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ABSTRACT. Motivated by work of Dolgopyat and Nándori, we establish a general method
for upgrading limit theorems for Birkhoff sums and cocycles over dynamical systems to
mixing limit theorems under mild ergodicity and hyperbolicity assumptions. Building on
previous work of Al-Saqban and Forni, we apply this method to obtain mixing limit theo-
rems for particular subbundles of the Kontsevich-Zorich cocycle. In forthcoming work of
Arana-Herrera and Honaryar these results are applied to study the arithmetic/homological
complexity of long simple closed geodesics on negatively curved surfaces.
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1. INTRODUCTION

Motivation. Several important conditions can be used to describe the randomness of a
deterministic dynamical system. For instance, ergodicity ensures the almost everywhere
convergence of time averages to spatial averages. Other limit theorems like central limit
theorems can then be used to characterize the distribution of the deviations of time aver-
ages from spatial averages. Mixing, a notion strictly stronger than ergodicity, guarantees
the asymptotic independence between the initial position of points of a system and the po-
sition of their forward iterates. Joint generalizations of these notions of randomness, called
mixing limit theorems, were introduced by Dolgopyat and Nándori in [DN20]. The main
goal of this paper is to develop a method for upgrading limit theorems for Birkhoff sums
and cocycles over dynamical systems to mixing limit theorems under mild ergodicity and
hyperbolicity assumptions.

In the case of the central limit theorem, the question studied in this paper is of interest
in itself. For instance, for Birkhoff sums: Does the distribution of the deviations of time
averages from spatial averages remain unchanged if we prescribe the initial and final posi-
tions of points? In this paper we show the answer to this question is positive under weak
ergodicity and hyperbolicity conditions.

The Oseledets ergodic theorem interpreted in the distributional sense is another example
of a limit theorem. As an application of the methods developed in this paper, and build-
ing on previous work of Al-Saqban and Forni [AF22], we prove mixing Oseledets ergodic
theorems and central limit theorems for particular subbundles of the Kontsevich-Zorich
cocycle. By work of Bell, Delecroix, Gadre, Gutiérrez-Romo, and Schleimer [BDG+21],
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these results hold for the invariant part of the Kontsevich-Zorich cocycle over loci of ori-
entation double covers of quadratic differentials.

In forthcoming work of Arana-Herrera and Honaryar [AH23] these results are applied
to study the arithmetic/homological complexity of long simple closed geodesics on nega-
tively curved surfaces. More concretely, laws of large numbers and central limit theorems
are proved. In the class of all closed geodesics Sharp has proved stronger local limit the-
orems [Sha04]; see also [PS87, Eps87, Lal89, Pol91, BL98] for previous related results.
The situation in the case of simple closed geodesics is much less understood and, to the
knowledge of the authors, the results discussed in [AH23] are the first of its kind. We high-
light that, as a consequence of these results, local limit theorems in the spirit of Sharp’s
work but for simple closed geodesics cannot hold without significant modifications.

The study of central limit theorems for Birkhoff sums and integrals over uniformly
hyperbolic systems goes back to works of Sinai, Ruelle, Bowen, and Ratner [Sin60, Sin68,
Sin72, Rue76, Bow70, Bow73, BR75, Rat73]. For more recent works, including the study
of the case of partially hyperbolic systems, see [Che95, Liv96, AD01, Dol04, Gou15]. For
a study of central limit theorems for Birkhoff integrals over horocycle flows on hyperbolic
surfaces see [BF14]. Local central limit theorems, a stronger notion, have been studied
more sparingly [Wad96, Iwa08, DN16, DN19, DN20]. To the knowledge of the authors,
while there is a rich literature on non-Abelian central limit theorems for random matrix
products, or, equivalently, for cocycles over Bernoulli systems [Bel54, FK60, LP82, BL85,
GR86, GM89, BQ16], there are few results for deterministic cocycles: Furman and Kozma
[FK21], and Park and Piraino [PP22], proved CLTs for typical cocycles over shifts of finite
type in the sense of Bonatti and Viana [PP22]. Al-Saqban and Forni [AF22] considered
the special case of the Kontsevich-Zorich cocycle over the Teichmüller flow. In the latter
case, the base dynamics is non-uniformly hyperbolic and can be reduced to a suspension
flow over a Markov chain with countably many states.

The main difficulty of the problem at hand comes from the fact that the notion of con-
vergence in distribution is rather weak and does not seem to interact nicely with direct
applications of the mixing property. Rather than following a direct approach, we reduce
our problem to the study of the limit points of an appropriately defined sequence of ran-
dom variables. The hyperbolicity and ergodicity assumptions guarantee such limit points
are invariant under an ergodic transformation. In particular, such limit points are constant.
To control the value of such constants we apply the assumed limit theorem.

Other than the applications discussed in this paper and in [AH23], the authors expect
the notion of mixing limit theorems to play a relevant role in the study of randomness
in dynamical systems. This can already be seen in the work of Dolgopyat and Nándori
[DN20] that inspired this paper. Further applications should arise in the future, especially
as the theory of limit theorems for cocycles over dynamical systems is further developed.

Birkhoff sums. Let (X, d) be a metric space supporting a Borel probability measure µ
and an invertible, measure-preserving transformation T : X → X .

Given a measurable function f : X → R, the ergodic sums of f with respect to T are
said to satisfy a (spatial) distributional limit theorem (DLT) on (X,µ) if there exists a
sequences A := (AN )N∈N of real numbers and V := (VN )N∈N of positive real numbers
with VN → ∞ as N → ∞, and a random variable S, such that the random variables

SN (x) :=

∑N−1
n=0 f(Tnx)−AN

VN
on (X,µ)
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converge in distribution to S as N → ∞, that is, for every interval (a, b) ∈ R with
P(S ∈ {a, b}) = 0, the following holds,

lim
N→∞

µ({x ∈ X | SN (x) ∈ (a, b)}) = P(S ∈ (a, b)).

We usually refer to A as the averaging sequence, V as the normalizing sequence, and S as
the limiting distribution.

Example 1.1. Birkhoff’s ergodic theorem guarantees that, if µ is ergodic with respect to
T , then the ergodic sums of any measurable, bounded function f : X → R satisfy a DLT
with averaging sequence A given by AN := N · µ(f) for every N ∈ N, normalizing
sequence V given by VN := N for every N ∈ N, and S a (constant) random variable with
distribution the Dirac mass at 0 ∈ R.

Example 1.2. Another important case in hyperbolic dynamics is the central limit theorem
(CLT) for which the averaging sequence A is given by AN := N · µ(f) for every N ∈ N,
the normalizing sequence V is given by VN =

√
N for every N ∈ N, and the random

variable S has normal distribution with mean 0. However, it is known that there exist
mixing dynamical systems of zero entropy for which the CLT does not hold [FF03], as
well as systems with zero entropy for which it does hold [DDKN22, DFK22]. In general,
limit theorems for systems of zero entropy are not well-understood.

Now let U : X → X be a measure-preserving, ergodic transformation . We say the pair
(T,U) is contracting if for µ-almost-every x ∈ X ,

lim
n→∞

d(TnUx, Tnx) = 0.

We say that a function f : X → R is (T,U,V)-adapted if for µ-almost-every x ∈ X and
every N ∈ N we have

N∑
n=0

|f(TnUx)− f(Tnx)| = ox(VN ).

Remark 1.3. The pair (T,U) is called strongly contracting if for µ-almost-every x ∈ X

∞∑
n=0

d(TnUx, Tnx) < +∞

and hyperbolic if for µ-almost every x ∈ X there exist C > 0 and κ > 0 such that

d(TnUx, Tnx) ≤ Ce−κn for every n ∈ N.

If (T,U) is strongly contracting, then any Lipschitz function f : X → R is (T,U,V)-
adapted for any diverging sequence V := (VN )N∈N. Furthermore, for µ-almost every
x ∈ X and every N ∈ N,

N∑
n=0

|f(TnUx)− f(Tnx)| = Ox(1).

The following is the main result of this paper for Birkhoff sums.

Theorem 1.4. Let (X, d) be a metric space supporting a Borel probability measure µ,
let T : X → X be an invertible, measure-preserving transformation, and let f : X → R
be a bounded measurable function. Assume that the Birkhoff sums of f with respect to T
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satisfy a DLT on (X,µ) with averaging sequence A := (AN )N∈N, normalizing sequence
V := (VN )N∈N, and limiting distribution S in the sense that the random variables

SN (x) :=

∑N−1
n=0 f(Tnx)−AN

VN
on (X,µ)

converge in distribution to S as N → ∞, i.e., for every interval (a, b) ⊆ R such that
P(S ∈ {a, b}) = 0, the following holds,

lim
N→∞

µ({x ∈ X | SN (x) ∈ (a, b)}) = P (S ∈ (a, b)) .

Assume that there exists a measure-preserving ergodic transformation U : X → X such
that the pair (T,U) is hyperbolic and f : X → R is a (T,U,V)-adapted function. Then,
the same DLT holds in the mixing sense, i.e. for every pair of Borel measurable subsets
A,B ⊆ X and every interval (a, b) ⊆ R such that P(S ∈ {a, b}) = 0,

lim
N→∞

µ({x ∈ X | x ∈ A, SN (x) ∈ (a, b), TNx ∈ B}) = µ(A) · P (S ∈ (a, b)) · µ(B).

Remark 1.5. For a weaker conditional limit theorem that holds in a more general context
see Theorem 2.2. For a discussion of the case of flows see Theorems 2.8 and 2.9.

Cocycles. Let (X, d) be a metric space supporting a Borel probability measure µ and
an invertible, measure-preserving transformation T : X → X . Fix m ∈ N. By an m-
dimensional cocycle over T we mean a map C : X×Z → GL(m,R) satisfying the identity

C(x, r + s) = C(T rx, s) · C(x, r) for µ-almost every x ∈ X and every r, s ∈ Z .

Denote by ⟨·, ·⟩ the standard inner product on Rm, by ∥ · ∥ the corresponding Euclidean
norm, and by ν the induced probability measure on the projectivization PRm. The projec-
tivized bundle X × PRm can be endowed with the product measure µ⊗ ν.

Given (x, v) ∈ X × (Rm \ {0}) or X × PRm and N ∈ N consider the quantities

σ(x, v,N) := log
∥C(x,N)v∥

∥v∥
∈ R,

σ(x,N) := log sup
v∈Rm

∥C(x,N)v∥
∥v∥

∈ R.

We say the cocycle C is log-integrable if the following maps belong to L1(X,µ),

x 7→ max{0, σ(x, 1)}, x 7→ max{0, σ(x,−1)}.

We say the cocycle C satisfies a (spatial) distributional limit theorem (DLT) on (X ×
PRm, µ⊗ ν) if there exist sequences A := (AN )N∈N of real numbers and V := (VN )N∈N
of positive real numbers with VN → ∞ as N → ∞, and a random variable S, such that
the random variables

SN (x, v) =
σ(x, v,N)−AN

VN
on (X × Rm, µ⊗ ν)

converge in distribution to S as N → ∞, i.e., for every interval (a, b) ⊆ R such that
P(S ∈ {a, b}) = 0, the following holds,

lim
N→∞

(µ⊗ ν)({(x, v) ∈ X ∈ PRm | SN (x, v) ∈ (a, b)}) = P(S ∈ (a, b)).

We usually refer to A as the averaging sequence, V as the normalizing sequence, and S as
the limiting distribution.
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Example 1.6. The Oseledets ergodic theorem guarantees that, if µ is ergodic with respect
to T , every log-integrable cocycle C : X × Z → GL(m,R) with top Lyapunov exponent
λ ∈ R satisfies a DLT with averaging sequence A given by AN := N ·λ for every N ∈ N,
normalizing sequence V given by VN := N for every N ∈ N, and S a (constant) random
variable with distribution equal to the Dirac mass at 0 ∈ R.

Example 1.7. Another important case in hyperbolic dynamics is the central limit theorem
(CLT) for which the averaging sequence A is given by AN := λ · N for every N ∈ N,
the normalizing sequence V is given by VN =

√
N for every N ∈ N, and the random

variable S has normal distribution with mean 0. By work of Al-Saqban and Forni [AF22],
the Kontsevich-Zorich cocycle satisfies a distributional CLT.

We say the cocycle C is V-sufficiently-bounded if for µ-almost-every x ∈ X , ν-almost-
every v ∈ PRm, and every N ∈ N,

|σ(x, v,N)− σ(Tx,C(x, 1)v,N)| = ox,v(VN ).

We say the cocycle C has V-simple-dominated-splitting if for µ-almost every x ∈ X ,
ν-almost every v, w ∈ PRm, and every N ∈ N,

|σ(x, v,N)− σ(x,w,N)| = ox,v,w(VN ).

Remark 1.8. In applications, see §4, it is common for the cocycle C to be bounded in the
following stronger sense: for µ-almost-every x ∈ X and ν-almost-every v ∈ PRm,

|σ(x, v, 1)| = O(1).

Remark 1.9. We also prove below, in Lemma 3.2, that, by the Oseledets ergodic theorem,
any log-integrable cocycle over an invertible ergodic dynamical system with simple top
Lyapunov exponent has simple dominated splitting with respect to any sequence V.

Now let U : X → X be a measure-preserving, ergodic transformation and let D : X ×
N → GL(m,R) be a measurable cocycle over U . Recall that we say the pair (T,U) is
contracting if for µ-almost-every x ∈ X ,

lim
n→∞

d(TnUx, Tnx) = 0.

We say the cocycles (C,D) are (T,U,V)-adapted if for µ-almost-every x ∈ X , ν-almost
every v ∈ PRm, and every N ∈ N, the following estimate holds,

|σ(x, v,N)− σ(Ux,D(x, 1)v,N)| = ox,v(VN ).

Remark 1.10. In applications, see §4, it is common to have the following stronger condi-
tion: for µ-almost-every x ∈ X , ν-almost-every v ∈ PRm, and every N ∈ N,

|σ(x, v,N)− σ(Ux,D(x, 1)v,N)| = Ox,v(1).

The following is the main result of this paper for cocycles.

Theorem 1.11. Let (X, d) be a metric space supporting a Borel probability measure µ,
let T : X → X be an invertible, measure-preserving transformation, and let C : X ×
Z → GL(m,R) be a measurable cocycle over T . Assume that C satisfies a DLT on
(X × PRm, µ⊗ ν) with averaging sequence A := (AN )N∈N, normalizing sequence V =
(VN )N∈N, and limiting distribution S in the sense that the random variables

SN (x, v) :=
σ(x, v,N)−AN

VN
on (X × PRm, µ⊗ ν)
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converge in distribution to S as N → ∞, i.e., for every interval (a, b) ⊆ R such that
P(S ∈ {a, b}) = 0, the following holds,

lim
N→∞

(µ⊗ ν)({(x, v) ∈ X × PRm | SN (x) ∈ (a, b)}) = P (S ∈ (a, b)) .

Assume that C is V-sufficiently-bounded and has V-simple-dominated-splitting. Assume in
addition that there exist an ergodic transformation U : X → X and a measurable cocycle
D : X × N → GL(m,R) over U such that (T,U) is contracting and (C,D) is (T,U,V)-
adapted. Then, the above DLT holds in the mixing sense, i.e. for every pair of Borel
measurable subsets A,B ⊆ X and every interval (a, b) ⊆ R such that P(S ∈ {a, b}) = 0,

lim
N→∞

(µ⊗ ν)({(x, v) ∈ X × PRm | x ∈ A, SN (x, v) ∈ (a, b), TNx ∈ B})

= µ(A) · P (S ∈ (a, b)) · µ(B).

Remark 1.12. For a weaker conditional limit theorem that holds in a more general context
see Theorem 3.3. For a discussion of the case of flows see Theorems 3.15 and 3.16.

Remark 1.13. For a discussion of central limit theorems for the operator norm of cocycles
see Theorems 3.7 and 3.8. For analogous results for flows see Theorems 3.18 and 3.19.

Remark 1.14. For a discussion of central limit theorems for “generic" sections of cocycles
see Theorems 3.10 and 3.11. For analogous results for flows see Theorems 3.21 and 3.22.

The Kontsevich-Zorich cocycle. The Kontsevich–Zorich (KZ) cocycle, introduced in
[Kon97, KZ97], is arguably the central object of study in Teichmüller dynamics. As an
application of the results discussed above, we prove mixing laws of large numbers and
mixing central limit theorems for subbundles of exterior powers of the Kontsevich-Zorich
cocycle over SL(2,R)-invariant suborbifolds of Abelian differentials under natural, well
studied conditions. We prove mixing limit theorems in the spirit of Theorem 1.11 but
also for the operator norm and for “generic" sections of the KZ cocycle; see Theorems
4.23,4.24,4.25,4.26,4.27,4.28 for precise statements. In the case of mixing laws of large
numbers, the starting point is the Oseledets ergodic theorem. In the case of mixing central
limit theorems, the starting point is the central limit theorem for the KZ cocycle proved by
Al-Saqban and Forni in [AF22].

