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Abstract. We show that Thurston’s earthquake flow is strongly asymmet-

ric in the sense that its normalizer is as small as possible inside the group

of orbifold automorphisms of the bundle of measured geodesic laminations
over moduli space. (At the level of Teichmüller space, such automorphisms

correspond to homeomorphisms that are equivariant with respect to an auto-

morphism of the mapping class group.) It follows that the earthquake flow
does not extend to an SL(2,R)-action of orbifold automorphisms and does not

admit continuous renormalization self-symmetries. In particular, it is not con-

jugate to the Teichmüller horocycle flow via an orbifold map. This contrasts
with a number of previous results, most notably Mirzakhani’s theorem that

the earthquake and Teichmüller horocycle flows are measurably conjugate.
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1. Introduction

Context. The bundle P1Mg of unit length measured geodesic laminations over
the moduli spaceMg of hyperbolic or Riemann surfaces of genus g is most naturally
seen as a construction of hyperbolic geometry, whereas the bundle Q1Mg of unit
area quadratic differentials over Mg is most naturally seen from the either the
perspective of complex analysis or flat geometry. The bundle P1Mg supports
Thurston’s rather mysterious earthquake flow, which is most concisely defined as
a Hamiltonian flow using the Weil-Petersson symplectic form, whereas the bundle
Q1Mg supports the Teichmüller horocycle flow, easily defined as part of the much
studied SL(2,R)-action. Mirzakhani showed that, despite their different origins,
these flows are measurably isomorphic [Mir08].

Theorem 1.1 (Mirzakhani). There is a measurable conjugacy P1Mg → Q1Mg

between the earthquake flow and the Teichmüller horocycle flow.

In addition to being of fundamental interest as a bridge between different per-
spectives on the geometry of surfaces and their moduli spaces, this theorem has
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powered many applications concerning equidistribution, counting, and the study of
random surfaces [Mir07a, Ara19, Mir16, AH, Liu19, LS].

Mirzakhani’s conjugacy is only defined on a full measure subset of P1Mg, and,
as remarked by Mirzakhani herself [Mir08, §6], this conjugacy cannot be extended
to a continuous map on all P1Mg. Despite this, recent work of Calderon and Farre
extended Mirzakhani’s conjugacy to a bijection which, although not continuous, is
geometrically natural and has exciting new applications [CF].

One reason Theorem 1.1 is plausible is that there are many conceptual similar-
ities between the earthquake flow and the Teichmüller horocycle flow, such as the
following:

(1) Both arise from some notion of shearing.

(2) Both have been understood by analogy to unipotent flows on homogeneous
spaces.

(3) Both are Hamiltonian with respect to related symplectic structures [Mas95,
SB01].

(4) Both are associated to natural complex disks in Teichmüller space, namely
Teichmüller discs for the Teichmüller horocycle flow and complex earth-
quake discs for the earthquake flow [McM98].

(5) Both have quantitative non-divergence properties [MW02].

No continuous conjugacy. In light of all these similarities and the work of Mirza-
khani, Calderon and Farre, one might wonder if a result stronger than Theorem
1.1 holds: perhaps the earthquake and Teichmüller horocycle flows are isomorphic
from the point of view of continuous dynamics, i.e., perhaps there is a different
conjugacy between these flows that is also a homeomorphism. This question was
advertised in [Wri20, Problem 12.3] and [Wri18, Remark 5.6]. Our main result on
asymmetry, which we will state shortly as Theorem 1.4, implies a negative solution
to this problem.

Theorem 1.2. There does not exist an orbifold conjugacy P1Mg → Q1Mg between
the earthquake flow and the Teichmüller horocycle flow.

The technical restriction in Theorem 1.2 that the conjugacy respects the orb-
ifold structure of these spaces is natural since both spaces have the same orbifold
structure [HM79].

The existence of an orbifold conjugacy P1Mg → Q1Mg as in Theorem 1.2
is equivalent to the existence of a topological conjugacy P1Tg → Q1Tg of the
lifts to Teichmüller space of the earthquake and Teichmüller horocycle flows that
intertwines an automorphism ρ : Modg → Modg of the mapping class group. For
detailed discussions on the theory of orbifolds see [Thu80, Chapter 13] and [ES20,
§2]. In particular, the following corollary holds.

Corollary 1.3. There does not exist a mapping class group equivariant topological
conjugacy P1Tg → Q1Tg between the earthquake flow and the Teichmüller horocycle
flow.

Strong asymmetry. A flow E = {Et : X → X}t∈R on a space X can be inter-
preted as a group homomorphism E : R→ Aut(X ) mapping t ∈ R to Et ∈ Aut(X ),
where the automorphism group Aut(X ) is defined in whatever category (smooth,
continuous, measurable, etc.) is under consideration.
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The centralizer of the flow E is defined as

C(E) = {F ∈ Aut(X ) : ∀t∈R Et ◦ F = F ◦ Et}.
The centralizer corresponds to the most narrow concept of the set of symmetries of
a flow one can consider, consisting only of the automorphisms that commute with
it. A slightly broader notion is the extended centralizer a flow, defined here as

C±(E) = {F ∈ Aut(X ) : ∃ε∈{1,−1}∀t∈R Et ◦ F = F ◦ Eεt}.
The extended centralizer includes time reversing symmetries of a flow.

