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Abstract. We prove a law of large numbers and a central limit theorem for the norm of the homology class,
i.e., the arithmetic complexity, of closed geodesics of a fixed topological type and length at most L on an

arbitrary negatively curved surface as L → ∞. These results contrast with analogous statements obtained

when sampling among all primitive closed geodesics and lead to natural conjectures in the large genus regime.
In the course of the proof we also establish laws of large numbers and central limit theorems for the action

in homology of mapping class groups.
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1. Introduction

Motivation. Closed geodesics on negatively curved surfaces can be studied from three different points of
view: their topology - e.g., whether they are simple or not-, their geometry - e.g., their length-, and their
arithmetic - i.e., their homology class. See Figure 1 for a schematic diagram. Many interesting questions
arise when studying the mysterious aspects that lie at the center of this diagram, i.e., that connect the three
perspectives one can use to study closed geodesics. In this regard, the main goal of this paper is to provide a
concrete answer to the following illustrative question: How homologically complicated are long non-separating
simple closed geodesics on negatively curved surfaces?

We answer this question in a statistical sense by proving a law of large numbers and a central limit
theorem for the norm of the homology class of non-separating simple closed geodesics of length at most L
on an arbitrary negatively curved surface as L → ∞. More concretely, we show there exists a universal
exponent ς = ς(g) ∈ (0, 1), such that for any closed negatively surface X of genus g ≥ 2, the norm of the
homology class of most long non-separating simple closed geodesic on X is comparable to the ς-th power of
their length. Furthermore, we describe the statistics of appropriately rescaled deviations from this exponent
as a non-degenerate normal distribution.

The universal exponent ς = ς(g) ∈ (0, 1) admits a dynamical interpretation as the top Lyapunov exponent
of the invariant part of the Kontsevich-Zorich cocycle on the principal stratum of holomorphic quadratic
differentials of genus g ≥ 2. In particular, numerical experiments of Fougeron [Fou20] suggest that ς(g) ↘ 1/2
as g ↗ ∞; see Figure 2 for the results of these experiments. This phenomena fits into a series of more general
conjectures of Zorich regarding the asymptotic behavior of the Lyapunov spectra of the Kontsevich-Zorich
cocycle in large genus.

topology

geometry arithmetic

?

Figure 1. The study of closed geodesics on hyperbolic and negatively curved surfaces.
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Figure 2. Numerical computation of the exponent ς(g) in terms of the genus g ≥ 2.

When sampling over all primitive closed geodesics, and not only over those that are simple and non-
separating, the description of the corresponding arithmetic properties is much more developed. Indeed, work
of several authors [PS87, Eps87, Lal89, Pol91, BL98, Sha04] shows that on any closed negatively curved
surface the norm of the homology class of most long primitive closed geodesic is comparable to the square
root of their length. Furthermore, the preferred direction in homology of long closed geodesics is chosen
according to the measure in projective space induced by an inner product. Moreover, a central limit theorem
and a stronger local limit theorem for the joint distribution of the norm and the direction of homology classes
of long primitive closed geodesics can be proved. Unfortunately, the methods in these works cannot be used
to study the main question of this paper. Indeed, it is very hard to detect simplicity of closed geodesics
through coding techniques.

Nevertheless, it is natural to ask whether analogous central limit theorems for the joint distribution of
the norm and the direction of homology classes of long closed geodesics on closed negatively curved surfaces
can hold when we sample only over simple non-separating geodesics. In this setting, our results actually
show that such a central limit theorem cannot hold. Indeed, the order of the rescaling in such a central
limit theorem is incompatible with the order of the rescaling in the central limit theorem we prove. These
notably different behaviours are certainly compatible with the general theory given that the sampling sizes
in each case are drastically different: by work of Huber and Selberg [Hub61], the number of primitive closed
geodesics of length at most L grows like an exponential in L while, by work of Mirzakhani [Mir08b], the
number of simple non-separating closed geodesics of length at most L grows like a polynomial in L of degree
6g − 6, where g ≥ 2 is the genus of the corresponding closed negatively curved surface. Nevertheless, the
conjecture that λ(g) ↘ 1/2 as g ↗ ∞ seems to point out a connection between both regimes that fits into a
more general mantra: simple closed geodesics behave like primitive ones in large genus.

The proof of the main results of this paper is based on the effective tracking principle for mapping class
group actions introduced by the first author in [AH21a] and later developed by the second author in [Hon24].
Roughly speaking, this tracking principle states that the action of the mapping class group on the space
of closed curves of a closed surface effectively tracks the corresponding action on Teichmüller space in the
following sense: for all but quantitatively few mapping classes, the information of how a mapping class moves
a given point of Teichmüller space determines, up to a power saving error term, how it changes the geometric
intersection numbers of a given closed curve with respect to arbitrary geodesic currents. The relevant geodesic
currents in our setting are the Liouville currents of negatively curved metrics on the surface of interest.

Using this tracking principle one can reduce the original questions about the statistics of the norm of the
homology classes of long non-separating simple closed geodesics on negatively curved surfaces to questions
about the statistics of the action of the mapping class group on the homology group of the surface relative
to its action on Teichmüller space. These questions in turn can be thoroughly studied using the dynamics
of the Teichmüller geodesic flow on the principal stratum of holomorphic quadratic differentials and, more
concretely, using the Kontsevich-Zorich cocycle. In fact, a careful application of averaging and unfolding
principles originally introduced by Margulis in his thesis [Mar70] allows one to reduce such questions to
problems concerning the equidistribution of weighted Teichmüller balls on moduli spaces of Riemann surfaces.

Such problems in dynamics are generally studied using mixing properties of the corresponding flow, in
this case the Teichmüller geodesic flow, but the additional weights in our case force upon us the use of more
sophisticated mixing limit theorems. Such limit theorems were introduced by Dolgopyat and Nandori in
[DN20] to study general hyperbolic flows. In our setting, mixing laws of large numbers and central limit
theorems for the Kontsevich-Zorich cocycle were proved by the first author and Forni in [AF24]. This work
provides a general framework for upgrading limit theorems to mixing limit theorems under mild ergodicity



CLOSED GEODESICS ON SURFACES: TOPOLOGY, GEOMETRY, ARITHMETIC 3

and hyperbolicity conditions. Its application to the Kontsevich-Zorich cocycle in turn relies on works of
several authors [Fil17, BDG+21, ASF22].

Statements of the main results. Let X be a closed, connected, oriented surface endowed with a negatively
curved Riemannian metric. Two closed curves on X are said to have the same topological type if there exists
a homeomorphism of X identifying the corresponding free homotopy classes. Notice that closed geodesics
on X that have the same topological type as a simple non-separating closed curve are precisely those that
are simple and non-separating. Given a closed curve γ on X, denote by [γ] ∈ H1(X;R) its homology class.
Given a closed geodesic γ on X denote by ℓX(γ) > 0 its corresponding length.

Given a closed curve γ0 on X and L > 0 consider the finite set G(X, γ0, L) of all closed geodesics γ on
X of the same topological type as γ0 and length ℓX(γ) ≤ L. Endow this space with the uniform probability
measure PX,γ0,L.

In this paper we prove the following law of large numbers for the norm of the homology class of long closed
geodesics of a fixed topological type; this is the first main result of this paper.

Theorem 1.1. For every g ≥ 2 there exists a constant ς = ς(g) ∈ (0, 1) with the following property. Let X
be a closed, connected, oriented surface of genus g endowed with a negatively curved Riemannian metric, γ0
be a closed curve on X that is non-trivial in homology, and ∥ · ∥ be a norm on the homology group H1(X;R).
Then, the random variables

log ∥[γ]∥
log ℓX(γ)

on (G(X, γ0, L),PX,γ0,L)

converge in distribution to the point mass at ς as L → ∞.

Remark 1.2. The convergence in distribution in Theorem 1.1 is equivalent to

∀ϵ > 0: lim
L→∞

#{γ ∈ G(X, γ0, L) : log ∥[γ]∥/ log ℓX(γ) ∈ (ς − ϵ, ς + ϵ)}
#G(X, γ0, L)

= 1.

Roughly speaking, Theorem 1.1 shows there exists a universal constant ς = ς(g) ∈ (0, 1), depending only on
the topology, i.e., the genus g ≥ 2, of the negatively curved surface being considered, and not on its geometry
or on the topological type of the closed geodesics being sampled, such that the norm of the homology class
of long closed geodesics on the surface of the given topological type is comparable to the ς-th power of their
length.

In this paper we also prove the following central limit theorem for the norm of the homology class of long
closed geodesics of a fixed topological type; this is the second main result of this paper.

Theorem 1.3. For every g ≥ 2 there exist constants ς = ς(g) ∈ (0, 1) and V = V (g) > 0 with the
following property. Let X be a closed, connected, oriented surface of genus g endowed with a negatively
curved Riemannian metric, γ0 be a closed curve on X that is non-trivial in homology, and ∥ · ∥ be a norm on
the homology group H1(X;R). Then, the random variables

log ∥[γ]∥ − log ℓX(γ) · ς√
log ℓX(γ)

on (G(X, γ0, L),PX,γ0,L)

converge in distribution to a Gaussian of mean 0 and variance V as L → ∞.

Remark 1.4. The convergence in distribution in Theorem 1.3 is equivalent to

∀a < b : lim
L→∞

#{γ ∈ G(X, γ0, L) : (log ∥[γ]∥ − log ℓX(γ) · ς)/
√

log ℓX(γ) ∈ (a, b)}
#G(X, γ0, L)

=
1√
2πV

∫ b

a

e−x2/2V dx.

Remark 1.5. Notice that the statistics considered in Theorem 1.3 are not well defined if log ℓX(γ) < 1. This
only happens for finitely many of the closed geodesics being sampled. In particular, this does not affect the
limiting distribution obtained.

Remark 1.6. Theorems 1.1 and 1.3 apply in more generality. Instead of considering a negatively curved
Riemannian metric, one can consider an arbitrary geodesic current on the corresponding surface; see Theorems
4.20 and 4.21 for precise statements.

Roughly speaking, Theorem 1.3 shows the deviations from the universal exponent ς = ς(g) ∈ (0, 1) in
Theorem 1.1 converge to a normal distribution of mean zero and variance V = V (g) > 0 when appropriately
rescaled. Furthermore, this variance depends only on the topology of the underlying surface and not on its
geometry or the topological type of the closed geodesics being sampled.
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Limit theorems for mapping class groups. Fix a closed, connected, oriented surface Sg of genus g ≥ 2.
Denote by Tg the Teichmüller space of marked complex structures on Sg. The mapping class group Modg of
Sg acts on Tg by changing the markings. Denote by dT the Teichmüller metric on Tg.

Given X,Y ∈ Tg and R ≥ 0 denote by M(X,Y,R) the set of all mapping classes g ∈ Modg such that
0 < dT (X,g.Y ) ≤ R. Endow this space with the uniform probability measure PX,Y,R.

In the course of the proof of Theorem 1.1 we prove the following result of independent interest corresponding
to a law of large numbers for the action in homology of mapping class groups.

Theorem 1.7. For every g ≥ 2 there exists a constant ς = ς(g) ∈ (0, 1) with the following property. Let
X,Y ∈ Tg be marked complex structures on Sg, let v0 ∈ H1(X;R) be a non-zero homology class, and let ∥ · ∥
be a norm on the homology group H1(X;R). Then, the random variables

log ∥g.v0∥
dT (X,g.Y )

on (M(X,Y,R),PX,Y,R)

converge in distribution to the point mass at ς as L → ∞.

In the course of the proof of Theorem 1.3 we prove the following result of independent interest corresponding
to a central limit theorem for the action in homology of mapping class groups.

Theorem 1.8. For every g ≥ 2 there exist constants ς = ς(g) ∈ (0, 1) and V = V (g) > 0 with the following
property. Let X,Y ∈ Tg be marked complex structures on Sg, let v0 ∈ H1(X;R) be a non-zero homology class,
and let ∥ · ∥ be a norm on the homology group H1(X;R). Then, the random variables

log ∥g.v0∥ − dT (X,g.Y ) · ς√
dT (X,g.Y )

on (M(X,Y,R),PX,Y,R)

converge in distribution to a Gaussian of mean 0 and variance V as L → ∞.

Remark 1.9. Notice that the statistics considered in Theorem 1.8 are not well defined if dT (X,g.Y ) < 1.
This only happens for finitely many of the mapping classes being sampled. In particular, this does not affect
the limiting distribution obtained.

Remark 1.10. The constants ς = ς(g) ∈ (0, 1) and V = V (g) > 0 in Theorems 1.1, 1.3, 1.7, and 1.8 are the
same. More concretely, ς is the top Lyapunov exponent of the invariant part of the Kontsevich-Zorich cocycle
on the principal stratum of holomorphic quadratic differentials of genus g ≥ 2 and V is the variance predicted
by the central limit theorem of Al–Saqban and Forni [ASF22] for this cocycle. We remind the reader that
numerical experiments of Fougeron [Fou20] and conjectures of Zorich predict that ς(g) ↘ 1/2 as g ↗ ∞; see
Figure 2.

Remark 1.11. The proofs of Theorems 1.1 and 1.3 actually require more precise versions of Theorems 1.7
and 1.8 that apply to bisectors of Teichmüller space rather than just balls; see Theorems 3.33 and 3.34 for
precise statements.

Remark 1.12. The proofs of Theorems 1.7 and 1.8 can be adapted to obtain other laws of large numbers and
central limit theorems for the action in homology of mapping class groups; see Theorems 3.35 and 3.36 for
examples and Remark 3.37 for an extended discussion.

Primitive closed geodesics. Let X be a closed, connected, oriented surface endowed with a negatively
curved Riemannian metric. Given L > 0, denote by G(X,L) the set of all primitive closed geodesics γ on X
with ℓX(γ) ≤ L. Endow this space with the uniform probability measure PX,L.

Although it will not be used in the rest of this paper, we give a precise statement of a central limit theorem in
work of Sharp [Sha04] for the homology class of long primitive closed geodesics without prescribed topological
type on negatively curved surfaces. The reader might find it useful to keep this result in mind as a point of
comparison while exploring the rest of this paper.

Theorem 1.13. Let X be a closed, connected, oriented surface of genus g ≥ 2 endowed with a negatively
curved Riemannian metric. Identify H1(X;R) = R2g. Then, there exists a positive definite 2g × 2g matrix
Σ = Σ(X) such that, as L → ∞, the H1(X;R)–valued random variables

[γ]/
√

ℓX(γ) on (G(X,L),PX,L)

converge in distribution to a Gaussian multivariate of mean 0⃗ ∈ R2g and covariance matrix Σ.

Remark 1.14. The convergence in distribution in Theorem 1.13 is equivalent to

∀A ⊆ R2g with Leb(∂A) = 0: lim
L→∞

#{γ ∈ G(X,L) : [γ]/
√
ℓX(γ) ∈ A}

#G(X,L)

=
1√

(2π)2g det(Σ)

∫
A

exp

(−x⃗TΣ−1x⃗

2

)
dx⃗.



CLOSED GEODESICS ON SURFACES: TOPOLOGY, GEOMETRY, ARITHMETIC 5

SIMPLE CURVES ON TORI 5
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Several very accurate computer generated renderings of the unit ball were

made by the authors. To the casual observer first seeing these pictures B
appears polygonal, but it is not hard to see that this is far from the truth –

since the triangle inequality is strict, no three points with rational slope are

collinear. To describe the true geometry of B (for any complete hyperbolic

structure of finite area), we first need to define some terms.

Let B be a convex body in the plane, and let p ∈ ∂B. After applying a

euclidian isometry we can suppose that the point p is at the origin in the plane

and that B lies in the half space y ≥ 0. There is a neighborhood |x| < δ0, such

that the the boundary of ∂B is a graph of a convex function f . We say that

∂B is flat to order n at p if there exists a δ, 0 < δ < δ0, such that f(x) ≤ |x|n,

when |x| < δ. We say that ∂B is flat to infinite order at p, if it is flat to order

n, for every n > 0.

Now we can state:

Theorem 2.1. The boundary of the unit ball B! has a corner at each

point of rational slope. The exterior angle at such a corner at the slope p/q

decreases exponentially as a function of max(p, q) (the height). At a point of

irrational slope θ, the boundary of B! is flat, to infinite order.

Figure 3. The unit ball of the stable norm of a hyperbolic once punctured torus.

Roughly speaking, Theorem 1.13 shows that the norm of the homology class of most long primitive closed
geodesics on an arbitrary negatively curved surface X is comparable to the square root of their length.
Furthermore the direction in homology of these geodesics is chosen according to an inner product, the one
defined by the positive definite matrix Σ = Σ(X).

As a direct consequence of Theorem 1.13 one can deduce the following corollary.

Corollary 1.15. Let X be a closed, connected, oriented surface of genus g ≥ 2 endowed with a negatively
curved Riemannian metric and let ∥ ·∥ be a norm on the homology group H1(X;R). Given 0 < r < R, denote
by A(r,R) ⊆ R2g the annulus of inner radius r and outer radius R. Then, there exists a positive definite
2g × 2g matrix Σ = Σ(X) such that

∀a < b : lim
L→∞

#{γ ∈ G(X,L) : log ∥[γ]∥ − log ℓX(γ)/2 ∈ (a, b)}
#G(X,L)

=
1√

(2π)2g det(Σ)

∫
A(ea,eb)

exp

(−x⃗TΣ−1x⃗

2

)
dx⃗.

In particular, Theorem 1.3 and Corollary 1.15 show that a central limit theorem like Theorem 1.13 cannot
hold when sampling over closed geodesics of a fixed topological type. Indeed, the scalings in Theorem 1.3
and Corollary 1.15 needed to get nontrivial limits are incompatible.

Directions in homology. Let X be a connected, oriented surface endowed with a complete negatively
curved Riemannian metric; we allow this surface to have punctures. The stable norm of X is the norm on
the homology group H1(X;R) defined as follows:

∥c∥ := inf


n∑

i=1

riℓX(γi) :
γ1, . . . , γn piecewise smooth closed curves on X,∑n

i=1 ri[γi] = c,
r1, . . . , rn > 0.

 .

See Figure 3 for a numerical computation of the unit ball of this norm for a hyperbolic once punctured torus
[MR95b]. Given a non-zero homology class c ∈ H1(X;R), denote by [c] ∈ PH1(X;R) its projective class.
The stable norm ∥ · ∥ induces a Borel measure µ on PH1(X;R) given by

µ(A) = Leb({c ∈ H1(X;R) : 0 < ∥c∥ ≤ 1 and [c] ∈ A}).
Regardless of the incompatibility between Theorems 1.3 and 1.13, one can still consider the question of

preferred directions in homology for long closed geodesics of a fixed topological type. Although the general
case seems out of reach for the moment, we highlight the following result of McShane and Rivin [MR95a] for
hyperbolic once punctured tori.

Theorem 1.16. Let X be a hyperbolic once punctured torus and γ0 be a simple non-separating closed curve
on X. Denote by µ the measure induced by the stable norm of X on PH1(X;R). Then, the PH1(X;R)–valued
random variables

[[γ]] on (G(X, γ0, L),PX,γ0,L)

converge in distribution to µ as L → ∞.

Remark 1.17. In [MR95a], McShane and Rivin show that the stable norm on the homology group H1(X;R)
of any hyperbolic once punctured torus X is highly non-smooth in the sense that its unit ball has a corner at
every line intersecting the integer lattice H1(X;Z); compare to the case of Theorem 1.13 where the direction
in homology is chosen according to an inner product.
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Open problems. The previous discussion naturally leads to the following open problems of interest.

Problem 1.18. Show that the universal exponent ς = ς(g) ∈ (0, 1) in Theorems 1.1, 1.3, 1.7, and 1.8
satisfies the asymptotics ς(g) ↘ 1/2 as g ↗ ∞.

Problem 1.19. Given a negatively curved surface, characterize the measure on the projectivized homology
group of the surface that records the statistics of the direction in homology of long closed geodesics of a
prescribed topological type. In particular, does this measure coincide with the measure induced by the stable
norm?