As a particularly important application of these results we consider the case of the in-
variant part of the full KZ cocycle over loci of orientation double covers of quadratic dif-
ferentials. This application relies crucially on work of Filip [Fil17] and Bell, Delecroix,
Gadre, Gutiérrez-Romo, and Schleimer [?] to verify the appropriate conditions needed for
the mixing limit theorems to hold. These theorems are crucial for the applications to the
study of the arithmetic/homological complexity of long simple closed geodesics on nega-
tively curved surfaces in forthcoming work of Arana-Herrera and Honaryar [AH23].

Organization of the paper. In §2 we show how to upgrade limit theorems for Birkhoff
sums over dynamical systems to mixing limit theorems; the case of flows is also consid-
ered. In §3 we prove analogous results for cocycles over dynamical systems. In §4 we
discuss important applications of the results in §3 to the Kontsevich-Zorich cocycle.

Acknowledgements. The authors would like to thank Pouya Honaryar for introducing
them to the subject of mixing limit theorems. The authors would also like to thank Dmitry
Dolgopyat for very enlightening conversations on the subject of this paper. This mate-
rial is based upon work funded by the National Science Foundation: the second author is
supported by grants DMS 1600687 and DMS 2154208.
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2. BIRKHOFF SUMS

Outline of this section. In this section we discuss how to upgrade distributional limit
theorems for Birkhoff sums of dynamical systems to mixing distributional limit theorems
under mild ergodicity and hyperbolicity assumptions; see Theorem 2.1 for the main result
of this section. We begin by proving different conditional distributional limit theorems for
Birkhoff sums, see Theorem 2.2 and Corollary 2.4, and then use these results to prove the
main theorem. Although the results in this section are not directly used in applications,
their proofs inspire proofs in later sections.

Statement of the main result. We begin by reviewing the statement of our main result
for Birkhoff sums. Let (X, d) be a metric space supporting a Borel probability measure µ,
an invertible, measure-preserving transformation T : X → X , and a measure-preserving,
ergodic transformation U : X → X .

Recall we say the pair (T,U) is contracting if for µ-almost-every x ∈ X ,

lim
n→∞

d(TnUx, Tnx) = 0.

Let V := (VN )N∈N be a sequence of positive real numbers with VN → ∞ as N → ∞.
Recall that we say a function f : X → R is (T,U,V)-adapted if for µ-almost-every x ∈ X
and for every N ∈ N, the following holds,

N∑
n=0

|f(TnUx)− f(Tnx)| = ox(VN ).

The following is the main result of this section; compare to Theorem 1.4.

Theorem 2.1. Let (X, d) be a metric space supporting a Borel probability measure µ, let
T : X → X be an invertible, measure-preserving transformation, and let f : X → R be
a bounded, measurable function. Assume that the Birkhoff sums of f with respect to T
satisfy a DLT on (X,µ) with averaging sequence A := (AN )N∈N, normalizing sequence
V := (VN )N∈N, and limiting distribution S in the sense that the random variables

SN (x) :=

∑N−1
n=0 f(Tnx)−AN

VN
on (X,µ)

converge in distribution to S as N → ∞, i.e., for every interval (a, b) ⊆ R such that
P(S ∈ {a, b}) = 0, the following holds,

lim
N→∞

µ({x ∈ X | SN (x) ∈ (a, b)}) = P (S ∈ (a, b)) .

Assume that there exists a measure-preserving ergodic transformation U : X → X such
that the pair (T,U) is contracting and f : X → R is a (T,U,V)-adapted function. Then,
the same DLT holds in the mixing sense, i.e. for every pair of Borel measurable subsets
A,B ⊆ X and every interval (a, b) ⊆ R such that P(S ∈ {a, b}) = 0,

lim
N→∞

µ({x ∈ X | x ∈ A, SN (x) ∈ (a, b), TNx ∈ B}) = µ(A) · P (S ∈ (a, b)) · µ(B).

A conditional distributional limit theorem. To prove Theorem 2.1 we first prove the
following result of independent interest.

Theorem 2.2. Let (X,B, µ) be a probability space, let T : X → X be a measure-
preserving, ergodic transformation, and let f : X → R be a bounded, measurable func-
tion. Suppose the Birkhoff sums of f with respect to T satisfy a DLT on (X,B, µ) with
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averaging sequence A := (AN )N∈N, normalizing sequence V := (VN )N∈N, and limiting
distribution S in the sense that the random variables

SN (x) :=

∑N−1
n=0 f(Tnx)−AN

VN
on (X,B, µ)

converge in distribution to S as N → ∞, i.e., for every interval (a, b) ⊆ R such that
P(S ∈ {a, b}) = 0, the following holds,

lim
N→∞

µ({x ∈ X | SN (x) ∈ (a, b)}) = P (S ∈ (a, b)) .

Then, the same DLT holds in the conditional sense, i.e. for every A ∈ B and every interval
(a, b) ⊆ R such that P(S ∈ {a, b}) = 0,

lim
N→∞

µ({x ∈ X | x ∈ A, SN (x) ∈ (a, b)}) = µ(A) · P (S ∈ (a, b)) .

Before proving Theorem 2.2, we first review some basic terminology. Let (Ω,B,P) be
a probability space and (Xn)n∈N be a sequence of integrable random variables on it. We
say Xn converges weakly in L1 to an integrable random variable X on (Ω,B,P) if for
every bounded random variable Y on (Ω,B,P) the following holds,

lim
n→∞

E(XnY ) = E(XY ).

Equivalently, Xn converges weakly in L1 to X if for every measurable set A ∈ B,

lim
n→∞

E (XnχA) = E(XχA).

To reduce to a question about weak L1 convergence, we prove the following general
lemma; compare to [Eag76, Theorem 1].

Lemma 2.3. Let (Ω,B,P) be a probability space and (Xn)n∈N be a sequence of inte-
grable random variables on it. Then Xn converges conditionally in distribution to an
integrable random variable X in the sense that for every measurable set A ∈ B and every
interval (a, b) ⊆ R with P(X ∈ {a, b}) = 0,

lim
n→∞

P(A ∩Xn ∈ (a, b)) = P(A) · P(X ∈ (a, b))

if and only for every fixed t ∈ R,

eitXn → E(eitX) weakly in L1 as n → ∞.

Proof. For every A ∈ B with P(A) > 0 consider the probability space (A,B|A,P|A) and
the integrable random variables (Xn|A)n∈N on it. Notice that Xn converges conditionally
in distribution to X if and only if (Xn|A)n∈N converges in distribution to X for every
A ∈ B with P(A) > 0. By Lévy’s continuity theorem, this condition is equivalent to the
following convergence of characteristic functions for every t ∈ R :

E(eitXn |A) → E(eitX) as n → ∞.

But this is exactly the condition that for every measurable set A ∈ B with P(A) > 0 and
every t ∈ R,

E(χAe
itXn) → E(χAE(eitX)) as n → ∞.

Thus, we see that the original condition is equivalent to

eitXn → E(eitX) weakly in L1 as n → ∞ for every t ∈ R. □

We are now ready to prove Theorem 2.2
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Proof of Theorem 2.2. Consider the corrected Birkhoff sums SN as random variables on
(X,B, µ). By Lemma 2.3, it is enough to check that for every fixed t ∈ R,

eitSN → E(eitS) weakly in L1 as N → ∞.

For the rest of this discussion we fix t ∈ R and prove this statement. By the Dunford-
Pettis theorem, a sequence of integrable random variables is sequentially L1 weakly com-
pact if and only if it is uniformly integrable. In particular, as the random variables eitSN are
uniformly bounded, it is enough to show that the only weak L1 limit point of (eitSN )N∈N
is the constant random variable E(eitS).

Let Y be a weak L1 limit point of this sequence along times {Nk}k∈N. We claim that
Y = Y ◦ T almost surely. Indeed, because f is bounded, it follows directly from the
definition of SN and the dominated convergence theorem that,

E(|eitSN ◦ T − eitSN |) → 0 as N → ∞.

The Hölder inequality then implies that

eitSNk ◦ T → Y weakly in L1 as k → ∞.

But, at the same time, the T -invariance of µ implies

eitSNk ◦ T → Y ◦ T weakly in L1 as k → ∞.

As weak L1 limits are unique almost surely, the claim follows.
To conclude we notice that, as T acts ergodically, Y must be constant almost every-

where. Pairing eitSNk against the constant function 1 and using the assumed DLT reveals
that Y must be E(eitS). This finishes the proof. □

The proof of Theorem 2.1 will use Theorem 2.2 in the following form.

Corollary 2.4. Let (X,B, µ) be a probability space, let T : X → X be a measure-
preserving, ergodic transformation, and let f : X → R be a bounded, measurable function.
Suppose the Birkhoff sums of f with respect to T satisfy a DLT (X,B, µ) with averaging
sequence A := (AN )N∈N, normalizing sequence V := (VN )N∈N, and limiting distribution
S in the sense that the random variables

SN (x) :=

∑N−1
n=0 f(Tnx)−AN

VN
on (X,B, µ)

converge in distribution to S as N → ∞, i.e., for every interval (a, b) ⊆ R such that
P(S ∈ {a, b}) = 0, the following holds,

lim
N→∞

µ({x ∈ X | SN (x) ∈ (a, b)}) = P (S ∈ (a, b)) .

Then, the same DLT holds in the following stronger sense: for every B ∈ B and every
interval (a, b) ⊆ R such that P(S ∈ {a, b}) = 0,

lim
N→∞

µ({x ∈ X | SN (x) ∈ (a, b), TNx ∈ B}) = P (S ∈ (a, b)) · µ(B).

Furthermore, if X is a metric space and B is its Borel σ-algebra, then, for every bounded
Lipschitz function ϕ : X → R and every t ∈ R,

lim
N→∞

∫
X

eitSN (x) · ϕ(TNx) dµ(x) = E(eitS) · µ(ϕ).

To prove Corollary 2.4 we first prove the following technical lemma.
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Lemma 2.5. Let (X,B, µ) be a probability space, let T : X → X be a measure-preserving
transformation, and let f : X → R be a measurable function. Suppose that the Birkhoff
sums of f with respect to T satisfy a DLT on (X,B, µ) with averaging sequence A :=
(AN )N∈N, normalizing sequence V := (VN )N∈N, and limiting distribution S in the sense
that the random variables

SN (x) :=

∑N−1
n=0 f(Tnx)−AN

VN
on (X,B, µ)

converge in distribution to S as N → ∞, i.e., for every interval (a, b) ⊆ R such that
P(S ∈ {a, b}) = 0, the following holds,

lim
N→∞

µ({x ∈ X | SN (x) ∈ (a, b)}) = P (S ∈ (a, b)) .

Then, the same DLT holds for Birkhoff sums of f with respect to T−1, i.e., the random
variables

S−1
N (x) :=

∑N−1
n=0 f(T−nx)−AN

VN
on (X,B, µ)

converge in distribution to S as N → ∞, i.e., for every interval (a, b) ⊆ R such that
P(S ∈ {a, b}) = 0, the following holds

lim
N→∞

µ({x ∈ X | S−1
N (x) ∈ (a, b)}) = P (S ∈ (a, b)) .

Proof. Let (a, b) ⊆ R be an interval such that P(S ∈ {a, b}) = 0. Notice that, for every
x ∈ X and every N ∈ N,

SN (x) = S−1
N (TN−1(x)).

In particular, for every N ∈ N,

µ({x ∈ X | S−1
N (x) ∈ (a, b)}) = µ({x ∈ X | SN (T−(N−1)x) ∈ (a, b)}).

The T -invariance of µ guarantees that, for every N ∈ N,

µ({x ∈ X | SN (T−(N−1)x) ∈ (a, b)}) = µ({x ∈ X | SN (x) ∈ (a, b)}).
The result now follows from the fact that SN converges in distribution to S as N → ∞. □

We are now ready to prove Corollary 2.4.

Proof of Corollary 2.4. Without loss of generality consider B ∈ B with µ(B) > 0. The
T -invariance of µ ensures that, for every N ∈ N,

µ(T−NB) = µ(B) > 0.

For every N ∈ N consider the probability space (T−NB,B|T−NB , µ|T−NB) and the ran-
dom variable SN |T−NB on it. Our goal is to show that (SN |T−NB)N∈N converges in dis-
tribution to S. By Lévy’s continuity theorem, this condition is equivalent to the following
convergence of characteristic functions for every t ∈ R :

E(eitSN |T−NB) → E(eitS) as N → ∞.

For the rest of this discussion we fix t ∈ R and show that

lim
N→∞

∫
X

eitSN (x) · χB(T
Nx) dµ(x) = E(eitS) · µ(B).

For x ∈ X and N ∈ N consider the corrected Birkhoff sum of f with respect to T−1,

S−1
N (x) :=

∑N−1
n=0 f(T−nx)−AN

VN
.
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By definition, for every x ∈ X and every N ∈ N,

SN (x) = S−1
N (TN−1x).

Hence, for every N ∈ N we can write∫
X

eitSN (x) · χB(T
N (x)) dµ(x) =

∫
X

eitS
−1
N (TN−1(x)) · χB(T

Nx) dµ(x).

The T -invariance of µ then ensures that, for every N ∈ N,∫
X

eitS
−1
N (TN−1(x)) · χB(T

Nx) dµ(x) =

∫
X

eitS
−1
N (x) · χT−1B(x) dµ(x).

It remains to show that

lim
N→∞

∫
X

eitS
−1
N (x) · χT−1B(x) dµ(x) = E(eitS) · µ(T−1B) = E(eitS) · µ(B).

This follows directly from Theorem 2.2 and Lemma 2.5.
The fact that, in the case where X is a metric space and B is its Borel σ-algebra, one

can replace the characteristic function χB with an arbitrary bounded Lipschitz function
ϕ : X → R follows by standard approximation arguments. □

Mixing. To prove Theorem 2.1 we will also use the following mixing result.

Theorem 2.6. Let (X, d) be a metric space supporting a Borel probability measure µ,
an invertible, measure-preserving transformation T : X → X , and a measure-preserving,
ergodic transformation U : X → X . Suppose (T,U) is contracting. Then T is mixing.

Proof. By standard approximation arguments, it is enough to show that for every Borel
measurable subset A ⊆ X and every bounded Lipschitz function ϕ : X → R,

lim
N→∞

∫
X

χA(x) · ϕ(TNx) dµ(x) = µ(A) · µ(ϕ).

This is equivalent to showing that

ϕ ◦ TN → µ(ϕ) weakly in L1 as N → ∞.

By the Dunford-Pettis theorem theorem, a sequence of integrable functions is sequentially
L1 weakly compact if and only if it is uniformly integrable. In particular, as the functions
ϕ ◦ TN are uniformly bounded, it is enough to show that the only weak L1 limit point of
(ϕ ◦ TN )N∈N is the constant function µ(ϕ).

Let φ be a weak L1 limit point of this sequence along times {Nk}k∈N. We claim that
φ = φ◦U almost surely. Indeed, it follows directly from the fact that (T,U) is hyperbolic,
the fact that ϕ is bounded Lipschitz, and the dominated convergence theorem that,

E(|ϕ ◦ TN ◦ U − ϕ ◦ TN |) → 0 as N → ∞.

The Hölder inequality then implies that

ϕ ◦ TN ◦ U → φ weakly in L1 as N → ∞.

But, at the same time, the U -invariance of µ implies

ϕ ◦ TN ◦ U → φ ◦ U weakly in L1 as N → ∞
As weak L1 limits are unique almost surely, the claim follows.

To conclude notice that, as U acts ergodically, φ must be constant almost everywhere.
Pairing ϕ ◦TN against the constant function 1 and using the T -invariance of µ reveals that
φ must be the constant function µ(ϕ). This finishes the proof. □
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Proof of the main result. We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. Without loss of generality consider a pair of Borel measurable sets
A,B ⊆ X with µ(A), µ(B) > 0. Theorem 2.6 ensures T is mixing. In particular,

lim
N→∞

µ(A ∩ T−NB) = µ(A) · µ(B) > 0.

For every N ∈ N sufficiently large consider the probability space

(A ∩ T−NB,B|A∩T−NB , µ|A∩T−NB)

and the random variable SN |A∩T−NB on it. We aim to prove that (SN |A∩T−NB)N∈N
converges in distribution to S as N → ∞. By Lévy’s continuity theorem, this condition is
equivalent to the following convergence of characteristic functions for every t ∈ R :

E(eitSN |A ∩ T−NB) → E(eitS) as N → ∞.