Even more broadly, one can consider the normalizer of a flow, defined as

N(E) = {F ∈ Aut(X ) : ∃ε∈{1,−1},s∈R∀t∈R Et ◦ F = F ◦ Eεe2st}.
The normalizer includes symmetries that scale time, i.e, which conjugate the flow
to a constant speed reparametrization of itself. If F ∈ N(E) is as above, we call F
a normalizer of the flow, or an s-normalizer if we wish to specify the time dilation
factor e2s.

The smallest N(E) can be is the flow itself, namely N(E) = {Et}t∈R. When
this is the case, we say that the flow E is strongly asymmetric. Our main result
establishes this strong asymmetry property for the earthquake flow.

Theorem 1.4. The normalizer of the earthquake flow inside the group of orbifold
automorphisms of P1Mg is the flow itself.

Theorem 1.2 follows immediately from Theorem 1.4, since the Teichmüller horo-
cycle flow is normalized by the Teichmüller geodesic flow.

A few remarks. Before discussing the proof of Theorem 1.4, let us make a couple
of remarks.

Remark 1.5. In testing the plausibility of Theorem 1.4, it is natural to consider
both Thurston’s stretch map flow, defined in [Thu98], and grafting, so we discuss
both in turn.

The stretch map flow already makes a natural appearance in any discussion re-
garding Mirzakhani’s conjugacy. Indeed, Mirzakhani’s conjugacy shows that the
earthquake flow is part of a measurable SL(2,R)-action in which the diagonal sub-
group acts via the stretch map flow. The stretch map flow does normalize the
earthquake flow, but, since it is only defined on a full measure subset of P1Mg,
this does not contradict Theorem 1.4.

Grafting plays a central role in the definition of complex earthquake discs. If one
compares Teichmüller discs to complex earthquake discs, the Teichmüller geodesic
flow corresponds to grafting. Grafting is continuous, but, since it does not normalize
the earthquake flow, this does not contradict Theorem 1.4.

In the next two remarks, it is implicit that we are working in the category of
topological orbifolds (so in particular all conjugacies are continuous).

Remark 1.6. Theorem 1.4 implies that the earthquake flow is not conjugate to its
own inverse. (The inverse of a flow t 7→ Et is the flow t 7→ E−t.)

Remark 1.7. Theorem 1.4 implies that the earthquake flow is not the restriction
of any SL(2,R)-action to any one-parameter subgroup. (One way to see this is to
note that every non-compact one-parameter subgroup of SL(2,R) has non-trivial
normalizer, since the horocycle flow is normalized by the geodesic flow and the
geodesic flow is normalized by an involution.)
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Outline of the proof. Every normalizer can and should be considered as a con-
jugacy between the earthquake flow and a (possibly trivial) linear time change of
itself. Given an s-normalizer F : P1Mg → P1Mg, we constrain its behavior until
we are eventually able to show it is an element of the flow. This involves four main
steps, each occupying a different section of this paper. Throughout we assume
(X,λ) ∈ P1Mg and F (X,λ) = (Y, µ).

(1) By studying minimal sets, we show in Proposition 2.1 that µ is a multi-
curve if and only if λ is, and, moreover, that the number of components
of µ is equal to the number of of components of λ. This relies on work of
Minsky, Smillie, and Weiss [MW02, SW04].

(2) Leveraging the rigidity of the curve complex, we show in Proposition 3.1
that µ is a multiple of λ. This relies on work of Ivanov [Iva97] and applies
to all (X,λ) ∈ P1Mg.

(3) By carefully analysing the periods of specific closed orbits, we determine in
Lemma 4.2 what the multiple is, showing µ = es · λ. We moreover show in
Lemma 4.3 that, often, many curves shrink by at least a factor of e−s in
the passage of X to Y . This gives a contradiction unless s = 0, showing
that the normalizer is equal to the extended centralizer, a conclusion we
record as Proposition 4.1.

(4) In Proposition 5.1, we show that the extended centralizer of the earthquake
flow is trivial, by showing that many and hence all orbits are preserved,
and using ergodicity. We use Mirzakhani’s generalized McShane identity
[Mir07b] as a technical tool.

Open problems. Many interesting questions related to Mirzakhani’s conjugacy
remain open. We highlight a few of them here.

To our knowledge, the only previously established dynamical difference between
the earthquake and Teichmüller horocycle flows concerns cusp excursions in the
specific case of once punctured tori [Fu19]. Previous to this, it was known that
certain orbits of the two flows do not stay finite distance apart in one dimensional
Teichmüller spaces [MW02, Proposition 8.1].

Theorem 1.4 is a dynamical difference, since it relates to renormalization, but it
would be illuminating to find less subtle differences.

Problem 1.8. Find a dynamical, non-group theoretic property that is invariant
under topological conjugacies and which holds for exactly one of the earthquake
flow and the Teichmüller horocycle flow.

It is easy to construct topological joinings between the earthquake flow and the
Teichmüller horocycle flow. For example, consider the set of pairs

((X,λ), q) ∈ P1Mg ×Q1Mg

such that the horizontal foliation of q is equal to λ. This construction of a topolog-
ical joining admits many different variations.

