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Abstract. By work of Jenkins and Strebel, given a Riemann surface X
and a simple closed multi-curve α on it, there exists a unique quadratic
differential q on X whose horizontal foliation is measure equivalent to
α. We study the distribution of the critical graphs of these differentials
in the moduli space of metric ribbon graphs as the extremal length
of the multi-curves goes to infinity, showing they equidistribute to the
Kontsevich measure regardless of the initial choice of X.

1. Introduction

Overview. Famous independent works of Jenkins and Strebel [Jen57, Str66,
Str75, Str76] show that, given a Riemann surface X and a simple closed
multi-curve α on it, there exists a unique quadratic differential q on X whose
horizontal foliation represents each curve of α by a cylinder of height one.
To every such quadratic differential q one can associate its critical graph,
a ribbon graph having the singularities of q as vertices and the horizontal
saddle connections of q as edges. This ribbon graph inherits a metric from
the singular flat metric induced by q on X. Roughly speaking, the critical
graph encodes the conformal geometry of X away from α. See Figure 1.

By work of Mirzakhani1 [Mir08b], given a closed, connected, oriented
Riemann surface X, the number of simple closed (multi-)curves on X of
extremal length ≤ L2 is asymptotic to a polynomial of degree 6g − 6. Each
one of these curves gives rise to a critical graph as described above. In this
paper we show these critical graphs, appropriately rescaled, equidistribute
to the Kontsevich measure on the moduli space of metric ribbon graphs. In
particular, the limiting distribution is independent of the initial choice of X.

The question at hand is heavily motivated by analogous results in the
setting of hyperbolic surfaces. In [AHC22], the authors showed that, given
a closed, connected, oriented hyperbolic surface X, the metric ribbon graph
spines of complementary subsurfaces to simple closed multi-geodesics also
equidistribute to the Kontsevich measure on the corresponding moduli space
as the lengths of the geodesics goes to infinity. This result in turn follows
a line of investigation that can be traced back to several other authors

Date: May 24, 2023.
1Although not explicitly stated, this follows directly from [Mir08b, Theorem 1.3]. See

[MGT21, Corollary 5.13] for another proof from the viewpoint of geodesic currents.
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[Mir16, Liu19, AH20a, ES22]. Analogous questions have also been answered
in the setting of homogeneous dynamics [AES16a, AES16b, ERW19].

Paralleling our approach in [AHC22], we reduce the problem to an equidis-
tribution question concerning the dynamics of the Teichmüller horocycle
flow on moduli spaces of quadratic differentials. These reductions combine
Margulis’s well-known averaging and unfolding techniques [Mar70] with sev-
eral recent developments in Teichmüller theory. Of particular importance
are Delaunay triangulations of quadratic differentials following Masur and
Smillie [MS91], the AGY-metric on the moduli space of quadratic differ-
entials developed by Avila, Gouzel, and Yoccoz [AGY06, AG13], and the
study of the projection of the Masur–Veech measure to the moduli space of
Riemann surfaces carried out by Athreya, Bufetov, Eskin, and Mirzakhani
[ABEM12].

The main result of this paper also provides a new procedure for sampling
random metric ribbon graphs. In particular, the geometry of any single
conformal surface reflects the geometry of random metric ribbon graphs.

Main result. To streamline our exposition, for the moment we only state
our main result in the (representative) case of non-separating simple closed
curves. The statement for the general case appears as Theorem 6.2 below.

For the rest of this discussion fix an integer g ≥ 2 and denote by Sg a
closed, connected, oriented surface of genus g. Let Modg be the mapping
class group of Sg, Tg be the Teichmüller space of marked conformal struc-
tures on Sg, and Mg be the moduli space of conformal structures on Sg.
Free homotopy classes of unoriented simple closed curves on Sg will be ref-
ered to as simple closed curves. Given a simple closed curve α on Sg and a
marked conformal structure X ∈ Tg, denote by ExtX(α) > 0 the extremal
length of α with respect to X; see §2 below for a discussion of the different
definitions of extremal length.

Let γ be a non-separating simple closed curve on Sg and X ∈ Tg be a
marked conformal structure on Sg. For every L > 0 consider the counting
function

s(X, γ, L) := #{α ∈ Modg · γ | ExtX(α) ≤ L2}.
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Figure 1. A Jenkins–Strebel differential and its critical
graph.
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This function does not depend on the marking of X ∈ Tg but only on its
underlying conformal strucure X ∈ Mg. Indeed, it is equal to the number
of non-separating simple closed curves on X of extremal length ≤ L2. By
Mirzakhani’s seminal work [Mir08b], this counting function is asymptotically
polynomial (see (6.1) below).

Given X ∈ Tg and a non-separating simple closed curve α on Sg, denote
by JS(X,α) the unique Jenkins–Strebel differential on X whose horizontal
measured foliation is equivalent to α (where the curve is given weight 1);
in particular, the horizontal foliation of JS(X,α) consists of a single cylin-
der of height 1. Consider the critical graph of this differential, that is, the
union of all of the singular horizontal trajectories of JS(X,α) equipped with
the restriction of the underlying singular flat metric and the ribbon struc-
ture coming from its embedding in Sg. Each of its boundaries has length
ExtX(α), so to understand the distribution of these graphs we need to rescale
them (see §2).

Denote by MRGg−1,2(1, 1) the moduli space of metric ribbon graphs of
genus g − 1 with two boundary components, each of length 1. For X and α
as above let

Ξ1(X,α) ∈ MRGg−1,2(1, 1)

denote the critical graph of JS(X,α) rescaled by 1/ExtX(α). We remark
that Ξ1(X,α) is not the same as the critical graph of the unit-area Jenkins–
Strebel differential whose horizontal foliation is projectively equivalent to
α; this is because critical graphs scale linearly while extremal length scales
quadratically.

On MRGg−1,2(1, 1) consider the counting measure

ηLX,γ :=
∑

α∈Modg ·γ
1[0,L2](ExtX(α)) · δΞ1(X,α).

Just like the counting function s(X, γ, L), this measure does not depend
on the marking of X ∈ Tg but only on the underlying conformal structure.
Denote by ηKon the measure induced by the Kontsevich symplectic form on
MRGg−1,2(1, 1) and by cg > 0 its total mass (see §5 below or [AHC22, §2]).

The following theorem, which shows that the rescaled critical graphs of
Jenkins–Strebel differentials of non-separating simple closed curves equidis-
tribute over the moduli space MRGg−1,2(1, 1), is an instance of the main
result of this paper. For the general version see Theorem 6.2, as well as
Theorem 6.12 for an even stronger version concerning simultaneous equidis-
tribution.

Theorem 1.1. Let γ be a non-separating simple closed curve and X ∈ Mg.
Then

lim
L→∞

ηLX,γ

s(X, γ, L)
=

ηKon

cg

with respect to the weak-⋆ topology for measures on MRGg−1,2(1, 1),
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Main ideas of proof. Our proof of Theorem 1.1 follows the same outline
as the analogous result in the hyperbolic setting [AHC22, Theorem 1.1].
Namely, we reduce the desired equidistribution result on MRGg−1,2(1, 1) to
a curve counting result, which we then translate back into an equidistribu-
tion result over Mg.

First, consider the following reformulation. Let f : MRGg−1,2(1, 1) →
R≥0 be a continuous, compactly supported function. Then, for any non-
separating simple closed curve γ, any X ∈ Tg, and any L > 0, define the
f -weighted counting

c(X, γ, f, L) :=
∑

α∈Modg ·γ
1[0,L2](ExtX(α)) · f(Ξ1(X,α))

=

∫
MRGg−1,2(1,1)

f(x) dηLX,γ(x).

Theorem 1.1 is then equivalent to the following counting result.

Theorem 1.2. Let γ be a non-separating simple closed curve on Sg, X ∈
Mg be a conformal structure on Sg, and f : MRGg−1,2(1, 1) → R≥0 be a
continuous, compactly supported function. Then,

lim
L→∞

c(X, γ, f, L)

s(X, γ, L)
=

1

cg

∫
MRGg−1,2(1,1)

f(x) dηKon(x).

Once in this setting, we apply Margulis’s “averaging and unfolding” tech-
niques [Mar70] to reduce the counting problem at hand to an equidistribu-
tion question over Mg. Just as in [AHC22], during the averaging step one
needs uniform control over how the metric ribbon graph Ξ1(X,α) varies as
X ∈ Tg does. The basic issue is that if JS(X,α) lies in (or near) a non-
principal stratum then small deformations of X can change the topology of
the critical graph. To remedy this, we prove in Proposition 3.6 that for most
α, the differential JS(X,α) lies far away from non-principal strata. Propo-
sition 4.3 then shows that for such α we can achieve the desired uniform
control on the geometry of the critical graph.

This control allows us to perform the averaging and unfolding step of our
argument, after which our original problem reduces to a question regarding
the equidistribution of certain subsets, which we call “critical-JS-horoballs,”
in the moduli space Mg. To tackle this question we use the rich dynamics of
the Teichmüller geodesic and horocycle flows. More concretely, we use work
of Forni [For21] which in turn relies crucially on work of Eskin, Mirzakhani,
and Mohammadi [EM18, EMM15].

Related results. As mentioned above, the main result of this paper di-
rectly parallels the main theorem of [AHC22]. Indeed, as a consequence of
our results, we find that the limiting distribution of complementary subsur-
faces to hyperbolic geodesics and critical graphs of Jenkins–Strebel differ-
entials are exactly the same. This is a reflection of the phenomenon that as
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the boundary lengths of hyperbolic surfaces go to infinity, they look more
and more like ribbon graphs (compare to [Do10] and [Mon09]).

There is a rich history of using both the conformal and hyperbolic incar-
nations of moduli space to probe its structure, often resulting in analogous
theorems. Of particular relevance to this paper are two different identifica-
tions of the moduli spaces of punctured/bordered Riemann surfaces with the
space of metric ribbon graphs. The first, due to Harer, Mumford, Penner,
and Thurston, uses Jenkins–Strebel differentials with specified poles and
residues; this identification was used in the computation of the orbifold Eu-
ler characteristic of Mg,n [HZ86] as well as Kontsevich’s proof of Witten’s
conjecture [Kon92]. The second, due to Do and Luo, uses the spine of a
hyperbolic surface with boundary (see [Luo07], [Do10], as well as [Mon09]).
This can be used to unite Mirzkahani’s proof of Witten’s conjecture [Mir07]
with Kontsevich’s (see [Do10]). Our previous work [AHC22] dealt with this
second identification, while the paper at hand corresponds to the first par-
adigm.

Our theorem also echoes other equidistribution results on moduli space.
The Teichmüller geodesic flow, represented by the action of the diagonal
matrix

gt :=

(
et 0
0 e−t

)
,

expands the length of horizontal separatrices by a factor of et, so for every
simple closed curve α the rescaled critical graph Ξ1(X,α) is the same as
the critical graph of g− log ExtX(α) JS(X,α). Denote by ∥q∥ the area of a
quadratic differential q. With this identification, Theorem 1.1 states that
point masses on the critical graphs of

(1.1) {g− log ∥q∥q | q = JS(X,α) for α ∈ Modg ·γ and ∥q∥ ≤ L}

equidistribute in MRGg−1,2(1, 1) as L tends to infinity.
This should be compared with work of [ABEM12] and the first author

[AH21a], which give mean equidistribution theorems for expanding Teichmüller
balls in moduli space. More precisely, for every X ∈ Tg, one can consider
the underlying Riemann surfaces of the expanding ball

(1.2) {glog ∥q∥q | q ∈ Q(X) and ∥q∥ ≤ L},

where Q(X) is the vector space of holomorphic quadratic differentials on X;
this is the same as the set of points with Teichmüller distance at most logL
from X. Theorem 1.2 of [ABEM12] then states that on average, the image
of these balls in Mg equidistribute as L tends to infinity. The link between
these equidistribution results for (1.1) and (1.2) is the uniform distribution
of simple closed curves on the space MFg of singular measured foliations
on Sg [Mir08b, Theorem 1.3].

Lastly, it is interesting to contrast our theorem with the main result of
[DS21]. There, Dozier and Sapir show that the projections of some strata
of Q1Mg to Mg are not coarsely dense; in particular, the geometry of
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the critical graphs of horizontally periodic unit area differentials may be
strongly constrained. For example, if X ∈ Mg is not near the projection
of the minimal stratum then it supports no horizontally periodic unit area
differential whose critical graph has a vertex of valence 4g−2, and supports
no differential whose critical graph is close to such.