Problem 1.20. For an arbitrary negatively curved surface, give an asymptotic formula, as L → ∞, for
the number of closed geodesics of a given topological type and length at most L that belong to a prescribed
homology class.

Organization of the paper. In §2 we cover the preliminaries on Teichmüller theory that will be used
throughout the rest of the paper. In §3 we prove Theorems 1.7 and 1.8 above. Furthermore, we prove
stronger versions of these theorems that apply to bisectors of Teichmüller space; see Theorems 3.33 and 3.34.
The corresponding mixing limit theorems, key ingredients in the proofs, are introduced as Theorems 3.1
and 3.2. In §4 we prove Theorems 1.1 and 1.3 above. Furthermore, we prove stronger versions that apply
to arbitrary filling geodesic currents; see Theorems 4.20 and 4.21. The tracking principle, see 4.7, and the
technical tools needed to handle the case of non-filling closed curves are also discussed in detail in this section.

Acknowledgements. The authors would like to thank Alex Eskin, Giovanni Forni, and Anton Zorich for
very enlightening conversations on the subject of this paper.

2. Preliminaries

Outline of this section. In this section we give a brief overview of the objects and terminology that will
be used throughout the rest of this paper. With the exception of the discussion on Hubbard-Masur functions
and on central limit theorems for the Kontsevich-Zorich cocycle, see Theorem 2.5, the material presented in
this section is standard.

Quadratic differentials. A holomorphic quadratic differential q on a Riemann surface X is a differential
which in local coordinates z has the form f(z) dz2 for some holomorphic function f(z). Such a differential
has a well defined notion of area,

∥q∥ := Area(q) =

∫
X

|q|.

More precisely, the differential q induces a singular flat metric on X. If in local coordinates z = x + iy
then the metric is given by dx2 + dy2; the zeroes of the differential correspond to singularities of this metric.
The area of q is the total area of this metric. Denote by Q(X) the complex vector space of all holomorphic
quadratic differentials on a Riemann surface X and by S(X) ⊆ Q(X) the sphere of all such differentials of
unit area. We sometimes denote quadratic differentials by (X, q) to record the Riemann surface X they are
defined on.

Teichmüller and moduli spaces. Fix a closed, connected, oriented surfaces Sg of genus g ≥ 2. Denote
by Tg the Teichmüller space of marked complex structures on Sg. The spaces Q(X) and S(X) for X ranging
over Tg can be arranged into bundles QTg and Q1Tg of marked quadratic differentials on Sg. Denote by
Modg the mapping class group of Sg. This group acts properly discontinuously on Tg, QTg, and Q1Tg by
changing the markings. The corresponding quotients Mg, QMg, and Q1Mg are moduli spaces of complex
structures and quadratic differentials on Sg. Denote by π̂ : QTg → Tg and by π : QMg → Mg the natural
forgetful maps.

The Masur-Veech measure. The bundle QTg can be identified with the cotangent bundle of Tg. In
particular, it supports a canonical volume form. The restriction of this volume form to Q1Tg induces a
smooth measure µ̂ called the Masur-Veech measure. This measure is invariant under the marking changing
action of Modg on Q1Tg. Denote by µ its local pushforward to the quotient space Q1Mg; we also refer to
this measure as the Masur-Veech measure. Independent works of Hubbard and Masur [Mas82, Vee82] show
that the measure µ on Q1Mg is finite. Later we introduce a particular normalization of this measure that
will be useful for our purposes; see (2).
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Singular measured foliations. Denote by MFg the space of singular measured foliations on Sg up to
isotopy and Whitehead moves. The set of isotopy classes of weighted simple closed curves on Sg embeds
densely into MFg. Furthermore, geometric intersection numbers extend continuously to a pairing i(·, ·) on
MFg. Train track coordinates induce a natural integral piecewise linear structure on MFg. A particular
example of such coordinate system is provided by Dehn-Thurston coordinates, which identify MFg with
Σ3g−3, where Σ := R2/⟨±1⟩, via intersection and twisting numbers with respect to a fixed pair of pants
decomposition; see [PH92, §1.2]. In particular, MFg carries a natural Lebesgue class measure ν called
the Thurston measure. This measure is invariant under the natural Modg-action on MFg. We consider
the normalization of the Thurston measure induced by the symplectic structure described in [PH92, §3.2].
Denote by PMFg the projectivization of MFg under the R+ action that scales transverse measures and by
[λ] ∈ PMFg the projective class of λ ∈ MFg.

The Hubbard-Masur theorems. Every quadratic differential q on a Riemann surface X gives rise to a
pair of singular measured foliations ℜ(q) and ℑ(q) on X. If in local coordinates z = x+ iy the differential q
corresponds to dz2 then ℜ(q) corresponds to the measured foliation induced by |dx| and ℑ(q) corresponds to
the measured foliation induced by |dy|; the zeroes of q correspond to the singularities of the foliations. We
refer to ℜ(q) and ℑ(q) as the real/vertical and imaginary/horizontal foliations of q. These constructions give
rise to Modg-equivariant maps ℜ,ℑ : QT g → MFg.

The following theorem of Hubbard and Masur [HM79] allows us to parametrize Q(X) in terms of vertical
foliations across all X ∈ Tg.

Theorem 2.1. Given X ∈ Tg and a singular measured foliation η ∈ MFg, there exists a unique quadratic
differential q = q(X, η) ∈ Q(X) such that ℜ(q) = η. Furthermore, the map q ∈ Q(X) 7→ ℜ(q) ∈ MFg is a
homeomorphism. The analogous result holds for imaginary foliations.

We say that a pair of singular measured foliations (η, ζ) ∈ MFg × MFg fills the surface if the sum of
their geometric intersection numbers with any singular measured foliation is positive. Denote by ∆MFg

⊆
MFg ×MFg the set of non-filling pairs of singular measured foliations. The following theorem of Gardiner
and Masur [GM91] allows us to globally parametrize QTg in terms of real and imaginary foliations.

Theorem 2.2. Given a filling pair of singular measured foliations (η, ζ) ∈ MFg × MFg \ ∆MFg , there
exists a unique quadratic differential q ∈ QT g such that ℜ(q) = η and ℑ(q) = ζ. Furthermore, the map
(ℜ,ℑ) : QT g → MFg ×MFg \∆MFg

is a homeomorphism.

The Teichmüller geodesic flow. A half-translation structure on a surface S is an atlas of charts to C on
the complement of a finite set of points Σ ⊆ S whose transition functions are of the form z 7→ ±z + c with
c ∈ C. Every quadratic differential q induces a half-translation structure on the Riemann surface it is defined
on by considering local coordinates on the complement of the zeroes of q for which q = dz2. Viceversa,
every half-translation structure induces a quadratic differential on its underlying surface by pulling back the
differential dz2 on the corresponding charts.

The group SL(2,R) acts naturally on half-translation structures by postcomposing the corresponding
charts with the linear action of this group on C = R2. In particular, the group SL(2,R) acts naturally on
QTg preserving Q1Tg. For every t ∈ R and every θ ∈ [0, 2π] denote

(1) at :=

(
et 0
0 e−t

)
, rθ :=

(
cos θ − sin θ
sin θ cos θ

)
.

The flow induced by the action of the one-parameter subgroup {at}t∈R ⊆ SL(2,R) is the Teichmüller geodesic
flow. For every θ ∈ [0, 2π] and every q ∈ QTg one can show rθ = e2θiq. In particular, the action of
SO(2) ⊆ SL(2,R) preserves the fibers Q(X) of QTg and the fibers S(X) of Q1Tg. The SL(2,R) and Modg
actions on QTg commute. In particular, there is a well defined SL(2,R) action and a well defined Teichmüller
geodesic flow on QMg.

Stable and unstable foliations. Every q0 ∈ Q1Tg supports strongly stable, central, and strongly unstable
leaves given respectively by

αss(q0) = {q ∈ Q1Tg | ℜ(q) = ℜ(q0)},
αc(q0) = {atq0 | t ∈ R},

αuu(q0) = {q ∈ Q1Tg | ℑ(q) = ℑ(q0)}.
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These leaves give rise to topological foliations Fss, Fc, and Fuu called the strongly stable, central, and
strongly unstable foliations of Q1Tg. The stable and unstable leaves of q0 ∈ Q1Tg are given by

αs(q0) := {q ∈ Q1Tg | [ℜ(q)] = [ℜ(q0)]} =
⋃
t∈R

atα
uu(q0),

αu(q0) := {q ∈ Q1Tg | [ℑ(q)] = [ℑ(q0)]} =
⋃
t∈R

atα
ss(q0).

These leaves give rise to topological foliations Fs and Fu called the stable and unstable foliations.

Leafwise measures. Given η ∈ MFg, denote by MFg(η) ⊆ MFg the open, dense, full-measure subset of
singular measured foliations on Sg that together with η fill the surface. Fix q0 ∈ Q1Tg. By Theorem [GM91],
the restriction ℑ|αs(q0) : α

s(q0) → MFg(ℜ(q0)) is a homeomorphism. Denote by µαs(q0) the pullback to
αs(q0) of the Thurston measure ν on MFg(ℜ(q0)). Analogously, one can define a measure µαu(q0) on the
unstable leaf αu(q0).

Given η ∈ MFg, denote by MF1
g(η) ⊆ MFg the subset of singular measured foliations ζ ∈ MFg(η)

such that i(η, ζ) = 1. Fix q0 ∈ Q1Tg. By Theorem [GM91], the restriction ℑ|αss(q0) : α
ss(q0) → MF1

g(ℜ(q0))
is a homeomorphism. Denote by µαss(q0) the pullback to αs(q0) of the conned-off Thurston measure on
MF1

g(ℜ(q0)). Analogously, one can define a measure µαuu(q0) on the strongly unstable leaf αuu(q0).

We normalize the Masur-Veech measure µ on Q1Tg so that locally

(2) dµ = dµαu dµαss = dµαs dµαuu .

Strata and compactness. Denote by Q1Tg(1) ⊆ Q1Tg and Q1Mg(1) ⊆ Q1Mg the principal strata of
marked/unmarked, unit area, holomorphic quadratic differentials on Sg, that is, the corresponding subsets
of differentials with 4g− 4 distinct zeroes of multiplicity one. The complements of these strata, the so-called
multiple zero loci, are zero measure subsets of the respective Masur-Veech measure classes.

A saddle connection of a quadratic differential is a geodesic in the corresponding singular flat metric
connecting two singularities and having no other singularities in its interior. Given q ∈ Q1Mg, denote
by ℓmin(q) > 0 the length of the shortest saddle connections of q. For every δ > 0 consider the subset
Kδ ⊆ Q1Mg(1) of quadratic differentials q ∈ Q1Mg(1) such that ℓmin(q) ≥ δ. By work of Masur, see for
instance [MT02, Proposition 3.6], these subsets are a compact exhaustion of Q1Mg(1).

Fiberwise measures. Denote by m̂ the pushforward to Tg of the Masur-Veech measure µ̂ on Q1Tg under
the natural forgetful map; we refer to this measure as the Masur-Veech measure on Tg. This measure is Modg
invariant and smooth. Denote by {sX}X∈Tg the disintegration of the Masur-Veech measure µ̂ along the

fibers of the forgetful map π̂ : Q1Tg → Tg. More precisely, for every X ∈ Tg there exists a unique probability
measure sX on S(X) = π̂−1(X) such that the following disintegration formula holds,

(3) dµ̂(X, q) = dsX(q) dm̂(X).

The fiberwise measures sX are actually smooth and one can make sense of the disintegration above at the
level of volume forms. By [ABEM12a, Theorem 2.2], the measures sX give zero mass to the multiple zero
locus.

Denote by m the local pushforward to Mg of the measure m̂ on Tg under the natural quotient map.
Equivalently, m is the pushforward to Mg of the Masur-Veech measure µ on Q1Mg under the natural
projection. We refer to this measure as the Masur-Veech measure on Mg. The following disintegration
formula at the level of moduli spaces also holds,

dµ(X, q) = dsX(q) dm(X).

Extremal length. Given a Riemann surface X and a simple closed curve γ on it, one can define the extremal
length of γ with respect to X in two equivalent ways. Analytically, it can be defined as

ExtX(γ) := sup
ρ

ℓρ(γ)
2

Area(ρ)
,

where the supremum runs over all conformal metrics ρ on X of non-zero, finite area, and ℓρ(γ) denotes the
infimum of the ρ-lengths of simple closed curves homotopic to γ. Equivalently, it can be defined geometrically
as

ExtX(γ) := inf
C

1

mod(C)
,

where the infimum ranges over all embedded cylinders C on X with core curve homotopic to γ and mod(C)
denotes the modulus of the cylinder.

In independent works, Jenkins and Strebel [Jen57, Str66, Str75, Str76] showed these two a priori different
notions of extremal length are actually equivalent. As a direct consequence of Theorem 2.1, the notion of
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extremal length with respect to any X ∈ Tg can be extended to a unique continuous 2-homogeneous function
on MFg.

The Hubbard-Masur functions. Theorem 2.1 implies that, for every η ∈ MFg, the projection π : QTg →
Tg restricts to a bijection from ℜ−1(η) onto Tg. In [HM79], Hubbard and Masur actually proved that
this restriction is a homeomorphism and, furthermore, a diffeomorphism onto its image when restricted to
ℜ−1(η) ∩Q1Tg(1). In particular, for every q ∈ Q1Tg, the projection π : QTg → Tg is a homeomorphism onto
Tg when restricted to αs(q) and a diffeomorphism onto its image when restricted to αs(q) ∩ Q1Tg(1). The
analogous fact also holds for unstable leaves. The Hubbard-Masur functions, introduced in [ABEM12b], are
the unique smooth, positive functions λ−, λ+ : Q1Tg(1) → R>0 such that for every (X, q) ∈ Q1Tg(1) ,

dm̂(X) = λ−(q) dπ̂∗(µαs(q))(X),

dm̂(X) = λ+(q) dπ̂∗(µαu(q))(X).

The Hubbard-Masur functions can be defined in the following alternative way. By Theorem 2.1, for every
X ∈ Tg, the maps ℜ,ℑ : Q1Tg → MFg are homeomorphism onto MFg when restricted to Q(X). Moreover,
these maps are piecewise smooth isomorphisms onto their image when restricted to Q(X) ∩ Q1Tg(1); see
for instance [Mir08a, Lemma 4.3] or [Dum15, Theorem 5.8]. Consider the subset EX ⊆ MFg of singular
measured foliations of unit extremal length with respect to X and denote by νX the conned-off Thurston
measure on EX . By [ABEM12b, Proposition 2.3], the Hubbard-Masur functions λ−, λ+ : Q1Tg(1) → R>0

are the unique smooth, positive functions such that, for every (X, q) ∈ Q1Tg(1),
d((ℜ|S(X))

∗νX)(q) = λ−(q) dsX(q),

d((ℑ|S(X))
∗νX)(q) = λ+(q) dsX(q).

Directly from this definition one can check that the Hubbard-Masur functions are Modg-invariant. Further-
more, in [AH23] it is proved that the Hubbard-Masur functions are SO(2)-invariant and coincide everywhere
on Q1Tg(1). We denote by λ : Q1Tg(1) → R>0 the corresponding function and refer to it as the Hubbard-
Masur function.

The Hubbard-Masur constant. For every X ∈ Tg consider

Λ(X) := ν({η ∈ MFg | ExtX(η) ≤ 1}).
A direct computation using the definitions above shows that

(4) Λ(X) =

∫
S(X)

λ(q) dsX(q).

Combining results of Dumas [Dum15] and Gardiner [Gar84], Mirzakhani showed that the value of Λ(X) is
independent of X ∈ Tg. We denote this constant by Λ = Λ(g) > 0 and refer to it as the Hubbard-Masur
constant.

The Teichmüller metric. The Teichmüller metric dT on Tg quantifies the minimal dilation among quasi-
conformal maps between complex structures on Sg. More precisely, for X,Y ∈ Tg one defines

dT (X,Y ) := log

(
inf

f : X→Y
K(f)

)
,

where the infimum runs over all quasiconformal maps f : X → Y in the homotopy class given by the markings
of X and Y , and where K(f) denotes the dilations of such maps. See [FM12, Chapter 11] for more details.
The action of Modg on Tg preserves this metric. This metric is complete and its geodesics correspond to
projections to Tg of Teichmüller geodesic flow orbits on Q1Tg. In [Ker80], Kerckhoff proved the following
formula.

Theorem 2.3. For any pair of marked complex structures X,Y ∈ Tg,

dT (X,Y ) = max
η∈MFg

log

(√
ExtY (η)√
ExtX(η)

)
.

The Hodge inner product. Let X be a closed Riemann surface. Consider the Hodge decomposition of its
complex cohomology group

H1(X;C) = H1,0(X)⊕H0,1(X)

into holomorphic and anti-holomorphic 1-forms. On this cohomology group consider the Hodge intersection
pairing

(α, β)X =
i

2

∫
X

α ∧ β.
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This pairing is Hermitian, positive definite on H1,0(X), and negative definite on H0,1(X). The Hodge inner
product ⟨·, ·⟩X on H1(X;C) is the unique Hermitian inner product given by the Hodge intersection pairing on
H1,0(X), the negative of the Hodge intersection pairing on H0,1(X), and which makes H1,0(X) and H0,1(X)
orthogonal. The Hodge inner product restricts to a real inner product on H1(X,R). By Poincaré duality,
this induces a real inner product on the homology group H1(X;R). The corresponding norm, the Hodge
norm, will be denoted by ∥ · ∥X .

The homology bundle. Denote by Hg the bundle over Q1Mg whose fiber above every point (X, q) is given
by the homology group H1(X;R); such a fiber can be endowed with the Hodge norm ∥ · ∥X induced by X
via Poincaré duality. The natural SL(2,R) action on Q1Mg lifts to an action on Hg via parallel transport
with respect to the Gauss-Manin connection.

More concretely, consider the trivial bundle Ĥg := Q1Tg × H1(Sg;R); the fiber of this bundle above
(X, q) ∈ Q1Tg can be canonically identified with the homology group H1(X;R) by using the underlying
marking. The mapping class group Modg acts on Ĥg diagonally. The SL(2,R) action on Q1Tg extends to an
action on Hg by declaring the action on H1(Sg;R) to be trivial. These actions commute and thus one obtains
an SL(2,R) action on the quotient bundle Hg := Ĥg/Modg.

The following important bound is due to Forni [For02, Corollary 2.2].

Theorem 2.4. For every quadratic differential (X, q) ∈ Q1Tg, every homology class v0 ∈ H1(X;R), and
every t ∈ R,

e−t∥v0∥π(q) ≤ ∥atv0∥π(atq) ≤ et∥v0∥π(q).
As a consequence of Theorem 2.4, it is possible to compute Lyapunov exponents for the cocycle defined

by the action of the diagonal subgroup of SL(2,R) on Hg with respect to the Masur-Veech measure µ on
Q1Mg. Work of Forni [For02, Corollary 2.2] shows that the top Lyapunov exponent of this cocycle belongs
to (0, 1); denote this exponent by ς = ς(g) ∈ (0, 1).

Central limit theorems. Let µ∗ be the unique probability measure on the projectivized bundle PHg which
projects to the Masur-Veech measure µ on Q1Mg and whose conditional measures on fibers are equal to
Lebesgue probability measures. For every (q, v) ∈ PHg and every t ∈ R denote

σ(q, v, t) := log
∥atv∥π(atq)

∥v∥π(q)
.

By the Oseledets theorem, for µ∗-almost-every (q, v) ∈ PHg,

lim
t→∞

σ(ω, v, t)

t
= ς.

The following central limit theorem follows from work of Al-Saqban and Forni [ASF22, Theorem 2.1]
but also uses work of Bell, Delecroix, Gadre, Gutiérrez-Romo, and Schleimer [BDG+21, Theorem 10.1] as a
crucial input to guarantee positivity of the variance.

Theorem 2.5. There exists V = V (g) > 0 such that the random variables

σ(ω, v, t)− t · ς√
t

on (PHg, µ
∗)

converge in distribution to a Gaussian of mean 0 and variance V as t → ∞.