As T is mixing, this is equivalent to showing that, for every t ∈ R,

lim
N→∞

∫
X

χA(x) · eitSN (x) · χB(T
Nx) dµ(x) = µ(A) · E(eitS) · µ(B).

Standard approximation arguments show that one can replace χB in this statement by a
bounded Lipschitz function ϕ : X → R. We do so for the rest of this discussion. Now
consider for fixed t ∈ R the random variables

FN := eitSN (x) · ϕ(TNx), N ∈ N.

Our goal is to show that

FN → E(eitS) · µ(ϕ) weakly in L1 as N → ∞.

By the Dunford-Pettis theorem, a sequence of integrable random variables is sequentially
L1 weakly compact if and only if it is uniformly integrable. In particular, as the random
variables FN are uniformly bounded, it is enough to show that the only weak L1 limit point
of (FN )N∈N is the constant random variable E(eitS) · µ(ϕ).

Let F be a weak L1 limit point of this sequence along times {Nk}k∈N. We claim that
F = F ◦ U almost surely. Indeed, it follows directly from the definition of FN , the fact
that (T,U) is hyperbolic, the fact that f is bounded and (T,U,V)-adapted, the fact that ϕ
is bounded Lipschitz, and the dominated convergence theorem, that

E(|FN ◦ U − FN |) → 0 as N → ∞.

The Hölder inequality then implies that

FNk
◦ U → F weakly in L1 as k → ∞.

At the same time, the U -invariance of µ implies

FNk
◦ U → F ◦ U weakly in L1 as k → ∞.

As weak L1 limits are unique almost surely, the claim follows.
To conclude notice that, as U acts ergodically, F must be constant almost everywhere.

Pairing FN against the constant function 1 and using Corollary 2.4 reveals that F must be
E(eitS) · µ(ϕ). This finishes the proof. □
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Flows. We now discuss the case of flows. Let (X, d) be a metric space supporting a Borel
probability measure µ and a measure-preserving, ergodic flow A := {at : X → X}t∈R.

Given a measurable function f : X → R, the ergodic integrals of f with respect to A
satisfy a (spatial) distributional limit theorem (DLT) on (X,µ) if there exists a real function
A := (AT )T∈R, a positive real function V := (VT )T∈R with VT → ∞ as T → ∞, and a
random variable S, such that the random variables

ST (x) :=

∫ T

0
f(atx) dt−AT

VT
on (X,µ)

converge in distribution to S as N → ∞, that is, for every interval (a, b) ∈ R with
P(S ∈ {a, b}) = 0, the following holds,

lim
N→∞

µ({x ∈ X | ST (x) ∈ (a, b)}) = P(S ∈ (a, b)).

We usually refer to A as the averaging function, V as the normalizing function, and S as
the limiting distribution.

Let U : X → X be a measure-preserving, ergodic transformation. We say the pair
(A,U) is contracting if for µ-almost-every x ∈ X ,

lim
t→∞

d(atUx, atx) = 0.

We say a function f : X → R is (A,U,V)-adapted if for µ-almost-every x ∈ X and every
T > 0, the following holds,∫ T

0

|f(atUx)− f(atx)| dt = ox(VT ).

Remark 2.7. The pair (A,U) is called strongly contracting if for µ-almost-every x ∈ X ,∫ +∞

0

d(atUx, atx) < +∞

and hyperbolic if for µ-almost-every x ∈ X there exist C > 0 and κ > 0 such that

d(atUx, atx) ≤ Ce−κt for all t ≥ 0 .

If the pair (A,U) is called strongly contracting, then any Lipschitz function f : X → R is
(A,U,V)-adapted for any diverging function V = (VT )T∈R. Furthermore, for µ-almost-
every x ∈ X and every T ≥ 0,∫ T

0

|f(atUx)− f(atx)| dt = Ox(1).

The following is the main result for flows; its proof is analogous to that of Theorem 2.1
and its details are left to the reader.

Theorem 2.8. Let (X, d) be a metric space supporting a Borel probability measure µ, let
A := {at : X → X}t∈R be a measure-preserving, ergodic flow, and let f : X → R a
bounded, measurable function. Assume that the Birkhoff integrals of f with respect to A
satisfy a DLT on (X,µ) with averaging function A := (AT )T∈R, normalizing function
V = (VT )T∈R, and limiting distribution S, i.e., the random variables

ST (x) :=

∫ T

0
f(atx) dt−AT

VT
on (X,µ)
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converge in distribution to S as T → ∞, i.e., for every interval (a, b) ⊆ R such that
P(S ∈ {a, b}) = 0, the following holds

lim
T→∞

µ({x ∈ X | ST (x) ∈ (a, b)}) = P (S ∈ (a, b)) .

Assume there exists a measure-preserving, ergodic transformation U : X → X such that
the pair (A,U) is hyperbolic and such that the function f : X → R is (A,U,V)-adapted.
Then, the same DLT holds in the mixing sense, i.e. for every pair of Borel measurable
subsets B,C ⊆ X and every interval (a, b) ⊆ R such that P(S ∈ {a, b}) = 0,

lim
T→∞

µ({x ∈ X | x ∈ B, ST (x) ∈ (a, b), aTx ∈ C}) = µ(B) · P (S ∈ (a, b)) · µ(C).

We also highlight the following result of independent interest; its proof is analogous to
that of Theorem 2.2 and its details are left to the reader.

Theorem 2.9. Let (X,B, µ) be a probability space, let A := {at : X → X}t∈R be a
measure-preserving, ergodic flow, and let f : X → R be a bounded, measurable function.
Suppose the Birkhoff integrals of f with respect to A satisfy a DLT on (X,µ) with averag-
ing function A := (AT )T∈R, normalizing function V = (VT )T∈R, and limiting distribution
S, i.e., the random variables

ST (x) :=

∫ T

0
f(atx) dt−AT

VT
on (X,µ)

converge in distribution to S as N → ∞, i.e., for every interval (a, b) ⊆ R such that
P(S ∈ {a, b}) = 0, the following holds

lim
T→∞

µ({x ∈ X | ST (x) ∈ (a, b)}) = P (S ∈ (a, b)) .

Then, the same DLT holds in the conditional sense, i.e. for every B ∈ B and every interval
(a, b) ⊆ R such that P(S ∈ {a, b}) = 0,

lim
T→∞

µ({x ∈ X | x ∈ B, ST (x) ∈ (a, b)}) = µ(B) · P (S ∈ (a, b)) .

3. COCYCLES

Outline of this section. In this section we discuss how to upgrade distributional limit the-
orems for cocycles over dynamical systems to mixing distributional limit theorems under
mild ergodicity and hyperbolicity assumptions; see Theorem 3.1 for the main result of this
section. We begin by proving different conditional central limit theorems for cocycles, see
Theorem 3.3 and Corollary 3.5, and then use these results to prove the main theorem. The
proofs are inspired by those for Birkhoff sums in §2 but require extra ingredients. Lemma
3.2 is of particular importance for our approach. This lemma is later used to deduce other
distributional limit theorems; see Theorems 3.7, 3.8, 3.10, 3.11. The section concludes
with a brief discussion on similar results for flows.

Statement of the main result. We begin by reviewing the statement of our main result
for cocycles. Let (X, d) be a metric space supporting a Borel probability measure µ and
an invertible, measure-preserving transformation T : X → X . Fix m ∈ N and let C : X ×
Z → GL(m,R) be a measurable cocycle over T .

Denote by ⟨·, ·⟩ the standard inner product on Rm, by ∥ · ∥ the corresponding Euclidean
norm, and by ν the induced probability measure on the projectivization PRm. The projec-
tivized bundle X × PRm can be endowed with the product measure µ⊗ ν.
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Given (x, v) ∈ X × (Rm \ {0}) or X × PRm and N ∈ N consider the quantities

σ(x, v,N) := log
∥C(x,N)v∥

∥v∥
∈ R,

σ(x,N) := log sup
v∈PRm

∥C(x,N)v∥
∥v∥

∈ R.

Recall we say the cocycle C is log-integrable if the following maps belong to L1(X,µ),

x 7→ max{0, σ(x, 1)}, x 7→ max{0, σ(x,−1)}.

Let V := (VN )N∈N be a sequence of positive real numbers with VN → ∞ as N → ∞.
Recall we say the cocycle C is V-sufficiently-bounded if for µ-almost-every x ∈ X , ν-
almost every v ∈ PRm, and every N ∈ N,

|σ(x, v,N)− σ(Tx,C(x, 1)v,N)| = ox,v(VN ) .

Recall we say the cocycle C has V-simple-dominated-splitting if for µ-almost every x ∈ X
and ν-almost every v, w ∈ PRm, the following holds,

|σ(x, v,N)− σ(x,w,N)| = ox,v,w(VN ).

Now let U : X → X be a measure-preserving, ergodic transformation and let D : X ×
N → GL(Rm) be a measurable cocycle over U . Recall that we say the pair (T,U) is
contracting if for µ-almost-every x ∈ X ,

lim
n→∞

d(TnUx, Tnx) = 0.

Recall we say the cocycles (C,D) are (T,U,V)-adapted if for µ-almost-every x ∈ X ,
ν-almost-every v ∈ PRm, and every N ∈ N, the following estimate holds,

|σ(x, v,N)− σ(Ux,D(x, 1)v,N)| = ox,v(VN ).

The following is the main result of this section; compare to Theorem 1.11.

Theorem 3.1. Let (X, d) be a metric space supporting a Borel probability measure µ,
let T : X → X be an invertible, measure-preserving transformation, and let C : X ×
Z → GL(m,R) be a measurable cocycle over T . Assume that C satisfies a DLT on
(X × Rm, µ ⊗ ν) with averaging sequence A := (AN )N∈N, normalizing sequence V =
(VN )N∈N, and limiting distribution S in the sense that the random variables

SN (x, v) :=
σ(x, v,N)−AN

VN
on (X × PRm, µ⊗ ν)

converge in distribution to S as N → ∞, i.e., for every interval (a, b) ⊆ R such that
P(S ∈ {a, b}) = 0, the following holds,

lim
N→∞

(µ⊗ ν)({(x, v) ∈ X × PRm | SN (x) ∈ (a, b)}) = P (S ∈ (a, b)) .

Assume that C is V-sufficiently-bounded and has V-simple-dominated-splitting. Assume in
addition that there exist an ergodic transformation U : X → X and a measurable cocycle
D : X × N → GL(m,R) over U such that (T,U) is contracting and (C,D) is (T,U,V)-
adapted. Then, the above DLT holds in the mixing sense, i.e. for every pair of Borel
measurable subsets A,B ⊆ X and every interval (a, b) ⊆ R such that P(S ∈ {a, b}) = 0,

lim
N→∞

(µ⊗ ν)({(x, v) ∈ X × PRm | x ∈ A, SN (x, v) ∈ (a, b), TNx ∈ B})

= µ(A) · P (S ∈ (a, b)) · µ(B).
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Generic expansion. Let (X,B, µ) be a probability space supporting an invertible, measure-
preserving, ergodic transformation T : X → X . Suppose C : X × Z → GL(R,m) is a
measurable cocycle over T . Assume C is log-integrable with simple top Lyapunov expo-
nent λ ∈ R. We say a pair (x, v) ∈ X × (Rm \ {0}) is future-Oseledets-generic if

lim
N→∞

σ(x, v,N)

N
= λ.

The notion of simple dominated splitting is motivated by the following result, which
establishes that log-integrable cocycles over ergodic dynamical systems with simple top
Lyapunov exponent have simple dominated splitting.

Lemma 3.2. Let (X,B, µ) be a probability space supporting an invertible, measure-
preserving, ergodic transformation T : X → X . Suppose C : X × Z → GL(R,m) is
a measurable cocycle over T . Assume C is log-integrable with simple top Lyapunov expo-
nent λ ∈ R. Then, for every x ∈ X , every v, w ∈ Rm such that the pairs (x, v), (x,w) ∈
X × Rm are future-Oseledets-generic, and every N ∈ N,

|σ(x, v,N)− σ(x,w,N)| = Ox,v,w(1) .

In particular, C has simple dominated splitting with respect to any diverging sequence V.

Proof. Let X ′ ⊆ X be the full measure subset on which the Oseledets ergodic theorem
holds. Fix x ∈ X ′ and let u ∈ Rm be a vector generating the corresponding top Oseledets
subspace. Let 0 < λ′′ < λ′ < λ be constants larger than all but the top Lyapunov exponent
of C. In particular, as (x, u) ∈ X × Rm is future-Oseledets-generic, for every N ∈ N,

∥C(x,N)u∥ = Ωx(e
λ′N ).

Now let (x, v), (x,w) ∈ X × Rm be future-Oseledets-generic pairs. Without loss of
generality we can assume v, w ∈ Rm have unit norm. In particular, for every N ∈ N,

σ(x, v,N) = log ∥C(x,N)v∥, σ(x,w,N) = log ∥C(x,N)w∥.

Using the notation above we can write

v = au+ v′, w = bu+ w′,

with a, b ̸= 0 and v′, w′ ∈ Rm belonging to lower Oseledets subspaces. As the top
Lyapunov exponent λ ∈ R is simple, for every N ∈ N,

∥C(x,N)v∥ = |a| · ∥C(x,N)u∥+Ov(e
λ′′N ),

∥C(x,N)w∥ = |b| · ∥C(x,N)u∥+Ow(e
λ′′N ).

In particular, for every N ∈ N,

σ(x, v,N) = log |a|+ log ∥C(x,N)u∥+ log(1 + ov(1)),

σ(x,w,N) = log |b|+ log ∥C(x,N)u∥+ log(1 + ow(1)).

The desired estimate follows. □

A conditional distributional limit theorem. To prove Theorem 3.1 we first prove the
following result of independent interest.

Theorem 3.3. Let (X,B, µ) be a probability space, let T : X → X be an invertible,
measure-preserving, ergodic transformation, and let C : X × Z → GL(m,R) be a mea-
surable cocycle over T . Assume that C satisfies a DLT on (X×PRm, µ⊗ν) with averaging
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sequence A := (AN )N∈N, normalizing sequence V = (VN )N∈N, and limiting distribution
S in the sense that the random variables

SN (x, v) :=
σ(x, v,N)−AN

VN
on (X × PRm, µ⊗ ν)

converge in distribution to S as N → ∞, i.e., for every interval (a, b) ⊆ R such that
P(S ∈ {a, b}) = 0, the following holds,

lim
N→∞

(µ⊗ ν)({(x, v) ∈ X × PRm | SN (x) ∈ (a, b)}) = P (S ∈ (a, b)) .

Assume the cocycle C is V-sufficiently-bounded and has V-simple-dominated-splitting.
Then, the above DLT holds in the conditional sense, i.e. for every A ∈ B and every
interval (a, b) ⊆ R such that P(S ∈ {a, b}) = 0,

lim
N→∞

(µ⊗ ν)({(x, v) ∈ X × PRm | x ∈ A, SN (x) ∈ (a, b)}) = µ(A) · P (S ∈ (a, b)) .

Before proving Theorem 3.3, we first introduce some terminology. Let (Ω,B,P) be a
probability space, F ⊆ B be a sub-σ-algebra, and (Xn)n∈N be a sequence of integrable
random variables on (Ω,B,P). We say that Xn converges weakly in L1 relative to F to
an integrable random variable X on (Ω,B,P) if for every bounded random variable Y on
(Ω,B,P) that is F-measurable the following holds,

lim
n→∞

E(XnY ) = E(XY ).

Equivalently, Xn converges weakly in L1 relative to F to X if for every A ∈ F,

lim
n→∞

E(XnχA) = E(XχA).

To disregard regularity considerations and to reduce to a question about relative weak
L1 convergence, we prove the following general lemma; compare to Lemma 2.3.

Lemma 3.4. Let (Ω,B,P) be a probability space, F ⊆ B be a sub-σ-algebra, and
(Xn)n∈N be a sequence of integrable random variables on (Ω,B,P). Then Xn converges
conditionally in distribution relative to F to an integrable random variable X in the sense
that for every A ∈ F and every interval (a, b) ⊆ R such that P(X ∈ {a, b}) = 0,

lim
n→∞

P(A ∩Xn ∈ (a, b)) = P(A) · P(X ∈ (a, b)),

if and only for every fixed t ∈ R,

eitXn → E(eitX) weakly in L1 relative to F as n → ∞.