On the other hand, our main theorem implies that the set of critical graphs
for a fixed X, rescaled to have unit length, is dense in the space of metric
ribbon graphs. Since critical graphs are scaled under the Teichmüller geo-
desic flow, our result can also be interpreted as saying that any X supports
a Jenkins–Strebel differential q = JS(X,α) so that g− log ∥q∥q is arbitrarily
close to the minimal stratum.

Organization of paper. In §2 we collect preliminary material needed to
understand the statements and proofs of the main results of the paper.
In addition to standard background material, we focus on how taking the
critical graph of a Jenkins–Strebel differential gives a map to the moduli
space of metric ribbon graphs. In §3 we show that the Jenkins–Strebel
differentials of most simple closed multi-curves stay deep within the prin-
cipal stratum; this allows us in the subsequent §4 to invoke results about
the AGY metric to show that for most curves, the critical graphs of their
Jenkins–Strebel differentials vary uniformly as the base surface varies. In §5
we define “critical-JS-horoballs”, compute their total mass, and show that
they equidistribute over moduli space. The results in this section rely on
transporting measures between Tg and spaces of quadratic differentials and
leverage the ergodic theory of the SL(2,R) action on the latter spaces. Fi-
nally, in §6 we apply Margulis’s averaging and unfolding strategy to prove
Theorem 6.2, a generalization of Theorem 1.1 to arbitrary multi-curves.

Acknowledgements. The authors would like to thank Vincent Delecroix
for suggesting the question answered in this paper and Curt McMullen for
helpful comments. The authors would also like to thank Giovanni Forni for
very enlightening conversations. AC acknowledges support from NSF grant
DMS-2202703.
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2. Preliminaries

Outline of this section. In this section we give of a brief overview of
the basic objects and theorems that will be used throughout the rest of
this paper. We begin with a discussion on the theory of Jenkins–Strebel
differentials with a special emphasis on the work of Hubbard and Masur
[HM79]. We then briefly recall the moduli spaces of metric ribbon graphs; for
a more detailed discussion of these spaces see [AHC22]. Lastly, we discuss in
detail how the construction of critical graphs of Jenkins-Stebel differentials
defines a map from (quotients of) Teichmüller space to appropriate moduli
spaces of metric ribbon graphs.

Extremal length. Given a Riemann surface X and a simple closed curve
γ on it, the extremal length of γ with respect to X admits two equivalent
definitions. First, it can be defined analytically as

(2.1) ExtX(γ) := sup
ρ

ℓρ(γ)
2

Area(ρ)
,

where the supremum ranges over all conformal metrics ρ on X of non-zero,
finite area and ℓρ(γ) denotes the infimum of the ρ-lengths of simple closed
curves isotopic to γ. Equivalently, it can be defined geometrically as

(2.2) ExtX(γ) := inf
C

1

mod(C)
,

where the infimum ranges over all embedded cylinders C on X with core
curve isotopic to γ and mod(C) denotes the modulus of the cylinder C.

In independent work, Jenkins and Strebel [Jen57, Str66, Str75, Str76]
showed these two a priori different notions of extremal length are equiva-
lent through the construction of so-called Jenkins–Strebel differentials; see
Theorem 2.1 below.

Quadratic differentials. A (holomorphic) quadratic differential q on a
Riemann surface X is a differential which in local coordinates has the form
f(z) dz2 for some holomorphic function f(z). Such a differential has a well
defined notion of area,

∥q∥ := Area(q) :=

∫
X
|q|.

More precisely, the differential q induces a singular flat metric on X. If in
local coordinates z = x+ iy then the metric is given by dx2+dy2; the zeroes
of the differential correspond to singularities of the metric. The area of q is
the total area of this metric. We denote by Q(X) the complex vector space
of all quadratic differentials on a Riemann surface X, and by S(X) ⊆ Q(X)
the sphere of all unit area quadratic differentials onX. We sometimes denote
quadratic differentials by (X, q) to record the Riemann surface X on which
they are defined.
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The spaces Q(X) and S(X) for X ranging over the Teichmüller space Tg
can be arranged into bundles QT g and Q1Tg over Tg of marked (unit area)
quadratic differentials; note that “marking” here refers to a marking only
of the underlying surface Sg and not the zeros of the quadratic differential.
These bundles support natural Modg actions given by change of markings.
The quotient Q1Mg := Q1Tg/Modg is the bundle of unit area quadratic
differentials over moduli space.

The bundleQTg carries a natural Lebesgue-class measure called theMasur–
Veech measure which is induced from an integral lattice, corresponding to
differentials tiled by unit area squares. This measure induces a measure
νMV on the hypersurface Q1Tg also called the Masur–Veech measure. Both
versions of this measure are Modg invariant, and the corresponding push-
forward ν̂MV on Q1Mg is a finite Lebesgue-class measure. Throughout the
paper we will denote its mass by bg.

Singular measured foliations. Denote by MFg the space of singular
measured foliations on Sg up to isotopy and Whitehead moves. The set of
isotopy classes of weighted simple closed curves on Sg embeds densely into
MFg. Furthermore, geometric intersection number extends continuously
to a pairing on MFg. Train track coordinates (see §3) induce a natural
integral piecewise linear structure on MFg. In particular, MFg carries a
natural Lebesgue class measure µTh called the Thurston measure which is
invariant under the natural Modg-action on MFg. Denote by PMFg the
projectivization of MFg under the action that scales transverse measures
and by [λ] ∈ PMFg the projective class of λ ∈ MFg.

Every quadratic differential q on a Riemann surface X gives rise to a pair
of singular measures foliations ℜ(q) and ℑ(q) on X. If in local coordinates
z = x+ iy the differential q corresponds to dz2 then ℜ(q) corresponds to the
measured foliation induced by |dx| while ℑ(q) corresponds to the measured
foliation induced by |dy|; the zeroes of q correspond to the singularities of
the foliations. We refer to ℜ(q) and ℑ(q) as the vertical and horizontal
foliations of q. These constructions give rise to Modg-equivariant maps
ℜ,ℑ : QT g → MFg.

Jenkins–Strebel differentials. It is natural to ask whether, given a marked
Riemann surface X ∈ Tg and a simple closed curve γ on Sg, it is possible to
find a marked quadratic differential q ∈ Q(X) such that ℑ(q) = γ. Jenkins
and Strebel [Jen57, Str66, Str75, Str76] independently showed that this is al-
ways possible and, moreover, in a unique way. We refer to the corresponding
quadratic differential JS(X, γ) ∈ Q(X) as the Jenkins–Strebel differential of
γ onX. Jenkins and Strebel’s motivation can be further understood through
the following result.

Theorem 2.1. Given a marked complex structure X ∈ Tg and a simple
closed curve γ on Sg, the singular flat metric induced by JS(X, γ) ∈ Q(X)
realizes the supremum in (2.1). Furthermore, the complement of the critical
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leaves of vertical foliation of JS(X, γ) ∈ Q(X) is a cylinder realizing the
infimum in (2.2). In particular, the supremum and infimum in (2.1) and
(2.2) are equal.

The Hubbard-Masur theorem. The question addressed by the works
of Jenkins and Strebel can also be considered for more general singular
measured foliations. Indeed, in [HM79] Hubbard and Masur proved the
following structural result.

Theorem 2.2. Given X ∈ Tg and a singular measured foliation λ ∈ MFg,
there exists a unique quadratic differential q = q(X,λ) ∈ Q(X) such that
ℑ(q) = λ. Furthermore, the map q ∈ Q(X) 7→ ℑ(q) ∈ MFg is a homeo-
morphism.

Said another way, the map associating to a simple closed curve its Jenkins–
Strebel differential extends to a homeomorphism JS : Tg ×MFg → QTg.

Theorem 2.2 suggests the following extension of the notion of extremal
length to singular measured foliations: the extremal length ExtX(λ) of λ ∈
MFg with respect to X ∈ Tg is the area of JS(X,λ) ∈ Q(X). With this
definition, extremal length is 2-homogeneous with respect to the scaling
action on transverse measures; this prompts us to usually work with the
square root of extremal length rather than with extremal length itself. For
other methods of extending extremal lengths to singular measured foliations
(and more general objects) see [Ker80, MGT21, AH21b].

One can also ask which pairs of singular measured foliations can arise
as the vertical and horizontal foliations of quadratic differentials. It turns
out that as long as the pair of foliations appropriately fills the surface, this
is always possible [GM91]. A pair of singular measured foliations (λ, µ) ∈
MFg × MFg is said to bind the surface Sg if their geometric intersection
number with any singular measured foliation is positive. Denote by ∆ ⊆
MFg ×MFg the set of pairs of non-binding singular measured foliations.

Theorem 2.3. Given a pair of binding singular measured foliations µ, λ ∈
MFg, there exists a unique quadratic differential q ∈ QT g such that ℜ(q) =
µ and ℑ(q) = λ. Furthermore, the map (ℜ,ℑ) : QT g → MFg ×MFg \∆
is a homeomorphism.

The Teichmüller metric. The Teichmüller metric dTeich on Tg quantifies
the minimal dilation among quasiconformal maps between marked complex
structures on Sg. More precisely, for every X,Y ∈ Tg,

dTeich(X,Y ) :=
1

2
log

(
inf

f : X→Y
K(f)

)
,

where the infimum runs over all quasiconformal maps f : X → Y in the
homotopy class given by the markings of X and Y , and where K(f) denotes
the dilation of such maps. See [FM12, Chapter 11] for a more detailed def-
inition. The action of the (extended) mapping class group on Teichmüller
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space is the isometry group of the Teichmüller metric [Roy71]. The Te-
ichmüller metric is complete and its geodesics can be described explicitly in
terms of the diagonal part of the natural SL(2,R)-action on Q1Tg.

In [Ker80], Kerckhoff proved the following formula for the Teichmüller
metric; this formula provides control over the extremal lengths of singular
measured foliations in terms of the Teichmüller distance between two marked
complex structures.

Theorem 2.4. For any pair of marked complex structures X,Y ∈ Tg,

(2.3) dTeich(X,Y ) =
1

2
max

λ∈MFg

log

(
ExtY (λ)

ExtX(λ)

)
.

Furthermore, if q = q(X,Y ) ∈ S(X) is the unit area quadratic differential
corresponding to the unique Teichmüller geodesic from X to Y , then ℑ(q)
realizes the maximum in (2.3).

The fact that ℑ(q) realizes the supremum (as opposed to ℜ(q)) is due to
the fact that Teichmüller mappings stretch the leaves of ℑ(q) while shrinking
its measure. For example, suppose q ∈ S(X); then λ = ℑ(q) has unit
extremal length. Then its image gtq under the Teichmüller geodesic flow
still has area 1 and ℑ(gtq) = e−tλ. Thus, λ has extremal length e2t on gtq.

Metric ribbon graphs. A ribbon graph is the combinatorial data of a
deformation retraction of a surface with boundary. More formally, it is
a (simplicial) graph Γ equipped with a cyclic ordering of the edges at each
vertex; this can be reconciled with the first notion by thickening each edge to
a ribbon and gluing the edges of the ribbons according to the cyclic ordering.
The genus and number of boundary components of Γ are the values for the
resulting topological surface. One may equip a ribbon graph Γ with a metric
x assigning a length to each of its edges to obtain a so-called metric ribbon
graph (Γ,x).

For b ≥ 0 a non-negative integer, denote by MRGg,b the moduli space
of all metric ribbon graphs with genus g and b distinctly-labeled boundary
components, all of whose vertices have valence at least three. For a given
tuple L = (L1, . . . , Lb) of positive numbers, define MRGg,b(L) ⊆ MRGg,b

to be the subset of all ribbon graphs whose (labeled) boundary components
have lengths L1, . . . , Lb. The slices MRGg,b(L) piece together to form a
fibration MRGg,b → Rb

>0.

Critical graphs. Given a marked complex structure X ∈ Tg and a simple
closed curve γ on Sg, the critical graph of the Jenkins–Strebel differential
q = JS(X, γ) ∈ Q(X) is the metric ribbon graph obtained as the union of the
critical leaves of ℑ(q) ∈ MFg endowed with the restriction of the singular
flat metric induced by q on X. A similar construction can be carried out
for general multi-curves, but to get a well defined map to a corresponding
moduli space of metric ribbon graphs, care needs to be exercised with regards
to the symmetries of the construction.