The variance V = V (g) > 0 in Theorem 2.5 will be featured throughout the rest of this paper.

Geodesic currents. In [Bon88], Bonahon gave a unified treatment of several seemingly unrelated notions
of length for closed curves on closed, orientable surfaces using the concept of geodesic currents. To define
geodesic currents let us endow the surface Sg with an auxiliary hyperbolic metric. The projective tangent
bundle PTSg admits a 1-dimensional foliation by lifts of geodesics on Sg. A geodesic current on Sg is a
Radon transverse measure of the geodesic foliation of PTSg. Equivalently, a geodesic current on Sg is a
π1(Sg)-invariant Radon measure on the space of unoriented geodesics of the universal cover of Sg. Endow
the space of geodesic currents on Sg with the weak-⋆ topology. Different choices of auxiliary hyperbolic
metrics on Sg yield canonically identified spaces of geodesic currents [Bon88, Fact 1]. Denote the space of
geodesic currents on Sg by Cg. This space supports a natural R+ action that scales transverse measures and
a natural Modg action [RS19, §2]. Denote by PCg the space of projective geodesic currents on Sg. This space
is compact [Bon88, Corollary 5].

Free homotopy classes of weighted, unoriented closed curves on Sg embed into Cg by considering their
geodesic representatives with respect to any auxiliary hyperbolic metric. By work of Bonahon [Bon88,
Proposition 2], this embedding is dense. Moreover, the geometric intersection number pairing for closed
curves on Sg extends in a unique way to a continuous, symmetric, bilinear pairing i(·, ·) on Cg [Bon88,
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Proposition 3]. This pairing is invariant with respect to the diagonal action of Modg. Singular measured
foliations on Sg also embed into Cg by considering their geodesic representatives with respect to any auxiliary
hyperbolic metric [Lev83].

Many different spaces of metrics on Sg embed into Cg in such a way that the geometric intersection number
of any metric with any closed curve is equal to the length of the geodesic representatives of the closed curve
with respect to the metric. We refer to the geodesic current corresponding to any such metric as its Liouville
current. Examples of metrics admitting Liouville currents include:

• Hyperbolic metrics [Bon88],
• Negatively curved Riemannian metrics [Ota90],
• Negatively curved Riemannian metrics with cone singularities of angle at least 2π [HP97],
• Singular flat metrics induced by quadratic differentials [DLR10],
• Singular flat metrics with cone singularities of angle at least 2π [BL18].

A closed curve on Sg is said to be filling if it intersects every homotopically non-trivial closed curve on Sg.
A geodesic current α ∈ Cg is said to be filling if i(α, β) > 0 for every non-zero β ∈ Cg. Relevant examples
of filling geodesic currents include free homotopy classes of unoriented filling closed curves and the Liouville
currents listed above. Denote by C∗

g ⊆ Cg the open subset of filling geodesic currents on Sg.

Constants. Let A,B ∈ R be real quantities and ∗ be a set of parameters. We write A ⪯∗ B if there exists
a constant C = C(∗) > 0 depending only on the parameters ∗ such that A ≤ C · B. We write A ≍∗ B if
A ⪯∗ B and B ⪯∗ A. We write A = O∗(B) if there exists a constant C = C(∗) > 0 depending only on
the parameters ∗ such that |A| ≤ C · B. When the dependencies on ∗ are made clear by the context, we
sometimes drop the subscript ∗.

3. Limit theorems for mapping class groups

Outline of this section. Following [ABEM12b, AH23, ASF22, AF24], we begin with a brief overview of
some of the technical tools that will be needed in the proofs of this section. After proving Theorems 1.7
and 1.8, restated in this section as Theorems 3.16 and 3.17, we prove more refined versions of them that
apply to sectors and bisectors of Teichmüller space; see Theorems 3.25, 3.26, 3.33, and 3.34. These results
will be crucial in the proofs of Theorems 1.1 and 1.3, the main results of this paper. We finish this section
with a brief discussion of other limit theorems for mapping class groups that can be proved using the same
techniques; see Theorems 3.35 and 3.36.

Mixing limit theorems for the Kontsevich–Zorich cocycle. Fix a closed, connected, oriented surface
Sg of genus g ≥ 2. Recall that Q1Mg denotes the moduli space of unit area, holomorphic quadratic differen-
tials on Sg and that Hg denotes the bundle over Q1Mg whose fiber above every point (X, q) ∈ Q1Mg is given
by the homology group H1(X;R); such a fiber can be endowed with the Hodge norm ∥ · ∥X induced by X via
Poincaré duality. Recall that the one-parameter diagonal subgroup {at}t∈R ⊆ SL(2,R) introduced in (1) acts
on Q1Mg by the Teichmüller geodesic flow and on Hg by parallel transport with respect to the Gauss-Manin
connection; as explained in §2, these actions extend naturally to all SL(2,R). Recall that π : Q1Mg → Mg

denotes the natural forgetful map to the moduli space of complex structures on Sg. Recall that µ denotes the
Masur-Veech measure on Q1Mg. Let ς = ς(g) ∈ (0, 1) be the top Lyapunov exponent of Hg as introduced in
§2. Denote by C+

c (R) the space of non-negative, continuous, compactly supported functions ξ : R → R. The
following mixing law of large numbers corresponds to [AF24, Theorem 4.25].

Theorem 3.1. Let s : Q1Mg → Hg be an SO(2)-equivariant, nowhere vanishing, measurable section. Then,
for the random variables

(5) It(s, q) :=
1

t
log

∥ats(q)∥π(atq)

∥s(q)∥π(q)
on (Q1Mg, µ),

for every pair of essentially bounded functions ϕ1, ϕ2 ∈ L∞(Q1Mg, µ), and for every function ξ ∈ C+
c (R), the

following holds,

(6) lim
t→∞

∫
Q1Mg

ϕ1(q) ξ(It(s, q))ϕ2(atq) dµ(q) =
µ(ϕ1) · ξ(ς) · µ(ϕ2)

µ(Q1Mg)
.

Let V = V (g) > 0 be the variance of Hg as introduced in §2 and NV be a Gaussian distribution on R of
mean 0 and variance V . The following mixing central limit theorem corresponds to [AF24, Theorem 4.28].

Theorem 3.2. Let s : Q1Mg → Hg be an SO(2)-equivariant, nowhere vanishing, measurable section. Then,
for the random variables

(7) Jt(s, q) :=
1√
t

(
log

∥ats(q)∥π(atq)

∥s(q)∥π(q)
− t · ς

)
on (Q1Mg, µ),
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for every pair of essentially bounded functions ϕ1, ϕ2 ∈ L∞(Q1Mg, µ), and for every function ξ ∈ C+
c (R), the

following holds,

(8) lim
t→∞

∫
Q1Mg

ϕ1(q) ξ(Jt(s, q))ϕ2(atq) dµ(q) =
µ(ϕ1) · NV (ξ) · µ(ϕ2)

µ(Q1Mg)
.

The Hubbard-Masur function. Recall Q1Tg(1) ⊆ QTg and Q1Mg(1) ⊆ Q1Mg denote the principal
strata of the Teichmüller/moduli spaces of marked/unmarked unit area, holomorphic quadratic differentials
on Sg. Recall that ℓmin(q) > 0 denotes the length of the shortest saddle connections of a quadratic differential
q. Recall that λ : Q1Tg(1) → R>0 denotes the Hubbard-Masur function introduced in §2. As this function is
Modg-invariant, one can also consider it as a function defined on Q1Mg(1). Denote h = h(g) := 6g− 6. The
following estimate is proved in [AH23, Proposition 3.5].

Proposition 3.3. Let K ⊆ Mg be a compact subset. Then, for every quadratic differential q ∈ Q1Mg(1) ∩
π−1(K), the following estimate holds,

λ(q) ⪯K ℓmin(q)
−(h−1).

Recall that S(X) ⊆ Q1Mg denotes the sphere of unit area, holomorphic quadratic differentials on X ∈ Mg

and that sX denotes the fiberwise measure on S(X) induced by the Masur-Veech measure µ on Q1Mg via
disintegration. Recall that for every δ > 0 we consider the compact set Kδ ⊆ Q1Mg(1) of quadratic
differentials q ∈ Q1Mg(1) with ℓmin(q) ≥ δ. The following estimate is proved in [AH23, Proposition 3.6].

Proposition 3.4. Let K ⊆ Mg be a compact subset. Then, for every Riemann surface X ∈ K and every
δ > 0, the following estimate holds, ∫

S(X)\Kδ

λ(q) dsX(q) ⪯K δ.

The Masur-Veech measure in polar coordinates. Recall that Tg denotes the Teichmüller space of
marked complex structures on Sg. Fix X ∈ Tg. Consider the polar coordinates map ΦX : S(X)× R>0 → Tg
which to every q ∈ S(X) and every t > 0 assigns the marked Riemann surface ΦX(q, t) := π(atq) ∈ Tg.
This map is a homeomorphism onto Tg \ {X} and a diffeomorphism onto its image when restricted to
(S(X) ∩ Q1Tg(1)) × R>0. Denote by ∆X : (S(X) ∩ Q1Tg(1)) × R>0 → R>0 the unique smooth, positive
function such that for every q ∈ S(X) ∩Q1Tg(1) and every t > 0,

(9) d((ΦX)∗(m))(q, t) = ∆X(q, t) dsX(q) dt.

For every ϵ > 0 and every t > 0 consider the subset Kϵ(t) ⊆ Q1Mg(1) of quadratic differentials in the
principal stratum of moduli space whose Teichmüller geodesic flow orbit between times 0 and t spends at
least half of the time in the compact subset Kϵ, i.e.,

Kϵ(t) := {q ∈ Q1Mg(1) : |{s ∈ [0, t] : asq ∈ Kϵ}| ≥ t/2}.
Recall that π̂ : Q1Tg → Tg denotes the natural forgetful map. The following estimate for the function

∆X : (S(X) ∩ Q1Tg(1)) × R>0 → R>0 is proved in [AH23, Theorem 3.7]; see also [ABEM12b, Proposition
2.5].

Theorem 3.5. For every ϵ > 0 there exists a constant κ1 = κ1(g, ϵ) > 0 with the following property. Fix a
compact subset K ⊆ Tg. Let X ∈ Modg · K, let q ∈ S(X)∩Q1Tg(1), and let t > 0 be such that q ∈ Kϵ(t) and
π̂(atq) ∈ Modg · K. Then, the following estimate holds,

∆X(q, t) = λ(atq) · λ(q) · eht +OK

(
ℓmin(atq)

−(h−1) · ℓmin(q)
−(h−1) · e(h−κ1)t

)
.

Estimates near the multiple zero locus. Denote by BR(X) ⊆ Tg the ball of radius R > 0 centered at
X ∈ Tg with respect to the Teichmüller metric. Given X ∈ Tg, R > 0, K ⊆ Tg compact, and ϵ > 0, denote
by BR(X,K,Kϵ) ⊆ Tg the subset of points Y ∈ BR(X) ∩Modg · K such that the projection to the moduli
space of quadratic differentials of the Teichmüller geodesic segment from X to Y spends less than half of the
time in the compact subset Kϵ ⊆ Q1Mg(1). The following estimate corresponds to [AH23, Theorem 3.8];
see also [EMR19, Theorem 1.7] and [ABEM12b, Theorem 2.7].

Theorem 3.6. There exist constants ϵ1 = ϵ1(g) > 0 and κ2 = κ2(g) > 0 such that for every compact subset
K ⊆ Tg, every X ∈ K, and every 0 < ϵ < ϵ1,

m̂(BR(X,K,Kϵ))) ⪯K e(h−κ2)R.

Denote by ∆Tg ⊆ Tg ×Tg the corresponding diagonal. Consider the map qs : Tg ×Tg \∆Tg → Q1Tg which
to every pair X,Y ∈ Tg with X ̸= Y assigns the quadratic differential qs(X,Y ) ∈ S(X) corresponding to the
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cotangent direction at X of the unique Teichmüller geodesic segment from X to Y . For every X ∈ Tg and
every V ⊆ S(X) consider the sector

SectV (X) := {Y ∈ Tg \ {X} | qs(X,Y ) ∈ V }.
Denote by p : Q1Tg → Q1Mg the quotient map. The following estimate is proved in [AH23, Theorem 3.9];

see also [ABEM12b, Theorem 2.6].

Theorem 3.7. There exists a constant κ3 = κ3(g) > 0 with the following property. Let K ⊆ Tg compact, let
X ∈ K, let δ > 0, and let V := p−1(Kδ) ∩ S(X). Then, for every R > 0,

m̂(BR(X) ∩ SectV (X) ∩Modg · K) ⪯K δ · ehR + e(h−κ3)R.

The following large deviations estimate is proved in [AH23, Theorem 3.10]; see also [Ath06, Theorem 1.1]
for a series of important related results.

Theorem 3.8. There exist constants ϵ2 = ϵ2(g) > 0 and κ4 = κ4(g) > 0 such that for every 0 < ϵ < ϵ2 and
every t > 0, the following estimate holds,

µ(Q1Mg \Kϵ(t)) ⪯g e−κ4t.

Counting mapping class group orbits. Recall that Λ = Λ(g) > 0 denotes the Hubbard-Masur constant
introduced in §2. Recall that, given X,Y ∈ Tg and R > 0, we denote by M(X,Y,R) the set of all mapping
classes g ∈ Modg such that 0 < dT (X,g.Y ) ≤ R. The following effective counting result corresponds to
[AH23, Theorem 1.1].

Theorem 3.9. There exists a constant κ = κ(g) > 0 such that for every compact set K ⊆ Tg, every X,Y ∈ K,
and every R > 0,

#M(X,Y,R) =
Λ2

h ·m(Mg)
· ehR +OK

(
e(h−κ)R

)
.

Mean equidistribution of statistical balls. Recall that µ̂ denotes the Masur-Veech measure on Q1Tg
normalized as in (2) and that m̂ denotes its pushforward to Tg under the natural forgetful map. Recall that
dT denotes the Teichmüller metric on Tg. The natural marking changing actions of the mapping class group
Modg of Sg on Q1Tg and Tg preserve the measures µ̂, m̂, and the metric dT .

We now define a particular class of measures on Tg that keep track of the statistics of the random variables I
and J introduced in (5) and (7) along Teichmüller metric balls. Fix X ∈ Tg, a nowhere vanishing, measurable
section s : Q1Mg → Hg, a function ξ ∈ C+

c (R), and R > 0. Consider the measure m̂R
X,I,s,ξ on Tg given for

every Y ∈ Tg \ {X} by

(10) dm̂R
X,I,s,ξ(Y ) = ξ(IdT (X,Y )(s, p(qs(X,Y ))))1BR(X)(Y ) dm̂(Y ).

Analogously, consider the measure on Tg given for every Y ∈ Tg \ {X} by

dm̂R
X,J,s,ξ(Y ) = ξ(JdT (X,Y )(s, p(qs(X,Y ))))1BR(X)(Y ) dm̂(Y ).

Denote by mR
X,I,s,ξ and mR

X,J,s,ξ the pushforward of the corresponding measures on Tg under the forgetful
map to Mg. These measures do not depend on the marking of X ∈ Tg but only on its underlying complex
structure in Mg.

The following mean equidistribution result, which we deduce as a consequence of Theorem 3.1 and the
technical results discussed above, is the main tool used in the proof of Theorem 1.7.

Theorem 3.10. Let s : Q1Mg → Hg be an SO(2)-equivariant, nowhere vanishing, measurable section, let
ϕ1, ϕ2 ∈ L∞(Mg,m) be essentially bounded functions with compact essential support, and let ξ ∈ C+

c (R) be
a non-negative, continuous, compactly supported function. Then,

lim
R→∞

e−hR

∫
Mg

ϕ1(X)

(∫
Mg

ϕ2(Y ) dmR
X,I,s,ξ(Y )

)
dm(X)

=
Λ2 ·m(ϕ1) ·m(ϕ2) · ξ(ς)

h ·m(Mg)
.

Proof. For simplicity we assume g ≥ 3; the proof for g = 2 requires keeping track of constant orbifold
factors that muddle up the computations. Fix a measurable fundamental domain Fg ⊆ Tg of the Modg
action on Teichmüller space, a compact subset K ⊆ Mg, and a pair of essentially bounded functions ϕ1, ϕ2 ∈
L∞(Mg,m) with ess supp(ϕ1), ess supp(ϕ2) ⊆ K. Denote by ϕ̂1, ϕ̂2 ∈ L∞(Tg, m̂) the lifts of these functions
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to Tg. Let R > 0 and 0 < δ < 1 be arbitrary. Recall that mX,I,ξ is the pushforward to Mg of the measure
m̂X,I,ξ on Tg. Using (10) and (9) we can write∫

Mg

ϕ1(X)

(∫
Mg

ϕ2(Y ) dmR
X,I,s,ξ(Y )

)
dm(X)(11)

=

∫
Fg

ϕ̂1(X)

(∫
Tg

ϕ̂2(Y ) ξ(IdT (X,Y )(s, p(qs(X,Y ))))1BR(X)(Y ) dm̂(Y )

)
dm̂(X)

=

∫
Fg

ϕ̂1(X)

(∫ R

0

∫
S(X)

ϕ̂2(π̂(atq)) ξ(It(s, p(q)))∆X(q, t) dsX(q) dt

)
dm̂(X).

To apply Theorem 3.5 we first bound the contributions near the multiple zero locus. By Theorem 3.7,∫
Fg

ϕ̂1(X)

(∫ R

0

∫
S(X)

ϕ̂2(π̂(atq)) ξ(It(s, p(q)))∆X(q, t) dsX(q) dt

)
dm̂(X)(12)

=

∫
Fg

ϕ̂1(X)

(∫ R

0

∫
S(X)

ϕ̂2(π̂(atq)) ξ(It(s, p(q)))1Kδ
(p(q))∆X(q, t) dsX(q) dt

)
dm̂(X)

+OK

(
∥ϕ1∥∞ · ∥ϕ2∥∞ · ∥ξ∥∞ ·

(
δ · ehR + e(h−κ3)R

))
.

A symmetric argument using Fubini’s theorem and Theorem 3.7 shows that∫
Fg

ϕ̂1(X)

(∫ R

0

∫
S(X)

ϕ̂2(π̂(atq)) ξ(It(s, p(q)))1Kδ
(p(q))∆X(q, t) dsX(q) dt

)
dm̂(X)(13)

=

∫
Fg

ϕ̂1(X)

(∫ R

0

∫
S(X)

ϕ̂2(π̂(atq))1Kδ
(p(atq)) ξ(It(s, p(q)))1Kδ

(p(q))∆X(q, t) dsX(q) dt

)
dm̂(X)

+OK

(
∥ϕ1∥∞ · ∥ϕ2∥∞ · ∥ξ∥∞ ·

(
δ · ehR + e(h−κ3)R

))
.

Let ϵ1 = ϵ1(g) > 0 be as in Theorem 3.6 and ϵ2 = ϵ2(g) > 0 be as in Theorem 3.8. Fix an arbitrary
0 < ϵ = ϵ(g) < min{ϵ1, ϵ2}. By Theorem 3.6,∫

Fg

ϕ̂1(X)

(∫ R

0

∫
S(X)

ϕ̂2(π̂(atq))1Kδ
(p(atq)) ξ(It(s, p(q)))1Kδ

(p(q))∆X(q, t) dsX(q) dt

)
dm̂(X)(14)

=

∫
Fg

ϕ̂1(X)

(∫ R

0

∫
S(X)

ϕ̂2(π̂(atq))1Kδ
(p(atq)) ξ(It(s, p(q)))1Kδ

(p(q))1Kϵ(t)(p(q))∆X(q, t) dsX(q) dt

)
dm̂(X)

+OK
(
∥ϕ1∥∞ · ∥ϕ2∥∞ · ∥ξ∥∞ · e(h−κ2)R

)
.