Proof. For every A ∈ F with P(A) > 0 consider the probability space (A,B|A,P|A) and
the integrable random variables (Xn|A)n∈N on it. Notice that Xn converges conditionally
in distribution relative to F to X if and only if (Xn|A)n∈N converges in distribution to X
for every A ∈ F with P(A) > 0. By Lévy’s continuity theorem, this condition is equivalent
to the following convergence of characteristic functions for every t ∈ R :

E(eitXn |A) → E(eitX) as n → ∞.

But this is exactly the condition that for every set A ∈ F with P(A) > 0,

E(χAe
itXn) → E(χAE(eitX)).

Thus, we see that the original condition is equivalent to

eitXn → E(eitX) weakly in L1 relative to F for every t ∈ R. □

We are now ready to prove Theorem 3.3



18 FRANCISCO ARANA–HERRERA AND GIOVANNI FORNI

Proof of Theorem 3.3. Denote by B(PRm) the Borel σ-algebra of PRm. Consider the
normalized expansion rates SN as random variables on (X ×PRm,B⊗B(PRm), µ⊗ ν).
Denote by F ⊆ B⊗B(PRm) the sub-σ-algebra induced by the projection X×PRm → X .
By Lemma 3.4, it is enough for our purposes to check that for every fixed t ∈ R,

eitSN → E(eitS) weakly in L1 relative to F as N → ∞.

For the rest of this discussion we fix t ∈ R and prove this statement. Notice that this
statement is equivalent to showing that the random variables YN on (X,B,Ω) given by

YN (x) :=

∫
PRm

eitSN (x,v) dν(v), N ∈ N,

converge weakly in L1 to E(eitS) as N → ∞. By the Dunford-Pettis theorem, a sequence
of integrable random variables is sequentially L1 weakly compact if and only if it is uni-
formly integrable. In particular, as the random variables YN are uniformly bounded, it
is enough to show that the only weak L1 limit point of (YN )N∈N is the constant random
variable E(eitS).

Let Y be a weak L1 limit point of this sequence along times {Nk}k∈N. We aim to show
that Y = Y ◦ T almost surely. To prove this we first verify the claim:

(3.1) E(|YN ◦ T − YN |) → 0 as N → ∞.

Indeed, consider the sequence of random variables (ZN )N∈N on (X,B,Ω) given by

ZN (x) :=

∫
PRm

eitSN (x,C(T−1x,1)v)dν(v).

Then, for every N ∈ N we can write

E(|YN ◦ T − YN |) ≤ E(|YN ◦ T − ZN ◦ T |) + E(|ZN ◦ T − YN |).

The first term converges to zero as N → ∞ because of the assumption that C has V-simple-
dominated-splitting and the dominated convergence theorem. The second term converges
to zero as N → ∞ because of the assumption that C is V-sufficiently-bounded and the
dominated convergence theorem. This completes the proof of the claim.

The claim together with the Hölder inequality implies that

YNk
◦ T → Y weakly in L1 as k → ∞.

At the same time, the T -invariance of µ implies that

YNk
◦ T → Y ◦ T weakly in L1 as k → ∞.

As weak L1 limits are unique almost surely, this shows that Y = Y ◦ T almost surely.
To conclude we notice that, as T acts ergodically, Y must be constant almost every-

where. Pairing YNk
against the constant function 1 and using the assumed DLT reveals

that Y must be E(eitS). This finishes the proof. □

The proof of Theorem 3.1 will use Theorem 3.3 in the following form.

Corollary 3.5. Let (X,B, µ) be a probability space, let T : X → X be an invertible,
measure-preserving, ergodic transformation, and let C : X × Z → GL(m,R) be a mea-
surable cocycle over T . Assume that C satisfies a DLT on (X×PRm, µ⊗ν) with averaging
sequence A := (AN )N∈N, normalizing sequence V = (VN ), and limiting distribution S
in the sense that the random variables

SN (x, v) :=
σ(x, v,N)−AN

VN
on (X × PRm, µ⊗ ν)
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converge in distribution to S as N → ∞, i.e., for every interval (a, b) ⊆ R such that
P(S ∈ {a, b}) = 0, the following holds,

lim
N→∞

(µ⊗ ν)({(x, v) ∈ X × PRm | SN (x) ∈ (a, b)}) = P (S ∈ (a, b)) .

Assume the cocycle C is V-sufficiently-bounded and has V-simple-dominated-splitting.
Then, the same DLT holds in the following stronger sense: for every B ∈ B and every
interval (a, b) ⊆ R such that P(S ∈ {a, b}) = 0,

lim
N→∞

(µ⊗ ν)({(x, v) ∈ X × PRm | SN (x) ∈ (a, b), TNx ∈ B})

= P (S ∈ (a, b)) · µ(B).

Furthermore, if X is a metric space and B is its Borel σ-algebra, then for every bounded
Lipschitz function ϕ : X → R and every t ∈ R,

lim
N→∞

∫
X

∫
PRm

eitSN (x,v) · ϕ(TNx) dν(v) dµ(x) = E(eitS) · µ(ϕ).

Proof. Without loss of generality consider B ∈ B with µ(B) > 0. The T -invariance of µ
ensures that, for every N ∈ N,

µ(T−NB) = µ(B) > 0.

For every N ∈ N consider the probability space (T−NB,B|T−NB , µ|T−NB) and the ran-
dom variable SN |T−NB on it. Our goal is to show that (SN |T−NB)N∈N converges in dis-
tribution to S. By Lévy’s continuity theorem, this condition is equivalent to the following
convergence of characteristic functions for every t ∈ R:

E(eitSN |T−NB) → E(eitS) as N → ∞.

For the rest of this discussion we fix t ∈ R and show that

lim
N→∞

∫
X

∫
PRm

eitSN (x,v) · χB(T
Nx) dν(v) dµ(x) = E(eitS) · µ(B).

Notice that, as T is measure-preserving,∫
X

∫
PRm

eitSN (x,v) · χB(T
Nx) dν(v) dµ(x)

=

∫
X

∫
PRm

eitSN (T−Nx,v) · χB(x) dν(v) dµ(x).

For every N ∈ N consider the random variable Y ′
N on (X,B,Ω) given by

Y ′
N (x) :=

∫
PRm

eitSN (T−Nx,v) dν(v).

Our goal is to show that the variables Y ′
N converge weakly in L1 to E(eitS) as N → ∞.

By the Dunford-Pettis theorem, a sequence of integrable random variables is sequentially
L1 weakly compact if and only if it is uniformly integrable. In particular, as the random
variables Y ′

N are uniformly bounded, it is enough to show that the only weak L1 limit point
of (Y ′

N )N∈N is the constant random variable E(eitS).
Let Y ′ be a weak L1 limit point of this sequence along times {Nk}k∈N. We aim to show

that Y ′ = Y ′ ◦ T almost surely. To prove this we first verify the claim:

E(|Y ′
N ◦ T − Y ′

N |) → 0 as N → ∞.

Notice that, as T is measure-preserving, for every N ∈ N,

E(|Y ′
N ◦ T − Y ′

N |) = E(|Y ′
N ◦ TN ◦ T − Y ′

N ◦ TN |).
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Directly from the definitions one can check that Y ′
N ◦ TN = YN for every N ∈ N, with

YN as defined in the proof of Theorem 3.3. The proof of the claim follows from (3.1).
The claim together with the Hölder inequality implies that

Y ′
Nk

◦ T → Y ′ weakly in L1 as k → ∞.

At the same time, the T -invariance of µ implies

Y ′
Nk

◦ T → Y ′ ◦ T weakly in L1 as k → ∞.

As weak L1 limits are unique almost surely, this shows that Y ′ = Y ′ ◦ T almost surely.
To conclude notice that, as T acts ergodically, Y ′ must be constant almost everywhere.

Pairing Y ′
Nk

against the constant function 1, using the assumed DLT and the T -invariance
of µ reveals that Y ′ must be E(eitS). This finishes the proof. □

Proof of the main result. We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Without loss of generality consider a pair of Borel measurable sets
A,B ⊆ X with µ(A), µ(B) > 0. Theorem 2.6 ensures T is mixing. In particular,

lim
N→∞

µ(A ∩ T−NB) = µ(A) · µ(B) > 0.

For every N ∈ N sufficiently large consider the probability space

(A ∩ T−NB,B|A∩T−NB , µ|A∩T−NB)

and the random variable SN |A∩T−NB on it. Our goal is to show that (SN |A∩T−NB)N∈N
converges in distribution to S. By Lévy’s continuity theorem, this condition is equivalent
to the following convergence of characteristic functions for every t ∈ R :

E(eitSN |A ∩ T−NB) → E(eitS) as N → ∞.

As T is mixing, this is equivalent to showing that, for every t ∈ R,

lim
N→∞

∫
X

∫
PRm

χA(x) · eitSN (x,v) · χB(T
Nx) dν(v) dµ(x) = µ(A) · E(eitS) · µ(B).

A standard approximation argument shows that we can replace χB in this statement by a
bounded Lipschitz function ϕ : X → R. We do so for the rest of this discussion. Now
consider for fixed t ∈ R the random variables FN on (X,B(X), µ) given by

FN (x) :=

(∫
PRm

eitSN (x,v) dν(v)

)
· ϕ(TNx), N ∈ N.

Our goal is to show that

FN → E(eitS) · µ(ϕ) weakly in L1 as N → ∞.

By the Dunford-Pettis theorem, a sequence of integrable random variables is sequen-
tially L1 weakly compact if and only if it is uniformly integrable. In particular, as the
random variables FN are uniformly bounded, it is enough to show that the only weak L1

limit point of (FN )N∈N is the constant random variable E(eitS) · µ(ϕ).
Let F be a weak L1 limit point of this sequence along times {Nk}k∈N. We aim to show

that F = F ◦ U almost surely. To prove this we first verify the claim:

(3.2) E(|FN ◦ U − FN |) → 0 as N → ∞.

Indeed, consider the sequence of random variables (ZN )N∈N on (X,B(X), µ) given by

ZN (x) :=

(∫
PRm

eitSN (x,D(U−1x,1)v)dν(v)

)
· ϕ(TNx).
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Then, for every N ∈ N we can write

E(|FN ◦ U − FN |) ≤ E(|FN ◦ U − ZN ◦ U |) + E(|ZN ◦ U − FN |).
The first term converges to zero as N → ∞ because of the assumption that C has V-
simple-dominated-splitting, the fact that ϕ is bounded, and the dominated convergence
theorem. The second term converges to zero as N → ∞ because of the assumption that
(T,U) is contracting, the assumption that (C,D) is (T,U,V)-adapted, the fact that ϕ is
bounded Lipschitz, and the dominated convergence theorem. The claim is thus proved.

The claim together with the Hölder inequality implies that

FNk
◦ U → F weakly in L1 as k → ∞.

At the same time, the U -invariance of µ implies

FNk
◦ U → F ◦ U weakly in L1 as k → ∞.

As weak L1 limits are unique almost surely, this shows that F = F ◦ U almost surely.
To conclude we notice that, as U acts ergodically, F must be constant almost every-

where. Pairing FNk
against the constant function 1 and using Corollary 3.5 reveals that F

must be E(eitS) · µ(ϕ). This finishes the proof. □

The operator norm. We now discuss how to deduce (mixing) distributional limit theo-
rems for the operator norm of cocyles over dynamical systems from the (mixing) distribu-
tional limit theorems studied above. To this end we first introduce a strengthened version
of the property of simple dominated splitting.

Let (X,B, µ) be a probability space, let T : X → X be an invertible, measure-preserving
transformation, and let C : X × Z → GL(R,m) be a measurable cocycle over T . Con-
sider a sequence of positive real numbers V := (VN )N∈N with VN → ∞ as N → ∞. We
say the cocycle C has V-strong-simple-dominated-splitting if for µ-almost-every x ∈ X ,
ν-almost-every v ∈ PRm, and every N ∈ N, the following estimate holds:

|σ(x, v,N)− σ(x,N)| = ox,v(VN ).

In applications, the main tool we will use is the following strengthening of Lemma 3.2.

Lemma 3.6. Let (X,B, µ) be a probability space supporting an invertible, measure-
preserving, ergodic transformation T : X → X . Suppose C : X × Z → GL(R,m) is
a measurable cocycle over T . Assume C is log-integrable with simple top Lyapunov expo-
nent λ ∈ R. Then, for every x ∈ X ,every v ∈ PRm such that the pair (x, v) ∈ X ×Rm is
future-Oseledets-generic, and every N ∈ N, the following estimate holds,

|σ(x, v,N)− σ(x,N)| = Ox,v(1).

In particular, C has a strong dominated splitting with respect to any diverging sequence.

Proof. Let X ′ ⊆ X be the full measure subset on which the Oseledets ergodic theorem
holds. Fix x ∈ X ′ and let u ∈ Rm be the unit norm vector generating the corresponding
top Oseledets subspace. Let 0 < λ′′ < λ′ < λ be constants larger than all but the top
Lyapunov exponent of C. In particular, as (x, u) ∈ X × Rm is future-Oseledets-generic,
the following estimate holds for every N ∈ N ,

∥C(x,N)u∥ = Ωx(e
λ′N ).

Now let (x, v) ∈ X × Rm be arbitrary. Without loss of generality we can assume
v ∈ Rm has unit norm. In particular, for every N ∈ N,

σ(x, u,N) = log ∥C(x,N)u∥, σ(x, v,N) = log ∥C(x,N)v∥.
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Using the notation above we can write

v = au+ v′,

with a ∈ R and v′ ∈ Rm belonging to lower Oseledets subspaces. Since v has unit norm,

a = Ox(1) .

As the top Lyapunov exponent λ ∈ R is simple, for every N ∈ N,

∥C(x,N)v∥ = |a| · ∥C(x,N)u∥+Ox(e
λ′′N ).

In particular, there exists Nx,v ∈ N and ax ∈ R such that for every N ≥ Nx,v ,

σ(x, v,N) = log |a|+ log ∥C(x,N)u∥+ log(1 + ox(1)),

σ(x,N) = log |ax|+ log ∥C(x,N)u∥+ log(1 + ox(1)).

The desired estimate follows. □

We now discuss distributional limit theorems with respect to the operator norm.

Theorem 3.7. Let (X,B, µ) be a probability space, let T : X → X be an invertible,
measure-preserving, ergodic transformation, and let C : X × Z → GL(R,m) be a mea-
surable cocycle over T . Assume that C satisfies a DLT on (X×PRm, µ⊗ν) with averaging
sequence A := (AN )N∈N, normalizing sequence V := (VN )N∈N, and limiting distribution
S in the sense that the random variables

SN (x, v) :=
σ(x, v,N)−AN

VN
on (X × PRm, µ⊗ ν)

converge in distribution to S as N → ∞, i.e., for every interval (a, b) ⊆ R such that
P(S ∈ {a, b}) = 0, the following holds,

lim
N→∞

(µ⊗ ν)(SN (x, v) ∈ (a, b)) = P (S ∈ (a, b)) .

Assume C is has V-strong-simple-dominated-splitting. Then, C satisfies the above DLT
with respect to the operator norm in the sense that the random variables

SN (x) :=
σ(x,N)−AN

VN
on (X,µ)

converge in distribution to S as N → ∞, i.e., for every interval (a, b) ⊆ R such that
P(S ∈ {a, b}) = 0, the following holds,

lim
N→∞

µ(SN (x) ∈ (a, b)) = P (S ∈ (a, b)) .

Proof. By Lévy’s continuity theorem, the first DLT is equivalent to the following conver-
gence of characteristic functions for every t ∈ R:∫

X

∫
PRm

eitSN (x,v) dν(v) dµ(x) → E(eitS) as N → ∞.

Analogously, the second DLT is equivalent to the following convergence of characteristic
functions for every t ∈ R:∫

X

eitSN (x) dµ(x) → E(eitS) as N → ∞.

It is enough then to show that∣∣∣∣∫
X

∫
PRm

eitSN (x,v) dν(v) dµ(x)−
∫
X

eitSN (x) dµ(x)

∣∣∣∣→ 0 as N → ∞.
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This follows directly from the assumption that C has a V-strong-simple-dominated-splitting
and the dominated convergence theorem. □

We end this discussion with the following result whose proof is analogous to that of
Theorem 3.7; details are left to the reader.