CRITICAL GRAPHS OF JENKINS–STREBEL DIFFERENTIALS 11

For the rest of this discussion let γ⃗ := (γ⃗1, . . . , γ⃗k) be an ordered, oriented
simple closed multi-curve on Sg, let Stab0(γ⃗) ⊆ Modg be its oriented stabi-
lizer, i.e. the set of mapping classes that fix each component of γ⃗ together
with its orientation, and let γ ∈ MFg be its equivalence class as a singular
measured foliation. Cutting Sg along the components of γ⃗ yields a (possibly
disconnected) surface with boundary Sg \ γ⃗. Label the components of Sg \ γ⃗
by (Σj)

c
j=1; such a labeling is possible because the components of γ are la-

beled and oriented. For each j ∈ {1, . . . , c} let gj , bj ≥ 0 to be non-negative
integers such that Σj is homeomorphic to Sgj ,bj .

For any length vector L ∈ Rk
>0 we set

MRG(Sg \ γ⃗;L) :=
c∏

j=1

MRGgj ,bj

(
L(j)

)
where L(j) denotes the lengths corresponding to the boundary components
of Σj .

These slices fit together into a larger moduli space MRG(Sg \ γ⃗) which
can be topologized through its natural embedding into a product of combi-
natorial moduli spaces with variable boundary lengths. Denote by ∆ ⊆ Rk

>0

the open simplex

∆ := {L ∈ Rk
>0|L1 + · · ·+ Lk = 1}

and let MRG(Sg \ γ⃗; ∆) denote the total space of the fibration over ∆
whose fiber above L ∈ ∆ is MRG(Sg \ γ⃗;L); this can be thought of as the
“projectivization” of the full moduli space MRG(Sg \ γ⃗) under the natural
rescaling action.

For any marked complex structureX ∈ Tg, the critical graph of JS(X, γ) is
the metric ribbon graph obtained as the union of the critical leaves of ℑ(q) ∈
MFg endowed with the restriction of the singular flat metric induced by q
on X. Notice this graph has one connected component for each component
of Sg \ γ⃗. Using the labeling of these components one can define the critical
graph map

Ξ(·, γ⃗) : Tg → MRG(Sg \ γ⃗).
Furthermore, after rescaling the metric of the critical graph Ξ(X, γ⃗) ∈
MRG(Sg \ γ⃗) by 1/ExtX(γ) one obtains the unit length critical graph map

Ξ1(·, γ⃗) : Tg → MRG(Sg \ γ⃗; ∆).

Since Stab0(γ⃗) preserves labelings of complementary subsurfaces, the maps
Ξ(·, γ⃗) and Ξ1(·, γ⃗) are Stab0(γ⃗)-invariant.

3. Near the multiple zero locus

Outline of this section. In this section we show that the Jenkins–Strebel
differentials of most simple closed multi-curves lie deep within the principal
stratum; see Proposition 3.6 for a precise statement. This control is crucial
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to apply the bounds on the variation of critical graphs proved in §4; com-
pare to Proposition 4.3. The main tools used in this section are the theory
of Delaunay triangulations of quadratic differentials developed in work of
Masur and Smillie [MS91] and dual train tracks to triangulations.

Triangulations of quadratic differentials. For the rest of this paper fix
g ≥ 2 and let Sg be a compact, connected, oriented surface of genus g ≥ 2.
By a triangulation of a quadratic differential q we mean a triangulation
of its underlying Riemann surface whose edges are saddle connections of q
(and hence whose vertices are zeros of q). A triangulation of a quadratic
differential q is said to be L-bounded for some L > 0 if its edges have flat
length ≤ L.

Given a marked quadratic differential q ∈ Q1Tg and a triangulation ∆′

of q, one can pull back ∆′ via the marking map to obtain an isotopy class
of triangulation ∆ on Sg. In particular, because we are not marking the
zeros of q, the vertices of the triangulation ∆ are not fixed. Recall that the
mapping class group Modg acts properly discontinuously on Q1Tg and Tg by
changing markings. It also acts on the set of isotopy classes of triangulations
of Sg by applying the mapping class and the association described above is
equivariant.

Recall that π : Q1Tg → Tg denotes the forgetful map.

Lemma 3.1. Let ∆ be an isotopy class of triangulation of Sg, let K ⊆ Tg
be a compact subset, and L > 0. Then the subset of marked quadratic
differentials q ∈ π−1(Modg · K) having an L-bounded triangulation ∆′ that
pulls back to ∆ via the marking of q has compact closure in Q1Tg.

Proof. Let q ∈ π−1(Modg · K) and ∆′ be an L-bounded triangulation of
q which pulls back to ∆ via the marking of q. Fix a simple closed curve
α on Sg. As ∆′ is L-bounded and pulls back to ∆ via the marking of
q, one can bound the flat length ℓα(q) of any geodesic representatives of
α on q uniformly in terms α, χ(Sg), and L. This together with the fact
that q ∈ π−1(Modg ·K) implies the hyperbolic length ℓα(π(q)) of the unique
geodesic representative of α with respect to the marked hyperbolic structure
on Sg induced by π(q) ∈ Tg via uniformization can be bounded uniformly
in terms of α, χ(Sg), L, and K. As the bundle π : Q1Tg → Tg has compact
fibers and as the only was of escaping to infinity in Tg is to develop a simple
closed curve of unbounded hyperbolic length, this finishes the proof. □

Delaunay triangulations of quadratic differentials. For every qua-
dratic differential q denote by ℓmin(q) the length of its shortest saddle con-
nections and by diam(q) its diameter. Every quadratic differential (X, q)
admits a triangulation by saddle connections which is Delaunay with re-
spect to the singularities of q and the singular flat metric induced by q on X
[MS91, §4]. We refer to any such triangulation as a Delaunay triangulation
of q. For the purposes of this discussion we will not need to appeal to the
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explicit construction of these triangulations. Rather, it will suffice to know
they exist and satisfy the following properties.

Lemma 3.2. [ABEM12, Lemma 3.11] Let q ∈ Q1Tg and ∆ be a Delaunay
triangulation of q. Let γ be a saddle connection of q.

(1) If γ belongs to ∆, then ℓγ(q) ⪯g diam(q).

(2) If ℓγ(q) ≤
√
2 · ℓmin(q), then γ belongs to ∆.

Directly from Lemmas 3.1 and 3.2 we deduce the following result.

Proposition 3.3. For every compact subset K ⊆ Tg there exists a constant
L = L(K) > 0 and a finite collection of isotopy classes of triangulations
{∆i}ni=1 on Sg with the following property. Let q ∈ π−1(K) and γ be a saddle
connection of q attaining the minimal flat length among saddle connections
of q. Then, there exists i ∈ {1, . . . , n} and an L-bounded triangulation ∆′

of q having γ as one of its edges and which pulls back to ∆i via the marking
of q.

Proof. Fix a compact subset K ⊆ Tg. By Lemma 3.2.1, there exists a con-
stant L = L(K) > 0 such that every Delaunay triangulation of a quadratic
differential in π−1(K) is L-bounded. Moreover, by Lemma 3.2.2, these tri-
angulations always contain the shortest saddle connections of q. Thus, it
suffices to show these triangulations pull back to finitely many triangula-
tions on Sg. This follows because triangulations of quadratic differentials
in Q1Tg have at most 4g − 4 vertices, so up to the action of the mapping
class group there are finitely many combinatorial types of triangulations on
Sg that can arise. Applying Lemma 3.1 and the proper discontinuity of the
Modg action on Q1Tg, we see that there are only are finitely many isotopy
classes of triangulations on Sg that are L-bounded on some q ∈ π−1(K).
This finishes the proof. □

Remark 3.4. We note that this statement is false if we mark the zeros of q
as well as the underlying surface. The zeros can braid around each other
while q remains in a compact subset of Q1Tg, yielding infinitely many dis-
tinct triangulations that differ by the surface braid group. This reflects the
fact that the intersection of π−1(K) with any (non-minimal) stratum is not
compact.

Train track coordinates. We now discuss some aspects of the theory of
train track coordinates. For more details we refer the reader to [PH92].
A train track τ on Sg is an embedded 1-complex satisfying the following
conditions:

(1) Each edge of τ is a smooth path with a well defined tangent vector
at each endpoint. All edges at a given vertex are tangent.

(2) For each component R of Sg \ τ , the double of R along the smooth
part of the boundary ∂R has negative Euler characteristic.

The vertices of τ where three or more edges meet are called switches. By
considering the inward pointing tangent vectors of the edges incident to a
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switch, one can divide these edges into incoming and outgoing edges. A
train track τ on Sg is said to be maximal if all the components of Sg \ τ
are trigons, i.e., the interior of a disc with three non-smooth points on its
boundary.

A singular measured foliation λ ∈ MFg is said to be carried by a train
track τ on Sg if it can be obtained by collapsing the complementary regions
in Sg of a measured foliation of a tubular neighborhood of τ whose leaves
run parallel to the edges of τ . In this situation, the invariant transverse
measure of λ corresponds to a counting measure v on the edges of τ satisfying
the switch conditions: at every switch of τ the sum of the measures of the
incoming edges equals the sum of the measures of the outgoing edges. Every
λ ∈ MFg is carried by some maximal train track τ on Sg.

Given a maximal train track τ on Sg, denote by V (τ) ⊆ (R≥0)
18g−18 the

6g − 6 dimensional closed cone of non-negative counting measures on the
edges of τ satisfying the switch conditions. The set V (τ) can be identified
with the closed cone U(τ) ⊆ MFg of singular measured foliations carried
by τ . These identifications give rise to coordinates on MFg called train
track coordinates. The transition maps of these coordinates are piecewise
integral linear. In particular, MFg can be endowed with a natural 6g −
6 dimensional piecewise integral linear structure where the integral points
MFg(Z) correspond to integrally-weighted simple closed multi-curves.

Train tracks dual to triangulations. We now use our discussion of tri-
angulations of q ∈ π−1(K) to control what the horizontal foliations can
coarsely look like. We begin by recalling the construction of a train track
dual to a triangulation; compare [Mir08a], [AH22], [CF21], and [CF].

Let ∆ be an isotopy class of triangulation on Sg. On each of the triangles
of ∆ consider a 1-complex as in Figure 2a; the edges of this complex that
do not intersect the sides of the triangle will be referred to as inner edges.
Join these complexes along the edges of ∆ as in Figure 2b to obtain a
complex on Sg. We say that a train track τ on Sg is dual to ∆ if it can be
obtained from this complex by deleting one inner edge in each triangle of
∆. We remark that this operation is well-defined even though we are only
considering isotopy classes: two isotopic triangulations will give isotopic
collections of dual train tracks.

Let q ∈ Q1Tg and ∆′ be a triangulation of q. Denote by ∆ the triangula-
tion of Sg obtained by pulling back ∆′ via the marking of q. The horizontal
foliation ℑ(q) ∈ MFg is carried by a train track dual to ∆. Indeed, let T ′

be a triangle of ∆′. Label the edges of T ′ by a, b, c so that∫
a
dℑ(q) =

∫
b
dℑ(q) +

∫
c
dℑ(q)

This labelling is unique unless one of the edges of T ′ is horizontal, in which
case there exist two such labelings. On T ′ consider a 1-complex as in Figure
2a and delete the inner edge of this complex opposite to a. Consider the cor-
responding 1-complexes on all the triangles of ∆′. Joining these complexes
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a

b

c

(a) The dual 1-complex and dual
train track in a triangle.

(b) Joining the dual 1-complexes
and train tracks.

Figure 2. The 1-complex and the train track dual to a tri-
angulation. The train track is obtained by removing the
dashed edges from the 1-complex.

along the edges of ∆′ as in Figure 2b and pulling back the resulting complex
to Sg yields a train track τ dual to ∆. This train track carries ℑ(q) ∈ MFg

and, for each edge e of ∆′, the counting measure of the coresponding edge of
τ is equal to

∫
e dℑ(q). If q is in the principal stratum of quadratic differen-

tials, the train track τ obtained through this construction is maximal, and
in general, the singularity structure of q is reflected in the combinatorics of
τ .

