNm√
Nm

(√
Nm

N
− 1

)
.

By Theorem 1.9 for almost every ω there exists C(ω) such that∣∣∣∣∫ A(F nx)A(F n+kx)dx

∣∣∣∣ ≤ C(ω)∥A∥Hs
0
min

(
1, ne−βk

)
.

Summing over N ≤ n ≤ n+k ≤ Nm it follows that E[(SN −SNm)
2] ≤ C(N −Nm) lnN ,

so the second term converges to zero in probability due to the Chebyshev’s inequality.
Also, the third term converges to zero due to the Slutsky’s theorem and our assumption
that the CLT holds along Nm. Invoking again Slutsky’s theorem we see that the central
limit theorem holds for all N.

Step 2. It suffices to prove that the quenched Central Limit Theorem holds for a
Hs

0 dense set of functions.

Indeed let A be a dense collection of functions satisfying the quenched Central Limit
Theorem. Take A ∈ Hs

0 and let h be a compactly supported smooth test function on
R. Let J denote the support of h. We need to show that

(5.1) lim
N→∞

∫
h

(
SN(A)(x)√

N

)
dx =

∫
J

h(u)fD(A)(u)du

where fD denotes the density of the normal random variable with zero mean and variance
D. Fix ε>0 and take Ã∈A such that ∥Ã−A∥Hs

0
≤ε. By Lemma 4.3, |D(A)−D(Ã)|≤CAε.

Now write∫
h

(
SN(A)√

N

)
dx =

∫
h

(
SN(Ã)√

N

)
dx+

∫ [
h

(
SN(A)√

N

)
− h

(
SN(Ã)√

N

)]
dx.

Since Ã ∈ A the first term for large N is ε close to
∫
J
h(u)fD(Ã)(u)du and whence it

is CAε close to
∫
J
h(u)fD(A)(u)du. From the mean value theorem, the second term is
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smaller in absolute value than

∥h∥C1ε1/3 + ∥h∥C0mes

(
x :

∣∣∣∣∣SN(A)(x)√
N

− SN(Ã)(x)√
N

∣∣∣∣∣ ≥ ε1/3

)
.

By Lemma 4.1(a) and Chebyshev’s inequality the above expression is O(ε1/3). Since ε
is arbitrary (5.1) holds for all h, and hence A satisfies the quenched CLT.

Step 3. Observe that since Hs
0 contains a countable dense set, it is enough to show

that the quenched CLT holds for a fixed function A ∈ Hs
0.

Step 4. Almost surely, the functions ΦA,N(ξ) =

∫
eiSN (A)(x)ξ/

√
Ndx are equicontinu-

ous with respect to N .

Indeed ΦA,N(0) = 1, taking the first derivative gives:

∂ξΦA,N =

∫
iSN(A)(x)√

N
eiSN (A)(x)ξ/

√
N dx.

Note in particular that ∂ξΦA,N(0) = 0 (since A has zero mean), and by Cauchy-Schwarz,

|∂ξΦA,N(ξ)| ≤
(∫

SN(A)
2(x)

N
dx

)1/2

By Lemma 4.1(a), it follows that
∫
N−1S2

N(A)(x) dx ≤ K∥A∥2Hs
0
and hence |∂ξΦA,N | is

a bounded function. Thus ΦA,N(ξ) is equicontinuous.

Combining Steps 1-4 above and we see that it suffices to show that for almost every ω
that ΦA,N(ξ) → e−D(A)ξ2/2 for all rational ξ restricted to the sequence Nm from Step 1.
Hence it suffices to show that the converges holds for a fixed (rational) ξ.

Next, from (1.7) if B(x, y)=A(x) then D(B)=D(A), while if B(x, y)=A(x)−A(y)
then D(B) = 2D(A). Next let

ZN(ω) =

∫
eiξSN (A)(x)/

√
Ndx− e−ξ2D(A)/2.

We claim that ZNm converges to zero almost surely. Indeed by (1.8) E(ZN) = O(N−η)
and in addition,

E
(
ZN Z̄N

)
=E
([∫

eiξSN (A)(x)/
√
Ndx−e−ξ2D(A)/2

][∫
e−iξSN (A)(y)/

√
Ndy−e−ξ2D(A)/2

])
=E

(∫∫
eiξ(SN (A)(x)−SN (A)(y))/

√
N dxdy

)
+ e−ξ2D(A)

− 2e−ξ2D(A)/2E
(
R

∫
eiξSN (A)(x)/

√
N dx

)
=e−ξ2D(A) +O(N−η)+e−ξ2D(a)−2e−ξ2D(A)/2(e−ξ2D(A)/2 +O(N−η))=O

(
N−η

)
.
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Now from our choice of Nm and the term in the above line, Chebyshev’s inequality gives

that lim
m→∞

∫
eiξSNm (A)(x)ξdx=e−ξ2D(A)/2 for almost every ω completing the proof of the

theorem. □
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[Gou15] Sébastien Gouëzel. Limit theorems in dynamical systems using the spectral method. In
Hyperbolic dynamics, fluctuations and large deviations, volume 89 of Proc. Sympos. Pure
Math., pages 161–193. Amer. Math. Soc., Providence, RI, 2015.
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