Theorem 3.8. Let (X,B, µ) be a probability space, let T : X → X be an invertible,
measure-preserving, ergodic transformation, and let C : X × Z → GL(R,m) be a mea-
surable cocycle over T . Assume that C satisfies a mixing DLT on (X × PRm, µ⊗ ν) with
averaging sequence A := (AN )N∈N, normalizing sequence V := (VN )N∈N, and limiting
distribution S in the sense that for the random variables

SN (x, v) :=
σ(x, v,N)−AN

VN
on (X × PRm, µ⊗ ν) ,

for every pair of measurable subsets A,B ∈ B, and for every interval (a, b) ⊆ R such that
P(S ∈ {a, b}) = 0, the following holds,

lim
N→∞

(µ⊗ ν)({(x, v) ∈ X × PRm | x ∈ A, SN (x, v) ∈ (a, b), TNx ∈ B})

= µ(A) · P (S ∈ (a, b)) · µ(B).

Assume that C has V-strong-simple-dominated-splitting. Then, C satisfies the above mix-
ing DLT with respect to the operator norm in the sense that for the random variables

SN (x) :=
σ(x,N)−AN

VN
on (X,µ),

for every pair of measurable subsets A,B ∈ B, and for every interval (a, b) ⊆ R such that
P(S ∈ {a, b}) = 0, the following holds,

lim
N→∞

µ({x ∈ X | x ∈ A, SN (x) ∈ (a, b), TNx ∈ B}) = µ(A) · P (S ∈ (a, b)) · µ(B).

Generic sections. We now briefly discuss how to deduce (mixing) distributional limit the-
orems for so-called generic sections of cocyles over dynamical systems from the (mixing)
distributional limit theorems studied above.

Let (X,B, µ) be a probability space, T : X → X be an invertible, measure-preserving
transformation, and C : X × Z → GL(R,m) be a measurable cocycle over T . Consider a
positive sequence V := (VN )N∈N with VN → ∞ as N → ∞. We say a measurable section
s : X → Rm is (C,V)-generic if for µ-almost-every x ∈ X , ν-almost every w ∈ PRm,
and every N ∈ N, the following estimate holds,

|σ(x, v(x), N)− σ(x,w,N)| = ox,w(VN ).

In applications, the main tool we use is the following result; compare to Lemmas 3.2
and 3.6. The proof is omitted but follows from the same arguments as the cited lemmas.

Lemma 3.9. Let (X,B, µ) be a probability space supporting an invertible, measure-
preserving, ergodic transformation T : X → X . Suppose C : X × Z → GL(R,m) is
a measurable cocycle over T . Assume C is log-integrable with simple top Lyapunov ex-
ponent λ ∈ R. Let s : X → Rm be a measurable section such that (x, v(x)) ∈ X × Rm

is future-Oseledets-generic for µ-almost every x ∈ X . Then, for every x ∈ X , every
w ∈ PRm such that (x,w) ∈ X × Rm is future-Oseledets-generic, and every N ∈ N,

|σ(x, v(x), N)− σ(x,w,N)| = Ox(1).

In particular, the section s : X → Rm is (C,V)-generic for any diverging sequence V.
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We now state two limit theorems for generic sections; compare to Theorems 3.7 and
3.8. The proofs are omitted but follow from the same arguments as the cited theorems.

Theorem 3.10. Let (X,B, µ) be a probability space, let T : X → X be an invertible,
measure-preserving, ergodic transformation, and let C : X × Z → GL(R,m) be a mea-
surable cocycle over T . Assume that C satisfies a DLT on (X×PRm, µ⊗ν) with averaging
sequence A := (AN )N∈N, normalizing sequence V := (VN )N∈N, and limiting distribution
S in the sense that the random variables

SN (x, v) :=
σ(x, v,N)−AN

VN
on (X × PRm, µ⊗ ν)

converge in distribution to S as N → ∞, i.e., for every interval (a, b) ⊆ R such that
P(S ∈ {a, b}) = 0, the following holds,

lim
N→∞

(µ⊗ ν)(SN (x, v) ∈ (a, b)) = P (S ∈ (a, b)) .

Let s : X → Rm be a measurable, (C,V)-generic section. Then, s satisfies the above DLT
in the sense that the random variables

SN (x) :=
σ(x, v(x), N)−AN

VN
on (X,µ)

converge in distribution to S as N → ∞, i.e., for every interval (a, b) ⊆ R such that
P(S ∈ {a, b}) = 0, the following holds,

lim
N→∞

µ(SN (x) ∈ (a, b)) = P (S ∈ (a, b)) .

Theorem 3.11. Let (X,B, µ) be a probability space, let T : X → X be an invertible,
measure-preserving, ergodic transformation, and let C : X × Z → GL(R,m) be a mea-
surable cocycle over T . Assume that C satisfies a mixing DLT on (X × PRm, µ⊗ ν) with
averaging sequence A := (AN )N∈N, normalizing sequence V := (VN )N∈N, and limiting
distribution S in the sense that for the random variables

SN (x, v) :=
σ(x, v,N)−AN

VN
on (X × PRm, µ⊗ ν) ,

for every pair of measurable subsets A,B ∈ B, and for every interval (a, b) ⊆ R such that
P(S ∈ {a, b}) = 0, the following holds,

lim
N→∞

(µ⊗ ν)({(x, v) ∈ X × PRm | x ∈ A, SN (x, v) ∈ (a, b), TNx ∈ B})

= µ(A) · P (S ∈ (a, b)) · µ(B).

Let s : X → Rm be a measurable, (C,V)-generic section. Then, s satisfies the above
mixing DLT in the sense that the random variables

SN (x) :=
σ(x, s(x), N)−AN

VN
on (X,µ),

for every pair of measurable subsets A,B ∈ B, and for every interval (a, b) ⊆ R such that
P(S ∈ {a, b}) = 0, the following holds,

lim
N→∞

µ({x ∈ X | x ∈ A, SN (x) ∈ (a, b), TNx ∈ B}) = µ(A) · P (S ∈ (a, b)) · µ(B).
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Flows. We now discuss the case of flows. Let (X, d) be a metric space supporting a Borel
probability measure µ and let A := {at : X → X}t∈R be a measure-preserving flow. Fix
m ∈ N. By an m-dimensional cocycle over A we mean a map C : X × R → GL(m,R)
satisfying the cocycle identity

C(x, r + s) = C(arx, s) · C(x, r) for µ-almost every x ∈ X and every r, s ∈ R .

Recall that ⟨·, ·⟩ denotes the standard inner product on Rm, that ∥ · ∥ denotes the cor-
responding Euclidean norm, and that ν denotes the induced probability measure on the
projectivization PRm. Recall that the projectivized bundle X × PRm is endowed with the
product measure µ⊗ ν.

Given (x, v) in X × (Rm \ {0}) or X × PRm and t ∈ R consider the quantities

σ(x, v, t) := log
∥C(x, t)v∥

∥v∥
∈ R,

σ(x, t) := log sup
v∈PRm

∥C(x, t)v∥
∥v∥

∈ R.

We say the cocycle C is log-integrable if the following maps belong to L1(X,µ),

x 7→ max{0, σ(x, 1)}, x 7→ max{0, σ(x,−1)}.
We say the cocycle C satisfies a (spatial) distributional limit theorem (DLT) on (X ×

PRm, µ ⊗ ν) if there exists a real function A := (At)t∈R, a real positive function V :=
(Vt)t∈R with Vt → ∞ as t → ∞, and a random variable S, such that the random variables

St(x, v) =
σ(x, v, t)−At

Vt
on (X × Rm, µ⊗ ν)

converge in distribution to S as t → ∞, i.e., for every interval (a, b) ⊆ R such that
P(S ∈ {a, b}) = 0, the following holds,

lim
t→∞

(µ⊗ ν)({(x, v) ∈ X ∈ PRm | St(x, v) ∈ (a, b)}) = P(S ∈ (a, b)).

We usually refer to A as the averaging sequence, V as the normalizing sequence, and S as
the limiting distribution.

We say the cocycle C is V-sufficiently-bounded if for µ-almost-every x ∈ X , ν-almost-
every v ∈ PRm, and every t ∈ R, the following holds,

|σ(x, v, t)− σ(a1x,C(x, 1)v, t)| = ox,v(Vt).

Remark 3.12. In applications, see §4, it is common for the cocycle C to be bounded in the
following stronger sense: for µ-almost-every x ∈ X and ν-almost-every v ∈ PRm,

|σ(x, v, 1)| = O(1).

We say the cocycle C has V-simple-dominated-splitting if, for µ-almost every x ∈ X
and ν-almost every v, w ∈ PRm, the following holds

|σ(x, v, t)− σ(x,w, t)| = ox,v,w(Vt).

Assume C is log-integrable with simple top Lyapunov exponent λ ∈ R. We say a pair
(x, v) ∈ X × Rm is future-Oseledets-generic if

lim
t→∞

σ(x, v, t)

t
= λ.

In applications we use the following result; its proof is analogous to that of Lemma 3.2
and its details are left to the reader.
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Lemma 3.13. Let (X,B, µ) be a probability space and A := {at : X → X}t∈R be a
measure-preserving, ergodic flow. Suppose C : X × R → GL(R,m) is a measurable
cocycle over T . Assume C is log-integrable with simple top Lyapunov exponent λ ∈ R.
Then, for every x ∈ X , every v, w ∈ Rm such that the pairs (x, v), (x,w) ∈ X × Rm are
future-Oseledets-generic, and every t ∈ R, the following estimate holds,

|σ(x, v, t)− σ(x,w, t)| = Ox,v,w(1) .

In particular, C has simple dominated splitting with respect to any diverging sequence V.

Now let U : X → X be a measure-preserving, ergodic transformation and let D : X ×
N → GL(m,R) be a measurable cocycle over U . Recall that we say the pair (A,U) is
contracting if for µ-almost-every x ∈ X ,

lim
t→∞

d(atUx, atx) = 0.

We say the cocycles (C,D) are (A,U,V)-adapted if for µ-almost-every x ∈ X , and
ν-almost-every v ∈ PRm, the following estimate holds,

|σ(x, v, t)− σ(Ux,D(x, 1)v, t)| = ox,v(Vt).

Remark 3.14. In applications, see §4, it is common to have the following stronger condi-
tion: for µ-almost-every x ∈ X , ν-almost every v ∈ PRm,

|σ(x, v, t)− σ(Ux,D(x, 1)v, t)| = Ox,v(1).

The main result for flows is the following. Its proof is analogous to that of Theorem 3.1
and its details are left to the reader.

Theorem 3.15. Let (X, d) be a metric space supporting a Borel probability measure µ,
let A := {at : X → X}t∈R a measure-preserving flow, and let C : X × R → GL(m,R)
be a measurable cocycle over A. Assume that A satisfies a DLT on (X × PRm, µ ⊗ ν)
with averaging function A := (At)t∈R, normalizing function V = (Vt)t∈R, and limiting
distribution S in the sense that the random variables

St(x, v) :=
σ(x, v, t)−At

Vt
on (X × Rm, µ⊗ ν)

converge in distribution to S as t → ∞, i.e., for every interval (a, b) ⊆ R such that
P(S ∈ {a, b}) = 0, the following holds,

lim
t→∞

(µ⊗ ν)({(x, v) ∈ X × PRm | St(x, v) ∈ (a, b)}) = P (S ∈ (a, b)) .

Assume that C is V-sufficiently-bounded and has a V-simple-dominated-splitting. Assume
in addition that there exist a measure-preserving, ergodic transformation U : X → X and
a measurable cocycle D : X×N → GL(m,R) over U such that (A,U) is contracting and
such that (C,D) is (A,U,V)-adapted. Then, the above DLT holds in the mixing sense, i.e.
for every pair of Borel measurable subsets B,E ⊆ X and every interval (a, b) ⊆ R such
that P(S ∈ {a, b}) = 0, the following holds,

lim
t→∞

(µ⊗ ν)({(x, v) ∈ X × PRm | x ∈ B, St(x, v) ∈ (a, b), atx ∈ E})

= µ(B) · P (S ∈ (a, b)) · µ(E).

We also highlight the following result of independent interest; its proof is analogous to
that of Theorem 3.3 and its details are left to the reader.
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Theorem 3.16. Let (X,B, µ) be a probability space, let A := {at : X → X}t∈R a
measure-preserving, ergodic flow, and let C : X ×R → GL(m,R) be a measurable cocy-
cle over A. Assume that A satisfies a DLT on (X × PRm, µ⊗ ν) with averaging function
A := (At)t∈R, normalizing function V = (Vt)t∈R, and limiting distribution S in the sense
that the random variables

St(x, v) :=
σ(x, v, t)−At

Vt
on (X × Rm, µ⊗ ν)

converge in distribution to S as t → ∞, i.e., for every interval (a, b) ⊆ R such that
P(S ∈ {a, b}) = 0, the following holds,

lim
t→∞

(µ⊗ ν)({(x, v) ∈ X × PRm | St(x, v) ∈ (a, b)}) = P (S ∈ (a, b)) .

Assume in addition that C is V-sufficiently-bounded and has V-simple-dominated-splitting.
Then, the above DLT holds in the conditional sense, i.e. for every B ∈ B and every interval
(a, b) ⊆ R such that P(S ∈ {a, b}) = 0, the following holds

lim
t→∞

(µ⊗ ν)({(x, v) ∈ X × PRm | x ∈ B, St(x, v) ∈ (a, b)}) = µ(B) · P (S ∈ (a, b)) .

Let (X,B, µ) be a probability space, let A := {at : X → X}t∈R be a measure-
preserving, ergodic flow, and let C : X × R → GL(R,m) be a measurable cocycle over
A. Consider a real positive function V := (Vt)t∈R with Vt → ∞ as t → ∞. We say
the cocycle C has V-strong-simple-dominated-splitting if for µ-almost-every x ∈ X , ν-
almost-every v ∈ PRm, and every t ∈ R, the following estimate holds:

|σ(x, v, t)− σ(x, t)| = ox,v(Vt).

In applications we use the following result; its proof is analogous to that of Lemma 3.6
and its details are left to the reader.

Lemma 3.17. Let (X,B, µ) be a probability space and A := {at : X → X}t∈R be a
measure-preserving, ergodic flow. Suppose C : X × R → GL(R,m) is a measurable
cocycle over T . Assume C is log-integrable with simple top Lyapunov exponent λ ∈ R.
Then, for every x ∈ X , every v ∈ PRm such that the pair (x, v) ∈ X × Rm is future-
Oseledets-generic, and every t ∈ R, the following estimate holds,

|σ(x, v, t)− σ(x, t)| = Ox,v(1).

In particular, C has a strong simple dominated splitting with respect to any sequence V.

We also highlight the following results for the operator norm of cocycles over flows.
Their proofs are analogous to those of Theorems 3.7 and 3.8; details are left to the reader.

Theorem 3.18. Let (X,B, µ) be a probability space, let A := {at : X → X}t∈R be
a measure-preserving flow, and let C : X × R → GL(m,R) be a measurable cocycle
over A. Assume that A satisfies a DLT on (X × PRm, µ ⊗ ν) with averaging function
A := (At)t∈R, normalizing function V = (Vt)t∈R, and limiting distribution S in the sense
that the random variables

St(x, v) :=
σ(x, v, t)−At

Vt
on (X × Rm, µ⊗ ν)

converge in distribution to S as t → ∞, i.e., for every interval (a, b) ⊆ R such that
P(S ∈ {a, b}) = 0, the following holds,

lim
t→∞

(µ⊗ ν)({(x, v) ∈ X × PRm | St(x, v) ∈ (a, b)}) = P (S ∈ (a, b)) .
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Assume in addition that C has V-strong-simple-dominated-splitting Then, C satisfies the
above DLT with respect to the operator norm in the sense that the random variables

St(x) :=
σ(x, t)−At

Vt
on (X,µ)

converge in distribution to S as t → ∞, i.e., for every interval (a, b) ⊆ R such that
P(S ∈ {a, b}) = 0, the following holds,

lim
t→∞

µ(St(x) ∈ (a, b)) = P (S ∈ (a, b)) .

Theorem 3.19. Let (X,B, µ) be a probability space, let A := {at : X → X}t∈R be a
measure-preserving flow, and let C : X × R → GL(m,R) be a measurable cocycle over
A. Assume that A satisfies a mixing DLT on (X × PRm, µ ⊗ ν) with averaging function
A := (At)t∈R, normalizing function V = (Vt)t∈R, and limiting distribution S in the sense
that for the random variables

St(x, v) :=
σ(x, v, t)−At

Vt
on (X × Rm, µ⊗ ν),

for every pair of measurable subsets B,D ∈ B, and for every interval (a, b) ⊆ R such
that P(S ∈ {a, b}) = 0, the following holds,

lim
t→∞

(µ⊗ ν)({(x, v) ∈ X × PRm | x ∈ B, St(x, v) ∈ (a, b), atx ∈ D})

= µ(B) · P (S ∈ (a, b)) · µ(D).