Let κ = κ(g) := min{κ2, κ3} > 0. Putting (11), (12), (13), and (14) together we deduce∫
Mg

ϕ1(X)

(∫
Mg

ϕ2(Y ) dmR
X,I,s,ξ(Y )

)
dm(X)(15)

=

∫
Fg

ϕ̂1(X)

(∫ R

0

∫
S(X)

ϕ̂2(π̂(atq))1Kδ
(p(atq)) ξ(It(s, p(q)))1Kδ

(p(q))1Kϵ(t)(p(q))∆X(q, t) dsX(q) dt

)
dm̂(X)

+OK
(
∥ϕ1∥∞ · ∥ϕ2∥∞ · ∥ξ∥∞ ·

(
δ · ehR + e(h−κ)R

))
.

We are now in a good position to apply Theorem 3.5:∫
Fg

ϕ̂1(X)

(∫ R

0

∫
S(X)

ϕ̂2(π̂(atq))1Kδ
(p(atq)) ξ(It(s, p(q)))1Kδ

(p(q))1Kϵ(t)(p(q))∆X(q, t) dsX(q) dt

)
dm̂(X)(16)

=

∫
Fg

ϕ̂1(X)

(∫ R

0
eht
∫
S(X)

ϕ̂2(π(atq))1Kδ
(p(atq))λ(atq) ξ(It(s, p(q)))1Kδ

(p(q))1Kϵ(t)(p(q))λ(q) dsX(q) dt

)
dm̂(X)

+OK
(
∥ϕ1∥∞ · ∥ϕ2∥∞ · ∥ξ∥∞ · δ−2(h−1) · e(h−κ1)R

)
.

Using Fubini’s theorem and (3) we can write∫
Fg

ϕ̂1(X)

(∫ R

0

e
ht
∫
S(X)

ϕ̂2(π̂(atq))1Kδ
(p(atq))λ(atq) ξ(It(s, p(q)))1Kδ

(p(q))1Kϵ(t)(p(q))λ(q) dsX(q) dt

)
dm̂(X)(17)

=

∫ R

0

e
ht

(∫
Fg

∫
S(X)

ϕ̂2(π̂(atq))1Kδ
(p(atq))λ(atq) ξ(It(s, p(q))) ϕ̂1(X)1Kδ

(p(q))1Kϵ(t)(p(q))λ(q) dsX(q) dm̂(X)

)
dt

=

∫ R

0

e
ht

(∫
Q1Mg

ϕ2(π(atq))1Kδ
(atq)λ(atq) ξ(It(s, q))ϕ1(π(q))1Kδ

(q)1Kϵ(t)(q)λ(q) dµ(q)

)
dt.
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To apply Theorem 3.1 we first use Theorem 3.8 to write∫ R

0

eht

(∫
Q1Mg

ϕ2(π(atq))1Kδ
(atq)λ(atq) ξ(It(s, q))ϕ1(π(q))1Kδ

(q)1Kϵ(t)(q)λ(q) dµ(q)

)
dt(18)

=

∫ R

0

eht

(∫
Q1Mg

ϕ2(π(atq))1Kδ
(atq)λ(atq) ξ(It(s, q))ϕ1(π(q))1Kδ

(q)λ(q) dµ(q)

)
dt

+Og

(
∥ϕ1∥∞ · ∥ϕ2∥∞ · ∥ξ∥∞ · e(h−κ4)R

)
.

Recall that the Hubbard-Masur function λ : Q1Mg(1) → R>0 is continuous and thus it is bounded on the
compact set Kδ ⊆ Q1Mg(1); a more explicit bound is provided by Proposition 3.3. Thus, applying Theorem
3.1, we deduce

lim
t→∞

∫
Q1Mg

ϕ2(π(atq))1Kδ
(atq)λ(atq) ξ(It(s, q))ϕ1(π(q))1Kδ

(q)λ(q) dµ(q)

=
ξ(ς)

µ(Q1Mg)

(∫
Q1Mg

ϕ1(π(q))1Kδ
(q)λ(q) dµ(q)

)(∫
Q1Mg

ϕ2(π(q))1Kδ
(q)λ(q) dµ(q)

)
.

In particular, it follows that,

lim
R→∞

e−hR

∫ R

0

eht

(∫
Q1Mg

ϕ2(π(atq))1Kδ
(atq)λ(atq) ξ(It(s, q))ϕ1(π(q))1Kδ

(q)λ(q) dµ(q)

)
dt(19)

=
ξ(ς)

h · µ(Q1Mg)

(∫
Q1Mg

ϕ1(π(q))1Kδ
(q)λ(q) dµ(q)

)(∫
Q1Mg

ϕ2(π(q))1Kδ
(q)λ(q) dµ(q)

)
.

Using (15), (16), (17), (18), (19), we deduce

lim
R→∞

e−hR

∫
Mg

ϕ1(X)

(∫
Mg

ϕ2(Y ) dmR
X,I,s,ξ(Y )

)
dm(X)(20)

=
δc(ξ)

h · µ(Q1Mg)

(∫
Q1Mg

ϕ1(π(q))1Kδ
(q)λ(q) dµ(q)

)(∫
Q1Mg

ϕ2(π(q))1Kδ
(q)λ(q) dµ(q)

)
+OK (∥ϕ1∥∞ · ∥ϕ2∥∞ · ∥ξ∥∞ · δ) .

We now incorporate the contributions near the multiple zero locus to the leading term in the previous
estimate. By (3) and Proposition 3.4, for i ∈ {1, 2},∫

Q1Mg

ϕi(π(q))1Kδ
(q)λ(q) dµ(q) =

∫
Q1Mg

ϕi(π(q))λ(q) dµ̂(q) +OK (∥ϕi∥∞ · δ) .(21)

Using (3) and the definition of the Hubbard-Masur constant Λ > 0 in (4) we can write, for i ∈ {1, 2},∫
Q1Mg

ϕi(π(q))λ(q) dµ(q) = Λ ·
(∫

Mg

ϕi(X) dm(X)

)
= Λ ·m(ϕi).(22)

Putting (20), (21), and (22) together we deduce

lim
R→∞

e−hR

∫
Mg

ϕ1(X)

(∫
Mg

ϕ2(Y ) dmR
X,I,s,ξ(Y )

)
dm(X)(23)

=
Λ2 ·m(ϕ1) ·m(ϕ2) · ξ(ς)

h · µ(Q1Mg)
+OK (∥ϕ1∥∞ · ∥ϕ2∥∞ · ∥ξ∥∞ · δ) .

Taking δ → 0 and using the fact that µ(Q1Mg) = m(Mg) we conclude

lim
R→∞

e−hR

∫
Mg

ϕ1(X)

(∫
Mg

ϕ2(Y ) dmR
X,I,s,ξ(Y )

)
dm(X)

=
Λ2 ·m(ϕ1) ·m(ϕ2) · ξ(ς)

h ·m(Mg)
. □

The same arguments, with Theorem 3.2 used in place of Theorem 3.1, yield the following mean equidis-
tribution result; this is the main tool used in the proof of Theorem 1.8.
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Theorem 3.11. Let s : Q1Mg → Hg be an SO(2)-equivariant, nowhere vanishing, measurable section, let
ϕ1, ϕ2 ∈ L∞(Mg,m) be essentially bounded functions with compact essential support, and let ξ ∈ C+

c (R) be
a non-negative, continuous, compactly supported function. Then,

lim
R→∞

e−hR

∫
Mg

ϕ1(X)

(∫
Mg

ϕ2(Y ) dmR
X,J,s,ξ(Y )

)
dm(X)

=
Λ2 ·m(ϕ1) ·m(ϕ2) · NV (ξ)

h ·m(Mg)
.

Limit theorems for mapping class groups. Recall that, given X ∈ Mg, ∥ · ∥X denotes the Hodge norm
induced by X on H1(X;R). We also denote by ∥ · ∥X the Hodge norm induced by X ∈ Tg on H1(Sg;R),
where, we recall, Sg is the underlying topological surface describing the markings of Tg. Given v0 ∈ H1(Sg;R)
a non-zero vector and X ̸= Y ∈ Tg, denote

σv0(X,Y ) :=
1

dT (X,Y )
log

∥v0∥Y
∥v0∥X

.

With the aim of proving Theorem 1.7, we establish the following bound.

Proposition 3.12. Let v0 ∈ H1(Sg;R) be a non-zero vector in homology. Suppose that g ∈ Modg and
X,X ′, Y, Y ′ ∈ K are such that g.Y ̸= X and g.Y ′ ̸= X ′. Then,

|σv0(X
′,g.Y ′)− σv0(X,g.Y )| ≤ 2dT (X,X ′) + 2dT (Y, Y

′)

dT (X,g.Y )
.

Proof. Under the assumptions of Proposition 3.12, not only dT (X,g.Y ) ≥ 1 but also dT (X
′,g.Y ′) ≥ 1. In

particular, the quantities considered are well defined. Directly from Theorem 2.4 we deduce

| log ∥v0∥X′ − log ∥v0∥X | ≤ dT (X,X ′) ≤ δ,

| log ∥v0∥g.Y ′ − log ∥v0∥g.Y | ≤ dT (g.Y,g.Y
′) ≤ δ,

| log ∥v0∥g.Y − log ∥v0∥X | ≤ dT (X,g.Y ).

Using these bounds, together with the triangle inequality, we deduce

|σv0(X
′,g.Y ′)− σv0(X,g.Y )| ≤ 2dT (X,X ′) + 2dT (Y, Y

′)

dT (X,g.Y )
. □

Given v0 ∈ H1(Sg;R) a non-zero vector and X ̸= Y ∈ Tg, denote

τv0(X,Y ) :=
1√

dT (X,Y )

(
log

∥v0∥Y
∥v0∥X

− dT (X,Y ) · ς
)
.

The following estimate will be used in the proof of Theorem 1.3; the proof uses the same types of arguments
as Proposition 3.13.

Proposition 3.13. Let v0 ∈ H1(Sg;R) be a non-zero vector in homology. Suppose that g ∈ Modg and
X,X ′, Y, Y ′ ∈ K are such that g.Y ̸= X and g.Y ′ ̸= X ′. Then,

|τv0(X
′,g.Y ′)− τv0(X,g.Y )| ≤ 2dT (X,X ′) + 2dT (Y, Y

′)√
dT (X,g.Y )

+ 2
√
dT (X,X ′) + dT (Y, Y ′).

Recall that, given X,Y ∈ Tg and R > 0, we denote by M(X,Y,R) the set of all mapping classes g ∈ Modg
such that 0 < dT (X,g.Y ) ≤ R. Given ξ ∈ C+

c (R), v0 ∈ H1(Sg;R) a non-zero vector, X,Y ∈ Tg, and R > 0,
consider the counting function

Fξ,v0
(X,Y,R) :=

∑
g∈M(X,Y,R)

ξ(σv0(X,g.Y )).

Notice that this counting function does not depend on the marking of Y ∈ Tg but only on its underlying
complex structure, i.e., on its projection to Mg.

Recall h := 6g − 6. With the aim of proving Theorem 1.7, we establish the following bound.

Proposition 3.14. Let K ⊆ Tg compact, ξ ∈ C+
c (R) ∩ C1(R), v0 ∈ H1(Sg;R) non-zero, and δ > 0. Suppose

that X,X ′, Y, Y ′ ∈ K are such that dT (X,X ′) ≤ δ and dT (Y, Y
′) ≤ δ. Then, for every R > 0,

Fξ,v0
(X,Y,R) ≤ Fξ,v0

(X ′, Y ′, R+ 2δ) +OK(∥ξ∥C1 · ehR/2) +OK(∥ξ∥C1 · δ · ehR/R).
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Proof. For R > 0 denote

F †
ξ,v0

(X,Y,R) :=
∑

g∈M(X,Y,R)\M(X,Y,R/2)

ξ(σv0(X,g.Y )).

By Theorem 3.9,

Fξ,v0(X,Y,R) = F †
ξ,v0

(X,Y,R) +OK(∥ξ∥C1 · ehR/2).

By Proposition 3.12 and Theorem 3.9,

F †
ξ,v0

(X,Y,R) =
∑

g∈M(X,Y,R)\M(X,Y,R/2)

ξ(σv0(X
′,g.Y ′)) +OK(∥ξ∥C1 · δ · ehR/R).

By the triangle inequality,∑
g∈M(X,Y,R)\M(X,Y,R/2)

ξ(σv0(X
′,g.Y ′)) ≤

∑
g∈M(X′,Y ′,R+2δ)

ξ(σv0(X
′,g.Y ′)) +Og(∥ξ∥C1)

Putting everything together we conclude

Fξ,v0(X,Y,R) ≤ Fξ,v0(X
′, Y ′, R+ 2δ) +OK(∥ξ∥∞ · ehR/2) +OK(∥ξ∥C1 · δ · ehR/R). □

Given ξ ∈ C+
c (R), v0 ∈ H1(Sg;R) non-zero, X,Y ∈ Tg, and R > 0, consider the counting function

Hξ,v0
(X,Y,R) :=

∑
g∈M(X,Y,R)

ξ(τv0
(X,g.Y )).

Notice that, as in the case of Fξ,v0
(X,Y,R), this counting function does not depend on the marking of Y ∈ Tg

but only on its underlying complex structure, i.e., on its projection to Mg.
With the aim of proving Theorem 1.8, we establish the following bound; the proof is analogous to that of

Proposition 3.14 but uses Proposition 3.13 in place of Propostion 3.12.

Proposition 3.15. Let K ⊆ Tg compact, ξ ∈ C+
c (R) ∩ C1(R), v0 ∈ H1(Sg;R) non-zero, and δ > 0. Suppose

that X,X ′, Y, Y ′ ∈ K are such that dT (X,X ′) ≤ δ and dT (Y, Y
′) ≤ δ. Then, for every R > 0,

Hξ,v0(X,Y,R) ≤ Hξ,v0(X
′, Y ′, R+ 2δ) +OK(∥ξ∥C1 · ehR/2) +OK(∥ξ∥C1 · (δ · ehR/

√
R+

√
δ · ehR)).

Recall that, given X,Y ∈ Tg and R > 0 sufficiently large, we endow M(X,Y,R) with the uniform prob-
ability measure PX,Y,R. We are now ready to prove Theorem 1.7, which we restate here for the reader’s
convenience.

Theorem 3.16. Let X,Y ∈ Tg be marked complex structures on Sg, let v0 ∈ H1(Sg;R) be a non-zero
homology class, and let ∥ · ∥ be a norm on the homology group H1(Sg;R). Then, the random variables

log ∥g−1.v0∥
dT (X,g.Y )

on (M(X,Y,R),PX,Y,R)

converge in distribution to the Dirac mass at ς as R → ∞.

Proof. Because norms on finite dimensional vector spaces are comparable, it is enough to prove the desired
statement for the Hodge norm ∥ · ∥Y induced by Y ∈ Tg on the homology group H1(X;R). Furthermore, by
Theorem 3.9, it is equivalent for our purposes to consider the random variables

1

dT (X,g.Y )
log

∥v0∥g.Y
∥v0∥X

on (M(X,Y,R),PX,Y,R).

Fix a test function ξ ∈ C+
c (R). Our goal is to show that

ξ(ς) ≤ lim inf
R→∞

Fξ,v0
(X,Y,R)

#M(X,Y,R)
≤ lim sup

R→∞

Fξ,v0
(X,Y,R)

#M(X,Y,R)
≤ ξ(ς).(24)

Standard approximation arguments show that, without loss of generality, we can assume ξ ∈ C+
c (R)∩ C1(R).

We now focus on proving the upper bound in (24); the lower bound follows by analogous arguments. For the
rest of this discussion we consider K := B1(X) ∪B1(Y ), 0 < δ < 1, and R > 0.

Supppose now X ′, Y ′ ∈ Tg are such that dT (X,X ′) < δ, dT (Y, Y
′) < δ. Then, by Proposition 3.14,

Fξ,v0
(X,Y,R) ≤ Fξ,v0

(X ′, Y ′, R+ 2δ) +OK(∥ξ∥C1 · ehR/2) +OK(∥ξ∥C1 · δ · ehR/R).

Multiplying by 1Bδ(X)(X
′) · 1Bδ(Y )(Y

′) we obtain the following inequality, valid for every X ′, Y ′ ∈ Tg,
1Bδ(X)(X

′) · 1Bδ(Y )(Y
′) · Fξ,v0

(X,Y,R)

≤ 1Bδ(X)(X
′) · 1Bδ(Y )(Y

′) · Fξ,v0
(X ′, Y ′, R+ 2δ) +OK(∥ξ∥C1 · ehR/2) +OK(∥ξ∥C1 · δ · ehR/R).
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Integrating with respect to dm̂(Y ′) dm̂(X ′) we deduce

m̂(Bδ(X)) · m̂(Bδ(Y )) · Fξ,v0(X,Y,R)(25)

≤
∫
Tg

1Bδ(X)(X
′)

(∫
Tg

1Bδ(Y )(Y
′)Fξ,v0

(X ′, Y ′, R+ 2δ) dm̂(Y ′)

)
dm̂(X ′)

+OK(m̂(Bδ(X)) · m̂(Bδ(Y )) · ∥ξ∥C1 · ehR/2) +OK(m̂(Bδ(X)) · m̂(Bδ(Y )) · ∥ξ∥C1 · δ · ehR/R).

Fix a locally finite, measurable fundamental domain Dg ⊆ Tg for the action of Modg on Tg; such a fundamental
domain exists because the corresponding action is properly discontinuous. Then,∫

Tg

1Bδ(X)(X
′)

(∫
Tg

1Bδ(Y )(Y
′)Fξ,v0(X

′, Y ′, R+ 2δ) dm̂(Y ′)

)
dm̂(X ′)(26)

=
∑

g∈Modg

∑
h∈Modg

∫
Tg

1g.Dg (X
′)1Bδ(X)(X

′)

(∫
Tg

1h.Dg (Y
′)1Bδ(Y )(Y

′)Fξ,v0(X
′, Y ′, R+ 2δ) dm̂(Y ′)

)
dm̂(X ′).

Fix g,h ∈ Modg. Recall that p : Tg → Mg denotes the corresponding quotient map to moduli space. An
unfolding argument shows that, for every X ′ ∈ Mg,∫

Tg

1h.Dg (Y
′)1Bδ(Y )(Y

′)Fξ,v0(X
′, Y ′, R+ 2δ) dm̂(Y ′)(27)

=

∫
Mg

1Bδ(Y )(p|−1
h.Dg

(Y ′))Fξ,v0
(X ′, Y ′, R+ 2δ) dm(Y ′)

=

∫
Tg

1Bδ(Y )(p|−1
h.Dg

(p(Y ′))) ξ(σ(X ′, Y ′))1BR+2δ(X′)(Y
′) dm̂(Y ′).

Consider the natural projection P : Q1Tg×H1(Sg,R) → Hg. Notice that the map p : Q1Tg → Q1Mg restricts
to a measurable bijection on π−1(g.Dg). Consider the section s : Q1Mg → Hg given by

sg(q) := P (p|−1
π−1(g.Dg)

(q), v0).

Informally, this section chooses the parallel transport of v0 ∈ H1(Sg;R) above every point q ∈ Q1Mg

after identification with a measurable fundamental domain of Q1Tg. This section is SO(2)-equivariant by
construction. Furthermore, for every X ′ ∈ g.Dg and every Y ′ ∈ Tg,

IdT (X′,Y ′)(sg, p(qs(X
′, Y ′))) = ξ(σv0(X

′, Y ′)).

In particular, for every X ′ ∈ g.Dg,

ξ(σ(X ′, Y ′))1BR+2δ(X′)(Y
′) dm̂(Y ′) = dm̂R+2δ

X,I,s,ξ(Y
′)

It follows that, for every X ′ ∈ g.Dg,∫
Tg

1Bδ(Y )(p|−1
h.Dg

(p(Y ′))) ξ(σ(X ′, Y ′))1BR+2δ(X′)(Y
′) dm̂(Y ′)(28)

=

∫
Tg

1Bδ(Y )(p|−1
h.Dg

(p(Y ′))) dm̂R+2δ
X′,I,s,ξ(Y

′).