Directly from the discussion above and Proposition 3.3 we deduce the
following, which is analogous to both [AH22, Proposition 2.7] and [CF21,
Section 10].

Proposition 3.5. For every compact subset K ⊆ Tg there exists a finite
collection of train tracks {τi}ni=1 on Sg with the following property. Let
q ∈ π−1(K) and γ be a saddle connection of q that attains the minimal flat
length among saddle connections of q. Then, there exists i ∈ {1, . . . , n} such
that τi carries ℑ(q) and such that the corresponding counting measure on the
edges of τi gives weight

∫
γ dℑ(q) to one of the edges of τi.

The key estimate. We are now ready to prove the main estimate of this
section. This estimate will allow us control the equidistribution problem of
interest near the multiple zero locus in a sufficiently strong way.

Let JS: Tg ×MFg → Q1Tg denote the Hubbard–Masur map from The-
orem 2.2 which to every (X,λ) ∈ Tg × MFg assigns the unique marked
quadratic differential q ∈ π−1(X) such that ℑ(q) = λ. This differential has
area ExtX(λ), so rescaling it by the square root of extremal length results in
a unit area differential. Let Kσ ⊆ Q1Tg denote the set of marked unit area
quadratic differentials q ∈ Q1Tg belonging to the principal stratum with
ℓmin(q) ≥ σ. Given X ∈ Tg consider the set

F (X,σ) :=

{
α ∈ MFg(Z)

∣∣∣∣∣ 1√
ExtX(α)

JS(X,α) /∈ Kσ

}
and for any compact set K ⊂ Tg define F (K, σ) :=

⋃
X∈K F (X,σ).
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Proposition 3.6. Let K ⊆ Tg be a compact subset. Then there exists a
constant C > 0 such that for every X ∈ K, every σ > 0, and every L > 1,

#{α ∈ F (K, σ) | Extα(X) ≤ L2} ≤ C · L6g−7 + C · σ · L6g−6.

Proof. Let {τi}ni=1 be the finite collection of train tracks on Sg provided by
Proposition 3.5. Now consider α ∈ MFg(Z) such that Extα(X) ≤ L2 and

q := JS(X,α/
√
Extα(X)) ∈ Q1Tg \Kσ.

Suppose first that q is not in the principal stratum. Then, by construction,
the train track τi carrying α =

√
Extα(X) · ℑ(q) is not maximal. Suppose

now that q is in the principal stratum and that γ is a saddle connection
of q attaining ℓmin(q). It follows by construction that, when carried by the

corresponding τi, one of the resulting weights of α is at most σ ·
√
Extα(X) ≤

σ · L. As the collection of train tracks {τi}ni=1 is finite, the desired bound
follows from a standard lattice point counting argument. □

4. Uniform geometric estimates

Outline of this section. In this section we show that the weights of the
metric ribbon graph Ξ1(X, α⃗) vary uniformly over α as X varies in a suit-
ably chosen neighborhood of moduli space; see Proposition 4.3 for a precise
statement. The proof is based on a uniform continuity argument and uses
the AGY metric on strata of quadratic differentials introduced by Avila,
Gouëzel, and Yoccoz [AGY06] in a crucial way. Before proving Proposition
4.3 we discuss some of the basic properties of the AGY metric following
[AGY06] and [AG13].

The AGY metric. Let Q ⊆ QT g be the principal stratum of marked
quadratic differentials on Sg, that is, the subset of differentials with only
simple zeros. Denote points in Q by (X, q), where X is a marked Riemann
surface and q is a quadratic differential on X. Let (Z, ω) → (X, q) be
the holonomy double cover of (X, q). The tangent space of Q at (X, q)
can be identified with the relative cohomology group H1

odd(Z,Σ;C) where
Σ ⊆ Z denotes the set of zeroes of ω, and the subscript odd denotes the −1
eigenspace of the canonical involution of Z → X. For v ∈ H1

odd(Z,Σ;C)
consider the norm

∥v∥q := sup
s∈S

∣∣∣∣ v(s)

holω(s)

∣∣∣∣ ,
where S denotes the set of saddle connections of ω and holω(s) ∈ C denotes
the holonomy of the saddle connection s with respect to ω; we will some-
times denote this holonomy by |s|ω. By work of Avila, Gouëzel, and Yoccoz
[AGY06], this definition indeed gives rise to a norm on H1

odd(Z,Σ;C) and
the corresponding Finsler metric on Q is complete. We refer to this metric as
the AGY metric of Q and denote it by dAGY. For any C1 path κ : [0, 1] → Q,
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denote its AGY length by

length(κ) :=

∫ 1

0
∥κ′(t)∥κ(t) dt.

We observe that the rescaling action q 7→ rq for r ∈ R>0 is an isometry
of the AGY metric. Indeed, given v ∈ H1

odd(Z,Σ;C) we have that ∥rv∥rq =
∥v∥q, and so given any C1 path κ(t) from q to q′ we can compute the length
of the corresponding path rκ(t) from rq to rq′:

length(rκ) =

∫ 1

0
∥rκ′(t)∥rκ(t) dt =

∫ 1

0
∥κ′(t)∥κ(t) dt = length(κ).

The fundamental property. Fix (X, q) ∈ Q and let Ψ = Ψq be the local
parametrization of Q by its tangent plane H1

odd(Z,Σ;C) as above. More
formally, define Ψ(v) for v ∈ H1

odd(Z,Σ;C) as follows. Consider the path κ
starting from (X, q) with κ′(t) = v for all times t. For small t the path κ(t)
is well defined. It is possible that κ(t) could be not defined for large t. If
the path κ is well defined for all t ∈ [0, 1] define Ψ(v) := κ(1) ∈ Q.

Denote byB(0, r) the ball of radius r centered at the origin ofH1
odd(Z,Σ;C)

with respect to the norm ∥ · ∥q. The following results, which will be crucial
in later sections, give control on the image of the “exponential map” Ψ.

Proposition 4.1. The map Ψ is well defined on B(0, 1/2). Moreover,

(1) For v ∈ B(0, 1/2),

dAGY(q,Ψ(v)) ≤ 2 · ∥v∥q.

(2) For every v ∈ B(0, 1/2) and every w ∈ H1
odd(Z,Σ;C),

1/2 ≤ ∥w∥q
∥w∥Ψ(v)

≤ 2.

(3) For v ∈ B(0, 1/25),

dAGY(q,Ψ(v)) ≥ ∥v∥q/2.

In particular, any q′ ∈ Q with dAGY(q, q
′) < 1/50 is equal to Ψ(v)

for some v ∈ B(0, 1/25).

Apart from the last claim of (3), this is just the statement of [AG13,
Proposition 5.3] generalized to arbitrary vectors; we provide an outline of
the final claim.

Proof sketch. Consider the image of B(0, 1/25) under Ψ. By invariance of
domain, this is open; in particular, it contains an open AGY ball BAGY of
some maximal radius r > 0. Now by the first claim of (3), we have that
Ψ−1(BAGY) is contained in B(0, 2r). In particular, if r < 1/50 then we can
find a slightly larger ball B(0, 2r+ε) whose Ψ image strictly contains BAGY

(by the first claim of (3) again), hence r was not maximal to begin with. So
r ≥ 1/50. □
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A proof of the remaining statements can be obtained by closely following
the arguments of [AG13]. Indeed, the key input in the proof of Proposition
4.1 is [AG13, Proposition 5.5], which gives a bound on the growth of the
parallel translate of a vector in terms of the length of the path along which
it is translated, and is true for any v, not just those lying in the unstable
distribution.

We record for future use a similar result on how the length of saddle
connections changes along paths; compare with [AG13, Lemma 5.6].

Lemma 4.2. Suppose that κ : [0, 1] → Q is a C1 path and that s is a saddle
connection that survives in κ(t) for all t ∈ [0, 1]. Then

e−length(κ) ≤
|s|κ(0)
|s|κ(1)

≤ elength(κ).

We remark that only the upper bound is stated in [AG13], but the proof
there also yields the desired lower bound.

Variation of weights. With these preliminaries taken care of, we can now
show that the geometry of the horizontal ribbon graph is controlled uni-
formly over most simple closed multi-curves α as X varies in a small ball in
Tg. Compare with Lemma 4.1 and Proposition 4.2 of [AHC22].

Recall that if α⃗ is an ordered, oriented simple closed multi-curve on Sg,
then α ∈ MFg(Z) denotes its equivalence class as a singular measured
foliation. Recall that for a compact set K ⊆ Tg and σ > 0, the set F (K, σ)
denotes those integral simple closed multi-curves α ∈ MFg(Z) so that, for
some X ∈ K, the differential JS(X,α) is either not in Q or has a saddle

connection shorter than σ
√
ExtX(α).

Proposition 4.3. Fix a compact subset K ⊆ Tg. Then, for every ε > 0
and every σ > 0, there exists δ = δ(K, ε, σ) > 0 so that for any ordered,
oriented simple closed multi-curve α⃗ on Sg such that α /∈ F (K, σ) and any
two X,X ′ ∈ K with dTeich(X,X ′) ≤ δ, the following hold.

(1) The horizontal ribbon graphs Ξ(X, α⃗) and Ξ(X ′, α⃗) have the same
topological type, i.e., live in the same facet of MRG(Sg \ α⃗).

(2) For every edge e of Ξ(X, α⃗) and/or Ξ(X ′, α⃗), we have that

e−ε ≤
|e|Ξ1(X,α⃗)

|e|Ξ1(X′,α⃗)
≤ eε.

The proof of this Proposition has two steps: we first show that the hy-
potheses imply that the differentials JS(X,α) and JS(X ′, α) are close in
the AGY metric, then use properties of the metric to conclude the desired
statements.

The first step is accomplished using the uniform continuity of the Hubbard–
Masur map. To get this, we need to restrict to a compact set. Cutting out
Kσ allows us to avoid a neighborhood of the multiple zero locus, but we
must also impose a bound on the areas of differentials under consideration.
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As such, we first record an a priori bound on the extremal length of folia-
tions as the base surface ranges over a compact set. The following is a direct
consequence of Theorem 2.4.

Lemma 4.4. For every compact K ⊆ Tg, there is a cK > 1 such that for
every λ ∈ MFg and every X,X ′ ∈ K,

c−1
K ≤

√
ExtX′(λ)√
ExtX(λ)

≤ cK.

We now show that if X and X ′ are close in the Teichmüller metric, then
most of their Jenkins–Strebel differentials are close in the AGY metric.

Lemma 4.5. Fix K, σ as in Proposition 4.3. For any ζ > 0, there is a δ > 0
so that for any X,X ′ ∈ K with dTeich(X,X ′) < δ and any α /∈ F (K, σ),

dAGY(JS(X,α), JS(X ′, α)) < ζ.

Proof. Fix any metric dMFg on MFg equipping it with the standard topol-
ogy. By Theorem 2.2, the map JS : Tg×MFg → QTg is a homeomorphism,
and is hence uniformly continuous on the compact set

J := (K ×MFg) ∩ Ext−1([c−2
K , c2K]) ∩ JS−1(R>0 ·Kσ).

That is, for any ζ > 0 there is a δ > 0 so that for any (X,λ), (X ′, λ) ∈ J
with

dTeich(X,X ′) < δ and dMFg(λ, λ
′) < δ

then we have that

dAGY(JS(X,λ), JS(X ′, λ′)) < ζ.

In particular, Lemma 4.4 (alternatively, Theorem 2.4) implies that

√
ExtX′

(
α/

√
ExtX(α)

)
=

√
ExtX′(α)√
ExtX(α)

∈ [c−1
K , cK]

so setting λ = λ′ = α/
√
ExtX(α) we have that JS(X,λ) and JS(X ′, λ) are

ζ apart. The statement for α itself follows from the fact that rescaling is an
isometry of the AGY metric. □

Now since JS(X,α) and JS(X ′, α) are close and live in the same leaf of
the unstable foliation, we can use the exponential map Ψ to connect them
via a path completely contained in the unstable leaf {JS(X,α) |X ∈ Tg}.
Analyzing this map yields the proof of the main result of this section.

Proof of Proposition 4.3. We begin by observing that, by definition of the
Ξ1 map,

|e|Ξ1(X,α⃗)

|e|Ξ1(X′,α⃗)
=

|e|Ξ(X,α⃗)

|e|Ξ(X′,α⃗)
· ExtX

′(α)

ExtX(α)
.