Assume in addition that the cocycle C has V-strong-simple-dominated-splitting. Then, C
satisfies the above mixing DLT with respect to the operator norm in the sense that for the
random variables

St(x) :=
σ(x, t)−At

Vt
on (X,µ),

for every pair of measurable subsets B,D ∈ B, and for every interval (a, b) ⊆ R such
that P(S ∈ {a, b}) = 0, the following holds,

lim
t→∞

µ({x ∈ X | x ∈ B, St(x) ∈ (a, b), atx ∈ D})

= µ(B) · P (S ∈ (a, b)) · µ(D).

Let (X,B, µ) be a probability space, let A := {at : X → X}t∈R be a measure-
preserving, ergodic flow, and let C : X × R → GL(R,m) be a measurable cocycle over
A. Consider a positive function V := (Vt)t∈R with Vt → ∞ as t → ∞. We say a measur-
able section s : X → Rm is (C,V)-generic if for µ-almost-every x ∈ X , ν-almost every
w ∈ PRm, and every t ∈ R, the following estimate holds,

|σ(x, v(x), t)− σ(x,w, t)| = ox,w(Vt).

In applications we use the following result; its proof is analogous to that of Lemma 3.9
and its details are left to the reader.

Lemma 3.20. Let (X,B, µ) be a probability space and A := {at : X → X}t∈R be
a measure-preserving, ergodic flow. Suppose C : X × R → GL(R,m) is a measurable
cocycle over T . Assume C is log-integrable with simple top Lyapunov exponent λ ∈ R. Let
s : X → Rm be a measurable section such that (x, v(x)) ∈ X × Rm is future-Oseledets-
generic for µ-almost every x ∈ X . Then, for every x ∈ X , every w ∈ PRm such that
(x,w) ∈ X × Rm is future-Oseledets-generic, and every N ∈ N,

|σ(x, v(x), N)− σ(x,w,N)| = Ox(1).
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In particular, the section s : X → Rm is (C,V)-generic for any diverging sequence V.

We also highlight the following results for generic sections of cocycles. Their proofs
are analogous to those of Theorems 3.10 and 3.11; details are left to the reader.

Theorem 3.21. Let (X,B, µ) be a probability space, let A := {at : X → X}t∈R be
a measure-preserving flow, and let C : X × R → GL(m,R) be a measurable cocycle
over A. Assume that A satisfies a DLT on (X × PRm, µ ⊗ ν) with averaging function
A := (At)t∈R, normalizing function V = (Vt)t∈R, and limiting distribution S in the sense
that the random variables

St(x, v) :=
σ(x, v, t)−At

Vt
on (X × Rm, µ⊗ ν)

converge in distribution to S as t → ∞, i.e., for every interval (a, b) ⊆ R such that
P(S ∈ {a, b}) = 0, the following holds,

lim
t→∞

(µ⊗ ν)({(x, v) ∈ X × PRm | St(x, v) ∈ (a, b)}) = P (S ∈ (a, b)) .

Let s : X → R be a measurable, (C,V)-generic section. Then, s satisfies the above DLT
in the sense that the random variables

St(x) :=
σ(x, v(x), t)−At

Vt
on (X,µ)

converge in distribution to S as t → ∞, i.e., for every interval (a, b) ⊆ R such that
P(S ∈ {a, b}) = 0, the following holds,

lim
t→∞

µ(St(x) ∈ (a, b)) = P (S ∈ (a, b)) .

Theorem 3.22. Let (X,B, µ) be a probability space, let A := {at : X → X}t∈R be a
measure-preserving flow, and let C : X × R → GL(m,R) be a measurable cocycle over
A. Assume that A satisfies a mixing DLT on (X × PRm, µ ⊗ ν) with averaging function
A := (At)t∈R, normalizing function V = (Vt)t∈R, and limiting distribution S in the sense
that for the random variables

St(x, v) :=
σ(x, v, t)−At

Vt
on (X × Rm, µ⊗ ν),

for every pair of measurable subsets B,D ∈ B, and for every interval (a, b) ⊆ R such
that P(S ∈ {a, b}) = 0, the following holds,

lim
t→∞

(µ⊗ ν)({(x, v) ∈ X × PRm | x ∈ B, St(x, v) ∈ (a, b), atx ∈ D})

= µ(B) · P (S ∈ (a, b)) · µ(D).

Let s : X → R be a measurable, (C,V)-generic section. Then, s satisfies the above mixing
DLT in the sense that for the random variables

St(x) :=
σ(x, v(x), t)−At

Vt
on (X,µ),

for every pair of measurable subsets B,D ∈ B, and for every interval (a, b) ⊆ R such
that P(S ∈ {a, b}) = 0, the following holds,

lim
t→∞

µ({x ∈ X | x ∈ B, St(x) ∈ (a, b), atx ∈ D})

= µ(B) · P (S ∈ (a, b)) · µ(D).
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4. THE KONTSEVICH-ZORICH COCYCLE

Outline of this section. In this section we apply the main theorems of the previous sec-
tion to the Kontsevich–Zorich cocycle. More precisely, we derive distributional mixing
laws of large numbers and distributional mixing central limit theorems for exterior pow-
ers of SL(2,R)-invariant subbundles of the Kontsevich–Zorich cocycle under natural, well
studied conditions; see Theorems 4.23, 4.24, 4.25, 4.26, 4.27, and 4.28 for precise state-
ments. We begin with a brief overview of the rich theory of the Kontsevich–Zorich cocycle,
including many important recent developments. We then proceed to prove the desired re-
sults using these developments and the technology introduced in the previous section. In
terms of examples, an important emphasis is placed on the study of the invariant part of the
Kontsevich–Zorich cocycle over loci of orientation double covers of quadratic differentials
on principal strata. These examples are of crucial importance for the study of the statistics
of the action in (co)homology of mapping class groups carried out in [AH23].

The Kontsevich–Zorich cocycle. The Kontsevich–Zorich (KZ) cocycle, introduced in
[Kon97, KZ97] is arguably the central object of study in Teichmüller dynamics. By defini-
tion, it keeps track of the homology of trajectories of translation flows under the renormal-
ization dynamics given by the Teichmüller geodesic flow, and, at the same time, it contains
all the essential dynamical information of the tangent cocycle of the latter. The simplic-
ity of the top exponent of the KZ cocycle implies, on one hand, the unique ergodicity of
almost all translation flows, and, on the other hand, the non-uniform hyperbolicity of the
Teichmüller geodesic flow (with respect to any ergodic invariant measure).

The KZ cocycle is a cocycle over the Teichmüller geodesic flow on the moduli space
of Abelian (or quadratic) holomorphic differentials. We recall that there exists a natural
action of the group SL(2,R) on the Teichmüller space of Abelian differentials of unit total
area on Riemann surfaces of genus g ≥ 1 which descends to an action on their moduli
space Hg . The SL(2,R)-action is defined as follows. Let A ∈ SL(2,R) and ω be a
holomorphic Abelian differential, i.e., a holomorphic 1-form, on a Riemann surface M .
Then, the differential A · ω is defined by the condition that

(4.1)
(

Re(A · ω)
Im(A · ω)

)
:= A ·

(
Re(ω)
Im(ω)

)
.

Since the action on the right hand side of (4.1) is linear, it is clear that the above formula
defines a closed complex valued 1-form. It can then be proved that A · ω is holomorphic
with respect to a unique complex structure on the underlying surface of genus g ≥ 1.

It is well-known that the above action respects the strata H(κ) ⊆ Hg , where κ :=
κ = (k1, . . . , kσ) is an integral partition of 2g − 2 describing the multiplicities of the
zeroes of the differentials considered, and their connected components. Furthemore, the
above action respects the natural affine structure on strata induced by period coordinates
and preserves the canonical Masur–Veech probability measures [Mas82, Vee82].

The one-parameter subgroups A := {at}t∈R and H± := {h±
t }t∈R given for t ∈ R by

gt :=

(
et 0
0 e−t

)
, h+

t :=

(
1 t
0 1

)
, h−

t :=

(
1 0
t 1

)
induce, via the SL(2,R)-action described above, the so called Teichmüller geodesic flow
and horocycle flows on connected components of strata. These flows were originally in-
troduced by Masur in [Mas82, Mas85].

The relative Kontsevich–Zorich cocycle KZ can be defined as the flow on the relative
cohomology bundle H1

κ(M,Σ,R) over a stratum H(κ) of Abelian diffentials with zeros
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on a finite set Σ ⊆ M given by parallel transport of cohomology classes with respect
to the Gauss–Manin connection along orbits of the Teichmüller geodesic flow [Kon97,
KZ97]. More concretely, it can be defined as follows. Let Ĥ(κ) denote the stratum of the
Teichmüller space above the stratum H(κ) of the correponding moduli space. Since Ĥ(κ)
is simply connected, the cohomology bundle can be trivialized. Hence, KZ can be defined
as the projection of the trivial cocycle

A× id : Ĥ(κ)×H1(M,Σ,R) → Ĥ(κ)×H1(M,Σ,R)

under the natural action of the mapping class group Γg on Ĥ(κ). It is therefore a cocycle
on the (orbilfold) vector bundle Ĥ(κ) ×H1(M,Σ,R)/Γg over the stratum of the moduli
space H(κ) = Ĥ(κ)/Γg . The relative KZ cocycle projects to a well-defined symplectic
cocycle, known as the absolute Kontsevich–Zorich (KZ) cocycle, on the absolute coho-
mology bundle with fibers H1(M,R) through the natural forgetful projection

H1(M,Σ,R) → H1(M,R).

The Lyapunov spectrum. The crucial properties of the relative and absolute KZ cocycles
are related to their Lyapunov spectra. Since the moduli space of Abelian differentials is not
compact, the choice of the norm on the cohomology bundle matters. Following the insight
of [Kon97, KZ97] the Hodge norm on the absolute cohomology H1(M,R) (which can be
extended to relative cohomology) makes the analysis of the Lyapunov structure amenable
to methods in complex analysis.

Theorem 4.1. [Kon97, KZ97, For02] The Lyapunov spectrum of the relative Kontsevich–
Zorich cocycle with respect to any A-invariant ergodic probability measure µ on a stratum
H(κ) ⊆ Hg with κ := (κ1, . . . , κσ) is well-defined and has the form

λµ
1 = 1 > λµ

2 ≥ · · · ≥ λµ
g ≥ 0 = · · · = 0 ≥ −λµ

g ≥ · · · ≥ −λµ
2 > −λµ

1 = −1 .

The exponents λµ
1 , . . . , λ

µ
g ,−λµ

g , . . . ,−λµ
1 are the Lyapunov exponents of the absolute

Kontsevich–Zorich cocycle. The exponents ±λµ
1 = ±1 are carried by the so called tauto-

logical subbundle, i.e. the real 2-dimensional span of the real and imaginary parts of the
underlying Abelian differential. The exponent 0 appears with minimum multiplicity equal
to the σ − 1 on the kernel of the forgetful map H1(M,Σ,R) → H1(M,Σ).

The simplicity conjectures. It was conjectured by Zorich [Zor94, Zor99], and by Kontse-
vich and Zorich [Kon97, KZ97], that the KZ spectrum is simple for Masur–Veech measures
on strata of Abelian and quadratic differentials. For Abelian differentials this conjecture
was proved by A. Avila and M. Viana [AV07]. Indeed, we have the following.

Theorem 4.2. [AV07] The Kontsevich-Zorich spectrum for all Masur–Veech measures µ
on (connected components of) strata M of Abelian differentials on surfaces of genus g ≥ 1
is simple, i.e., the following strict inequalities hold,

λM
1 > λM

2 > · · · > λM
g > 0 .

Remark 4.3. The strict inequality λM
g > 0 (non-uniform hyperbolicity) as well as the case

g = 2 of Theorem 4.2 were proved earlier in [For02].

The analogous theorem for strata of quadratic differentials has proved harder to attain
and the proof of the Kontsevich–Zorich conjecture has actually been completed only re-
cently. We recall that, by an oriented double covering construction, which we summarize
below, it is possible to view strata of quadratic differentials with at most simple poles as
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suborbifolds of strata of moduli spaces of Abelian differentials on surfaces of higher genus,
where the genus depends on the multiplicities of the zeros and the number of poles.
The theory of the KZ spectrum for quadratic differentials is therefore a special important
case of the theory of the KZ spectrum for general SL(2,R)-invariant measures on moduli
spaces of Abelian differentials.

Given a (holomorphic) quadratic differential q on a Riemann surface M , one can con-
struct a canonical (orienting) double cover π : M̂ → M , branched only at the zeroes of q
of odd multiplicity, with M̂ connected if and only if q is not the square of an Abelian differ-
ential. Moreover, π∗(q) = ω2, where ω is an Abelian differential on M̂ . This well-known
construction can be described as follows. Let {(ϕα, Uα)}α∈A be an atlas of canonical
coordinates for q on M \ {q = 0}. For any α ∈ A, let π−1(Uα) = Û+

α ∪ Û−
α and let

ϕ̂±
α (z) = ±

√
ϕα(z) , for z ∈ Û±

α .

There exists a unique translation surface (M̂, ω) such that the charts (ϕ̂±
α , Û

±
α ) give a

translation atlas on M̂ \ {ω = 0}. The surface M̂ can be defined as the completion
of the Riemann surface quotient ⊔α∈AÛ

±
α / ∼ with respect to the following equivalence

relation: z ∼ z′ if and only if there exist α, β such that Uα ∩ Uβ ̸= ∅ with z, z′ ∈ Û+
α and

ϕ̂+
α (z) = ϕ̂+

β (z) or z, z′ ∈ Û−
α and ϕ̂−

α (z) = ϕ̂−
β (z).

By the construction we have that π∗(q) = ω2. It can be verified that the orienting
double cover construction gives an embedding

Q(n1, . . . , nν , nν+1, . . . , nτ ) → H
(
n1 + 1, . . . , nν + 1,

nν+1

2
,
nν+1

2
, . . . ,

nτ

2
,
nτ

2

)
of the stratum Q(n1, . . . , nν , nν+1, . . . , nτ ) of quadratic differentials with zeros/poles of
odd multiplicities (n1, . . . , nν) ∈ {2k − 1 | k ∈ N}ν and zeros of even multiplicities
(nν+1, . . . , nτ ) ∈ {2k | k ∈ N \ {0}}τ−ν into the stratum of Abelian differentials with
zeroes of multiplicities ni + 1 for i ∈ {1, . . . , ν} and nj/2, nj/2 for j ∈ {ν + 1, . . . , τ};
a zero of multiplicity 0 corresponds by definition to a marked point.

There exists an involution I : M̂ → M̂ such that I∗ω = −ω. The map σ exchanges
points in each regular fiber of π : M̂ → M , hence I : Û±

α → Û∓
α for all α ∈ A,

and equals the identity map on the zeroes of ω that cover odd order zeroes of q. Such
an involution induces a splitting on the relative cohomology of M̂ into invariant/even and
anti-invariant/odd subspaces,

(4.2) H1(M̂, {ω = 0};R) = H1
+(M̂, {ω = 0};R)⊕H1

−(M̂, {ω = 0};R) ,

which is just the splitting into eigenspaces of eigenvalues ±1 of the map

I∗ : H1(M̂, {ω = 0};R) → H1(M̂, {ω = 0};R) .

There is a similar (dual) splitting in homology,

H1(M̂, {ω = 0};R) = H+
1 (M̂, {ω = 0};R)⊕H−

1 (M̂, {ω = 0};R) .

It follows by construction that the maps

π∗ : H1(M, {q = 0,∞},R) → H1
+(M̂, {ω = 0,m};R) ,

π∗ : H+
1 (M̂, {ω = 0,m};R) → H1(M, {q = 0,∞};R) ,

are isomorphisms of vector spaces; here ω = m represents marked points and q = ∞
represents poles. We note that the Abelian differential ω is anti-invariant, i.e.,

I∗(ω) = −ω .
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In particular, in terms of cohomology,

[ω] ∈ H1
−(M̂, {ω = 0};C) .

Let g denote the genus of M and ĝ the genus of the orienting double cover M̂ . By
the construction of the orienting double cover, every mapping class (homeomorphism, dif-
feomorphism) f in the mapping class group Γg of M lifts to a unique mapping class f̂
(homeomorphism, diffeomorphism) in the mapping class group Γĝ of M̂ such that

f ◦ π = π ◦ f̂ on M̂ .

The mapping class group Γg can be identified with the subgroup of the mapping class group
Γĝ of mapping classes that commute with the projection of the orienting double cover. It
follows that, on every image suborbifold Q̂(n) of any stratum Q(n) of (non-orientable)
quadratic differentials into Hĝ , the Kontsevich-Zorich cocycle preserves the splitting (4.2)
of the cohomology bundle into even and odd components.