As mR+2δ
X,I,s,ξ is the pushforward to Mg of the measure m̂R+2δ

X,I,s,ξ on Tg,∫
Tg

1Bδ(Y )(p|−1
h.Dg

(p(Y ′))) dm̂R+2δ
X′,I,s,ξ(Y

′) =

∫
Mg

1Bδ(Y )(p|−1
h.Dg

(Y ′)) dmR+2δ
X′,I,s,ξ(Y

′).(29)

As the measures mR+2δ
X′,I,s,ξ do not depend on the marking of X ′ ∈ Tg,∫
Tg

1g.Dg
(X ′)1Bδ(X)(X

′)

(∫
Mg

1Bδ(Y )(p|−1
h.Dg

(Y ′)) dmR+2δ
X′,I,s,ξ

)
dm̂(X ′)(30)

=

∫
Mg

1Bδ(X)(p|−1
g.Dg

(X ′))

(∫
Mg

1Bδ(Y )(p|−1
h.Dg

(Y ′)) dmR+2δ
X′,I,s,ξ

)
dm(X ′).
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Putting together (26), (27), (28), (29), and (30), we deduce∫
Tg

1Bδ(X)(X
′)

(∫
Tg

1Bδ(Y )(Y
′)Fξ,v0

(X ′, Y ′, R+ 2δ) dm̂(Y ′)

)
dm̂(X ′)(31)

=
∑

g∈Modg

∑
h∈Modg

∫
Mg

1Bδ(X)(p|−1
g.Dg

(X ′))

(∫
Mg

1Bδ(Y )(p|−1
h.Dg

(Y ′)) dmR+2δ
X′,I,s,ξ

)
dm(X ′).

As Dg ⊆ Tg is locally finite, Theorem 3.10 guarantees that

lim
R→∞

e−h(R+2δ)
∑

g∈Modg

∑
h∈Modg

∫
Mg

1Bδ(X)(p|−1
g.Dg

(X ′))

(∫
Mg

1Bδ(Y )(p|−1
h.Dg

(Y ′)) dmR+2δ
X′,I,s,ξ

)
dm(X ′)(32)

=
∑

g∈Modg

∑
h∈Modg

Λ2 · m̂(Bδ(X) ∩ g.Dg) · m̂(Bδ(Y ) ∩ h.Dg) · ξ(ς)
h ·m(Mg)

=
Λ2 · m̂(Bδ(X)) · m̂(Bδ(Y )) · ξ(ς)

h ·m(Mg)
.

Recall that, by Theorem 3.9,

(33) lim
R→∞

e−hR ·#M(X,Y,R) =
Λ2

h ·m(Mg)
.

Putting together (25), (32), and (33), we deduce

lim sup
R→∞

Fξ,v0
(X,Y,R)

#M(X,Y,R)
≤ e2hδ · ξ(ς).

Letting δ → 0 finishes the proof of (24) and thus the proof of Theorem 3.16. □

Recall that V = V (g) > 0 denotes the variance of Hg as introduced in §2. The same arguments discussed
in the proof of Theorem 3.16, but using Theorem 3.11 in place of Theorem 3.10 and Proposition 3.15 in place
of Proposition 3.14, yield a proof of Theorem 1.8; we restate this result here for the reader’s convenience.

Theorem 3.17. Let X,Y ∈ Tg be marked complex structures on Sg, let v0 ∈ H1(Sg;R) be a non-zero
homology class, and let ∥ · ∥ be a norm on the homology group H1(Sg;R). Then, the random variables

log ∥g−1.v0∥ − dT (X,g.Y ) · ς√
dT (X,g.Y )

on (M(X,Y,R),PX,Y,R)

converge in distribution to a Gaussian of mean 0 and variance V as R → ∞.

Mean equidistribution of statistical sectors. To prove Theorems 1.1 and 1.3 we will need more precise
versions of Theorems 3.16 and 3.17 that keep track of so-called bisector information. To ease the reader into
these more technical statements we first present the corresponding results for sectors of Teichmüller space;
the proofs follow arguments similar to those discussed in the proofs of Theorems 3.16 and 3.17, so we focus
mainly on setting up the right notation to state the results precisely.

Recall that MFg denotes the space of singular measured foliations on Sg up to isotopy and Whitehead
moves, that PMFg denotes its projectivization under the natural R>0 action that scales transverse measures,
and that [λ] ∈ PMFg denotes the projective class of λ ∈ MFg. Consider the maps ℜ,ℑ : Q1Tg → MFg

which to every marked, unit area, holomorphic quadratic differential q ∈ Q1Tg assign its real/vertical and
imaginary/horizontal foliations ℜ(q),ℑ(q) ∈ MFg. Consider also the induced maps [ℜ], [ℑ] : Q1Tg → PMFg.
Given X ∈ Tg and U ⊆ PMFg denote

SectU (X) := {Y ∈ Tg \ {X} | [ℜ(qs(X,Y )] ∈ U} = Sect[ℜ]−1(U)∩S(X)(X).

Now fix X ∈ Tg, a measurable subset U ⊆ PMFg, an SO(2)-equivariant, nowhere vanishing, measurable
section s : Q1Mg → Hg, a function ξ ∈ C+

c (R), and R > 0. Consider the measure m̂R
X,U,I,s,ξ on Tg given for

every Y ∈ Tg \ {X} by

(34) dm̂R
X,U,I,s,ξ(Y ) = ξ(IdT (X,Y )(s, p(qs(X,Y ))))1BR(X)∩SectU (X)(Y ) dm̂(Y ).

Analogously, consider the measure on Tg given for every Y ∈ Tg \ {X} by

(35) dm̂R
X,U,J,s,ξ(Y ) = ξ(JdT (X,Y )(s, p(qs(X,Y ))))1BR(X)∩SectU (X)(Y ) dm̂(Y ).

Denote by mR
X,U,I,s,ξ and mR

X,U,J,s,ξ the pushforwards to Mg of the corresponding measures on Tg under the
natural forgetful map.

Recall that µ̂ denotes the Masur-Veech measure on Q1Tg. The following mean equidistribution result for
sectors can be deduced using similar arguments as in the proof of Theorem 3.10.
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Theorem 3.18. Let U ⊆ PMFg be a measurable subset, let s : Q1Mg → Hg be an SO(2)-equivariant,
nowhere vanishing, measurable section, let ϕ1 ∈ L∞(Tg, m̂) and ϕ2 ∈ L∞(Mg,m) be essentially bounded
functions with compact essential support, and let ξ ∈ C+

c (R). Then,

lim
R→∞

e−hR

∫
Tg

ϕ1(X)

(∫
Mg

ϕ2(Y ) dmR
X,U,I,s,ξ(Y )

)
dm̂(X)

=
Λ ·m(ϕ2) · ξ(ς)
h ·m(Mg)

·
∫
Q1Tg

1U ([ℜ(q)])ϕ1(π(q))λ(q) dµ̂(q).

Analogously, the following mean equidistribution result can be deduced using the same arguments as in
the proof of Theorem 3.11.

Theorem 3.19. Let U ⊆ PMFg be a measurable subset, let s : Q1Mg → Hg be an SO(2)-equivariant,
nowhere vanishing, measurable section, let ϕ1 ∈ L∞(Tg, m̂) and ϕ2 ∈ L∞(Mg,m) be essentially bounded
functions with compact essential support, and let ξ ∈ C+

c (R). Then,

lim
R→∞

e−hR

∫
Tg

ϕ1(X)

(∫
Mg

ϕ2(Y ) dmR
X,U,J,s,ξ(Y )

)
dm̂(X)

=
Λ ·m(ϕ2) · NV (ξ)

h ·m(Mg)
·
∫
Q1Tg

1U ([ℜ(q)])ϕ1(π(q))λ(q) dµ̂(q).

Limit theorems for sectors. To promote Theorems 3.18 and 3.19 to results about statistics of mapping
classes in sectors, we need to control how these statistics vary as we change the data prescribing the sectors
of interest. This requires some technical results from [AH23] which we now summarize.

Given X,Y ∈ Tg, U ⊆ PMFg measurable, and R > 0, denote by M(X,Y,U , R) the set of all mapping
classes g ∈ Modg such that g.Y ∈ BR(X)∩SectU (X). Recall that ν denotes the Thurston measure on MFg

with the normalization described in §2. Recall that ExtX(η) > 0 denotes the extremal length of η ∈ MFg

with respect to X ∈ Tg. Given X ∈ Tg, denote by νX the conned-off measure on PMFg defined for every
measurable subset A ⊆ PMFg by

(36) νX(A) := ν({η ∈ MFg : [η] ∈ A, ExtX(η) ≤ 1}).
Fix a set of Dehn-Thurston coordinates Ξ of MFg. These coordinates identify MFg with Σ3g−3, where

Σ := R2/⟨±1⟩. We can then identify PMFg with the L1 unit sphere in Σ3g−3 and endow this space with the
corresponding L1 metric, which we denote by dΞ. Given V ⊆ PMFg and δ > 0, denote by V(Ξ, δ) ⊆ PMFg

the subset of all projective measured foliations at distance at most δ from V with respect to the metric
induced by Ξ.

The following technical estimate can be deduced directly from the arguments introduced in the proof of
[AH23, Proposition 9.3].

Proposition 3.20. There exist C = C(g) > 0 and κ = κ(g) > 0 such that for every set of Dehn-Thurston
coordinates Ξ of MFg and every K ⊆ Tg compact , there exists δ0 = δ0(Ξ,K) > 0 with the following property.
Let U ⊆ PMFg be a measurable set, let 0 < δ < δ0, and let X,X ′, Y, Y ′ ∈ K be marked Riemann surfaces
such that dT (X,X ′) < δ and dT (Y, Y

′) < δ. Then, for every R > 0,

#(M(X,Y,U , R) \M(X ′, Y ′,U , R+ 2δ)) ⪯K νX(∂U(Ξ, C · e−κR)) · ehR + e(h−κ)R.

Given ξ ∈ C+
c (R) a non-negative, continuous, compactly supported function, v0 ∈ H1(Sg;R) a non-zero

vector, X,Y ∈ Tg, U ⊆ PMFg measurable, and R > 0, consider the counting function

Fξ,v0
(X,Y,U , R) :=

∑
g∈M(X,Y,U,R)

ξ(σv0(X,g.Y )).

Notice that this counting function does not depend on the marking of Y ∈ Tg but only on its underlying
complex structure, i.e., on its projection to Mg.

The following estimate provides a comparison for statistics of mapping classes in sectors of Teichmüller
space under small changes of the defining data; the proof is similar to that of Proposition 3.14 and only
requires the additional incorporation of Proposition 3.20.

Proposition 3.21. There exist constants C = C(g) > 0 and κ = κ(g) > 0 such that for every set of Dehn-
Thurston coordinates Ξ of MFg and every compact set K ⊆ Tg, there exists a constant δ0 = δ0(Ξ,K) > 0
with the following property. Let ξ ∈ C+

c (R)∩C1(R), let v0 ∈ H1(Sg;R) non-zero, let U ⊆ PMFg measurable,
let 0 < δ < δ0, and let X,X ′, Y, Y ′ ∈ K such that dT (X,X ′) ≤ δ and dT (Y, Y

′) ≤ δ. Then, for every R > 0,

Fξ,v0(X,Y,U , R)

≤ Fξ,v0
(X ′, Y ′,U , R+ 2δ) +OK(∥ξ∥C1 · (νX(∂U(Ξ, C · e−κR)) · ehR + e(h−κ)R)) +OK(∥ξ∥C1 · δ · ehR/R).
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Given ξ ∈ C+
c (R) a non-negative, continuous, compactly supported function, v0 ∈ H1(Sg;R) a non-zero

vector, X,Y ∈ Tg, U ⊆ PMFg measurable, and R > 0, consider the counting function

Hξ,v0
(X,Y,U , R) :=

∑
g∈M(X,Y,U,R)

ξ(τv0(X,g.Y )).

Notice that, as in the case of Fξ,v0(X,Y,U , R), this counting function does not depend on the marking of
Y ∈ Tg but only on its underlying complex structure, i.e., on its projection to Mg.

The following estimate provides a comparison for statistics of mapping classes in sectors of Teichmüller
space under small changes of the defining data; the proof is similar to that of Proposition 3.15 and only
requires the additional incorporation of Proposition 3.20.

Proposition 3.22. There exist constants C = C(g) > 0 and κ = κ(g) > 0 such that for every set of Dehn-
Thurston coordinates Ξ of MFg and every compact set K ⊆ Tg, there exists a constant δ0 = δ0(Ξ,K) > 0
with the following property. Let ξ ∈ C+

c (R)∩C1(R), let v0 ∈ H1(Sg;R) non-zero, let U ⊆ PMFg measurable,
let 0 < δ < δ0, and let X,X ′, Y, Y ′ ∈ K such that dT (X,X ′) ≤ δ and dT (Y, Y

′) ≤ δ. Then, for every R > 0,

Hξ,v0
(X,Y,U , R)

≤ Hξ,v0(X
′, Y ′,U , R+ 2δ) +OK(∥ξ∥C1 · (νX(∂U(Ξ, C · e−κR)) · ehR + e(h−κ)R))

+OK(∥ξ∥C1 · (δ · ehR/
√
R+

√
δ · ehR)).

Recall that sX denotes the component above X ∈ Tg of the disintegration of the Masur-Veech measure
m on Tg along the fiber S(X) ⊆ Q1Tg of the forgetful map π : Q1Tg → Tg. Recall also the definition of
the Hubbard-Masur function λ : Q1Tg(1) → R>0 introduced in §2. The following result corresponding to
[ABEM12b, Theorem 2.9] is a non-effective analogue of Theorem 3.9 for sectors of Teichmüller space. An
effective version also holds, see [AH23, Theorems 9.1 and 9.2], but it requires introducing technical definitions
that will not be needed for our purposes.

Theorem 3.23. For every X,Y ∈ Tg and every U ⊆ PMFg measurable with νX(∂U) = 0,

lim
R→∞

e−hR ·#M(X,Y,U , R) =
Λ

h ·m(Mg)
·
(∫

S(X)

1U ([ℜ(q)])λ(q) dsX(q)

)
.

In view of Theorem 3.23, given X ∈ Tg and U ⊆ PMFg measurable, we consider

I(X,U) :=
∫
S(X)

1U ([ℜ(q)])λ(q) dsX(q).

The following result, corresponding to [AH23, Proposition 9.13], provides a comparison of these integral for
varying base points X ∈ Tg in terms of the Teichmüller metric.

Proposition 3.24. Let 0 < δ < 1 and X,X ′ ∈ Tg with dT (X,X ′) < δ. Then, for every U ⊆ PMFg

measurable, the following estimate holds,

I(X,U) = I(X ′,U) +Og(δ).

Given X,Y ∈ Tg, a measurable set U ⊆ PMFg with νX(U) > 0, and R > 0 sufficiently large, endow
M(X,Y,U , R) with the uniform probability measure PX,Y,U,R. The following law of large numbers follows
from similar arguments to those introduced in the proof of Theorem 3.16; one should use Theorem 3.18 in
place of Theorem 3.10, Proposition 3.21 in place of Proposition 3.14, and Theorem 3.23 in place of Theorem
3.9, while also appealing to Proposition 3.24.

Theorem 3.25. Let X,Y ∈ Tg be marked complex structures on Sg, let U ⊆ PMFg be a measurable set
with νX(U) > 0 and νX(∂U) = 0, let v0 ∈ H1(Sg;R) be a non-zero homology class, and let ∥ · ∥ be a norm
on the homology group H1(Sg;R). Then, the random variables

log ∥g−1.v0∥
dT (X,g.Y )

on (M(X,Y,U , R),PX,Y,U,R)

converge in distribution to the Dirac mass at ς as R → ∞.

Analogously, the following central limit theorem follows from similar arguments to those introduced in the
proof of Theorem 3.17; one should use Theorem 3.19 in place of Theorem 3.11, Proposition 3.22 in place of
Proposition 3.15, Theorem 3.23 in place of 3.9, while also appealing to Proposition 3.24.
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Theorem 3.26. Let X,Y ∈ Tg be marked complex structures on Sg, let U ⊆ PMFg be a measurable set
with νX(U) > 0 and νX(∂U) = 0, let v0 ∈ H1(Sg;R) be a non-zero homology class, and let ∥ · ∥ be a norm
on the homology group H1(Sg;R). Then, the random variables

log ∥g−1.v0∥ − dT (X,g.Y ) · ς√
dT (X,g.Y )

on (M(X,Y,U , R),PX,Y,U,R)

converge in distribution to a Gaussian of mean 0 and variance V as R → ∞.

Mean equidistribution of statistical bisectors. We now discuss mean equidistribution results for sta-
tistical bisectors of Teichmüller space. These results lead to limit theorems that will be crucial in the proofs
of Theorems 1.1 and 1.3.

Recall that ∆Tg ⊆ Tg×Tg denotes the corresponding diagonal. Consider the map qe : Tg×Tg \∆Tg → Q1Tg
which to every pair X,Y ∈ Tg with X ̸= Y assigns the quadratic differential qe(X,Y ) ∈ S(Y ) corresponding
to the cotangent direction at Y of the unique Teichmüller geodesic segment from X to Y . Given X ∈ Tg,
denote by qX : Tg \ {X} → Q1Tg the map which to every Y ̸= X ∈ Tg assigns the quadratic differential
qX(Y ) := qE(X,Y ) ∈ S(Y ). Fix X ∈ Tg, a measurable subset U ⊆ PMFg, an SO(2)-equivariant, nowhere
vanishing, measurable section s : Q1Mg → Hg, a function ξ ∈ C+

c (R), and R > 0. Consider the measures
m̂R

X,U,I,s,ξ and m̂R
X,U,I,s,ξ on Tg introduced in (34) and (35). Lift these measures to Q1Tg by considering the

pushforwards
µ̂R
X,U,I,ξ = (qX)∗(m̂

R
X,U,I,s,ξ), µ̂R

X,U,J,ξ = (qX)∗(m̂
R
X,U,J,s,ξ).

Denote by µX,U,I,s,ξ and µX,U,J,s,ξ the pushforwards to Q1Mg of the corresponding measures on Q1Tg under
the natural forgetful map.

The following mean equidistribution result can be deduced using the same arguments as in the proofs of
Theorems 3.10 and 3.18.

Theorem 3.27. Let U ⊆ PMFg measurable, let s : Q1Mg → Hg be an SO(2)-equivariant, nowhere van-
ishing, measurable section, let ϕ1 ∈ L∞(Tg, m̂), φ2 ∈ L∞(Q1Mg, µ) be essentially bounded functions with
compact essential support, and let ξ ∈ C+

c (R). Then,

lim
R→∞

e−hR

∫
Tg

ϕ1(X)

(∫
Q1Mg

φ2(q) dµ
R
X,U,I,s,ξ(q)

)
dm̂(X)

=
ξ(ς)

h ·m(Mg)
·
(∫

Q1Tg

1U ([ℜ(q)])ϕ1(π(q))λ(q) dµ̂(q)

)
·
(∫

Q1Mg

φ2(q)λ(q)dµ(q)

)
.

Analogously, the following mean equidistribution result can be deduced using the same arguments as in
the proofs of Theorems 3.11 and 3.19.

Theorem 3.28. Let U ⊆ PMFg measurable, let s : Q1Mg → Hg be an SO(2)-equivariant, nowhere van-
ishing, measurable section, let ϕ1 ∈ L∞(Tg, m̂), φ2 ∈ L∞(Q1Mg, µ) be essentially bounded functions with
compact essential support, and let ξ ∈ C+

x (R). Then,

lim
R→∞

e−hR

∫
Tg

ϕ1(X)

(∫
Q1Mg

φ2(q) dµ
R
X,U,J,s,ξ(q)

)
dm̂(X)

=
NV (ξ)

h ·m(Mg)
·
(∫

Q1Tg

1U ([ℜ(q)])ϕ1(π(q))λ(q) dµ̂(q)

)
·
(∫

Q1Mg

φ2(q)λ(q)dµ(q)

)
.