Problem 1.9. Classify all the topological joinings between the earthquake flow and
the Teichmüller horocycle flow.

More generally, our dynamical understanding of the earthquake flow remains
incomplete, leaving questions such as the following open.
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Question 1.10. Is the earthquake flow polynomially mixing?

In comparison, it is known that the Teichmüller horocycle flow is polynomially
mixing [AGY06, AR12, AG13, Rat87].

There are also interesting open questions related to strong asymmetry, including
the following deliberately vague question.

Question 1.11. How common is strong asymmetry in smooth dynamics?

The most interesting setting for this question may be flows that share some
properties with the earthquake flow, such as volume preserving flows with zero
entropy and having closed orbits of all periods.

Centralizers of flows (and diffeomorphisms) have been studied, for example in
[Oba21, BF14, BV19]. Actions of Baumslag-Solitar groups and other discrete solv-
able groups have been studied, for example in [BMNR17, GL11, GL13, WX20,
BW04, McC10], as well as actions of solvable Lie groups, for example in [Ghy85,
GV94]. See the ICM notes of Wilkinson [Wil10] and Navas [Nav18] for some open
questions and additional context, and see the book [Nav11] for more on the one-
dimensional case. Despite this wealth of related work, we are not aware of much
previous work on computing the normalizers of flows.

Acknowledgements. The first author is very grateful to Steve Kerckhoff for his
invaluable advice, patience, and encouragement. The authors are grateful to Amie
Wilkinson for an enlightening conversation on previous work in smooth dynam-
ics, and Aaron Calderon and Barak Weiss for helpful conversations regarding the
appendix. This work was finished while the first author was a member of the Insti-
tute for Advanced Study (IAS). The first author is very grateful to the IAS for its
hospitality. This material is based upon work supported by the National Science
Foundation under Grant No. DMS-1926686. During the preparation of this paper
the second author was partially supported by NSF Grant DMS 1856155 and a Sloan
Research Fellowship.

2. A dimension argument using minimal sets

In this section we analyze minimal sets to obtain the following.

Proposition 2.1. Let F : P1Mg → P1Mg be a normalizer of the earthquake flow,
and suppose (X,λ) ∈ P1Mg and F (X,λ) = (Y, µ). Then, for any k ∈ N, λ is
a simple closed multi-curve with k components if and only if µ is a simple closed
multi-curve with k components.

We begin by showing that every normalizer must preserve the locus of points
(X,λ) ∈ P1Mg with λ a simple closed multi-curve. We do this using the minimal
sets of the earthquake flow.

A minimal set of the earthquake flow is a closed, earthquake flow invariant
subset of P1Mg that does not contain any proper, non-empty, closed, earthquake
flow invariant subsets.

We will be interested in compact minimal sets. Minsky and Weiss showed that all
minimal sets for the earthquake flow are compact [MW02], but we will not require
such a strong statement. The result we will need is the following.

Theorem 2.2. A point (X,λ) ∈ P1Mg is contained in a compact minimal set if
and only if λ is a simple closed multi-curve.
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Smillie-Weiss [SW04] proves the analogous statement for the Teichm̈uller horo-
cycle flow and states that it should be possible to similarly obtain a result for the
earthquake flow. However as far as we know even the statement of Theorem 2.2
has not previously appeared in the literature. For the convenience of the reader we
sketch a proof in Appendix A.

Since normalizers preserve minimal sets, we deduce the following corollary.

Corollary 2.3. Let F : P1Mg → P1Mg be a normalizer of the earthquake flow,
and suppose (X,λ) ∈ P1Mg and F (X,λ) = (Y, µ). Then, λ is a simple closed
multi-curve if and only if µ is a simple closed multi-curve.

To get a grasp on the number of components of a simple closed multi-curve, we
study the local topology of the lift to P1Tg of the union of the compact minimal sets
of the earthquake flow on P1Mg. The following result is crucial to our approach.

Lemma 2.4. Let γ ∈ PMLg be the projective class of a simple closed multi-curve
with k ∈ N components, U ⊆ PMLg be a small open neighborhood of γ in PMLg,
and W be the path connected component containing γ of the intersection of U with
the subset of PMLg of projective classes of simple closed multi-curves. Then, if U

is sufficiently small, U ∩W is locally homeomorphic to R6g−7−k.

Proof. Denote γ :=
∑k
i=1 aiγi ∈ PMLg. Then, if U is sufficiently small, W consists

of projective classes of simple closed multi-curves of the form

γ′ :=

k∑
i=1

(ai + εi)γi +

k′∑
j=1

δjγ
′
j ,

where ε := (εi)
k
i=1 ∈ Rk is a small vector, k′ ≥ 0 is a non-negative integer, (γ′j)

k′

j=1

are pairwise non-homotopic and non-intersecting simple closed curves that are not
homotopic and do not intersect any of the components of γ, and δ := (δj)

k′

j=1 ∈ Rk′

+

is a small vector with positive entries. This fact can be readily verified using Dehn-
Thurston coordinates [PH92, §1.2]. Indeed, if U is sufficiently small, projective
classes in W correspond to simple closed multi-curves whose geometric intersection
number with any of the components of γ is zero.