By Theorem 2.4, the ratio of extremal lengths is bounded arbitrarily close to
1 (so long as we take δ small enough), so it suffices to compare the geometry
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of the non-normalized critical graphs. For ease of notation, throughout the
rest of the proof let us denote

q := JS(X,α) and q′ := JS(X ′, α).

Fix 0 < ε < 2/25. Lemma 4.5 tells us that by taking δ small enough
we can ensure q and q′ are ε/4 < 1/50 close in the AGY metric, so by
Proposition 4.1.3 we have that q′ = Ψ(v) for some v ∈ B(0, ε/2). But now we
know that q and q′ have the same horizontal foliation, hence the same vertical
periods. Therefore we must have that v is real, i.e., v ∈ H1

odd(Z,Σ;R) with
respect to the natural splitting

H1
odd(Z,Σ;C) ∼= H1

odd(Z,Σ;R)⊕H1
odd(Z,Σ; iR).

In particular, this implies that the period of every horizontal saddle re-
mains real along κ(t). Since the exponential map Ψ is well-defined (and
proper), we see that every horizontal saddle must persist along the entire
path {κ(t)}1t=0 (otherwise some saddle would shrink to zero, but doing so
leaves the stratum). Hence the topological type of the horizontal saddle
connection graphs of κ(0) = q and κ(1) = q′ are the same, establishing the
first part of the Proposition.

For the second part, we note that ∥v∥κ(t) grows by at most a factor of
2 along the entire path (Proposition 4.1.2), so the length of κ is at most
ε. Since each horizontal saddle persists along the entire path, Lemma 4.2
implies that the length of each can change by a factor of at most elength(κ).
Thus the lengths on q and q′ of every edge of Ξ(X, α⃗) have ratio bounded
by e±ε, proving the second claim. □

5. Horoball measures

Outline of this section. In this section we introduce “critical-JS-horoballs”
and show that, as they expand over moduli space, they equidistribute with
respect to the Masur–Veech measure. See Proposition 5.7 for a precise state-
ment. Our preliminary discussion relies on work of Athreya, Bufetov, Eskin,
and Mirzakhani [ABEM12] as well as an expression for critical-JS-horoballs
in terms of the fibered Kontsevich measure. The equidistribution result is a
consequence of work of Forni [For21], which in turn relies on breakthroughs
of Eskin, Mirzakhani, and Mohammadi [EM18, EMM15]. Throughout we
use the normalizations in [ABEM12], [AH21a], and [AHC22] for all the mea-
sures considered.

The Masur–Veech measure. Let γ⃗ := (γ⃗1, . . . , γ⃗k) be an ordered, ori-
ented simple closed multi-curve on Sg with underlying multi-curve γ ∈
MFg. Recall that Stab0(γ⃗) ⊆ Modg denotes the oriented stabilizer of γ⃗,
i.e. the set of mapping classes that fix each component of γ⃗ together with
its orientation.
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Recall that νMV denotes the Masur–Veech measure onQ1Tg. The forgetful
map π : Q1Tg → Tg pushes the Masur–Veech measure down to a Lebesgue-
class measure m := π∗νMV on Tg, which we also refer to as the Masur–Veech
measure. Both νMV and m are Modg-invariant. Let ν̃MV and m̃ denote the
corresponding local pushforwards to Q1Tg/ Stab0(γ⃗) and Tg/Stab0(γ⃗), and,
similarly, let ν̂MV and m̂ be the pushforwards of ν̃MV and m̃ to Q1Mg and
Mg. One could of course also define m̃ and m̂ by pushing forward ν̃MV and
ν̂MV under the corresponding forgetful maps. Denote the total mass of ν̂MV,
or, equivalently, m̂, by bg > 0.

Recall that for any Riemann surface X, we denote by S(X) the sphere
of unit area quadratic differentials on X. Let sX be the conditional prob-
ability measure on S(X) induced by m on Tg. It is characterized by the
disintegration formula

(5.1) dνMV(X, q) = dsX(q) dm(X),

together with similar expressions for the measures ν̃MV and ν̂MV on quo-
tients. 2

The Hubbard-Masur function. Recall that the singular measured foli-
ation ℑ(q) ∈ MFg denotes the horizontal foliation of q ∈ Q1Tg, and that
[ℑ(q)] ∈ PMFg denotes its projective class. As observed in [ABEM12],
every leaf of the unstable foliation Fu of Q1Tg carries a conditional measure
that is uniformly expanded by the Teichmüller geodesic flow. This measure
can be explicitly obtained as follows. By definition, any leaf of Fu is of the
form

Fu
[β] = {q ∈ Q1Tg | [ℑ(q)] = [β] ∈ PMFg}

for some β ∈ MFg. By Theorem 2.2, this set can in turn be identified with
the open set MFg(β) ⊆ MFg of singular measured foliations on Sg that
together with β bind the surface. The Thurston measure µThu on MFg

therefore restricts to a non-trivial measure on MFg(β) and hence gives rise
to a measure on Fu

[β] which we denote by νu,β.

Recall that {gt : Q1Tg → Q1Tg}t∈R is the Teichmüller geodesic flow on
Q1Tg. The fundamental scaling property described by the formula

(5.2) (gt)∗νu,β = e−(6g−6)tνu,β

is then a consequence of the fact that the Teichmüller geodesic flow stretches
the horizontal direction, expanding the measure on the vertical foliation, and
thus acting by multiplication by et on MFg(β).

By Theorems 2.2 and 2.3, the forgetful map π : Q1Tg → Tg restricts to
a homeomorphism π[β] between Fu

[β]
∼= MF(β) and Tg. The pushforward of

2We note that we do not need to worry about sizes of stabilizers when recording disin-
tegration formulas at the level of moduli space. For g ≥ 3, we have that m-almost every
X ∈ Mg has no nontrivial automorphisms and so the fiber of Q1Mg over X is the entire
sphere S(X). For g = 2 every surface is hyperelliptic, but so is every quadratic differential.
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νu,β by this map is in the Lebesgue measure class. Following [ABEM12], we
denote by

λ+(q) :=
dm

d(π[β])∗νu,β
(X)

the corresponding Radon-Nikodym derivative, where q = π−1
[β] (X), that is,

q = JS(X,β)/
√
ExtX(β). We recall from [ABEM12] that the Hubbard–

Masur function is defined to be the following integral:

Λ(X) :=

∫
Q1(X)

λ+(q) dsX .

Directly from the definitions, we observe that both λ+(q) and Λ(X) are
Modg-invariant; see also [ABEM12, top of page 1063].

Tracing through the definitions, one can arrive at the following formula-
tion.

Lemma 5.1. [ABEM12, Proposition 2.3 (iii)] For any X ∈ Tg,
Λ(X) = µThu ({β ∈ MF | ExtX(β) ≤ 1}) .

In fact, Mirzakhani proved the following strong result.

Theorem 5.2. [Dum15, Theorem 5.10] The function X ∈ Tg 7→ Λ(X) is
constant.

As such, we refer to this value as the Hubbard–Masur constant Λg > 0.

Horoballs. For every L > 0 we define the (total) extremal length horoball
measure mL

γ⃗ on Tg by restricting m to the set of marked Riemann surfaces

X ∈ Tg on which
√
ExtX(γ) ≤ L. We similarly define the (total) unstable

horoball measure νLu,γ⃗ on Q1Tg by restricting νu,γ⃗ to the preimage of this
set under the forgetful map π : Q1Tg → Tg. The extremal length of γ on
X is the same as the area of the quadratic differential q = JS(X, γ), which
in turn is equal to the geometric intersection number of the horizontal and
vertical foliations of q, so νLu,γ⃗ can equivalently be defined by restricting the
Thurston measure on MFg(γ) to the set

{β ∈ MFg(γ) | i(β, γ) ≤ L}

and pushing this “Thurston horoball measure” µL
Thu forward to Fu

[γ]. We

then take local pushforwards to get measures

m̃L
γ⃗ on Tg/Stab0(γ⃗),

ν̃Lu,γ⃗ on Q1Tg/Stab0(γ⃗),
µ̃L
Thu on MF(γ)/ Stab0(γ⃗).

One can check that µ̃L
Thu is finite, as the usual Thurston measure is locally

finite on MFg and the closure (inside MFg, including the 0 foliation) of
a fundamental domain for the action of Stab0(γ⃗) on the support of µL

Thu is

compact. This implies that ν̃Lu,γ and m̃L
γ are also finite, so we can take the
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(global) pushforwards of ν̃Lu,γ and m̃L
γ to the moduli spaces Q1Mg and Mg;

denote the resulting measures by ν̂Lu,γ and m̂L
γ .

Recall from §2 that MRG(Sg \ γ⃗; ∆) denotes the moduli spaces of ribbon
graphs of complementary subsurfaces to γ⃗ of total boundary length 2 and
matching boundary lengths along the components of γ⃗. Recall also that
Ξ1(X, γ⃗) ∈ MRG(Sg\γ⃗; ∆) denotes the critical graph of the Jenkins–Strebel
differential JS(X, γ) rescaled so that the boundaries have total length 2.

We also want to consider subsets of the horoballs above by conditioning on
the shape of the horizontal separatrices of the corresponding Jenkins–Strebel
differentials. To this end, for any L > 0 and any non-zero, continuous,
compactly supported function h : MRG(Sg \ γ⃗; ∆) → R, define the Ξ1-
horoball measure on Tg by

(5.3) dmL
γ⃗,h(X) := 1[0,L]

(√
ExtX(γ)

)
h
(
Ξ1(X, γ⃗)

)
dm(X).

We similarly define a version supported on the unstable leaf corresponding
to γ:

(5.4) dνLu,γ⃗,h(X, q) := 1[0,L]

(√
ExtX(γ)

)
h
(
Ξ1(X, γ⃗)

)
dνu,γ(q).

We informally refer to the measures mL
γ⃗,h as “critical-JS-horoballs”. Com-

pare with the definition of “RSC-horoballs” from [AHC22, Equation (5.1)].
Notice that the measures mL

γ⃗,h are not equal to the pushforwards of the mea-
sures νLu,γ⃗,h under the Hubbard–Masur map: they differ by the Hubbard–
Masur function.

The measures mL
γ⃗,h(X) and νLu,γ⃗,h(q) are Stab0(γ⃗)-invariant and so as in

the case of the total horoball measures we can take their local pushforwards
m̃L

γ⃗,h and ν̃Lu,γ⃗,h after quotienting by Stab0(γ⃗). We can then further push
each down to finite measures m̂L

γ⃗,h and ν̂Lu,γ⃗,h onMg andQ1Mg, respectively.

The fibered Kontsevich measure. In the next two subsections, we dis-
cuss how the “fibered Kontsevich measure” describes critical-JS-horoballs
in terms of the combinatorial data of metric ribbon graphs; see Proposition
5.5. We begin by quickly recalling the definition of this measure and refer
the reader to [AHC22, Sections 2 and 7] for a more detailed overview.

In [Kon92], Kontsevich defined a piecewise 2-form ωKon on MRGg,b that
computes intersection numbers on moduli space. Restricting to a slice
MRGg,b(L) with fixed boundary lengths, this form is seen to be symplectic
on every maximal facet. Thus, the Kontsevich form gives rise to volume
forms

1

(3g − 3 + b)!

∧3g−3+b
ωKon

on each maximal facet, which can be glued together into a volume form
on the entire slice MRGg,b(L). We will use ηLKon to denote the measure
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associated to this volume form and refer to it as the Kontsevich measure on
MRGg,b(L).

3

When γ⃗ := (γ⃗1, . . . , γ⃗k) is an ordered, oriented simple closed multi-curve
on Sg with complementary subsurfaces (Σj)

c
j=1, we recall that we set

MRG(Sg \ γ⃗;L) :=
c∏

j=1

MRGgj ,bj

(
L(j)

)
for any length vector L ∈ Rk

>0. As this is a product of moduli spaces
with fixed boundary lengths, it has a (product) Kontsevich measure ηγ⃗,LKon.
Integrating against boundary lengths, the Kontsevich measures on each slice
also fit together into a canonical measure on the total space, defined for any
measurable subset A ⊆ MRG(Sg \ γ⃗) by the formula

ηγ⃗Kon(A) :=

∫
Rk
>0

ηγ⃗,LKon (A ∩MRG(Sg \ γ⃗;L)) dL1 . . . dLk.