Limit theorems for bisectors. Given X,Y ∈ Tg, measurable subsets U ,V ⊆ PMFg, and R > 0, denote
by M(X,Y,U ,V, R) the set of all mapping classes g ∈ Modg such that 0 < dT (X,g.Y ) ≤ R, g.Y ∈ SectU (X),
and g−1.X ∈ SectV(Y ). The following technical estimate is an analogue of Proposition 3.20 for bisectors of
Teichmüller space.

Proposition 3.29. There exist constants C = C(g) > 0 and κ = κ(g) > 0 such that for every set of Dehn-
Thurston coordinates Ξ of MFg and every compact set K ⊆ Tg, there exists a constant δ0 = δ0(Ξ,K) > 0
with the following property. Let U ,V ⊆ PMFg measurable sets, let 0 < δ < δ0, and let X,X ′, Y, Y ′ ∈ K
marked Riemann surfaces such that dT (X,X ′) < δ and dT (Y, Y

′) < δ. Then, for every R > 0,

#(M(X,Y,U ,V, R)\M(X ′, Y ′,U ,V, R+2δ)) ⪯K (νX(∂U(Ξ, C ·e−κR))+νY (∂V(Ξ, C ·e−κR))) ·ehR+e(h−κ)R.

Proof. Let K ⊆ Tg compact and δ0 = δ0(K) > 0 as in Proposition 3.20. Let U ,V ⊆ PMFg measurable,
0 < δ < δ0, and X,X ′, Y, Y ′ ∈ K with dT (X,X ′) < δ and dT (Y, Y

′) < δ. Then, for every R > 0,

M(X,Y,U ,V, R) \M(X ′, Y ′,U ,V, R+ 2δ)

⊆ (M(X,Y,U , R) \M(X ′, Y ′,U , R+ 2δ)) ∪ (M(Y,X,V, R) \M(Y ′, X ′,V, R+ 2δ))−1
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The desired estimate then follows directly from Proposition 3.20. □

Given ξ ∈ C+
c (R) a non-negative, continuous, compactly supported function, v0 ∈ H1(Sg;R) a non-zero

vector, X,Y ∈ Tg, U ,V ⊆ PMFg measurable, and R > 0, consider the counting function

Fξ,v0(X,Y,U ,V, R) :=
∑

g∈M(X,Y,U,V,R)

ξ(σv0(X,g.Y )).

The following estimate provides a comparison for statistics of mapping classes in bisectors of Teichmüller
space under small changes of the defining data; the proof is similar to those of Propositions 3.14 and 3.21
but requires using Proposition 3.29 in place of Proposition 3.20.

Proposition 3.30. There exist constants C = C(g) > 0 and κ = κ(g) > 0 such that for every set of Dehn-
Thurston coordinates Ξ of MFg and every compact set K ⊆ Tg, there exists a constant δ0 = δ0(Ξ,K) > 0 with
the following property. Let ξ ∈ C+

c (R) ∩ C1(R), let v0 ∈ H1(Sg;R) non-zero, let U ,V ⊆ PMFg measurable,
let 0 < δ < δ0, and let X,X ′, Y, Y ′ ∈ K such that dT (X,X ′) ≤ δ and dT (Y, Y

′) ≤ δ. Then, for every R > 0,

Fξ,v0(X,Y,U ,V, R)

≤ Fξ,v0
(X ′, Y ′,U ,V, R+ 2δ) +OK(∥ξ∥C1 · δ · ehR/R).

+OK(∥ξ∥C1 · ((ν(∂U(Ξ, C · e−κR)) + ν(∂V(Ξ, C · e−κR))) · ehR + e(h−κ)R)).

Given ξ ∈ C+
c (R) a non-negative, continuous, compactly supported function, v0 ∈ H1(Sg;R) a non-zero

vector, X,Y ∈ Tg, U ,V ⊆ PMFg measurable, and R > 0, consider the counting function

Hξ,v0(X,Y,U ,V, R) :=
∑

g∈M(X,Y,U,V,R)

ξ(τv0(X,g.Y )).

The following estimate provides a comparison for statistics of mapping classes in bisectors of Teichmüller
space under small changes of the defining data; the proof is similar to those of Propositions 3.15 and 3.22
but requires using Proposition 3.29 in place of Proposition 3.20.

Proposition 3.31. There exist constants C = C(g) > 0 and κ = κ(g) > 0 such that for every set of Dehn-
Thurston coordinates Ξ of MFg and every compact set K ⊆ Tg, there exists a constant δ0 = δ0(Ξ,K) > 0 with
the following property. Let ξ ∈ C+

c (R) ∩ C1(R), let v0 ∈ H1(Sg;R) non-zero, let U ,V ⊆ PMFg measurable,
let 0 < δ < δ0, and let X,X ′, Y, Y ′ ∈ K such that dT (X,X ′) ≤ δ and dT (Y, Y

′) ≤ δ. Then, for every R > 0,

Hξ,v0(X,Y,U ,V, R)

≤ Hξ,v0
(X ′, Y ′,U ,V, R+ 2δ) +OK(∥ξ∥C1 · (δ · ehR/

√
R+

√
δ · ehR).

+OK(∥ξ∥C1 · ((ν(∂U(Ξ, C · e−κR)) + ν(∂V(Ξ, C · e−κR))) · ehR + e(h−κ)R)).

The following result corresponding to [ABEM12b, Theorem 2.10] is a non-effective analogue of Theorems
3.9 and Theorems 3.23 for bisectors of Teichmüller space. An effective version also holds, see [AH23, Theorems
10.6 and 10.7], but will not be needed for our purposes.

Theorem 3.32. For X,Y ∈ Tg and U ,V ⊆ PMFg measurable with νX(∂U) = νY (∂V) = 0,

lim
R→∞

e−hR ·#M(X,Y,U ,V, R)

=
1

h ·m(Mg)
·
(∫

S(X)

1U ([ℜ(q)])λ(q) dsX(q)

)
·
(∫

S(Y )

1V([ℜ(q)])λ(q) dsY (q)
)
.

Given X,Y ∈ Tg, measurable sets U ,V ⊆ PMFg with νX(U), νY (V ) > 0, and R > 0 sufficiently large,
endow M(X,Y,U ,V, R) with the uniform probability measure PX,Y,U,V,R. The following law of large numbers
follows from similar arguments to those introduced in the proof of Theorems 3.16 and 3.25; one should use
Theorem 3.27 in place of Theorems 3.10 and 3.18, Proposition 3.30 in place of Propositions 3.14 and 3.21,
and Theorem 3.32 in place of Theorems 3.9 and 3.23.

Theorem 3.33. Let X,Y ∈ Tg be marked complex structures on Sg, let U ,V ⊆ PMFg be measurable sets
with νX(U), νY (V ) > 0 and νX(∂U) = νY (∂V) = 0, let v0 ∈ H1(Sg;R) be a non-zero homology class, and let
∥ · ∥ be a norm on the homology group H1(Sg;R). Then, the random variables

log ∥g−1.v0∥
dT (X,g.Y )

on (M(X,Y,U ,V, R),PX,Y,U,V,R)

converge in distribution to the Dirac mass at ς as R → ∞.
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Analogously, the following CLT follows from similar arguments to those introduced in the proofs of The-
orems 3.17 and 3.26; one should use Theorem 3.28 in place of Theorems 3.11 and 3.19, Proposition 3.31 in
place of Propositions 3.15 and 3.22, and Theorem 3.32 in place of Theorems 3.9 and 3.23.

Theorem 3.34. Let X,Y ∈ Tg be marked complex structures on Sg, let U ,V ⊆ PMFg be measurable sets
with νX(U), νY (V ) > 0 and νX(∂U) = νY (∂V) = 0, let v0 ∈ H1(Sg;R) be a non-zero homology class, and let
∥ · ∥ be a norm on the homology group H1(Sg;R). Then, the random variables

log ∥g−1.v0∥ − dT (X,g.Y ) · ς√
dT (X,g.Y )

on (M(X,Y,U ,V, R),PX,Y,U,V,R)

converge in distribution to a Gaussian of mean 0 and variance V as R → ∞.

Other limit theorems for mapping class groups. Although Theorems 1.7 and 1.8 make reference to
a given vector in homology, it is possible to prove, via similar arguments, analogous limit theorems for the
operator norm, i.e. the largest singular value, of the symplectic matrix representing the linear action of a
mapping class on the homology group of a surface.

More precisely, let ρ : Modg → Sp(H1(Sg;R)) be the natural symplectic linear representation of the map-
ping class group of Sg onto the group of symplectic linear automorphisms of its homology group. Given a
norm ∥ · ∥ on H1(Sg;R), denote also by ∥ · ∥ the operator norm on Sp(H1(Sg;R)), i.e., the function that
records the largest singular value of the corresponding symplectic matrix. The following limit theorems are
analogues of Theorems 1.7 and 1.8 and can be proved using similar arguments; see [AF24, Theorems 4.24 and
4.27] for the mixing limit theorems that play the role of Theorems 3.1 and 3.2 in the corresponding proofs.

Theorem 3.35. Let X,Y ∈ Tg and ∥ · ∥ be a norm on H1(Sg;R). Then, the random variables

log ∥ρ(g)−1∥
dT (X,g.Y )

on (M(X,Y,R),PX,Y,R)

converge in distribution to the Dirac mass at ς as R → ∞.

Theorem 3.36. Let X,Y ∈ Tg and ∥ · ∥ be a norm on H1(Sg;R). Then, the random variables

log ∥ρ(g)−1∥ − dT (X,g.Y ) · ς√
dT (X,g.Y )

on (M(X,Y,R),PX,Y,R)

converge in distribution to a Gaussian of mean 0 and variance V as R → ∞.

Remark 3.37. Sector and bisector limit theorems analogous to Theorems 3.25, 3.26, 3.33, and 3.34 but for the
operator norm of the symplectic matrix representing the linear action of a mapping class on the homology
group of a surface also hold and can be proved using similar arguments; we avoid stating these results in
detail as they will not be needed in the discussions that follow.

Remark 3.38. Analogous limit theorems for exterior powers also hold; see [AF24, Theorems 4.24 and 4.27]
for the mixing limit theorems needed in the proofs. This allows one to describe the statistics of all the
singular values of the symplectic matrix representing the linear action of a mapping class on the homology
group of a surface in terms of the full Lyapunov spectrum of the Kontsevich-Zorich cocycle. We highlight
that, as explained in [ASF22], the variances of the central limit theorems for higher exterior powers of the
Kontsevich-Zorich cocycle are not known to be positive.

4. Limit theorems for closed curves

Outline of this section. In this section we give complete proofs of Theorems 1.1 and 1.3. We begin
by proving slight variations of Theorems 3.33 and 3.34 that allow one to consider more general notions of
distance; see Theorems 4.2, 4.3, 4.5, and 4.6 for precise statements. We then proceed to recall the tracking
principle for mapping class group actions introduced in [AH21a] and exploited in [AH21b]. We also recall
the tools introduced in [Hon24] to deal with the case of non-filling closed curves. We end this section with
the proofs of more general versions of Theorems 1.1 and 1.3; see Theorems 4.20 and 4.21 below.

Generalized distances. For the rest of this section fix a closed, connected, oriented surface Sg of genus
g ≥ 2. Recall that Tg denotes the Teichmüller space of marked complex structures on Sg, that dT denotes the
Teichmüller metric on Tg, and that Q1Tg denotes the Teichmüller space of marked, unit area, holomorphic
quadratic differentials on Sg. Recall that MFg denotes the space of singular measured foliations on Sg and
that ℜ,ℑ : Q1Tg → MFg denote the maps that to every quadratic differential q ∈ Q1Tg assign its vertical
and horizontal foliations ℜ(q),ℑ(q) ∈ MFg, respectively. Recall that PMFg denotes the space of projective
singular measured foliations on Sg and that [η] ∈ PMFg denotes the projective class of η ∈ MFg. Recall
that ∆Tg

⊆ Tg × Tg denotes the corresponding diagonal and that qs : Tg × Tg \∆g → Q1Tg denotes the map
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which to every pair X,Y ∈ Tg with X ̸= Y assigns the quadratic differential qs(X,Y ) ∈ Q1Tg corresponding
to the cotangent direction at X of the unique Teichmüller geodesic segment from X to Y . Recall that, given
X ∈ Tg and U ⊆ PMFg, we denote

SectU (X) := {Y ∈ Tg \ {X} : [ℜ(qs(X,Y ))] ∈ U}.
We now introduce a notion of distance function that generalizes the Teichmüller metric on Tg. This

definition will later be used to state Theorems 4.2 and 4.3. Consider X,Y ∈ Tg, U ,V ⊆ PMFg, and a
continuous function A : U × V → R. Denote by M(X,Y,U ,V) the set of all mapping classes g ∈ Modg such
that g.Y ̸= X, g.Y ∈ SectU (X), and g−1.X ∈ SectV(Y ). We say a function D : M(X,Y,U ,V) → R is a
generalized distance function with adjustment A if there exists a function o : M(X,Y,U ,V) → R such that
o(g) → 0 uniformly as d(X,g.Y ) → ∞ and

D(g) = dT (X,g.Y )−A([ℜ(qs(X,g.Y ))], [ℜ(qs(Y,g−1.X))]) + o(g).

For such a generalized distance function and every R > 0 denote

MD(X,Y,U ,V, R) := {g ∈ M(X,Y,U ,V) : D(g) ≤ R}.(37)

Recall that h := 6g − 6, that Q1Mg denotes the moduli space of unit area, holomorphic quadratic
differentials on Sg, that µ denotes the Masur-Veech measure on Q1Mg normalized as in (3), and that m
denotes the pushforward of µ to Mg with respect to the natural forgetful map. Recall that ν denotes the
Thurston measure on MFg with the normalization described in §2 and that, given X ∈ Tg, νX denotes the
conned-off Thurston measure on PMFg defined in (36).

Before discussing statistics we focus our attention on bisector counts with respect to generalized distance
functions. In this context we have the following result generalizing Theorem 3.32.

Theorem 4.1. Let X,Y ∈ Tg be marked complex structures on Sg and U ,V ⊆ PMFg be measurable sets
with νX(U), νY (V ) > 0 and νX(∂U) = νY (∂V) = 0. Suppose A : U × V → R is a continuous function and
D : M(X,Y,U ,V) → R is a generalized distance function with adjustment A. Then,

lim
R→∞

e−hR ·#MD(X,Y,U ,V, R) =
1

h ·m(Mg)

∫
U×V

ehA([η],[ζ]) d(νX ⊗ νY )([η], [ζ]).

Proof. Fix partitions P (U) of U and P (V) of V such that νX(∂C1) = 0 for every C1 ∈ P (U) and νY (∂C2) = 0
for every C2 ∈ P (V). For every pair (C1, C2) ∈ P (U)× P (V) denote

A+(C1, C1) := sup{A([η], [ζ]) : ([η], [ζ]) ∈ C1 × C2},
A−(C1, C2) := inf{A([η], [ζ]) : ([η], [ζ]) ∈ C1 × C2}.

Let ϵ > 0 be arbitrary. Since D is a generalized distance function with adjustment A, there exists R0 > 0
such that for every g ∈ M(X,Y,U ,V) with d(X,g.Y ) ≥ R0, we have

d(X,g.Y ) ≤ D(g) +A([ℜ(qs(X,g.Y ))], [ℜ(qs(Y,g−1.X)]) + ϵ.

Thus, by Theorem 3.9, there exists a constant C = C(X,Y,R0) > 0 such that for every C1 ∈ P (U), every
C2 ∈ P (V), and every R > 0,

(38) #(M(X,Y, C1, C2, R+A+(C1, C2) + ϵ) \MD(X,Y, C1, C2, R)) ≤ C.

Notice that, by Theorem 3.32, for every C1 ∈ P (U) and every C2 ∈ P (V),
lim sup
R→∞

e−hR ·#M(X,Y, C1, C2,R+A+(C1, C2) + ϵ)(39)

≤ 1

h ·m(Mg)
· νX(C1) · νY (C2) · ehA+(C1,C2)+hϵ.

From (38) and (39) we deduce that

lim sup
R→∞

e−hR ·#MD(X,Y,U ,V, R)

≤ 1

h ·m(Mg)
· ehϵ ·

∑
(C1,C2)∈P (U)×P (V)

·νX(C1) · νY (C2) · ehA+(C1,C2).

Letting ϵ → 0 we deduce

lim sup
R→∞

e−hR ·#MD(X,Y,U ,V, R)

≤ 1

h ·m(Mg)
·

∑
(C1,C2)∈P (U)×P (V)

·νX(C1) · νY (C2) · ehA+(C1,C2).
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Interpreting the right hand side of this inequality as a Riemann sum and letting the diameter, with respect
to any continuous Riemannian metric on PMFg, of the partitions P (U) and P (V) go to zero we deduce

(40) lim sup
R→∞

e−hR ·#MD(X,Y,U ,V, R) ≤ 1

h ·m(Mg)

∫
U×V

ehA([η],[ζ]) d(νX ⊗ νY )([η], [ζ]).

A similar argument shows that

(41) lim inf
R→∞

e−hR ·#MD(X,Y,U ,V, R) ≥ 1

h ·m(Mg)

∫
U×V

ehA([η],[ζ]) d(νX ⊗ νY )([η], [ζ]).

Putting together (40) and (41) the desired conclusion follows. □

Let ς = ς(g) ∈ (0, 1) be the top Lyapunov exponent of Hg as introduced in §2. GivenX,Y ∈ Tg, measurable
sets U ,V ⊆ PMFg with νX(U), νY (V ) > 0, and R > 0 sufficiently large, endow M(X,Y,U ,V, R) with the
uniform probability measure PX,Y,U,V,R. The following law of large numbers is a version of Theorem 3.33
driven by generalized distance functions; it follows by the same arguments introduced in the proof of Theorem
4.1 but using Theorem 3.33 in place of Theorem 3.32.

Theorem 4.2. Let X,Y ∈ Tg be marked complex structures on Sg and let U ,V ⊆ PMFg be measur-
able sets with ν(U), ν(V ) > 0 and νX(∂U) = νY (∂V) = 0. Suppose A : U × V → R is continuous and
D : M(X,Y,U ,V) → R is a generalized distance function with adjustment A. Let v0 ∈ H1(Sg;R) be a non-
zero homology class, and let ∥ · ∥ be a norm on the homology group H1(Sg;R). Then, the random variables

log ∥g−1.v0∥
d(X,g.Y )

on (MD(X,Y,U ,V, R),PX,Y,U,V,R)

converge in distribution to the Dirac mass at ς as R → ∞.

Let V = V (g) > 0 be the variance of Hg as introduced in §2. The following central limit theorem is a
version of Theorem 3.34 driven by generalized distance functions; it follows by the same arguments introduced
in the proof of Theorem 4.1 but using Theorem 3.34 in place of Theorem 3.32.

Theorem 4.3. Let X,Y ∈ Tg be marked complex structures on Sg and let U ,V ⊆ PMFg be measur-
able sets with ν(U), ν(V ) > 0 and νX(∂U) = νY (∂V) = 0. Suppose A : U × V → R is continuous and
D : M(X,Y,U ,V) → R is a generalized distance function with adjustment A. Let v0 ∈ H1(Sg;R) be a non-
zero homology class, and let ∥ · ∥ be a norm on the homology group H1(Sg;R). Then, the random variables

log ∥g−1.v0∥ − dT (X,g.Y ) · ς√
dT (X,g.Y )

on (MD(X,Y,U ,V, R),PX,Y,U,V,R)

converge in distribution to a Gaussian of mean 0 and variance V as R → ∞.

To proceed with the rest of our discussion we need versions of Theorems 4.2 and 4.3 that work for a slightly
weaker notion of generalized distance function, which we now introduce. A subset M∗ ⊆ Modg is said to
have full density if there exists a pair X,Y ∈ Tg such that

(42) lim
R→∞

e−hR ·#{g ∈ Modg \M∗ : d(X,g.Y ) ≤ R} = 0.