Furthermore, the closure of W in U is given by the connected component con-
taining γ of the intersection of U with the projectivization of

Zg(γ) := {λ ∈MLg | i(γ, λ) = 0}.

Notice that Zg(γ) is homeomorphic to Rk ×R6g−6−2k, where the first term of this
product corresponds to changing the weights of the components of γ and the second
term corresponds to choosing a measured geodesic lamination on Sg supported away

from γ. In particular, U ∩W is locally homeomorphic to R6g−7−k. �

Suppose (X, γ) ∈ P1Tg, where γ is a simple closed multi-curve with k ∈ N
components. Consider a small open neighborhood U ⊆ P1Tg of (X, γ). Denote
by W the path connected component containing (X, γ) of the intersection of U
with the subset of points of P1Tg where the lamination is a simple closed multi-
curve. Directly from Lemma 2.4 we see that, if U is sufficiently small, U ∩W is
locally homeomorphic to R12g−13−k; the 6g− 6 increase in dimension with respect
to Lemma 2.4 comes from the dimension of Teichmüller space. In particular, we
can recover the number of components of γ from the dimension of this intersection.
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As the number of components of γ can be recovered from information depend-
ing exclusively on the minimal sets of P1Mg, this quantity is preserved by any
earthquake flow normalizer. This concludes the proof of Proposition 2.1.

3. An automorphism of the curve complex

In this section we use the rigidity of the curve complex to obtain the following.

Proposition 3.1. Every normalizer F : P1Mg → P1Mg of the earthquake flow
admits a Modg-equivariant lift F̂ : P1Tg → P1Tg such that for every (X,λ) ∈ P1Tg,
if F̂ (X,λ) = (Y, µ), then µ belongs to the projective class of λ ∈MLg.

Because we assume F is an orbifold map, there exists a lift F̂ : P1Tg → P1Tg
that is equivariant with respect to some automorphism of Modg. We start with
this lift and show how to modify it to get the desired lift F̂ .

Denote by Sg the discrete set of free homotopy classes of unoriented simple closed
curves on the marking surface Sg. By Proposition 2.1, every X ∈ Tg induces a map
ΨX : Sg → Sg in the following way: Given γ ∈ Sg, let ΨX(γ) ∈ Sg be the free
homotopy class of the simple closed curves γ′ given by

(Y, γ′/`γ′(Y )) := F̂ (X, γ/`γ(X)).

As Tg is connected and as Sg is discrete, the map ΨX : Sg → Sg is independent of
X ∈ Tg. From now on we denote this map simply by Ψ: Sg → Sg.

We claim that Ψ induces an automorphism of the curve complex of Sg, meaning
that it is bijective and that any pair of simple closed curves can be realized disjointly
if and only if their images under Ψ can be realized disjointly.

Lemma 3.2. The map Ψ: Sg → Sg defined above induces an automorphism of the
curve complex of Sg.

Proof. An inverse of Ψ: Sg → Sg can be constructed using the inverse of F̂ . It
follows that Ψ is bijective.

Notice that a pair α, β ∈ Sg of simple closed curves can be realized disjointly if
and only if there exists a path

t ∈ [0, 1] 7→ (Xt, γt) ∈ P1Tg
such that γt is a simple closed multi-curve on Sg for every t ∈ [0, 1], γ0 = α/`X0(α),
γ1 = β/`X1

(β), and γt has exactly two components for every t ∈ (0, 1). It follows
from Proposition 2.1 that F̂ preserves these types of paths. In particular, for
every pair of simple closed curves α, β ∈ Sg, their images Ψ(α),Ψ(β) ∈ Sg are
non-intersecting if and only if α and β are non-intersecting. �

A well known result of Ivanov [Iva97] shows that every automorphism of the
curve complex of a closed, connected, oriented surface Sg of genus g ≥ 2 is induced
by the isotopy class of a diffeomorphism of Sg. Thus there exists a diffeomorphism
ψ : Sg → Sg such that the map Ψ: Sg → Sg defined above is given by Ψ(γ) = ψ(γ)
for every γ ∈ Sg. The diffeomorphism ψ acts on P1Tg by changing the markings
even if it does not preserve the orientation of Sg. It also acts naturally on the
mapping class group Modg by conjugation.

Since F̂ : P1Tg → P1Tg is the lift of an orbifold map, there exists an automor-
phism ρ : Modg → Modg such that

F̂ (φ.(X,λ)) = ρ(φ).F̂ (X,λ)
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for every φ ∈ Modg and every (X,λ) ∈ P1Tg. Consider the lift F̂ ′ : P1Tg → P1Tg
of F defined by

F̂ ′(X,λ) := ψ−1.F̂ (X,λ).

This lift intertwines the automorphism ρ′ : Modg → Modg given by

ρ′(φ) := ψ−1 ◦ ρ(φ) ◦ ψ
for every φ ∈ Mod. Thus, by replacing F̂ with F̂ ′, we can assume without loss of
generality that the map Ψ: Sg → Sg defined above is the identity.

As F̂ intertwines the automorphism ρ : Modg → Modg, the map Ψ: Sg → Sg
defined above, which we are assuming is the identity, also intertwines this auto-
morphism. It follows that ρ(φ).γ = φ.γ for every φ ∈ Modg and every γ ∈ Sg.
As the kernels of the Modg actions on Sg and Tg are equal, ρ(φ).X = X for every
φ ∈ Modg and every X ∈ Tg. It follows that, without loss of generality, we can
assume that the automorphism ρ : Modg → Modg is the identity.