We now use this to induce a measure on MRG(Sg \ γ⃗; ∆), the total space

of the fibration over the standard simplex ∆ ⊂ Rk. For A ⊆ MRG(Sg\γ⃗; ∆)
set

cone(A) := {(Γ, tx) : (Γ,x) ∈ A, t ∈ (0, 1]} ⊆ MRG(Sg \ γ⃗).

where Γ is the underlying ribbon graph and x corresponds to its metric
structure.

Denote by ρg(γ⃗) ∈ N the number of components of γ⃗ that bound a torus
with one boundary component. Let σg(γ⃗) > 0 be the rational number given
by

σg(γ⃗) :=

∏c
j=1 |Kgj ,bj |

|Stab0(γ⃗) ∩Kg|
,

where Kgj ,bj ◁ Modgj ,bj is the kernel of the mapping class group action
on Tgj ,bj and Kg ◁ Modg is the kernel of the mapping class group action
on Tg. These factors arise from special symmetries of moduli spaces of
low-complexity surfaces; for a more extended discussion see [AH21c] and
[AHC22].

Definition 5.3. The fibered Kontsevich measure η̊∆Kon on MRG(Sg \ γ⃗; ∆)
is the measure which to every Borel measurable subset A assigns the value

η̊∆Kon(A) :=
σg(γ⃗)

2ρg(γ⃗)

∫
cone(A)

L1 · · ·Lk dη
γ⃗
Kon(Γ,x).

Denote the total η̊∆Kon-mass of MRG(Sg \ γ⃗; ∆) by mγ⃗ .

3See [AHC22, Remark 2.1] for a discussion of how to deal with this measure in the
presence of non-trivial automorphism groups.
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Integral points and horoball masses. Let mL
γ⃗,h denote the total mass

of ν̂Lu,γ⃗,h (equivalently, of ν̃Lu,γ⃗,h). Note that, since intersection numbers and
square roots of extremal lengths scale homogeneously, equation (5.2) implies
that

(5.5) mL
γ⃗,h = L6g−6m1

γ⃗,h.

To computem1
γ⃗,h and, in particular, to relate it to the (fibered) Kontsevich

measure, we will need a better structural understanding of the unstable leaf
Fu
[γ]. The following statement gives us the desired control; compare to the

discussion of moderately slanted cylinder diagrams in [AH20b, Section 3]
and to the discussion of shear-shape coordinates for quadratic differentials
in [CF21].

Lemma 5.4. The critical graph map Ξ: Fu
[γ]/ Stab0(γ⃗) → MRG(Sg \ γ⃗)

demonstrates the quotient Fu
[γ]/ Stab0(γ⃗) as a torus bundle over MRG(Sg \

γ⃗).

Proof. By definition, every q ∈ Fu
[γ] is a unit-area quadratic differential

whose horizontal foliation (i.e., imaginary part) is in the projective class of
[γ]. In particular, this implies that its horizontal cylinders all have equal
heights. Cutting along the core curves of these cylinder, we are left with
a flat cone structure with totally geodesic boundary on Sg \ γ⃗. Collapsing
the vertical leaves then defines a deformation retract onto the critical graph
Ξ(q) ∈ MRG(Sg \ γ⃗).

Conversely, given a tuple of metric ribbon graphs (Γ,x) ∈ MRG(Sg \ γ⃗),
there exists a unique choice of height so that gluing together these metric
ribbon graphs along cylinders of that height results in a unit area quadratic
differential with the given horizontal separatrices; if (Γ,x) ∈ MRG(Sg \
γ⃗;L), then the corresponding height is 1/

∑k
i=1 Li. Compare to Figure 3.

The only ambiguity in this construction arises in choosing how much to
shear along the cylinders of γ. Thus, for each x ∈ MRG(Sg \ γ⃗), there is
a torus’s worth of ways to construct a quadratic differential q ∈ Fu

[γ] with

critical graph Ξ(q) = (Γ,x). □

The fibers of the critical graph map Ξ: Fu
[γ]/ Stab0(γ⃗) → MRG(Sg \ γ⃗)

are tori of real dimension k equal to the number of components of γ⃗. Each
dimension represents twisting about one of the components. Because of
this, the fibers are naturally equipped with a notion of size coming from
the circumferences of the corresponding cylinders (representing the possible
amounts of twisting, plus a correction factor for extra symmetries). See also
the discussion of the “cut-and-glue fibration” in [AHC22, Section 11].

This discussion allows us to express the pushforward of Thurston measure
by Ξ in terms of the Kontsevich measure on the base of the fibration.

Proposition 5.5. The following identity of measures on MRG(Sg\γ⃗) holds:

(5.6) d
(
Ξ∗ν̃u,γ⃗

)
=

σg(γ⃗)

2ρg(γ⃗)
L1 · · ·Lk dη

γ⃗,L
Kon dL1 . . . dLk.
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Figure 3. Thickening a ribbon graph and gluing boundaries
to recover a Jenkins–Strebel differential with specified critical
graph.

That is, for every measurable subset A ⊆ MRG(Sg \ γ⃗),

ν̃u,γ⃗(Ξ
−1A) =

σg(γ⃗)

2ρg(γ⃗)

∫
Rk
>0

ηγ⃗,LKon(A ∩MRG(Sg \ γ⃗;L))L1 · · ·Lk dL1 · · · dLk.

Proof. There are natural notions of integer points for both Fu
[γ]/ Stab0(γ⃗)

and MRG(S \ γ⃗). In the first space, these are square-tiled surfaces. In the
second space, these are integral metric ribbon graphs. The measure µThu

can be defined as a weak-⋆ limit of counting measures of integrally weighted
simple closed multi-curves, and the corresponding measure νu,γ⃗ can hence be
interpreted as a weak-⋆ limit of counting measures of square-tiled surfaces.

Observe that the critical graph map Ξ: Fu
[γ]/ Stab0(γ⃗) → MRG(Sg \ γ⃗)

takes integer points to integer points. Furthermore, over any integral metric
ribbon graph in (Γ,x) ∈ MRG(S \ γ⃗;L), there are exactly L1 · · ·Lk square-
tiled surfaces in Ξ−1(Γ,x) (corresponding to integral amounts of twisting).
Thus, up to getting the correct normalization factor, it suffices to show that
we can reinterpret the right-hand side of (5.6) in terms of counting integer
points. This statement was first observed by Norbury [Nor10], but is just a
consequence of the fact that the Kontsevich measure is essentially Lebesgue
measure in the lengths of edges. Compare with the discussion on the fibered
Kontsevich measure in [AHC22].

To get the normalizing constant, we must be careful to count integer
points weighted by the size of their automorphism group. Equivalently, we
must ensure that the pushforwards of measures to orbifolds are weighted by
their symmetries. The symmetries of low-complexity moduli spaces (i.e., the
kernel of the mapping class group action on these Teichmüller spaces) hence

contribute a factor of σg(γ⃗). The 2−ρg(γ⃗) factor comes from the elliptic
involution on S1,1: its existence implies that there is only half as much
twisting in the toral fibers as one might expect. □
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Together with (5.5) and the definition of the fibered Kontsevich measure
(Definition 5.3), Proposition 5.5 immediately implies the following:

Corollary 5.6. For any L > 0 and any non-zero, continuous, compactly
supported function h : MRG(Sg \ γ⃗; ∆) → R, the total mass mL

γ⃗,h of ν̂Lu,γ⃗,h
is equal to

mL
γ⃗,h = L6g−6

∫
MRG(Sg\γ⃗;∆)

h(x) dη̊∆Kon(x).

Equidistribution of critical-JS-horoballs. We now show that the ex-
panding pushforwards of critical-JS-horoballs equidistribute with respect to
the Masur–Veech measure; this is the analogue of [AHC22, Theorem 5.2].
As opposed to that paper, here we will be able to invoke strong results from
Teichmüller dynamics to deduce equidistribution relatively quickly; the ap-
proach presented here is one of several possible ones. We first consider the
horoball measures on unstable leaves.

Proposition 5.7. For any non-zero, continuous, compactly supported func-
tion h : MRG(Sg \ γ⃗; ∆) → R, the following convergence holds with respect
to the weak-⋆ topology for measures on Q1Mg:

lim
L→∞

ν̂Lu,γ⃗,h

mL
γ⃗,h

=
ν̂MV

bg
.

Proof. This result follows directly from [For21, Theorem 1.6]. 4 In fact,
the cited theorem is stronger in the sense that it guarantees equidistribu-
tion of “horospheres.” The desired result for horoballs can be recovered
by integrating horospheres along the direction of the Teichmüller geodesic
flow. □

We now use Proposition 5.7 to deduce the equidistribution of critical-JS-
horoballs. Unlike in the hyperbolic setting, see Theorem 5.2 and Corollary
5.3 in [AHC22], we cannot simply push Proposition 5.7 down toMg to arrive
at the following result; this is related to the fact that νMV is Modg-invariant
while νu,γ⃗ is not.

Corollary 5.8. For any non-zero, continuous, compactly supported function
h : MRG(Sg \ γ⃗; ∆) → R, the following convergence holds with respect to
the weak-⋆ topology for measures on Mg:

lim
L→∞

m̂L
γ⃗,h

mL
γ⃗,h

=
Λg

bg
m̂.

4An alternative proof of the desired equidistribution statement can be obtained using
the mixing property of the Teichmüller geodesic flow; see for instance [EMM22, Proposi-
tion 3.2]. A proof using only the ergodicity of the Teichmüller horocycle flow should also
follow from the methods discussed in [AH21c].
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Proof. Let f : Mg → R be a continuous, compactly supported function and
set f̃ : Tg/ Stab0(γ⃗) → R to be its pullback to Tg/ Stab0(γ⃗). As a direct
consequence of the definitions and the Hubbard–Masur theorem, for every
L > 0 we can rewrite∫
Mg

f(X) dm̂L
γ⃗,h(X) =

∫
Tg/ Stab0(γ⃗)

f̃(X) dm̃L
γ⃗,h(X)

=

∫
Tg/ Stab0(γ⃗)

f̃(X)λ+

(
JS(X, γ)√
ExtX(γ)

)
d(π[γ])∗ν̃

L
u,γ⃗,h(X)

=

∫
Q1Tg/ Stab0(γ⃗)

f̃(π(q))λ+(q) dν̃Lu,γ⃗,h(q).

Pushing back down to moduli space and dividing by the total mass mL
γ⃗,h we

get

1

mL
γ⃗,h

∫
Mg

f(X) dm̂L
γ⃗,h(X) =

1

mL
γ⃗,h

∫
Q1Mg

f(π(q))λ+(q) dν̂Lu,γ⃗,h(q)

→ 1

bg

∫
Q1Mg

f(π(q))λ+(q) dν̂MV(q),

where the convergence as L → ∞ follows from Proposition 5.7. We can then
integrate off the the sX factor using the product formula (5.1) and invoke
Theorem 5.2 to deduce the desired result. □

6. Equidistribution of critical graphs

Outline of this section. In this section we state and prove the main result
of this paper in the case of a general multi-curve. Theorem 1.1 follows as
a special case. The proof is obtained by putting the results of the previ-
ous sections into the outline discussed in the introduction. Namely, after
reducing the equidistribution problem at hand to a counting problem for
curves whose Jenkins–Strebel differentials have constrained critical graphs,
averaging and unfolding techniques allow us to further reduce to an equidis-
tribution question for critical horoball measures. Propositions 3.6 and 4.3
will play an important role at this stage of the proof. The results of §5,
which rely on the ergodicity of the Teichmüller horocycle flow, guarantee
these measures equidistribute. The relationship between the total mass of
critical horoball measures and the Kontsevich measure, explained in Corol-
lary 5.6, then allows us to relate the asymptotics of our curve counting
problem to the Kontsevich measure.

From equidistribution to counting. Fix an ordered, oriented simple
closed multi-curve γ⃗. For every L > 0, consider the extremal length counting
function

s(X, γ⃗, L) := #{α ∈ Modg · γ⃗ |
√
ExtX(α⃗) ≤ L}.