Thus, for strata of quadratic differentials with simple poles, the analysis of the KZ
spectrum splits into the separate problems of understanding the even and the odd parts of
the spectrum with respect to the canonical Masur–Veech measure coming from the stratum
of quadratic differentials. We note that both the even and the odd spectrum are relevant
in applications. In particular, the even spectrum is related to the tangent dynamics of the
Teichmüller geodesic flow on the correspoding stratum of quadratic differentials, while
the odd spectrum is related to the equidistribution of the leaves of the (non-orientable)
foliations of quadratic differentials in the stratum.

Recently it has been finally proved that the monodromies of the even and odd Kontsevich-
Zorich cocycles are Zariski dense in the symplectic groups Sp(2g) and Sp(2(ĝ−g)), hence
both the even and the odd Kontsevich-Zorich Lyapunov spectra are simple.

Theorem 4.4. [Tn13, GR17, ?] Both the even and odd Kontsevich–Zorich Lyapunov spec-
tra for the Masur–Veech measures on strata of quadratic differentials with at most simple
poles are simple. More precisely, let Q be a stratum of quadratic differentials on surfaces of
genus gQ with oriented double covers in a suborbilfold MQ of the moduli space of Abelian
differentials on surfaces of genus gMQ

. Then,

1 > λMQ,+
1 > · · · > λMQ,+

gQ > 0 and 1 = λMQ,−
1 > · · · > λMQ,−

gMQ
−gQ

> 0,

where the + and − signs denote whether the exponents correspond to the even or odd parts
of the cocycle. Furthermore, the monodromy groups of the even and odd components of
the KZ cocycles are Zariski-dense subgroups of their ambient symplectic groups.

Remark 4.5. The spectral gap part of the above theorem (1 > λMQ,+
1 and 1 > λMQ,−

2 )
follows from the general spectral gap result in Theorem 4.1. R. Treviño [Tn13] derived
that all of the above Lyapunov exponents are strictly positive using a general criterion in
[For11]. Gutiérrez–Romo proved Zariski density and simplicity for several strata in his
thesis [GR17]. The complete result was finally proved in [?].

The KZ spectrum for general suborbifolds. We now turn to discuss the Lyapunov spec-
trum for SL(2,R)-invariant measures other than Masur–Veech measures. The work of
Eskin–Mirzkhani [EM18] and Eskin, Mirzakhani and Mohammadi [EMM15] proved that
all SL(2,R)-orbit-closures are affine suborbifolds and all SL(2,R)-invariant probability
ergodic measures are absolutely continuous measures supported on affine suborbifolds.

Filip [Fil16] proved a Deligne semi-simplicity theorem for tensor powers of the coho-
mology (Hodge) bundle with respect to the SL(2,R)-action (as well as a semi-simplicitity
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result for flat (locally constant) subbundles). We record below a statement which follows
from Filip’s work and is sufficient for our purposes.

Theorem 4.6. [EM18, Theorem A.6] [Fil16, Theorem 1.2] Let E denote any exterior
power of the real cohomology bundle H1

M(M,R) over an SL(2,R)-invariant orbifold M.
Then E splits as a direct, Hodge orthogonal sum of irreducible SL(2,R) subbundles, in
the sense that there exist SL(2,R)-invariant subbundles Vi, vector spaces Wi and division
algebras Ai over the real numbers R such that

E ≃
⊕
i

Vi ⊗Ai Wi .

A similar result holds for the complexified Kontsevich–Zorich cocyle (on exterior powers
of the complex cohomology bundle).

By Theorem 4.6, it is enough to analyze the Lyapunov spectrum on irreducible subbun-
dles. In fact, Filip also proved that measurable SL(2,R)-subbundles on affine SL(2,R)-
invariant suborbifolds are always continuous, moreover, polynomial.

Theorem 4.7. [Fil16, Theorem 1.4] Let E denote any exterior power of the real coho-
mology bundle H1

M(M,R) over an SL(2,R)-invariant orbifold M. Let V ⊂ E be a
measurable SL(2,R)-invariant subbundle on M. Then V has a complement V ⊥ such that
in local period coordinates the operator of projection to V ⊥ is polynomial.

This result implies that, up to passing to a finite cover, it is enough to consider the KZ
cocycle on strongly irreducible subbundles in the following sense.

Definition 4.8. [CE15, Definition 1.4] A cocycle A : G × V → V on a vector bundle V
over the action of a group G on an ergodic measure space (X,µ) is strongly irreducible
if it does not admit a µ-measurable almost invariant splitting, that is, a measurable finite
collection of subbundles W1, . . . ,Wn ⊆ V such that Wi ∩ Wj = {0} for all i ̸= j ∈
{1, . . . , n} and such that, for all i ∈ {1, . . . , n} there exists j ∈ {1, . . . , n} with

A(g, x)Wi(x) = Wj(gx) , for all (g, x) ∈ G×X .

In fact, by [EFW18, Proposition B.4], derived from [Fil16, Theorem 7.7], there exists a
(local) labeling of the measurable subbundles in Definition 4.8 such that each subbundle
is continuous, in fact polynomial. It is therefore possible to define a finite cover of the
orbifold on which the subundles are invariant, and therefore by a finite iteration of this
procedure, to derive that any SL(2,R)-invariant subbundle has an equivariant splitting into
strongly irreducible components.

For a general SL(2,R)-invariant measure the Lyapunov spectrum can have multiplici-
ties and zero exponents. For instance the KZ spectrum is well-understood in the class of
square tiled cyclic covers [FMZ11], which includes the two examples of maximally degen-
erate spectrum (the Teichmüller curves of the so called Eierlegende Wollmilchsau surface
in genus 3 and of the so called Platypus surface in genus 4). A general result of Filip [Fil17,
Theorem 1.2] classifies the possible monodromies (hence the patterns of zero exponents
which can arise) and gives a lower bound on the number of strictly positive (or non-zero)
exponents for an arbitrary SL(2,R)-invariant suborbifold.

Theorem 4.9. [Fil17, Corollary 1.3] Let M be an affine invariant suborbifold of a stratum
of Abelian differentials. Let p(TM) be the subbundle of the cohomology bundle given
by the projection into absolute homology of the tangent subbundle TM of M (seen as
subbundle of the relative cohomology bundle via period coordinates). Then:
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• no zero exponents can occur in p(TM), or any of its Galois conjugates;
• the Zariski closure of the monodromy in p(TM) or any of its Galois conjugates is

the corresponding full symplectic group.

The above theorem subsumes several earlier results on the KZ spectrum [BM10, For11,
FMZ11, FMZ14a]. In the case of Teichmüller curves of square-tiled surfaces a criterion
for the simplicity of the KZ spectrum was given in [MMY15].

Corollary 4.10. Let Q be any stratum of quadratic differentials and let MQ be the cor-
responding suborbifold of orienting double covers in the corresponding moduli space of
Abelian differentials. Then, the even and odd subbundles H1

+(M,R) and H1
−(M,R) of the

real Hodge bundle H1
MQ

(M,R) over MQ are strongly irreducible invariant subbubdles for
the Kontsevich–Zorich cocycle over the Teichmüller flow on MQ.

Proof. By Theorems 4.4 and 4.9, the Zariski closure of the monodromy on p(TMQ) =
H1

+(M,C), hence on H1
+(M,R), is the full symplectic group. Whenever the Zariski clo-

sure of the monodromy on an invariant subbundle is the full symplectic group, the subbun-
dle is strongly irreducible. In fact, as mentioned above, if the subbundle is not strongly
irreducible, then, by [EFW18, Proposition B.4], which in turn is derived from [Fil16, The-
orem 7.7], there exists a (local) labeling of the measurable subbundles in Definition 4.8
such that each subbundle has a polynomial dependence on the base point. The invariance
of a family of subbundles which depends polynomially on the base point would contradict
the Zariski density of the monodromy group. □

The CLT for the KZ cocycle. A (non-commutative) central limit theorem for the conver-
gence to the top Lyapunov exponent of the KZ cocycle on subbundles of exterior powers
of the cohomology bundle was proved in [AF22] under several assumptions.

For the rest of this discussion fix a d-complex-dimensional, SL(2,R)-invariant suborb-
ifold M of a stratum of Abelian differentials with ergodic affine probability measure µ.
Let H be an h-dimensional, SL(2,R)-invariant subbundle of the Kontsevich-Zorich cocy-
cle over M with Lyapunov exponents λ1 ≥ λ2 ≥ · · · ≥ λh. For every k ∈ {1, . . . , h},
denote by H(k) the k-th exterior power of the bundle H, let ∥ · ∥ be the natural extension of
the Hodge norm to H(k), and denote by A(k) := {at : H(k) → H(k)}t∈R the lift of the KZ
cocycle. Let µ̂ be the unique measure on the projectivized bundle PH(k) which projects to
µ and whose conditional measures on fibers are equal to the Lebesgue (Haar) measures.

For every (ω, v) in H(k) or PH(k) with v ̸= 0 and every t ∈ R consider the quantities

σ(ω, v, t) := log
∥atv∥atω

∥v∥ω
,

σk(ω, t) := log sup
v∈PH(k)

∥atv∥atω

∥v∥ω
.

Recall that the top exponent of the KZ cocycle on H(k) is Λk :=
∑k

i=1 λi and that, by
the Oseledets theorem, for µ̂- almost every (ω, v) ∈ PH(k),

(4.3) lim
t→∞

σ(ω, v, t)

t
=

k∑
i=1

λi .

Denote by N(0, V ) a Gaussian random variable of mean 0 and variance V > 0

Theorem 4.11. [AF22, Theorem 2.1] Consider M an SL(2,R)-invariant suborbifold of
a stratum of Abelian differentials with ergodic affine probability measure µ. Let H be
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an 2h-dimensional, strongly irreducible, symplectic, SL(2,R)-invariant subbundle of the
Kontsevich-Zorich cocycle over M that is symplectically orthogonal to the tautological
subbundle and with Lyapunov exponents λ1 ≥ · · · ≥ λ2h. Fix 1 ≤ k ≤ h such that
λk > λk+1, let Λk :=

∑k
i=1 λi, and consider the k-th exterior power H(k) and its projec-

tivization PH(k) endowed with the canonical measure µ̂. Then there exists a real number
Vk ≥ 0 such that the random variables

St(ω, v) :=
σ(ω, v, t)− t · Λk√

t
on (PH(k), µ̂)

converge in distribution to a Gaussian of mean 0 and variance Vk as t → ∞, i.e., for every
interval (a, b) ⊆ R such that P(N(0, Vk) ∈ {a, b} = 0),

lim
t→∞

µ̂({(ω, v) ∈ H(k) | St(ω, v) ∈ (a, b)}) = 1√
2πVk

∫ b

a

ex
2/Vk dx.

Moreover, if the KZ Lyapunov spectrum of H is simple, then V1 > 0.

Remark 4.12. The statement also holds in the event that Vk = 0, and in that case the
resulting distribution is a delta distribution. The positivity of the variance holds for 2-
dimensional subbundles with strictly positive top Lyapunov exponent (for instance on the
symplectic orthogonal of the tautological subbundle in genus 2 for any SL(2,R)-invariant
measure or on irreducible non-tautological subbundles for non-arithmetic Veech surfaces),
as in this case the simplicity condition on the top exponent is trivially satisfied.

Remark 4.13. The condition P(N(0, Vk) ∈ {a, b}) = 0 in Theorem 4.26 is automatically
satisfied if Vk > 0. If Vk = 0, this condition is equivalent to a ̸= 0 and b ̸= 0.

We conclude this discussion mentioning some open questions. The first couple of ques-
tions are concerned with the generality of the conclusion of the above Theorem 4.11.

Question 4.14. Does Theorem 4.11 hold under the weaker assumption that the top expo-
nent is strictly positive and simple, i.e., without the full simplicity assumption?

Question 4.15. Under what conditions is the variance in Theorem 4.11 positive for all
exterior powers and not just for the first exterior power?

The next question, perhaps more difficult, asks whether the CLT holds with respect to
the Lebesgue measure on all SO(2)-orbits. Indeed, Chaika and Eskin [CE15] have proven
a refinement of the Oseledets theorem for the KZ cocycle, showing that the limit in formula
(4.3) holds for rθω := e2πıθω for Lebesgue almost every θ ∈ [0, 2π) and every ω ∈ M. It
is therefore natural to consider the following question.

Question 4.16. Given an Abelian differential ω, the union of fibers
⋃

θ∈R/Z PHrθω can be
endowed with a natural measure ν̂ which disintegrates as Lebesgue measure on the circle
factor and Lebesgue measure on the fibers. Under what conditions do the random variables

St(θ, v) :=
σ(rθω, v, t)− t ·

∑k
i=1 λi√

t
on

 ⋃
θ∈R/Z

PHrθω, ν̂


converge in distribution to a Gaussian random variable as t → ∞?



FROM LIMIT THEOREMS TO MIXING LIMIT THEOREMS 37

Hyperbolicity, boundedness, and adaptedness. We now check the conditions needed to
upgrade limit theorems for the KZ cocycle to mixing limit theorems. Recall that we have
fixed a d-complex-dimensional, SL(2,R)-invariant suborbifold M of a stratum of Abelian
differentials with ergodic affine probability measure µ, an h-dimensional, SL(2,R)-invariant
subbundle H of the Kontsevich-Zorich cocycle over M, and an exterior power H(k) of H
for some k ∈ {1, . . . , h}.

First we introduce the relevant metric structure on M. Recall that, given ω ∈ M on
a Riemann surface M with zeroes and marked points Σ ⊆ M , the tangent space of ω at
M can be identified with the cohomology group H1(M,Σ;C). For v ∈ H1(M,Σ;C)
consider the norm defined as

∥v∥ω := sup
γ∈Γω

∣∣∣∣ v(γ)

holω(γ)

∣∣∣∣ ,
where Γω ⊆ H1(M,Σ;Z) denotes the set of saddle connections of ω and holω(γ) ∈ C
denotes the holonomy of the saddle connection γ with respect to ω. By work of Avila,
Gouëzel, and Yoccoz [AGY06], this definition indeed gives rise to a norm on H1(M,Σ;C)
and the corresponding Finsler metric on M is complete. We refer to this metric as the AGY
metric of M and denote it by dAGY.

Recall that A := {at : M → M}t∈R denotes the Teichmüller geodesic flow. Denote by
U := h−

1 : M → M the time 1 map of the stable horocycle flow. We begin by recalling the
following direct consequence of the definition of the AGY-metric.

Proposition 4.17. [AG13, Lemma 5.2] Let M be an SL(2,R)-invariant suborbifold of a
stratum of Abelian differentials. Then, for every ω ∈ M over a Riemann surface M with
zeros and marked points Σ ⊆ M , every v ∈ H1(M,Σ; iR), and every t ≥ 0,

∥v∥atω ≤ ∥v∥ω.

To apply our results from previous sections we need to upgrade Proposition 4.17 to
ensure contraction. The following result actually guarantees hyperbolicity.

Proposition 4.18. [ABEM12, Theorem 3.15] Let M be an SL(2,R)-invariant suborbifold
of a stratum of Abelian differentials with affine ergodic probability measure µ. Then, there
exists a constant κ > 0 such that for µ-almost-every ω ∈ M and every t ≥ 0,

d(atUω, atω) = Oω(e
−κt).

Proof. Let K ⊆ M be a compact subset with µ(K) ≥ 2/3. By Birkhoff’s ergodic theorem,
for µ-almost-every ω ∈ M, the following asymptotic holds,

lim
T→∞

|{t ∈ [0, T ] : atω ∈ K}| = 2/3 > 1/2.

Let ω ∈ M satisfy this condition. It follows from [ABEM12, Proof of Theorem 3.15],
Proposition 4.17, and the fact that Finsler metrics are comparable on compact sets, that
there exists κ = κ(K) ≥ 0 such that for every t ≥ 0,

dAGY(atUω, atω) = Oω(e
−κtdAGY(Uω, ω)) = Oω(e

−κt). □

Remark 4.19. More precise quantitative statements strengthening Proposition 4.18 hold.
We refer the reader to [ABEM12, Theorem 3.15], [EMM19, Proposition 2.7], and [Ath06,
Theorem 1.1] for stronger related results.

Recall that A(k) := {at : H(k) → H(k)}t∈R denotes the lift of the Kontsevich-Zorich
cocycle to H(k). The main tool needed to prove boundedness of the cocycle A(k) is the
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following variational formula originally proved in the case k = 1 by Forni [For02] and
extended to the case k ≥ 2 by Forni, Matheus, Zorich [FMZ14b].