The discussion above shows that the lift F̂ satisfies the following property: For
every X ∈ Tg and every simple closed curve γ ∈ Sg, if (Y, µ) := F̂ (X, γ/`γ(X)) ∈
P1Tg, then µ belongs to the projective class of γ ∈ MLg. As simple closed curves
are dense in PMLg, the same property holds for arbitrary measured geodesic lam-
inations. This concludes the proof of Proposition 3.1.

4. Inspecting the periods of closed orbits

In this section we show that the normalizer of the earthquake flow is equal to its
extended centralizer.

Proposition 4.1. N(E) = C±(E).

In other words, given an s-normalizer F as above, we show that s = 0. We begin
by strengthening Proposition 3.1 to control the scaling between λ and µ.

Lemma 4.2. Let F̂ be the lift produced by Proposition 3.1 of an s-normalizer F .
Then, for every (X,λ) ∈ P1Tg, if (Y, µ) := F̂ (X,λ), then µ = es · λ.

Proof. Since for every (X,λ) ∈ P1Tg the measured geodesic lamination µ :=
µ(X,λ) given by (Y, µ) := F̂ (X,λ) belongs to the projective class of λ ∈MLg, we
can consider the continuous function c : P1Tg → R+ which to every (X,λ) ∈ P1Tg
assigns the unique scaling factor c(X,λ) > 0 such that

(4.1) µ(X,λ) = c(X,λ) · λ.
Our goal is to show that c : P1Tg → R+ is identically equal to es. Denote by
Tγ ∈ Modg the Dehn twist of Sg along a simple closed curve γ. One can check
that, for every (X, a · γ) ∈ P1Tg with a > 0 and γ a simple closed curve on Sg, the
period of the earthquake flow orbit of

(X, a · γ) ∈ P1Tg/〈Tγ〉
is exactly `γ(X)/a. Let (X, γ/`γ(X)) ∈ P1Tg with γ a simple closed curve on Sg. As
F̂ is Modg-equivariant and as s-normalizers multiply periods by e−2s, it follows from
(4.1) and the previous observation that c(X, γ/`γ(X)) = es. As c : P1Tg → R+ is
continuous and as points of the form (X, γ/`γ(X)) ∈ P1Tg with γ a simple closed
curve on Sg are dense in P1Tg, this finishes the proof. �

We now prove a loop shrinking property for lifts F̂ of s-normalizers of the earth-
quake flow. This property will play a crucial role in the proof of Theorem 1.4.
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Lemma 4.3. Let F̂ be the lift produced by Proposition 3.1 of an s-normalizer F of
the earthquake flow. Then, for every X ∈ Tg and every simple closed curve α ∈ Sg,
if (Y, µ) := F̂ (X,α/`α(X)), then

`β(Y ) ≤ e−s`β(X)

for every simple closed curve β ∈ Sg that can be realized disjointly from α, with
equality if β = α.

Proof. By Lemma 4.2, µ = es · α/`α(X). It follows that

1 = `µ(Y ) = es · `α(X)−1 · `α(Y ).

Reorganizing the terms in this equality we deduce

`α(Y ) = e−s · `α(X).

Let β ∈ Sg be a simple closed curve that can be realized disjointly from α and
is not equal to α. We average α and β with appropriate weights to obtain simple
closed multi-curves on Sg converging to α/`α(X), with unit length with respect
to X, and whose corresponding earthquake flow orbits are periodic with explicit
periods. Indeed, for every k ∈ N consider the positive weights

ak = ak(X,α, β) :=
(
`α(X) + k−1 · `α(X)−1 · `β(X)2

)−1
,

bk = bk(X,α, β) :=
(
`β(X) + k · `α(X)2 · `β(X)−1

)−1
.

These choices guarantee that for every k ∈ N,

(4.2) `β(X)/bk = k · `α(X)/ak.

For every k ∈ N consider the simple closed multi-curve on Sg given by

γk = γk(X,α, β) := ak(X,α, β) · α+ bk(X,α, β) · β.

Direct computations show that `γk(X) = 1 for every k ∈ N. Directly from the
definitions one can also check that

lim
k→∞

γk = α/`α(X).

For every k ∈ N consider (Yk, µk) := F̂ (X, γk). By Lemma 4.2, µk = es · γk for
every k ∈ N. As F̂ is continuous,

(4.3) Y = lim
k→∞

Yk.

Fix k ∈ N. Denote by Tα, Tβ ∈ Modg the Dehn-twists of Sg along α and β. A
direct computation using (4.2) shows that the earthquake flow orbit of the image of
(X, γk) in P1Tg/〈Tα, Tβ〉 is periodic with period given by the least common multiple

(4.4) lcm(`α(X)/ak, `β(X)/bk) = `β(X)/bk.

Analogously, the earthquake flow orbit of the image of (Yk, µk) in P1Tg/〈Tα, Tβ〉 is
periodic if and only if the following least common multiple is finite, in which case
it is exactly the period of the orbit,

(4.5) lcm(`α(Y )/(es · ak), `β(Y )/(es · bk)).