CRITICAL GRAPHS OF JENKINS–STREBEL DIFFERENTIALS 29

This does not depend on the marking of X ∈ Tg but only on its underlying
conformal structure. Work of Mirzakhani [Mir08b] gives sharp asymptotics
for this count:

(6.1) lim
L→∞

s(X, γ⃗, L)

L6g−6
=

mγ⃗ · Λg

bg
,

where Λg > 0 is the Hubbard–Masur constant, bg > 0 is the total Masur–
Veech volume of Q1Mg, and mγ⃗ is the total mass of the fibered Kontsevich

measure η̊∆Kon on the moduli space MRG(Sg \ γ⃗; ∆).

Remark 6.1. As discussed in [AHC22, Remark 7.6], the constant mγ⃗ can be
reconciled with the usual statement of (6.1) involving the “frequency” c(γ)
by observing that we are counting ordered, oriented multi-curves (introduc-
ing a factor of [Stab(γ) : Stab0(γ⃗)]) and that the coefficient of the top degree
part of the Weil–Petersson volume polynomial of Sg \ γ⃗ is exactly mγ⃗ .

Recall that our goal is to study the asymptotic distribution of the counting
measures on MRG(Sg \ γ⃗; ∆) given by

ηLX,γ⃗ :=
∑

α⃗∈Modg ·γ⃗
1[0,L]

(√
ExtX(α)

)
· δΞ1(X,α⃗).

The following is the general version of Theorem 1.1; its proof will occupy
the rest of this section. Compare with [AHC22, Theorem 7.7].

Theorem 6.2. Let γ⃗ := (γ⃗1, . . . , γ⃗k) be an ordered, oriented simple closed
multi-curve on Sg and X ∈ Mg be a complex structure on Sg. Then

lim
L→∞

ηLX,γ⃗

s(X, γ⃗, L)
=

η̊∆Kon

mγ⃗

with respect to the weak-⋆ topology for measures on MRG(Sg \ γ⃗; ∆).

Remark 6.3. For the sake of brevity and readability, throughout the rest of
this section we will shorten MRG(Sg \ γ⃗; ∆) to MRG. We will not consider
any other spaces of ribbon graphs in the sequel.

As explained in §1, Theorem 6.2 is equivalent to a counting problem for
metric ribbon graphs. More concretely, it is enough to show that for every
continuous, compactly supported f : MRG → R≥0,

lim
L→∞

1

s(X, γ⃗, L)

∫
MRG

f(x) dηLX,γ⃗(x) =
1

mγ⃗

∫
MRG

f(x) dη̊∆Kon(x).

For every L > 0 consider the f -weighted counting function

c(X, γ⃗, f, L) :=

∫
MRG

f(x) dηLX,γ⃗(x)(6.2)

=
∑

α⃗∈Modg ·γ⃗
1[0,L](

√
ExtX(α)) · f(Ξ1(X, α⃗)).

Observe that taking f ≡ 1, we recover the usual counting function s(X, γ⃗, L).
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The rest of this section is devoted to proving the ensuing result, from
which Theorem 6.2 follows directly by the above discussion. This is a gener-
alized version of Theorem 1.2 from the introduction in the case of a general
multi-curve.

Theorem 6.4. Let γ⃗ := (γ⃗1, . . . , γ⃗k) be an ordered, oriented simple closed
multi-curve on Sg and X ∈ Mg be a complex structure on Sg. Then, for
every continuous, compactly supported f : MRG → R≥0,

lim
L→∞

c(X, γ⃗, f, L)

s(X, γ⃗, L)
=

1

mγ⃗

∫
MRG

f(x) dη̊∆Kon(x).

For the rest of this section we fix a marked conformal structure X ∈ Tg,
an ordered, oriented simple closed multi-curve γ⃗ on Sg, and a non-zero,
non-negative, continuous, compactly supported function f : MRG → R≥0.

Averaging counts. Our next goal is to average the counting functions
introduced in (6.2) over small neighborhoods of moduli space. Using the
results from §4, we first study how these counting functions vary in such
neighborhoods.

Recall that Proposition 4.3 states that for every pair of conformal struc-
turesX,Y ∈ Tg that are sufficiently close in the Teichmüller metric and most
ordered, oriented simple closed multi-curves α⃗ on Sg, the critical graphs
Ξ1(X, α⃗) and Ξ1(Y, α⃗) belong to the same facet of MRG and the corre-
sponding edges have length differing by a multiplicative constant. We now
define analogous neighborhoods in the moduli space of ribbon graphs.

Given x ∈ MRG and a positive constant ε > 0, denote by Nε(x) the set
of all y ∈ MRG in the same facet as x, i.e., with the same topological type
of underlying ribbon graph as x, such that for every edge e of x and y,

e−ε · |e|x ≤ |e|y ≤ eε · |e|x;

here we have implicitly fixed a local marking so we can compare the weights
of specific edges. For every ε > 0 consider the averaged functions

fmin
ε , fmax

ε : MRG → R≥0

given by

fmin
ε (x) := min

y∈Nε(x)
f(y), fmax

ε (x) := max
y∈Nε(x)

f(y).

We begin our proof of Theorem 6.4 with the following estimate, which
allows us to compare counts of curves on X with counts on nearby surfaces.
Propositions 3.6 and 4.3 play a crucial role in the proof of this result. For
X ∈ Mg, a function f on MRG, and functions F,G on R, we say that
F = OX,f (G) if F = O(G) where the implicit constants depend only on X
and f .
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Proposition 6.5. For every ε > 0 there exists δ := δ(X, ε) ∈ (0, ε) such
that for every Y ∈ Mg with dTeich(X,Y ) < δ, the following estimates hold:

c
(
Y, γ⃗, fmin

ε , e−δL
)
+OX,f

(
L6g−7 + ε · L6g−6

)
≤ c(X, γ⃗, f, L),(6.3)

c(X, γ⃗, f, L) ≤ c
(
Y, γ⃗, fmax

ε , eδL
)
+OX,f

(
L6g−7 + ε · L6g−6

)
.(6.4)

Proof. We prove (6.4). Similar arguments yield a proof of (6.3).
We begin by applying Proposition 3.6 to focus our attention on curves

in the mapping class group orbit of γ⃗ whose corresponding Jenkins–Strebel
differentials have no short saddle connections. Recall that for any compact
set K ⊆ Tg and any σ > 0, we use F (K, σ) ⊆ MFg(Z) to denote the set of
integrally weighted simple closed multi-curves α on Sg such that JS(Y, α),
after rescaling to have unit area, has a σ-short saddle connection for some
Y ∈ K. By abuse of notation we also use F (K, σ) to denote the set of
ordered, oriented simple closed multi-curves α⃗ on Sg whose underlying multi-
curve belongs to F (K, σ). Now take K ⊆ Tg to be the closed unit ball in the
Teichmüller metric centered at X and σ = ε > 0 arbitrary. Consider the
truncated counting function

c†(X, γ⃗, f, L) :=
∑

α⃗∈Modg ·γ⃗\F (K,ε)

1[0,L]

(√
ExtX(α)

)
· f(Ξ1(X, α⃗)).

By Proposition 3.6 it follows that

(6.5) c(X, γ⃗, f, L) = c†(X, γ⃗, f, L) + ∥f∥∞ ·OK
(
L6g−7 + ε · L6g−6

)
.

We can now invoke the geometric comparison results of Section 4. Con-
sider δ = δ(K, ε, ε) > 0 as in Proposition 4.3 and set

δ′ := min{1, δ, ε}.
Now for any Y ∈ Tg such that dTeich(X,Y ) < δ′ and any α⃗ ∈ Modg · γ⃗ \
F (K, ε), it follows from Proposition 4.3 that Ξ1(X, α⃗) and Ξ1(Y, α⃗) are in
the same facet of MRG and that for every edge e of such metric ribbon
graphs,

e−ε · |e|Ξ1(Y,α⃗) ≤ |e|Ξ1(X,α⃗) ≤ eε · |e|Ξ1(Y,α⃗).

It follows that Ξ1(X, α⃗) ∈ Nε(Ξ
1(Y, α⃗)), so by definition

(6.6) f(Ξ1(X, α⃗)) ≤ fmax
ε (Ξ1(Y, α⃗)).

By Kerckhoff’s characterization of the Teichmüller metric (Theorem 2.4),

(6.7)
√
ExtY (α) ≤ eδ

′ ·
√
ExtX(α).

From (6.6) and (6.7) we deduce

(6.8) c†(X, γ⃗, f, L) ≤ c(Y, γ⃗, fmax
ε , eδ

′
L).

Putting together (6.5) and (6.8) we conclude

c(X, γ⃗, f, L) ≤ c
(
Y, γ⃗, fmax

ε , eδ
′
L
)
+ ∥f∥∞ ·OK

(
L6g−7 + ε · L6g−6

)
. □
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We now integrate Proposition 6.5 against the pushforward m̂ of Masur–
Veech measure. For every δ ∈ (0, 1) denote by UX(δ) ⊆ Mg the open ball
of radius δ centered at X ∈ Mg with respect to the Teichmüller metric and
let βX,δ : Mg → R≥0 be any bump function supported on UX(δ) of total m
mass 1.

Corollary 6.6. Let all notation be as in Proposition 6.5. Then c(X, γ⃗, f, L)
is bounded below by

(6.9)

∫
Mg

βX,δ(Y ) · c
(
Y, γ⃗, fmin

ε , e−δL
)
dm̂(Y ) +OX,f

(
L6g−7 + εL6g−6

)
and above by

(6.10)

∫
Mg

βX,δ(Y ) · c
(
Y, γ⃗, fmax

ε , eδL
)
dm̂(Y ) +OX,f

(
L6g−7 + εL6g−6

)
.

Unfolding averaged counts. Unfolding the integrals in (6.9) and (6.10)
over Tg/Stab0(γ⃗) and pushing them back down to Mg in a suitable way
will reduce the proof of Theorem 6.4 to an applicaton of Corollary 5.8. The
following proposition describes this principle; the reader should also compare
to [AH20a, Proposition 3.3] and [AHC22, Proposition 6.6].

Proposition 6.7. Fix a continuous, compactly supported function h : MRG →
R≥0. Then for every δ > 0 and every L > 0,

(6.11)

∫
Mg

βX,δ(Y ) · c(Y, γ⃗, h, L) dm̂(Y ) =

∫
Mg

βX,δ(Y ) dm̂L
γ⃗,h(Y ).

Remark 6.8. Notice that our weight function has changed names; this is
because we eventually apply Proposition 6.7 with h equal to the functions
fmax
ε and fmin

ε .

Proof. Let δ > 0 and L > 0 be arbitrary. For every Y ∈ Mg one can rewrite
the counting function c(Y, γ⃗, h, L) as follows:

c(Y, γ⃗, h, L) =
∑

α⃗∈Modg ·γ⃗
1[0,L]

(√
ExtY (α)

)
· h(Ξ1(Y, α⃗))

=
∑

[ϕ]∈Modg/Stab0(γ⃗)

1[0,L]

(√
ExtY (ϕ.γ⃗)

)
· h(Ξ1(Y, ϕ.γ⃗))

=
∑

[ϕ]∈Modg/Stab0(γ⃗)

1[0,L]

(√
Extϕ−1.Y (γ⃗)

)
· h(Ξ1(ϕ−1.Y, γ⃗))

=
∑

[ϕ]∈Stab0(γ⃗)\Modg

1[0,L]

(√
Extϕ.Y (γ⃗)

)
· h(Ξ1(ϕ.Y, γ⃗)).

Let us record this fact as

(6.12) c(Y, γ⃗, h, L) =
∑

[ϕ]∈Stab0(γ⃗)\Modg

1[0,L]

(√
Extϕ.Y (γ⃗)

)
· h(Ξ1(ϕ.Y, γ⃗)).
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Denote by pγ⃗ : Tg/Stab0(γ⃗) → Mg the quotient map and let β̃X,δ =
βX,δ ◦ pγ⃗ be the lift of βX,δ to this cover. Unfolding the integral on the left
hand side of (6.11) using (6.12) it follows that∫
Mg

βX,δ(Y ) · c(Y, γ⃗, h, L) dm̂(Y )

=

∫
Tg/Stab0(γ⃗)

β̃X,δ(Y ) · 1[0,L]
(√

ExtY (γ⃗)
)
· h(Ξ1(Y, γ⃗)) dm̃(Y )

=

∫
Tg/Stab0(γ⃗)

β̃X,δ(Y ) dm̃L
γ⃗,h(Y )

=

∫
Mg

βX,δ(Y ) dm̂L
γ⃗,h(Y ),

where the second equality follows from the definition of the horoball mea-
sure m̃L

γ⃗,h appearing in (5.3) and the third equality follows by taking the
pushforward. □

Reducing counting to equidistribution. We can now finish the proof
of Theorem 6.4 by applying our equidistribution results from §5. Proposi-
tion 6.7 relates averages of the f -weighted counting function c(X, γ⃗, f, L) to
horoball measures; our strategy now is to relate the original counting func-
tion and the mass of these measures, which we can then compare with the
count s(X, γ⃗, L) of all ordered, oriented simple closed multi-curves in the
Modg-orbit of γ⃗.