Notice condition (42) holds for some pair X,Y ∈ Tg if and only if it holds for any such pair. Consider X,Y ∈
Tg, U ,V ⊆ PMFg, and a continuous function A : U × V → R. We say a function D : M(X,Y,U ,V) → R is
a weakly generalized distance function with adjustment A if there exists a full density subset M∗ ⊆ Modg, a
function o : M∗ ∩M(X,Y,U ,V) → R with o(g) → 0 uniformly as d(X,g.Y ) → ∞, and a bounded function
O : (Modg \M∗) ∩M(X,Y,U ,V) → R, such that

(1) For every g ∈ M∗ ∩M(X,Y,U ,V),
D(g) = dT (X,g.Y )−A([ℜ(qs(X,g.Y ))], [ℜ(qs(Y,g−1.X))]) + o(g).

(2) For every g ∈ (Modg \M∗) ∩M(X,Y,U ,V),
D(g) = dT (X,g.Y ) +O(g).

Just as in (37), for every R > 0 denote

MD(X,Y,U ,V, R) := {g ∈ M(X,Y,U , V ) : D(g) ≤ R}.
Theorem 4.4. Let X,Y ∈ Tg be marked complex structures on Sg and U ,V ⊆ PMFg measurable with
νX(U), νY (V ) > 0 and νX(∂U) = νY (∂V) = 0. Suppose A : U × V → R is a continuous function and
D : M(X,Y,U ,V) → R is a weakly generalized distance function with adjustment A. Then,

lim
R→∞

e−hR ·#MD(X,Y,U ,V, R) =
1

h ·m(Mg)

∫
U×V

ehA([η],[ζ]) d(νX ⊗ νY )([η], [ζ]).
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Proof. Let M∗ ⊆ Modg be the full density used in the definition of the weakly generalized distance function
D. Define a distance function D′ : M(X,Y,U ,V) → R as follows:

D′(g) :=

{
D(g) if g ∈ M∗,
d(X,g.Y )−A([ℜ(qs(X,g.Y ))], [ℜ(qs(Y,g−1.X))]) if g ∈ Modg \M∗.

Notice D′ is a generalized distance function with adjustment A. In particular, by Theorem 4.1,

(43) lim
R→∞

e−hR ·#MD′(X,Y,U ,V, R) =
1

h ·m(Mg)

∫
U×V

ehA([η],[ζ]) d(νX ⊗ νY )([η], [ζ]).

For every R > 0 we can decompose

(44) MD′(X,Y,U ,V, R) = (M∗ ∩MD′(X,Y,U ,V, R)) ∪ ((Modg \M∗) ∩MD′(X,Y,U ,V, R)).

Directly from the definition of D′ it follows that, for every R > 0,

(45) M∗ ∩MD′(X,Y,U ,V, R) = M∗ ∩MD(X,Y,U ,V, R)

Since A is continuous on U × V, there exists a constant C > 0 such that for every g ∈ Modg \ M∗ if
D′(X,g.Y ) ≤ R then d(X,g.Y ) ≤ R+ C. In particular, as M∗ ⊆ Modg has full density,

(46) lim
R→∞

e−hR ·#((Modg \M∗) ∩MD′(X,Y,U ,V, R)) = 0.

Similarly, for every R > 0 we can decompose

(47) MD(X,Y,U ,V, R) = (M∗ ∩MD(X,Y,U ,V, R)) ∪ ((Modg \M∗) ∩MD(X,Y,U ,V, R)).

As the function O in the definition of the weakly generalized distance function D is bounded, there exists a
constant M > 0 such that for every g ∈ Modg \M∗ if D(X,g.Y ) ≤ R then d(X,g.Y ) ≤ R+M . In particular,
as M∗ ⊆ Modg has full density,

(48) lim
R→∞

e−hR ·#((Modg \M∗) ∩MD(X,Y,U ,V, R)) = 0.

Putting together (43), (44), (45), (46), (47), and (48) we obtained the desired conclusion. □

As above, given X,Y ∈ Tg, measurable sets U ,V ⊆ PMFg with νX(U), νY (V ) > 0, and R > 0 sufficiently
large, endow M(X,Y,U ,V, R) with the uniform probability measure PX,Y,U,V,R. The following law of large
numbers is a version of Theorem 3.33 driven by weakly generalized distance functions; it follows by the same
arguments introduced in the proof of Theorem 4.4 but using Theorem 4.2 in place of Theorem 4.1.

Theorem 4.5. Let X,Y ∈ Tg be marked complex structures on Sg and let U ,V ⊆ PMFg be measurable
sets with ν(U), ν(V ) > 0 and νX(∂U) = νY (∂V) = 0. Suppose A : U × V → R is a continuous function
and D : M(X,Y,U ,V) → R is a weakly generalized distance function with adjustment A. Let v0 ∈ H1(Sg;R)
non-zero, and let ∥ · ∥ be a norm on the homology group H1(Sg;R). Then, the random variables

log ∥g−1.v0∥
d(X,g.Y )

on (MD(X,Y,U ,V, R),PX,Y,U,V,R)

converge in distribution to the Dirac mass at ς as R → ∞.

The following central limit theorem is a version of Theorem 3.34 driven by weakly generalized distance
functions; it follows by the same arguments introduced in the proof of Theorem 4.4 but using Theorem 4.3
in place of Theorem 4.1.

Theorem 4.6. Let X,Y ∈ Tg be marked complex structures on Sg and let U ,V ⊆ PMFg be measurable
sets with ν(U), ν(V ) > 0 and νX(∂U) = νY (∂V) = 0. Suppose A : U × V → R is a continuous function and
D : M(X,Y,U ,V) → R is a weakly generalized distance function with adjustment A. Let v0 ∈ H1(Sg;R) be
non-zero, and let ∥ · ∥ be a norm on the homology group H1(Sg;R). Then, the random variables

log ∥g−1.v0∥ − dT (X,g.Y ) · ς√
dT (X,g.Y )

on (MD(X,Y,U ,V, R),PX,Y,U,V,R)

converge in distribution to a Gaussian of mean 0 and variance V as R → ∞.
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The tracking principle. Aside from Theorems 4.5 and 4.6 above, the main technical tool we will need
to prove Theorems 1.1 and 1.3 is the tracking principle introduced in [AH21b]. According to this principle,
the action of the mapping class group on the space of closed curves of a closed, orientable surface tracks
the corresponding action on Teichmüller space in the following sense: for all but a few mapping classes, the
information of how a mapping class moves a given point of Teichmüller space determines, up to a small error
term, how it changes the geometric intersection numbers of a given closed curve with respect to arbitrary
closed curves. This principle will allow us to recast problems about the statistics of closed curves on surfaces
as problems about the statistics of the mapping class group action on Teichmüller space, which we will then
tackle using Theorems 4.5 and 4.6.

More precisely, recall that Cg denotes the space of geodesic currents on Sg and that C∗
g ⊆ Cg denotes the

subset of filling geodesic currents; see §2 for precise definitions. Recall that ExtX(η) > 0 denotes the extremal
length with respect to X ∈ Tg of a singular measured foliation η ∈ MFg and that extremal lengths scale
quadratically with respect to transverse measures. Given α ∈ C∗

g and a closed curve β on Sg, consider the
function Aα,β : PMFg × PMFg → R given by

Aα,β([η], [ζ]) = − log i

(
η√

ExtX(η)
, β

)
− log i

(
α,

ζ√
ExtY (ζ)

)
.

Furthermore, consider the function Dα,β : Modg → R given by

Dα,β(g) := log i(α,g−1.β).

The following is a non-effective reformulation of the tracking principle in [AH21a, Theorem 1.1].

Theorem 4.7. Let β be a closed curve on Sg and X,Y ∈ Tg. Then, there exists a full density subset
M∗ = M∗(β,X, Y ) ⊆ Modg and a function o : M∗ → R with o(g) → 0 uniformly as d(X,g.Y ) → ∞ such
that for every filling geodesics current α ∈ C∗

g and every g ∈ M∗ we have g.Y ̸= X and

Dα,β(g) = dT (X,g.Y )−Aα,β([ℜ(qs(X,g.Y ))], [ℜ(qs(Y,g−1.X))]) + o(g).

Non-filling closed curves. We now discuss some technical aspects that will need to be considered in the
proofs of Theorems 1.1 and 1.3 in the case of non-filling closed curves. These aspects do not need to be taken
into account in the case of filling closed curves; the reader is invited to consider this case in first instance as
they read through the proofs of Theorems 1.1 and 1.3. Proofs of the technical results we now discuss can be
found in [Hon24], where they were first introduced.

Let β be a closed curve on Sg. Denote by Stab(β) ⊆ Modg the stabilizer of β, i.e., the set of mapping
classes of Sg that preserve the homotopy class of β. Denote by Stab∗(β) ⊆ Stab(β) the reduced stabilizer
of β, i.e., the set of mapping classes that can be homotoped to homeomorphisms fixing β pointwise. The
symmetry group of β is defined to be the finite group

Sym(β) := Stab(β)/Stab∗(β).

The following result is a direct consequence of the definitions.

Lemma 4.8. Let β be a closed curve on Sg. Then the map

Stab∗(β)\Modg → Modg · β, Stab∗(β)g 7→ g−1.β

is #Sym(β)-to-one.

Let β be a closed curve on Sg. Consider the set

MFg(β) := {η ∈ MFg : β + η is filling}.
Denote by PMFg(β) ⊆ PMFg the projectivization of MFg(β). Following [ES22, Theorem 3.19], Stab∗(β)
acts properly discontinuously on PMFg(β). The difficulties introduced by the fact that Stab∗(β) is infinite
for a non-filling closed curve β can be tackled by constructing a fundamental domain for the action of
Stab∗(β) on PMFg(β). Some control over the geometry of such a fundamental domain, e.g., in terms of
train track coordinates, is also important. When β is a simple closed curve, such a fundamental domain was
first constructed by Rafi and Souto; see [ES22, Proposition 8.4]. The case when β is an arbitrary closed curve
is handled in [Hon24] using similar arguments. We now summarize the main properties of this construction.

Proposition 4.9. Let β be a closed curve on Sg. Then there exists an open set Dβ ⊆ MFg(β) which together

with its relative closure Dβ ⊆ MFg(β) has the following properties:

(1) g.Dβ ∩ Dβ = ∅ for every g ∈ Stab∗(β).

(2) MFg(β) =
⋃

g∈Stab∗(β) g.Dβ.

(3) The boundary ∂Dβ ⊆ PMFg is piecewise linear.
(4) νX(∂Dβ) = 0 for every X ∈ Tg.
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We are now ready to discuss the technical results in [Hon24] that will be needed in the proofs of Theorems
1.1 and 1.3. For concreteness, fix a set of Dehn-Thurston coordinates Ξ of MFg. These coordinates identify
MFg with Σ3g−3, where Σ := R2/⟨±1⟩. We can then identify PMFg with the L1 unit sphere in Σ3g−3

and endow this space with the corresponding L1 metric, which we denote by dΞ. Throughout the ensuing
discussion, given a closed curve β on Sg, we consider the fundamental domain Dβ ⊆ PMFg(β) and its

relative closure Dβ ⊆ PMFg(β) as in Proposition 4.9. For any ϵ > 0 define

D+ϵ
β,Ξ := {η ∈ PMFg : dΞ(β,Dβ) ≤ ϵ},(49)

D−ϵ
β,Ξ := {η ∈ Dβ : dΞ(β, ∂Dβ) > ϵ}.(50)

The following is the first technical result from [Hon24] we will need.

Proposition 4.10. Let α ∈ C∗
g be a filling geodesic current, β be a closed curve on Sg, Ξ be a set of Dehn-

Thurston coordinates on MFg, and X,Y ∈ Tg be marked complex structures on Sg. Then, there exists a
constant ϵ0 = ϵ0(α, β,Ξ, X, Y ) > 0 and a bounded function O : M(X,Y,D+ϵ0

β,Ξ ,PMFg) → R such that for
every g ∈ M(X,Y,D+ϵ0

β,Ξ ,PMFg) we have

Dα,β(g) = dT (X,g.Y ) +O(g).

Theorem 4.7 together with Proposition 4.10 guarantees that the function dα,β is a weakly generalized
distance function with adjustment Aα,β in the sense described in the following corollary.

Corollary 4.11. Let α ∈ C∗
g be a filling geodesic current, β be a closed curve on Sg, Ξ be a set of Dehn-

Thurston coordinates on MFg, and X,Y ∈ Tg be marked complex structures on Sg. Then, there exists a
constant ϵ0 = ϵ0(α, β,Ξ, X, Y ) > 0 such that the restriction of Dα,β to M(X,Y,D+ϵ0

β,Ξ ,PMFg) is a weakly
generalized distance function with adjustment the restriction of Aα,β to D+ϵ0

β,Ξ × PMFg.

The following technical result of [Hon24] controls overcounting in our setting by using the fundamental
domain introduced in Propositon 4.9.

Proposition 4.12. Let β be a closed curve on Sg and X,Y ∈ Tg be marked complex structures on Sg.
Then, there exists a full density subset M∗ = M∗(β,X, Y ) ⊆ Modg such that for every set of Dehn-Thurston
coordinates Ξ on MFg and every ϵ > 0, there exists a constant R0 := R0(β,X, Y,Ξ, ϵ) > 0 such that the
following map is injective:

(M(X,Y,D−ϵ
β,Ξ,PMFg) \M(X,Y,R0)) ∩M∗ → Stab∗(β)\Modg, g 7→ Stab∗(β)g.

The final issue that needs to be addressed is making sure that every coset in Stab∗(β)\Modg, or at least
most of them, are being accounted for by our methods. To this end we use the so-called standard map
introduced in [Hon24], whose main properties we now review. Let β be closed curve on Sg and X,Y ∈ Tg be
marked complex structures on Sg. Given this data there exists a map std: Stab∗(β)\Modg → Modg, called
the standard map, which to every coset Stab∗(β)g ∈ Stab∗(β)\Modg assigns the, basically unique, element
g′ := std(Stab∗(β)g) ∈ Stab∗(β)g such that g′.Y lies in or close to SectDβ

(X) ⊆ Tg; notice that any such
map is automatically injective.

The main property of the standard map is that for most cosets Stab∗(β)g ∈ Stab∗(β)\Modg, if g
′ :=

std(Stab∗(β)g) ∈ Modg, then g′.Y ∈ Tg belongs to the sector based at X ∈ Tg defined by an arbitrarily small
thickening of the fundamental domain Dβ . More precisely, given a filling geodesic current α ∈ C∗

g , a closed
curve β on Sg, and L > 0, denote

C(α, β, L) := {Stab∗(β)g ∈ Stab∗(β)\Modg : i(α,g
−1.β) ≤ L}.

Furthermore, given a closed curve β on Sg, we say a subset C∗ ⊆ Stab∗(β)\Modg has full density if for any
filling geodesic current α ∈ C∗

g ,

lim
L→∞

L−h ·#{Stab∗(β)g ∈ (Stab∗(β)\Modg) \ C∗ : i(α,g−1.β) ≤ L} = 0.

Notice that condition (4) holds for some α ∈ C∗
g if and only if it holds for any such α. With this terminology

the main properties of the standard map can be described as follows.

Proposition 4.13. Let β be a closed curve on Sg, Ξ be a set of Dehn-Thurston coordinates of MFg, and
X,Y ∈ Tg be marked complex structures on Sg. Then, there exists an injective map std: Stab∗(β)\Modg →
Modg with the following properties:

(1) If g′ = std(Stab∗(β)g) for some g ∈ Modg, then g′ ∈ Stab∗(β)g.
(2) There exists a full density subset C∗ = C∗(β,Ξ, X, Y ) ⊆ Stab∗(β)\Modg such that for every α ∈ C∗

g

and every ϵ > 0, there exists L0 = L0(α, β,Ξ, X, Y, ϵ) > 0 such that

std(C∗ \ C(α, β, L0)) ⊆ M(X,Y,D+ϵ
β,Ξ,PMFg).
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Integrals. In the course of the proofs of Theorems 1.1 and 1.3, it will be convenient to have alternative
descriptions of the integrals featured in Theorems 4.1 and 4.4. Given α ∈ C∗

g denote

c(α) := ν ({η ∈ MFg | i(α, η) ≤ 1}) > 0.

A similar constant can be defined for an arbitrary closed curve β on Sg as follows. Recall that

MFg(β) := {η ∈ MFg : β + η is filling}.
Following [ES22, Theorem 3.19], we know that Stab∗(β) acts properly discontinuously on MFg(β). Denote
by νβ the local pushforward to the quotient Stab∗(β)\MFg(β) of the restriction of the Thurston measure ν
to MFg(β). In this context define

c∗(β) := νβ({Stab∗(β)η ∈ Stab∗(β)\MFg(β) : i(β, η) ≤ 1}).
Corollary [ES22, Corollary 8.5] guarantees this constant is positive and finite. The next results follow directly
from the definitions but we record them here explicitly for future reference.

Proposition 4.14. Let α ∈ C∗
g be a filling geodesic current. Then, for every Y ∈ Tg,

c(α) =

∫
PMFg

exp

(
−h log i

(
α,

ξ√
ExtY (ξ)

))
dνY ([ξ]).

Proposition 4.15. Let β be a closed curve on Sg and Ξ be a set of Dehn-Thurston coordinates of MFg.
Then, for every marked complex structure X ∈ Tg,

c∗(β) =

∫
Dβ

exp

(
−h log i

(
η√

ExtX(η)
, β

))
dνX([η]).

Corollary 4.16. Let α ∈ C∗
g be a filling geodesic current, let β be a closed curve on Sg and Ξ be a set of

Dehn-Thurston coordinates of MFg. Then, for every pair of marked complex structures X,Y ∈ Tg,

c(α) · c∗(β) =
∫
Dβ×PMFg

ehAα,β([η],[ξ]) d(νX ⊗ νY )([η], [ξ]).

Counting. It will be convenient for us to have an asymptotic formula for the cardinality of C(α, β, L). The
following result was originally proved by Mirzakhani [Mir16, Theorem 1.1] and Erlandsson and Souto [ES22,
Theorem 8.1]; for effective versions see [AH21b, Theorem 1.1] and [Hon24].

Theorem 4.17. Let α ∈ C∗
g be a filling geodesic current and β be a closed curve on Sg. Then,

lim
L→∞

L−h ·#C(α, β, L) =
1

h ·m(Mg)
· c(α) · c∗(β).

Statistics estimates. One last set of ingredient we need to prove Theorems 1.1 and 1.3 are a couple of
elementary estimates on the statistics under consideration. Recall that if β is a closed curve on Sg then [β]
denotes its homology class. Given a homologically non-trivial closed curve β on Sg, X,Y ∈ Tg, and a norm
∥ · ∥ on H1(Sg;R), for every g ∈ Modd such that g.Y ̸= X denote

σ
∥·∥
X,Y,β(g) :=

log ∥g−1.[β]∥
dT (X,g.Y )

.

Analogously, given a filling geodesic current α ∈ C∗
g , a homologically non-trivial closed curve β on Sg, and a

norm ∥ · ∥ on H1(Sg;R), for every g ∈ Modg denote

σ
∥·∥
α,β(g) :=

log ∥g−1.[β]∥
log i(α,g−1.β)

With this notation, the first elementary estimate we need, which is concerned with the statistics of Theorem
1.1, can be stated as follows.

Lemma 4.18. Let β be a homologically non-trivial closed curve on Sg, X,Y ∈ Tg be marked complex
structures on Sg, and ∥ · ∥ be a norm on H1(Sg;R). Suppose α ∈ C∗

g , M > 0, and g ∈ Modg are such that

(1) g.Y ̸= X.
(2) |Dα,β(g)− dT (X,g.Y )| ≤ M .

(3) min{|σ∥·∥
α,β(g)|, |σ

∥·∥
X,Y,β(g)|} ≤ M .

Then, the following estimate holds,

|σ∥·∥
α,β(g)− σ

∥·∥
X,Y,β(g)| ≤

M2

min{|Dα,β(g)|, dT (X,g.Y )} .
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Proof. Suppose for simplicity that |σ∥·∥
α,β(g)| ≤ |σ∥·∥

X,Y,β(g)|; the proof in the other case is analogous. This

implies dT (X,g.Y ) ≤ |Dα,β(g)|. Furthermore, by condition (3), we have

(51)
∣∣ log ∥g−1.[β]∥

∣∣ ≤ M · |Dα,β(g)|.
Condition (2) ensures that

(52)

∣∣∣∣ 1

Dα,β(g)
− 1

dT (X,g.Y )

∣∣∣∣ ≤ M

|Dα,β(g)| · dT (X,g.Y )
.