Since s-normalizers multiply periods by e−2s, for the periods in (4.4) and (4.5) to
agree, it is necessary that

`β(Yk) ≤ e−s · `β(X).
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Taking limits as k →∞ and using (4.3) we conclude

`β(Y ) ≤ e−s · `β(X). �

We can now conclude the proof of Proposition 4.1 as follows.

Proof of Proposition 4.1. Suppose by contradiction that s 6= 0. By working with
the inverse of F if s < 0, we can assume without loss of generality that s > 0. Denote
by F̂ the Modg-equivariant lift provided by Proposition 3.1. Let α, β, γ ∈ Sg be
simple closed curves such that α can be realized disjointly from β and γ, and such
that β and γ have positive geometric intersection number. Fix X ∈ Tg and let

(Xn, λn) := F̂n(X,α/`α(X))

for every n ∈ N. By Lemma 4.3, there exists N ∈ N such that `β(XN ) and `γ(XN )
are arbitrarily small, contradicting the collar lemma for hyperbolic surfaces. �

5. The centralizer of the earthquake flow

In this section we show that the extended centralizer of the earthquake flow is
trivial.

Proposition 5.1. C±(E) = E.

We proceed in several steps, starting with the following geometric result.

Lemma 5.2. Let X and Y be a pair of compact, connected, and orientable diffeo-
morphic hyperbolic surfaces with one or two totally geodesic boundary components.
Suppose that, for some pair of markings on X and Y , the lengths of the bound-
ary components of X agree with those of Y , and, for every simple closed curve,
the length of its geodesic representative on Y is at most the length of its geodesic
representative on X. Then, X and Y are isometric.

An analogous statement for closed surfaces is well known [Thu98, Theorem 3.1].
We do not know if the exact statement of Lemma 5.2 has appeared before in the
literature, but in any case, a short proof is possible from known results.

Proof of Lemma 5.2. The monotonicity of the summands in Mirzakhani’s general-
ized McShane’s identity [Mir07b, Theorem 1.3] guarantees that, if X and Y satisfy
the assumptions, then, for every simple closed curve, the lengths of its geodesic rep-
resentatives on X and Y are equal. As the isometry class of a marked hyperbolic
structure with totally geodesic boundary components on a compact, connected,
orientable surface is determined by its marked length spectrum, we conclude that
X and Y are isometric. �

The following result shows that centralizers of the earthquake flow map points
of the form (X,α/`α(X)) ∈ P1Mg into their own earthquake flow orbit.

Lemma 5.3. Suppose F ∈ C±(E) and let F̂ be the lift provided by Proposition 3.1.
Then, for every X ∈ Tg and every simple closed curve α ∈ Sg, there exists a unique
t ∈ R satisfying

F̂ (X,α/`α(X)) = Et(X,α/`α(X)).

For the proof it is helpful to recall that an element of the extended centralizer
is nothing other than an s-normalizer with s = 0.
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Proof of Lemma 5.3. Let (Y, µ) := F̂ (X,α/`α(X)) ∈ P1Tg. Lemma 4.3 ensures
that µ = α/`α(X) ∈ MLg, `α(Y ) = `α(X), and `β(Y ) ≤ `β(X) for every simple
closed curve β ∈ Sg that can be realized disjointly from α.

Cutting X and Y along the corresponding geodesic representatives of α on each
surface yields a pair of (possibly disconnected) hyperbolic surfaces with totally
geodesic boundary components of matching lengths. Lemma 5.2 guarantees these
surfaces are isometric. As X and Y can be recovered from isometric pieces by
glueing along the boundary components corresponding to α, we deduce that X and
Y only differ by a Fenchel-Nielsen twist along α. In other words,

F̂ (X,α/`α(X)) = (Y, µ) = Et(X,α/`α(X)). �

The following result extends the conclusion of Lemma 5.3 to arbitrary points
(X,λ) ∈ P1Tg.

Lemma 5.4. Suppose F ∈ C±(E) and let F̂ be the lift provided by Proposition 3.1.
Then there exists a continuous, Modg-invariant function t : P1Tg → R such that
for every (X,λ) ∈ P1Tg, t = t(X,λ) satisfies

F̂ (X,λ) = Et(X,λ)

and is the unique real number satisfying this equation.
Furthermore, if F ∈ C(E), then t is earthquake flow invariant, and, if F ∈

C±(E) \ C(E), then T is “twisted-equivariant” in the sense that

t(Es(X,λ)) = t(X,λ)− 2s.

Proof. Fix (X,λ) ∈ P1Tg. As weighted simple closed curves are dense inMLg, one
can find a sequence (λn)n∈N of weighted simple closed curves such that λn → λ in
MLg as n→∞. By Lemma 5.3, for every n ∈ N there exists tn ∈ R such that

(5.1) C(X,λn) = Etn(X,λn).

Claim 5.5. The sequence (tn)n∈N is bounded.