Proof of Theorem 6.4. Recall that we are aiming to prove that

lim
L→∞

c(X, γ⃗, f, L)

s(X, γ⃗, L)
=

1

mγ⃗

∫
MRG

f(x) dη̊∆Kon(x).

By Corollary 5.6, we know that for any continuous, compactly supported
function h : MRG → R≥0, the total mass mL

γ⃗,h of the unstable horoball

measure m̂L
γ⃗,h on Mg is L6g−6 times the integral

r(γ⃗, h) :=

∫
MRG

h(x) dη̊∆Kon(x).

Proving Theorem 6.4 is then equivalent to showing that both of the following
inequalities hold:

r(γ⃗, f)

mγ⃗
≤ lim inf

L→∞

c(X, γ⃗, f, L)

s(X, γ⃗, L)
,(6.13)

lim sup
L→∞

c(X, γ⃗, f, L)

s(X, γ⃗, L)
≤ r(γ⃗, f)

mγ⃗
.(6.14)

We verify (6.14) by averaging and unfolding; a proof of (6.13) can be
obtained following the same argument. Let ε ∈ (0, 1) be arbitrary and
δ = δ(X, ε) as in Corollary 6.6. Shrinking δ as necessary, we can also
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assume that e(6g−6)δ ≤ 2. Set h := fmax
ε ; Corollary 6.6 then implies we can

average our counting function to get

c(X, γ⃗, f, L) ≤
∫
Mg

βX,δ(Y )·c
(
Y, γ⃗, h, eδL

)
dm̂(Y )+OX,f

(
L6g−7 + εL6g−6

)
.

Set L′ := eδL. Unfolding the integral, i.e., using Proposition 6.7, we deduce

c(X, γ⃗, f, L) ≤
∫
Mg

βX,δ(Y ) dm̂L′

γ⃗,h(Y ) +OX,f

(
L6g−7 + εL6g−6

)
.

Dividing this inequality by mL′

γ⃗,h (which is nonzero so long as f ̸= 0) we get

c(X, γ⃗, f, L)

mL′
γ⃗,h

≤
∫
Mg

βX,δ(Y ) d
m̂L′

γ⃗,h

mL′
γ⃗,h

(Y ) +
OX,f (ε)

r(γ⃗, h)
,

where we have invoked Corollary 5.6 and our assumption on δ to simplify
the bound on the far right. Since h ≥ f , we know that r(γ⃗, h) ≥ r(γ⃗, f), so
we can also absorb this term into our big O estimate.

Taking the lim sup as L → ∞ and applying Corollary 5.8, we deduce that
(6.15)

lim sup
L→∞

c(X, γ⃗, f, L)

mL′
γ⃗,h

≤ Λg

bg

∫
Mg

βX,δ(Y ) dm̂(Y ) +OX,f (ε) =
Λg

bg
+OX,f (ε).

Combining this with Mirzakhani’s asymptotic count (6.1) and our expression
for horoball masses (Corollary 5.6), we arrive at the following estimate:

(6.16) lim sup
L→∞

c(X, γ⃗, f, L)

s(X, γ⃗, L)
≤ r(γ⃗, h) · e(6g−6)δ

mγ⃗
+OX,f (ε).

We now shrink our approximating neighborhoods. By definition, h :=
fmax
ε ↘ f pointwise as ε ↘ 0. In particular, by the monotone convergence
theorem,

lim
ε↘0

r(γ⃗, fmax
ε ) = lim

ε↘0

∫
MRG

fmax
ε (x) dη̊∆Kon(x) =

∫
MRG

f(x) dη̊∆Kon(x) = r(γ⃗, f).

Sending ε, hence δ, to 0 we get that the right-hand side of (6.16) converges
to r(γ⃗, f)/mγ⃗ as desired. □

This completes the proof of the counting result (Theorem 6.4), hence the
proof of our main equidistribution result (Theorem 6.2).

Simultaneous equidistribution. Drawing inspiration from [AES16a, AES16b,
ERW19, AHC22], we now discuss the issue of simultaneous equidistribution.
More concretely, we show that the placement of simple closed multi-curves
in the space of singular measured foliations is asymptotically independent
from the critical graph of the Jenkins–Strebel differential they define on a
given Riemann surface.

Recall that PMFg denotes the space of projective singular measured
foliations on Sg and that [λ] ∈ PMLg denotes the projective class of λ ∈
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MFg. Given X ∈ Tg, consider the coned-off Thurston measure µX
Thu which

to every measurable subset A ⊆ PMLg assigns the value

µX
Thu(A) := µThu({λ ∈ MLg | ExtX(λ) ≤ 1, [λ] ∈ A}).

By Lemmma 5.1 and Theorem 5.2, the total mass of this measure is precisely
Λ(X) = Λg > 0, the Hubbard–Masur constant. Furthermore, as discussed
in [ABEM12, Proposition 2.3], this measure can be related to the fiberwise
measures sX and the Hubbard–Masur function λ+ as follows.

Proposition 6.9. Let X ∈ Tg be a marked complex structure on Sg. Con-
sider the homeomorphism [ℑ] : S(X) → PMFg. Then,

λ+(q) =
d[ℑ]∗ µX

Thu

dsX
(q).

Fix an ordered, oriented simple closed multi-curve γ⃗ := (γ⃗1, . . . , γ⃗k) on Sg

and a marked hyperbolic structure X ∈ Tg. Recall that γ ∈ MFg denotes
the equivalence class of γ⃗ as a singular measured foliation on Sg. For every
L > 0 consider the counting measure on PMLg given by

ζLγ⃗,X :=
∑

α⃗∈Modg ·γ⃗
1[0,L]

(√
ExtX(α)

)
· δ[α].

Observe that we weight a given projective class [α] by the index [Stab(γ) :
Stab0(γ⃗)]; this allows us to use the oriented count s(X, γ⃗, L) below. The
following result can be deduced directly from Mirzakhani’s work [Mir08b,
Theorem 6.4].

Theorem 6.10. In the weak-⋆ topology for measures on PMLg,

lim
L→∞

ζLγ⃗,X
s(X, γ⃗, L)

=
µX
Thu

Λg
.

It is natural to consider the question of simultaneous equidistribution for
the limits in Theorems 6.2 and 6.10. More precisely, fix an ordered, oriented
simple closed multi-curve γ⃗ := (γ⃗1, . . . , γ⃗k) on Sg and X ∈ Tg. For every
L > 0 consider the counting measure on PMFg × MRG(Sg \ γ⃗; ∆) given
by

ξLγ⃗,X :=
∑

α⃗∈Modg ·γ⃗
1[0,L]

(√
ExtX(α)

)
· δ[α] ⊗ δΞ1(X,α⃗).

As always, this measure depends only on the underlying hyperbolic structure
of X ∈ Tg and not on its marking. The question of equidistribution as
L → ∞ of these measures can be tackled by the same methods used in
the proof of Theorem 6.2 subject to some important modifications we now
discuss.

The most important difference in the proof comes from the equidistribu-
tion result that one must use instead of Corollary 5.8. Denote by P1Tg =
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Tg × PMFg the bundle projective singular measured foliations over Te-
ichmüller space. This bundle carries a natural measure ν given by the fol-
lowing disintegration formula

dn(X, [λ]) = dµX
Thu([λ]) dm(X).

The quotient P1Mg = P1Tg/Modg by the diagonal action of the mapping
class group is the bundle of projective singular measured foliations over
moduli space. As this action preserves the measure n, we obtain a measure
n̂ on P1Mg satisfying the following disintegration formula:

dn̂(X, [λ]) = dµX
Thu([λ]) dm̂(X).

To define the relevant horoballs we want to consider over P1Mg we pro-
ceed as follows. For any L > 0 and any non-zero, continuous, compactly
supported function h : MRG(Sg\γ⃗; ∆) → R, define the Ξ1-horoball measure
on P1Tg by

dnL
γ⃗,h(X, [λ]) := dδ[γ]([λ]) dm

L
γ⃗,h(X),

where δ[γ] denotes the delta mass at [γ] ∈ PMFg. Directly from the def-
initions one can check that this measure is Stab0(γ⃗)-invariant. It follows
that one can locally push this measure forward to P1Tg/Stab0(γ⃗) to get a
measure ñL

γ⃗,h. Denote by n̂L
γ⃗,h the measure on P1Mg obtained by pushing

forward this measure. Notice that the total mass of this measure is exactly
mL

γ⃗,h > 0.
The following result is the main equidistribution result needed to address

the simultaneous equidistribution question alluded to above.

Proposition 6.11. For any non-zero, continuous, compactly supported func-
tion h : MRG(Sg \ γ⃗; ∆) → R, the following convergence holds with respect
to the weak-⋆ topology for measures on P1Mg:

lim
L→∞

n̂L
γ⃗,h

mL
γ⃗,h

=
n̂

bg
.

Proof. Let f : P1Mg → R be a continuous, compactly supported function
and set f̃ : P1Tg/ Stab0(γ⃗) → R to be its pullback. As a direct consequence
of the definitions and the Hubbard–Masur theorem, for every L > 0 we can
rewrite∫
P1Mg

f(X, [λ]) dn̂L
γ⃗,h(X, [λ])

=

∫
P1Tg/Stab0(γ⃗)

f̃(X, [λ]) dñL
γ⃗,h(X, [λ])

=

∫
Tg/ Stab0(γ⃗)

f̃(X, [γ])λ+

(
JS(X, γ)√
ExtX(γ)

)
d(π[γ])∗ν̃

L
u,γ⃗,h(X)

=

∫
Q1Tg/ Stab0(γ⃗)

f̃(π(q), [ℑ(q)])λ+(q) dν̃Lu,γ⃗,h(q).
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Pushing back down to moduli space and dividing by the total mass mL
γ⃗,h we

get

1

mL
γ⃗,h

∫
P1Mg

f(X, [λ]) dn̂L
γ⃗,h(X, [λ])

=
1

mL
γ⃗,h

∫
Q1Mg

f(π(q), [ℑ(q)])λ+(q) dν̂Lu,γ⃗,h(q)

→ 1

bg

∫
Q1Mg

f(π(q), [ℑ(q)])λ+(q) dν̂MV(q),

where the convergence as L → ∞ follows from Proposition 5.7. Disinte-
grating the Masur–Veech measure fiberwise and using Proposition 6.9 we
deduce

1

bg

∫
Q1Mg

f(π(q),[ℑ(q)])λ+(q) dν̂MV(q)

=
1

bg

∫
Mg

∫
S(X)

f(X, [ℑ(q)])λ+(q) dsX(q) dm̂(X)

=
1

bg

∫
P1Mg

f(X, [λ]) dn̂(X, [λ]).

Putting the identities above together finishes the proof. □

The following simultaneous equidistribution result can be proved by using
similar arguments as in the proof of Theorem 6.2 but working over the bundle
P1Mg instead of Mg and using Proposition 6.11 in place of Corollary 5.8;
compare to [AH20a, Proof of Theorem 3.5].

Theorem 6.12. Let γ⃗ := (γ⃗1, . . . , γ⃗k) be an ordered, oriented simple closed
multi-curve on Sg and X ∈ Mg be a complex structure on Sg. Then, with
respect to the weak-⋆ topology for measures on PMFg ×MRG(Sg \ γ⃗; ∆),

lim
L→∞

ξLγ⃗,X
s(X, γ⃗, L)

=
µX
Thu

Λg
⊗

η̊∆Kon

mγ⃗
.

As a consequence, we see that even when prescribing how a set of curves
coarsely wraps around Sg (for example, by fixing a maximal train track chart
for MFg), the critical graphs defined by those curves remain uniformly
distributed.
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