Proposition 4.20. [FMZ14b, Corollary 2.2] For every unit area Abelian differential ω ∈
Hg and every non-zero vector v on the k-th exterior power of the Kontsevich-Zorich cocy-
cle over Hg , the following variational formula holds,

d

dt

∣∣∣∣
t=0

σ(ω, v, t) ≤ k.

Directly from Proposition 4.20 we deduce the following corollary which, in particular,
implies that A(k) is V-sufficiently-bounded for every diverging sequence V.

Corollary 4.21. For every Abelian differential ω ∈ Hg and every non-zero vector v on the
k-th exterior power of the Kontsevich-Zorich cocycle over Hg ,

σ(ω, v, 1) ≤ k.

Denote by D the cocycle on H(k) over U = h−
t given by parallel transport with respect

to the Gauss-Manin connection along stable horocycle arcs. Recall that the projection
of the SL(2,R)-orbit of any marked, genus g Abelian differential ω to the Teichmüller
space of genus g Riemann surfaces endowed with the Teichmüller metric is an embed-
ded Poincaré disk; see for instance [Roy71]. Recall also that the Hodge norm is SO(2)-
invariant. Directly from these facts and Proposition 4.20 we deduce the cocycles (A(k), D)
are (A,U,V)-adapted for every diverging sequence V.

Corollary 4.22. For every Abelian differential ω ∈ Hg , every non-zero vector v on the
k-th exterior power of the Kontsevich-Zorich cocycle over Hg , and every t ≥ 0,

|σk(x, v, t)− σk(Ux,Dv, t)| ≤ k(1 + e−t).

The mixing laws of large numbers. We now state a first set of distributional limit theo-
rems for the Kontsevich-Zorich cocycle. These theorems can be interpreted as mixing laws
of large numbers for exterior powers of subbundles of the KZ cocycle.

Theorem 4.23. Consider M an SL(2,R)-invariant suborbifold of a stratum of Abelian dif-
ferentials with ergodic affine probability measure µ. Let H be an h-dimensional SL(2,R)-
invariant subbundle of the Kontsevich-Zorich cocycle over M with Lyapunov exponents
λ1 ≥ · · · ≥ λh. Fix k ≥ 1 such that λk > λk+1, let Λk :=

∑k
i=1 λi, and consider the k-th

exterior power H(k) and its projectivization PH(k) endowed with the canonical measure
µ̂. Then, for the random variables

St(ω, v) :=
σ(ω, v, t)

t
on (PH(k), µ̂),

for every pair of Borel measurable subsets B,E ⊆ M, and for every interval (a, b) ⊆ R
such that Λk /∈ {a, b}, the following holds,

lim
t→∞

µ̂({(ω, v) ∈ PH(k) | ω ∈ B, St(ω, v) ∈ (a, b), atω ∈ E})

= µ(B) · δΛk
(a, b) · µ(E).

Proof. This is a direct consequence of the Oseledets ergodic theorem, Theorem 3.15,
Lemma 3.13, Proposition 4.18, and Corollaries 4.21 and 4.22. □

We now state a mixing law of large numbers for the operator norm of the KZ cocycle.
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Theorem 4.24. Consider M an SL(2,R)-invariant suborbifold of a stratum of Abelian dif-
ferentials with ergodic affine probability measure µ. Let H be an h-dimensional SL(2,R)-
invariant subbundle of the Kontsevich-Zorich cocycle over M with Lyapunov exponents
λ1 ≥ · · · ≥ λh such that λk > λk+1 and Λk :=

∑k
i=1 λi. Then, for the random variables

St(ω) :=
σk(ω, t)

t
on (M, µ),

for every pair of Borel measurable subsets B,E ⊆ M, and for every interval (a, b) ⊆ R
such that Λk /∈ {a, b}, the following holds,

lim
t→∞

µ({ω ∈ M | ω ∈ B, St(ω) ∈ (a, b), atω ∈ E}) = µ(B) · δΛk
(a, b) · µ(E).

Proof. This is a direct consequence of Theorems 3.19 and 4.23, and Lemma 3.17. □

We now state a mixing law of large numbers for generic sections of the KZ cocycle.

Theorem 4.25. Consider M an SL(2,R)-invariant suborbifold of a stratum of Abelian dif-
ferentials with ergodic affine probability measure µ. Let H be an h-dimensional SL(2,R)-
invariant subbundle of the Kontsevich-Zorich cocycle over M with Lyapunov exponents
λ1 ≥ · · · ≥ λh. Fix k ≥ 1 such that λk > λk+1, let Λk :=

∑k
i=1 λi, and consider

the k-th exterior power H(k). Let s : M → H(k) be a section such that s(ω) ∈ H(k) is
future-Oseledets-generic for µ-almost every ω ∈ M. Then, for the random variables

St(ω) :=
σk(ω, s(ω), t)

t
on (M, µ),

for every pair of Borel measurable subsets B,E ⊆ M, and for every interval (a, b) ⊆ R
such that Λk /∈ {a, b}, the following holds,

lim
t→∞

µ({ω ∈ M | ω ∈ B, St(ω) ∈ (a, b), atω ∈ E}) = µ(B) · δΛk
(a, b) · µ(E).

Proof. This is a direct consequence of Theorems 3.22 and 4.23, and Lemma3.20. □

The mixing central limit theorems. We now state a second set of distributional limit
theorems for the Kontsevich-Zorich cocycle. These theorems correspond to mixing central
limit theorems for exterior powers of subbundles of the KZ cocycle.

Theorem 4.26. Consider M an SL(2,R)-invariant suborbifold of a stratum of Abelian dif-
ferentials with ergodic affine probability measure µ. Let H be a 2h-dimensional, strongly
irreducible, symplectic, SL(2,R)-invariant subbundle of the Kontsevich-Zorich cocycle
over M that is symplectically orthogonal to the tautological subbundle and with Lyapunov
exponents λ1 ≥ · · · ≥ λ2h. Fix 1 ≤ k ≤ h such that λk > λk+1, let Λk :=

∑k
i=1 λi,

and consider the k-th exterior power H(k) and its projectivization PH(k) endowed with
the canonical measure µ̂. Then, there exists Vk ≥ 0 such that for the random variables

St(ω, v) :=
σ(ω, v, t)− t · Λk√

t
on (PH(k), µ̂),

for every pair of Borel measurable subsets B,E ⊆ M, and for every interval (a, b) ⊆ R
such that such that P(N(0, Vk) ∈ {a, b}) = 0, the following holds,

lim
t→∞

µ̂({(ω, v) ∈ PH(k) | ω ∈ B, St(ω, v) ∈ (a, b), atω ∈ E})

= µ(B) ·

(
1√
2πVk

∫ b

a

e−x2/Vk dx

)
· µ(E).

Moreover, if the Lyapunov spectrum of H is simple, then V1 > 0.
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Proof. This is a direct consequence of Theorems 4.11 and 3.15, Lemma 3.13, Proposition
4.18, and Corollaries 4.21 and 4.22. □

We now state a mixing central limit theorem for the Kontsevich-Zorich cocycle with
respect to the operator norm.

Theorem 4.27. Consider M an SL(2,R)-invariant suborbifold of a stratum of Abelian dif-
ferentials with ergodic affine probability measure µ. Let H be a 2h-dimensional, strongly
irreducible, symplectic, SL(2,R)-invariant subbundle of the Kontsevich-Zorich cocycle
over M that is symplectically orthogonal to the tautological subbundle and with Lyapunov
exponents λ1 ≥ · · · ≥ λ2h. Fix 1 ≤ k ≤ h such that λk > λk+1 and let Λk :=

∑k
i=1 λi.

Then, there exists Vk ≥ 0 such that for the random variables

St(ω) :=
σk(ω, t)− t · Λk√

t
on (M, µ),

for every pair of Borel measurable subsets B,E ⊆ M, and for every interval (a, b) ⊆ R
such that P(N(0, Vk) ∈ {a, b}) = 0, the following holds,

lim
t→∞

µ({ω ∈ M | ω ∈ B, St(ω) ∈ (a, b), atω ∈ E})

= µ(B) ·

(
1√
2πVk

∫ b

a

e−x2/Vk dx

)
· µ(E).

Moreover, if the Lyapunov spectrum of H is simple, then V1 > 0.

Proof. This is a direct consequence of Theorems 3.19 and 4.26, and Lemma 3.17. □

Finally, we state a central limit theorem for generic sections of the KZ cocycle.

Theorem 4.28. Consider M an SL(2,R)-invariant suborbifold of a stratum of Abelian dif-
ferentials with ergodic affine probability measure µ. Let H be an 2h-dimensional, strongly
irreducible, symplectic, SL(2,R)-invariant subbundle of the KZ cocycle over M that is
symplectically orthogonal to the tautological subbundle and with Lyapunov exponents
λ1 ≥ · · · ≥ λ2h. Fix 1 ≤ k ≤ h such that λk > λk+1 and let Λk :=

∑k
i=1 λi. Then, there

exists Vk ≥ 0 such that for every measurable section s : M → H(k) with s(ω) ∈ H(k)

future-Oseledets-generic for µ-almost every ω ∈ M, for the random variables

St(ω) :=
σk(ω, s(ω), t)− t · Λk√

t
on (M, µ),

for every pair of Borel measurable subsets B,E ⊆ M, and for every interval (a, b) ⊆ R
such that P(N(0, Vk) ∈ {a, b}) = 0, the following holds,

lim
t→∞

µ({ω ∈ M | ω ∈ B, St(ω) ∈ (a, b), atω ∈ E})

= µ(B) ·

(
1√
2πVk

∫ b

a

e−x2/Vk dx

)
· µ(E).

Moreover, if the Lyapunov spectrum of H is simple, then V1 > 0.

Proof. This is a direct consequence of Theorems 3.22 and 4.26, and Lemma 3.20. □
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A criterion for genericity of sections. We recall below results on Oseledets genericity for
the Kontsevich–Zorich cocycles on strongly irreducible subbundles of the Hodge bundle.
We begin with the following result concerning the deviations of Lyapunov exponents.

Theorem 4.29 (Theorem 1.5, [ASAE+21]). Consider M an SL(2,R)-invariant suborb-
ifold of a stratum of Abelian differentials with ergodic affine probability measure µ. Let H
be an h-dimensional, SL(2,R)-invariant, continuous subbundle of the Kontsevich-Zorich
cocycle over M with Lyapunov exponents λ1 ≥ · · · ≥ λh. Fix k ∈ {1, . . . , h}, let
Λk :=

∑k
i=1 λi, and consider the k-th exterior power H(k). Assume the Kontsevich-Zorich

cocycle on H(k) is strongly irreducible with respect to µ. Then, for any ϵ > 0, there exist
affine invariant submanifolds N1, . . . ,Nk properly contained in M, and 0 < δ < 1, such
that for all ω ∈ M \

⋃k
i=1 Ni, the set{
θ ∈ [0, 2π) | lim sup

t→∞

σk(rθω, t)

t
≥ Λk + ϵ

}
has Hausdorff dimension at most δ.

The theorem above is a refinement of a fundamental result of Chaika and Eskin who in
[CE15, Theorem 1.5] proved that, for all ω ∈ M \

⋃k
i=1 Ni and for almost all θ ∈ [0, 2π),

lim sup
t→∞

σk(rθω, t)

t
= Λk .

A similar result can be stated for horocycle arcs.

Theorem 4.30 (Theorem 1.5, [ASAE+21]). Consider M an SL(2,R)-invariant suborb-
ifold of a stratum of Abelian differentials with ergodic affine probability measure µ. Let H
be an h-dimensional, SL(2,R)-invariant, continuous subbundle of the Kontsevich-Zorich
cocycle over M with Lyapunov exponents λ1 ≥ · · · ≥ λh. Fix k ∈ {1, . . . , h}, let
Λk :=

∑k
i=1 λi, and consider the k-th exterior power H(k). Assume the Kontsevich-Zorich

cocycle on H(k) is strongly irreducible with respect to µ. Then, for any ϵ > 0, there exist
affine invariant submanifolds N1, . . . ,Nk properly contained in M, and 0 < δ < 1, such
that for all ω ∈ M \

⋃k
i=1 Ni, the set{

s ∈ R | lim sup
t→∞

σk(h
+
s ω, t)

t
≥ Λk + ϵ

}
has Hausdorff dimension at most δ.

In the other direction the following large deviation result holds.

Lemma 4.31. Consider M an SL(2,R)-invariant suborbifold of a stratum of Abelian dif-
ferentials with ergodic affine probability measure µ. Let H be an h-dimensional, SL(2,R)-
invariant, continuous subbundle of the Kontsevich-Zorich cocycle over M with Lyapunov
exponents λ1 ≥ · · · ≥ λh. Fix k ∈ {1, . . . , h}, let Λk :=

∑k
i=1 λi, and consider the k-th

exterior power H(k). Assume the KZ cocycle on H(k) is strongly irreducible with respect
to µ. Let s : M → H(k) be a measurable, nowhere vanishing section. Then,

(1) for any k ≥ 1, if the section s is SO(2)-invariant or H+-invariant for µ-almost
every ω ∈ M, then, for every ϵ > 0, there exists C > 1 such that for every t > 0,

µ
({

ω ∈ M : σ(ω, s(ω), t) ≤ e(Λk−ϵ)t
})

≤ Ce−t/C ;

(2) for k = 1, the above large deviation estimate holds under the weaker hypothesis
that the section s is SO(2)-Lipschitz-continuous or H+-Lipschitz-continuous for
µ-almost-every ω ∈ M.
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Proof. The first item is proved for parallel sections above horocycle arcs with respect to
the Lebesgue measure in [CF21, Remark 5.4]. Hence, the statement for sections which
restrict to parallel sections along horocycle arcs follows immediately by Fubini’s theorem.

The statement for constant sections along circle orbits is equivalent since we have

rθ = g log | cos θ| ◦ h−
− sin θ cos θ ◦ h

+
tan θ .

Hence, for any ω ∈ M, the forward Teichmüller orbit of rθω is exponentially asymptotic
to that of the Abelian differential g log | cos θ| ◦h+

tan θ ω, which implies that rθω is Oseledets
regular if and only if h+

tan θ ω is. In addition, the parallel transport on the Hodge bundle
of a constant section on the circle SO(2)ω to the horocycle orbit H+ω is by definition a
parallel section above H+ω. Since the arctangent function is absolutely continuous, the
large deviation statement for constant sections above circles follows from the analogous
statement for parallel sections above horocycles. The statement in the first item for sections
which are constant above almost all circles then follows by Fubini’s theorem.

The second item can be proved for parallel sections above horocycle orbits as explained
in [CF21, Remark 5.4]. The argument can be reduced to invariant subbundles symplec-
tically orthogonal to the tautological subbundle. In the latter case, the argument is based
on [CF21, Lemma 5.3] and on a ‘freezing’ mechanism (suggested by Jon Chaika and ex-
ploited in [CF21] and [AF22]). The freezing mechanism is based on the observation that
since the growth of the length of unstable horocycle arcs dominates the growth of vectors
under the action of the cocycle, the image of a Lipschitz section under the Teichmüller
geodesic flow is eventually projectively Lipschitz (in the sense of [CF21, Definition 4.3]).
Then [CF21, Lemma 5.3] applies to projectively Lipschitz sections and implies the desired
large deviations estimate for paralellel sections along horocycle orbits. A similar statement
can then be derived for constant sections along circle orbits as outlined above. Finally, the
stated measure estimate holds for Lipschitz sections by Fubini’s theorem. □

In summary, we have the following genericity criterion.

Theorem 4.32. Consider M an SL(2,R)-invariant suborbifold of a stratum of Abelian dif-
ferentials with ergodic affine probability measure µ. Let H be an h-dimensional, SL(2,R)-
invariant, continuous subbundle of the Kontsevich-Zorich cocycle over M with Lyapunov
exponents λ1 ≥ · · · ≥ λh. Fix k ∈ {1, . . . , h}, let Λk :=

∑k
i=1 λi, and consider the k-th

exterior power H(k). Assume the KZ cocycle on H(k) is strongly irreducible with respect
to µ. Let s : M → H(k) be a measurable, nowhere vanishing section. Then,

(1) for any k ≥ 1, if the section s is SO(2)-invariant or H+-invariant for µ-almost
every ω ∈ M, then the section s is generic, i.e.,

lim
t→∞

σ(ω, s(ω), t)

t
= Λk for µ-almost every ω ∈ M .

(2) for k = 1, the above conclusion holds under the weaker hypothesis that the section
s is SO(2)-Lipschitz or H+-Lipschitz for µ-almost-every ω ∈ M.
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