Proof. Suppose by contradiction this was not the case. Assume tn diverges to +∞
along a subsequence; the case when tn diverges to −∞ along a subsequence can
be treated in an analogous way. Rename this subsequence as (tn)n∈N and assume
without loss of generality that all of its terms are positive. Let µ ∈ MLg be a
measured geodesic lamination such that∫∫

X

cos θ dλ dµ > 0,

where θ is the angle measured counterclockwise from µ to λ at each intersection
between µ and λ. By work of Kerckhoff [Ker83], this integral is equal to the
derivative at t = 0 of the convex function t 7→ `µ(Et(X,λ)). By continuity, there
exists c > 0 and N ∈ N such that for every n ≥ N ,∫∫

X

cos θ dλn dµ > c,

Kerckhoff’s work guarantees that, for every n ≥ N ,

(5.2) `µ(Etn(X,λn)) ≥ `µ(X) + tn · c.
Denote by π : P1Tg → Tg the natural projection defined by π(X,λ) = X. By

definition,
Etn(X,λn) = F̂ (X,λn) ∈ F̂ (π−1(X)).
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As F̂ is continuous, the set F̂ (π−1(X)) ⊆ P1Tg is compact. It follows that the
sequence (`µ(Etn(X,λn)))n∈N must be bounded. Taking limits as n→∞ in (5.2)
yields a contradiction, concluding the proof of the claim. �

As (tn)n∈N is bounded, it admits a subsequence converging to some t ∈ R.
Taking limits in (5.1) along this subsequence we deduce

(5.3) F̂ (X,λ) = Et(X,λ).

The uniqueness of t ∈ R satisfying this condition follows directly from the fact that
earthquake flow orbits in P1Tg are embedded. The continuity of the corresponding
function t : P1Tg → R follows from (5.3) and uniqueness. The Modg-invariance of t
can be verified using (5.3) and the fact that F̂ is Modg-equivariant. The earthquake
flow invariance or twisted-equivariant of t can be verified directly from (5.3) and
the fact that F̂ is in the extended centralizer of the earthquake flow. �

We are now ready to conclude.

Proof of Proposition 5.1. Consider the function t : P1Tg → R above. Since it is
Modg-equivariant, it induces a function t : P1Mg → R.

If F ∈ C(E), the function t is earthquake flow invariant. As the earthquake
flow on P1Mg is ergodic with respect to a measure of full support, t is equal to
a constant t0 ∈ R on a dense set of P1Mg. Applying continuity and density we
conclude F = Et0 as desired.

If F ∈ C±(E) \ C(E), we will use that for some c ∈ R, the set t−1((−∞, c))
has has measure less than 1

2 , but that for some c < c′ the set t−1((−∞, c′)) has

measure more than 1
2 . This gives a contradiction, since the twisted-equivariance

gives that E(c′−c)/2 maps t−1((−∞, c′)) into t−1((−∞, c)), and since earthquake
flow is measure preserving. �

We are now ready to prove that the earthquake flow is strongly asymmetric.

Proof of Theorem 1.4. Proposition 4.1 shows that N(E) = C±(E) and Proposition
5.1 shows that C±(E) = E. �

Appendix A. Minimal sets

In this appendix we sketch, for the convenience of the reader, a proof of Theorem
2.2. The corresponding result in the case of the Teichmüller horocycle flow is dis-
cussed in detail in [SW04], and Smillie and Weiss remark there that “an analogous
result for the earthquake flow may be proved by a similar argument.” Our starting
point is the following observation, the details of whose proof are left to the reader.

Lemma A.1. If K ⊂ P1Mg is a minimal set for the earthquake flow, and (X,λ)
and (X ′, λ′) are in K, then X − λ is isometric to X ′ − λ′.

Sketch of proof. For any fixed (X,λ) ∈ K, consider the set K ′ ⊆ K of all (X ′, λ′) ∈
K for which there exists an isometric embedding

X − λ ↪→ X ′ − λ′

of complementary regions. Since the complementary regions are not changed by
the earthquake flow, K ′ is invariant. A limit argument shows that K ′ is closed, so
the definition of minimality guarantees K ′ = K.
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Thus, for every (X,λ), (X ′, λ′) ∈ K, each complementary region embeds isomet-
rically into the other. Hence X − λ = X ′ − λ′. �

We also need the following non-trivial result.

Proposition A.2. If λ is not a multi-curve and the orbit of (X,λ) is bounded in
P1Mg, then the orbit accumulates on some (X ′, λ′) with X − λ 6= X ′ − λ′.

In fact, experts believe the following stronger statement is true (and accessible).

Problem A.3. Prove that if λ is not a multi-curve, then the earthquake flow orbit
of (X,λ) is not bounded.

We will not consider this problem here since it is certainly harder than what we
require. The analogous problem for the Teichmüeller horocycle flow is item (IV) in
the list of problems at the end of [SW04] and has been considered in unpublished
work of Smillie and Weiss.

Before addressing Proposition A.2, we note it implies Theorem 2.2.

Proof of Theorem 2.2 assuming Proposition A.2. If K is a compact minimal set
and (X,λ) ∈ K, then Lemma A.1 implies that for any (X ′, λ′) in the orbit closure
of (X,λ) has X − λ = X ′ − λ′, and so Proposition A.2 implies λ is a multi-curve.