From (51) and (52) we conclude that

|σ∥·∥
α,β(g)− σ

∥·∥
X,Y,β(g)| ≤

M2

dT (X,g.Y )
≤ M2

min{|Dα,β(g)|, dT (X,g.Y )} . □

Recall ς = ς(g) ∈ (0, 1) denotes the top Lyapunov exponent of Hg as introduced in §2. Given a homologi-
cally non-trivial closed curve β on Sg, marked complex structures X,Y ∈ Tg, and a norm ∥ · ∥ on H1(Sg;R),
for every g ∈ Modd such that g.Y ̸= X denote

τ
∥·∥
X,Y,β(g) :=

log ∥g−1.[β]∥ − dT (X,g.Y ) · ς√
dT (X,g.Y )

.

Analogously, given a filling geodesic current α ∈ C∗
g , a homologically non-trivial closed curve β on Sg, and a

norm ∥ · ∥ on H1(Sg;R), for every g ∈ Modg such that i(α,g−1.β) > 1 denote

τ
∥·∥
α,β(g) :=

log ∥g−1.[β]∥ − log i(α,g−1.β) · ς√
log i(α,g−1.β)

.

With this notation, the second elementary estimate we need, which is concerned with the statistics of
Theorem 1.3, can be stated as follows; the proof is analogous to that of Lemma 4.18.

Lemma 4.19. Let β be a homologically non-trivial closed curve on Sg, X,Y ∈ Tg be marked complex
structures on Sg, and ∥ · ∥ be a norm on H1(Sg;R). Suppose α ∈ C∗

g , M > 0, and g ∈ Modg are such that

(1) g.Y ̸= X.
(2) i(α,g−1.Y ) > 1.
(3) |Dα,β(g)− dT (X,g.Y )| ≤ M .

(4) min{|τ∥·∥α,β(g)|, |τ
∥·∥
X,Y,β(g)| ≤ M .

Then, the following estimate holds,

|τ∥·∥α,β(g)− τ
∥·∥
X,Y,β(g)| ≤

M
√
M +M√

min{Dα,β(g), dT (X,g.Y )}
.

Proofs of the main results. We are now ready to prove Theorems 1.1 and 1.3. We will actually prove
more general versions, for arbitrary geodesic currents, which we now state. Given a filling geodesic current
α ∈ C∗

g , a closed curve β on Sg, and L > 0, consider the finite set G(α, β, L) of all homotopy classes of
closed curves γ on X of the same topological type as β and satisfying i(α, γ) ≤ L; in other words, we require
γ ∈ Modg · β. Endow this space with the uniform probability measure Pα,β,L. Recall that [γ] ∈ H1(Sg;R)
denotes the homology class of a closed curve γ on Sg. Recall that ς = ς(g) ∈ (0, 1) denotes the top Lyapunov
exponent of Hg as introduced in §2. The following is a generalization of Theorem 1.1; such result can be
recovered by letting α be the Liouville current of the corresponding negatively curved Riemannian metric.

Theorem 4.20. Let α ∈ C∗
g be a filling geodesic current, β be a closed curve on Sg that is non-trivial in

homology, and ∥ · ∥ be a norm on the homology group H1(X;R). Then, the random variables

log ∥[γ]∥
log i(α, γ)

on (G(α, β, L),PX,γ0,L)

converge in distribution to the point mass at ς as L → ∞.

Proof. Recall that Theorem 4.17 guarantees that

lim
L→∞

L−h ·#C(α, β, L) =
1

h ·m(Mg)
· c(α) · c∗(β).

In particular, to prove the desired result, it is enough to show that for every non-negative, compactly sup-
ported function with one continuous derivative ξ ∈ C+

c (R) ∩ C1(R),

lim
L→∞

L−h ·
∑

Stab∗(β)g∈C(α,β,L)

ξ(σ
∥·∥
α,β(g)) =

1

h ·m(Mg)
· c(α) · c∗(β) · ξ(ς).
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For the rest of this discussion we fix ξ ∈ C+
c (R) ∩ C1(R) and show that

lim inf
L→∞

L−h ·
∑

Stab(β)g∈C(α,β,L)

ξ(σ
∥·∥
α,β(g)) ≥

1

h ·m(Mg)
· c(α) · c∗(β) · ξ(ς),(53)

lim sup
L→∞

L−h ·
∑

Stab(β)g∈C(α,β,L)

ξ(σ
∥·∥
α,β(g)) ≤

1

h ·m(Mg)
· c(α) · c∗(β) · ξ(ς).(54)

Denote by Dβ ⊆ PMFg(β) and Dβ ⊆ PMFg(β) the fundamental domain and its relative closure
introduced in Proposition 4.9. Fix a set of Dehn-Thurston coordinates Ξ of MFg. Let ϵ > 0 be arbitrary.
Recall the definitions of the sets D−ϵ

β,Ξ ⊆ PMFg(β) and D+ϵ
β,Ξ ⊆ PMFg in (49) and (50). Fix marked complex

structures X,Y ∈ Tg. By Proposition 4.12, there exists a full density subset M∗ = M∗(β,X, Y ) ⊆ Modg and
R0 := R0(β,X, Y,Ξ, ϵ) > 0 such that the following map is injective:

(M(X,Y,D−ϵ
β,Ξ,PMFg) \M(X,Y,R0)) ∩M∗ → Stab∗(β)\Modg, g 7→ Stab∗(β)g.

In particular, for every L > 0, the following map is well defined and injective:

(MDα,β
(X,Y,D−ϵ

β,Ξ,PMFg, logL) \M(X,Y,R0)) ∩M∗ → C(α, β, L), g 7→ Stab∗(β)g

Thus, as ξ is non-negative, the following bound holds for every L > 1:

(55)
∑

Stab∗(β)g∈C(α,β,L)

ξ(σ
∥·∥
α,β(g)) ≥

∑
g∈(MDα,β

(X,Y,D−ϵ
β,Ξ,PMFg,logL)\M(X,Y,R0))∩M∗

ξ(σ
∥·∥
α,β(g)).

Now let ϵ0 = ϵ0(α, β,Ξ, X, Y ) > 0 be the minimum of the corresponding constants in Proposition 4.10
and Corollary 4.11. Proposition 4.10 and fact that ξ has compact support guarantee the existence of M =
M(α, β,Ξ, X, Y, ξ) > 0 such that supp(ξ) ⊆ [−M,M ] and for every g ∈ M(X,Y,D+ϵ0

β,Ξ ,PMFg),

(56) |Dα,β(g)− dT (X,g.Y )| ≤ M.

In particular, by Lemma 4.18, if g ∈ M(X,Y,D+ϵ0
β,Ξ ,PMFg) satisfies σ

∥·∥
X,Y,β(g) ∈ supp(ξ), then

|σ∥·∥
α,β(g)− σ

∥·∥
X,Y,β(g)| ≤ M2/dT (X,g.Y ).

As ξ is Lipschitz, we deduce that, under the same conditions,

|ξ(σ∥·∥
α,β(g))− ξ(σ

∥·∥
X,Y,β(g))| ≤ ∥ξ∥C1 ·M2/dT (X,g.Y ).

In particular, by Theorem 3.9 and (56), as ξ is non-negative,∑
g∈(MDα,β

(X,Y,D−ϵ
β,Ξ,PMFg,logL)\M(X,Y,R0))∩M∗

ξ(σ
∥·∥
α,β(g))

≥
∑

g∈(MDα,β
(X,Y,D−ϵ

β,Ξ,PMFg,logL)\M(X,Y,R0))∩M∗

ξ(σ
∥·∥
X,Y,β(g)) +OX,Y,M,ξ(L

h · (logL)−1).(57)

Putting together (55) and (57) we deduce ∑
Stab∗(β)g∈C(α,β,L)

ξ(σ
∥·∥
α,β(g))

≥
∑

g∈(MDα,β
(X,Y,D−ϵ

β,Ξ,PMFg,logL)\M(X,Y,R0))∩M∗

ξ(σ
∥·∥
X,Y,β(g)) +OX,Y,M,ξ(L

h · (logL)−1).

In particular, taking L → ∞,

lim inf
L→∞

L−h ·
∑

Stab∗(β)g∈C(α,β,L)

ξ(σ
∥·∥
α,β(g))

≥ lim inf
L→∞

L−h ·
∑

g∈(MDα,β
(X,Y,D−ϵ

β,Ξ,PMFg,logL)\M(X,Y,R0))∩M∗

ξ(σ
∥·∥
X,Y,β(g)).(58)

Notice that condition (3) in Proposition 4.9 guarantees νX(∂D−ϵ
β,Ξ) = 0. We can thus apply Theorems 3.9,

4.4, and 4.5, and the fact that M∗ ⊆ Modg has full density, to deduce

lim
L→∞

L−h
∑

g∈(MDα,β
(X,Y,D−ϵ

β,Ξ,PMFg,logL)\M(X,Y,R0))∩M∗

ξ(σ
∥·∥
X,Y,β(g))

=
1

h ·m(Mg)
· ξ(ς) ·

∫
D−ϵ

β,Ξ×PMFg

ehAα,β([η],[ζ]) d(νX ⊗ νY )([η], [ζ]).(59)
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Putting together (58) and (59) we obtain

lim inf
L→∞

L−h ·
∑

Stab∗(β)g∈C(α,β,L)

ξ(σ
∥·∥
α,β(g))

≥ 1

h ·m(Mg)
· ξ(ς) ·

∫
D−ϵ

β,Ξ×PMFg

ehAα,β([η],[ζ]) d(νX ⊗ νY )([η], [ζ])

Letting ϵ → 0 yields

lim inf
L→∞

L−h ·
∑

Stab∗(β)g∈C(α,β,L)

ξ(σ
∥·∥
α,β(g))

≥ 1

h ·m(Mg)
· ξ(ς) ·

∫
Dβ×PMFg

ehAα,β([η],[ζ]) d(νX ⊗ νY )([η], [ζ])

Finally, Corollary 4.16 allows us to conclude the proof of (53):

lim inf
L→∞

L−h ·
∑

Stab∗(β)g∈C(α,β,L)

ξ(σ
∥·∥
α,β(g)) ≥

1

h ·m(Mg)
· c(α) · c∗(β) · ξ(ς).

We now prove (54). Again, fix a set of Dehn-Thurston coordinates Ξ of MFg and marked complex
structures X,Y ∈ Tg. Let ϵ0 = ϵ0(α, β,Ξ, X, Y ) > 0 be the minimum of the corresponding constants
in Proposition 4.10 and Corollary 4.11. Consider the standard map std: Stab∗(β)\Modg → Modg and
the corresponding full density subset C∗ = C∗(β,Ξ, X, Y ) ⊆ Stab∗(β) introduced in Proposition 4.13. Fix
0 < ϵ < ϵ0 and let L0 = L0(α, β,Ξ, X, Y, ϵ) > 0 be as in Proposition 4.13. Thus,

std(C∗ \ C(α, β, L0)) ⊆ M(X,Y,D+ϵ
β,Ξ,PMFg),

In particular, for every L > 0 we get an injection,

(60) std: (C(α, β, L) \ C(α, β, L0)) ∩ C∗ → MDα,β
(X,Y,D+ϵ

β,Ξ,PMFg, logL).

As C∗ ⊆ Stab∗(β)\Modg has full density,

lim sup
L→∞

L−h ·
∑

Stab∗(β)g∈C(α,β,L)

ξ(σ
∥·∥
α,β(g))

= lim sup
L→∞

L−h ·
∑

Stab∗(β)∈(C(α,β,L)\C(α,β,L0))∩C∗

ξ(σ
∥·∥
α,β(g)).(61)

As the map in (60) is injective and a ξ is non-negative,

(62)
∑

Stab∗(β)∈(C(α,β,L)\C(α,β,L0))∩C∗

ξ(σ
∥·∥
α,β(g)) ≤

∑
g∈MDα,β

(X,Y,D+ϵ
β,Ξ,PMFg,logL)

ξ(σ
∥·∥
α,β(g))

Now, Proposition 4.10 and fact that ξ has compact support guarantee the existence of a constant M =
M(α, β,Ξ, X, Y, ξ) > 0 such that supp(ξ) ⊆ [−M,M ] and for every g ∈ M(X,Y,D+ϵ0

β,Ξ ,PMFg),

(63) |Dα,β(g)− dT (X,g.Y )| ≤ M.

The same arguments introduced above, in particular, Lemma 4.18, allow one to deduce that, if g ∈ M(X,Y,
D+ϵ0

β,Ξ ,PMFg) satisfies σ
∥·∥
α,β(g) ∈ supp(ξ), then

|ξ(σ∥·∥
α,β(g))− ξ(σ

∥·∥
X,Y,β(g))| ≤ ∥ξ∥C1 ·M2/dT (X,g.Y ).

In particular, by Theorem 3.9 and (63), as ξ is non-negative,∑
g∈MDα,β

(X,Y,D+ϵ
β,Ξ,PMFg,logL)

ξ(σ
∥·∥
α,β(g))

≤
∑

g∈MDα,β
(X,Y,D+ϵ

β,Ξ,PMFg,logL)

ξ(σ
∥·∥
X,Y,β(g)) +OX,Y,M,ξ(L

h · (logL)−1)

Taking L → ∞ we deduce

lim sup
L→∞

L−h ·
∑

g∈MDα,β
(X,Y,D+ϵ

β,Ξ,PMFg,logL)

ξ(σ
∥·∥
α,β(g))

≤ lim sup
L→∞

L−h ·
∑

g∈MDα,β
(X,Y,D+ϵ

β,Ξ,PMFg,logL)

ξ(σ
∥·∥
X,Y,β(g)).(64)
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Notice that condition (3) in Proposition 4.9 guarantees νX(∂D+ϵ
β,Ξ) = 0. We can thus apply Theorems 4.4

and 4.5 to deduce the following:

lim
L→∞

L−h
∑

g∈MDα,β
(X,Y,D+ϵ

β,Ξ,PMFg,logL)

ξ(σ
∥·∥
X,Y,β(g))

=
1

h ·m(Mg)
· ξ(ς) ·

∫
D+ϵ

β,Ξ×PMFg

ehAα,β([η],[ζ]) d(νX ⊗ νY )([η], [ζ]).(65)

Putting together (61), (62), (64), and (65) we obtain

lim sup
L→∞

L−h ·
∑

Stab∗(β)g∈C(α,β,L)

ξ(σ
∥·∥
α,β(g))

≤ 1

h ·m(Mg)
· ξ(ς) ·

∫
D+ϵ

β,Ξ×PMFg

ehAα,β([η],[ζ]) d(νX ⊗ νY )([η], [ζ]).

Letting ϵ → 0 yields

lim sup
L→∞

L−h ·
∑

Stab∗(β)g∈C(α,β,L)

ξ(σ
∥·∥
α,β(g))

≤ 1

h ·m(Mg)
· ξ(ς) ·

∫
Dβ×PMFg

ehAα,β([η],[ζ]) d(νX ⊗ νY )([η], [ζ])

Finally, condition (4) in Proposition 4.9 and Corollary 4.16 allow us to conclude the proof of (54):

lim sup
L→∞

L−h ·
∑

Stab(β)g∈C(α,β,L)

ξ(σ
∥·∥
α,β(g)) ≤

1

h ·m(Mg)
· c(α) · c∗(β) · ξ(ς). □

Recall V = V (g) > 0 denotes the variance of Hg as introduced in §2. The following result is a generalization
of Theorem 1.3; such result can be recovered by letting α be the Liouville current of the corresponding
negatively curved Riemannian metric. The proof follows the same arguments as Theorem 4.20 but uses
Theorem 4.6 in place of Theorem 4.5 and Lemma 4.19 in place of Lemma 4.18.

Theorem 4.21. Let α ∈ C∗
g be a filling geodesic current, β be a closed curve on Sg that is non-trivial in

homology, and ∥ · ∥ be a norm on the homology group H1(X;R). Then, the random variables

log ∥[γ]∥ − log i(α, γ) · ς√
log i(α, γ)

on (G(α, β, L),PX,γ0,L)

converge in distribution to a Gaussian of mean zero and variance V as L → ∞.
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Mathematics. Birkhäuser/Springer, Cham, [2022] ©2022.

[Fil17] Simion Filip. Zero Lyapunov exponents and monodromy of the Kontsevich–Zorich cocycle. Duke Mathematical
Journal, 166(4):657 – 706, 2017.

[FM12] Benson Farb and Dan Margalit. A primer on mapping class groups, volume 49 of Princeton Mathematical Series.

Princeton University Press, Princeton, NJ, 2012.
[For02] Giovanni Forni. Deviation of ergodic averages for area-preserving flows on surfaces of higher genus. Ann. of Math.

(2), 155(1):1–103, 2002.

[Fou20] Charles Fougeron. Diffusion rate of windtree models and Lyapunov exponents. Bull. Soc. Math. France, 148(1):25–
49, 2020.

[Gar84] Frederick P. Gardiner. Measured foliations and the minimal norm property for quadratic differentials. Acta Math.,
152(1-2):57–76, 1984.

[GM91] F. P. Gardiner and H. Masur. Extremal length geometry of Teichmüller space. Complex Variables Theory Appl.,

16(2-3):209–237, 1991.
[HM79] J. Hubbard and H. Masur. Quadratic differentials and foliations. Acta Math., 142(3-4):221–274, 1979.

[Hon24] Pouya Honaryar. Effective counts for closed curves of fixed type. In Progress, 2024.

[HP97] Sa’ar Hersonsky and Frédéric Paulin. On the rigidity of discrete isometry groups of negatively curved spaces.
Comment. Math. Helv., 72(3):349–388, 1997.

[Hub61] Heinz Huber. Zur analytischen Theorie hyperbolischer Raumformen und Bewegungsgruppen. II. Math. Ann.,

143:463—464, 1961.
[Jen57] J. A. Jenkins. On the existence of certain general extremal metrics. Ann. of Math. (2), 66:440–453, 1957.

[Ker80] Steven P. Kerckhoff. The asymptotic geometry of Teichmüller space. Topology, 19(1):23–41, 1980.

[Lal89] Steven P. Lalley. Closed geodesics in homology classes on surfaces of variable negative curvature. Duke Math. J.,
58(3):795–821, 1989.

[Lev83] G. Levitt. Foliations and laminations on hyperbolic surfaces. Topology, 22(2):119–135, 1983.
[Mar70] G. A. Margulis. On some aspects of the theory of Anosov systems. Ph.D. Thesis, 1970. Springer-Verlag, Berlin,

2003.

[Mas82] Howard Masur. Interval exchange transformations and measured foliations. Ann. of Math. (2), 115(1):169–200,
1982.

[Mir08a] Maryam Mirzakhani. Ergodic theory of the earthquake flow. Int. Math. Res. Not. IMRN, (3):Art. ID rnm116, 39,

2008.
[Mir08b] Maryam Mirzakhani. Growth of the number of simple closed geodesics on hyperbolic surfaces. Ann. of Math. (2),

168(1):97–125, 2008.

[Mir16] M. Mirzakhani. Counting Mapping Class group orbits on hyperbolic surfaces. Preprint, arXiv:1601.03342, 2016.
[MR95a] Greg McShane and Igor Rivin. A norm on homology of surfaces and counting simple geodesics. Internat. Math.

Res. Notices, (2):61–69, 1995.

[MR95b] Greg McShane and Igor Rivin. Simple curves on hyperbolic tori. C. R. Acad. Sci. Paris Sér. I Math., 320(12):1523–
1528, 1995.

[MT02] Howard Masur and Serge Tabachnikov. Rational billiards and flat structures. In Handbook of dynamical systems,

Vol. 1A, pages 1015–1089. North-Holland, Amsterdam, 2002.
[Ota90] Jean-Pierre Otal. Le spectre marqué des longueurs des surfaces à courbure négative. Ann. of Math. (2), 131(1):151–
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