The converse implication that if λ is a multi-curve then the orbit closure of (X,λ)
is a minimal set is well known. Indeed, if T ⊆ P1Mg is the subset obtained by
starting at (X,λ) and independently twisting at each component of λ, then T is an
invariant torus and the earthquake flow is continuously conjugate to a straight line
flow on T . The converse implication follows from the fact that, for straight lines
flows on tori, every orbit closure is a minimal set. �

We conclude by briefly sketching how the ideas of Smillie-Weiss apply to Propo-
sition A.2. Most of the work is divided into two lemmas.

Lemma A.4. Suppose λ is a measured geodesic lamination on X that is not a
multi-curve. Then there exists some δ > 0 such that for all ε > 0 we can find
segments γ1 and γ2 of leaves of λ that stay within distance 1 of each other, and
such that all leaves of λ that come within δ of the start point p1 of γ1 do so on the
side of γ1 containing γ2, and all leaves that come within δ of the end point p2 of
γ2 do so on the side of γ2 containing γ1, and such that the transverse measure of a
segment from γ1 to γ2 is less than ε.

In particular, it follows that both γi are segments of leaves of λ adjacent to
regions of X − λ. See Figure 1.

Figure 1. An illustration of the γi. The red half balls of radius
δ do not intersect λ.
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The proof will use the concept of the thick part of a surface with boundary,
which can be defined by embedding the surface in its double and taking the thick
part there; see for example [LW21, Section 2.1] for details.

Sketch of proof. Without loss of generality assume γ has no closed leaves. Start
with p1 on the boundary of the thick part of X − λ, on a leaf α of λ. Pick a point
q that is very close to p1 and on a leaf β of λ. Follow both leaves α, β in the same
direction until they are distance 1/10 apart. The region R between these segments
of α and β, illustrated in Figure 2, has definite area.

Figure 2. An illustration of the region R

The area of the thin part of X − λ is small, so the thick part must intersect R.
(Here the thick part should be defined appropriately using δ and δ should be taken
small enough.)

We then pick p2 to be on the boundary of the thick part of X − λ intersected
with R. (One should pick p2 so that the thick part and α are on different sides of
the leaf through p2.) We define γ1 to be the segment of α from p1 to the projection
of p2 onto α, and similarly define γ2 using the leaf through p2. �

Lemma A.5. There exists a universal constant C > 0 such that the following
holds. Consider any measured geodesic lamination on H, any segments γ1, γ2 of
non-atomic leaves of λ that stay within distance 1 of each other, and any p1 ∈ γ1,
p2 ∈ γ2. Let λmax be a maximal geodesic lamination containing λ. Assume the pi
lie on the boundary of H−λmax. Then there is a unique t ∈ R such that the image
of p1 and p2 under the time t earthquake of λ can be joined by a segment s of a leaf
of the horocyclic foliation of λmax and this segment has length at most C.

In applications, often λ is already maximal, so λmax = λ. The main conclusion
here is that p1 and p2 become bounded distance from each other; the use of the
horocyclic foliation (and λmax) is merely a convenient technical tool to obtain this.

One should of course think of H as the universal cover of a closed surface X; we
use the universal cover only so that we do not have to specify a homotopy class for
the arc s.

Sketch of proof. The first claim is related to the fact that shears change linearly
under earthquakes; see for example the survey [Wri18, Section 4].

If one considers a rectangle R bounded by γ1 and γ2, then λ divides this rectangle
up into countably many small rectangles bounded by leaves of λ. The preimage
of s on (X,λ) consists of one horocyclic arc in each small rectangle; compare to a
Cantor staircase.

For each small rectangle, one can define its maximum height to be the maximum
length of a horocyclic arc crossing that rectangle. A standard estimate shows that
the sum of the maximum heights is at most some constant C; see [Thu98, page 16].
This uses the fact that the γi remain within distance 1 of each other.



THE ASYMMETRY OF THURSTON’S EARTHQUAKE FLOW 15

The length of s is the sum of the lengths of the horocyclic arcs of E−t(s), which
is at most C. This gives the result. �

Sketch of proof of Proposition A.2. Consider a sequence εn → 0 and for each n ∈ N
let γ1,n, γ2,n, p1,n, p2,n be as provided by Lemma A.4 with ε = εn.

The output of Lemma A.5 is a sequence of points (Xn, λn) ∈ P1Mg on the
earthquake flow orbit of (X,λ) such that two points on the boundary of the thick
part of Xn − λn = X − λ are joined by a path of hyperbolic length at most C and
transverse measure going to 0 as n→∞. By extending these paths into the thick
part and taking geodesic representatives, we obtain geodesic paths σn of lengths
bounded above and below, which are uniformly transverse to λ, and which have
the same transverse measure.

Passing to a subsequence if necessary, we can assume (Xn, λn) converge to some
(X∞, λ∞) ∈ P1Mg. For convenience, we can also assume that the supports of the
λn converge to a geodesic lamination λ̂∞ which contains the support of λ∞.

Since the complementary regions Xn − λn are constant, it follows that X − λ =
X∞ − λ̂∞. Thus, to show that X − λ 6= X∞ − λ∞, it suffices to show that some
leaves of the geodesic lamination λ̂∞ are not contained in the support of λ∞.

This is verified by considering a limit σ of the geodesic segments σn; the limit
σ has length bounded above and below, is transverse to λ̂∞, and has 0 transverse
measure with respect to λ∞. �
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