
MATH 241 FINAL EXAM ANSWERS December 15, 2003

INSTRUCTIONS: Work each problem 1-8 on a separate answer sheet. Be sure to put
your name, your TA’s name and the problem number on each sheet. Show all your work.
Clearly indicate your answers by circling each answer. No graphing or programmable
calculators are allowed, but you may use an ordinary calculator and an 8.5 × 11 sheet of
notes. After completing the exam, write out and sign the honor pledge on one of your
answer sheets.
1. [25] Let L1 be the line with equation x−1

3 = y
4 = z + 1 and let L2 be the line with

equation x = 1− 2t, y = t, z = −1 + 3t.
a) Find the point of intersection of L1 and L2.
It is immmediate from the equations that both lines go through (1, 0,−1). So (1, 0,−1)

is the point of intersection.

b) Find the distance between L1 and (0, 1, 0).
The vector from (1, 0,−1) to (0, 1, 0) is (−1, 1, 1) so the distance is

|| (−1, 1, 1)× (3, 4, 1) ||
|| (3, 4, 1) ||

=
|| (−3, 4,−7) ||
|| (3, 4, 1) ||

=
√

32 + 42 + 72

√
32 + 42 + 12

=

√
74
26

=

√
37
13

c) Find the cosine of the angle between L1 and L2.
It is

(3, 4, 1) · (−2, 1, 3)
|| (3, 4, 1) || || (−2, 1, 3) ||

=
1√

26
√

14
=

1√
364

2. [25] The position of a particle at time t is r(t) = ti − t2j + 2
3 t3k. Let C be the curve

parameterized by this r(t), 1 ≤ t ≤ 3.
a) Find the particle’s velocity and acceleration at any time t.
The velocity is r′(t) = i− 2tj + 2t2k and the acceleration is r′′(t) = −2j + 4tk.

b) Find the tangential component of acceleration aT when t = 1.
There are two formulae you could use here. One is aT = v · a/ || v ||. At time t = 1 we

have v(1) = i− 2j + 2k and a(1) = −2j + 4k so

aT =
(1)(0) + (−2)(−2) + (2)(4)√

12 + 22 + 22
=

12
3

= 4

You could also use aT = d(speed)/dt. The speed is√
12 + (−2t)2 + (2t2)2 =

√
1 + 4t2 + 4t4 = 1 + 2t2

So aT = 4t. When t = 1 we get aT = 4.



c) Find the curvature κ and unit tangent vector T of C when t = 1.

From b) we get || v ||= 3 when t = 1. We then have

T = v/ || v ||= (1,−2, 2)/3 = (1/3,−2/3, 2/3)

We know κ = aN/ || v ||2. We have a couple ways to find aN . We have

aN =
√
|| a ||2 −a2

T =
√

02 + 22 + 42 − 42 = 2

when t = 1. We could also use

aN =
|| v × a ||
|| v ||

=
|| (1,−2, 2)× (0,−2, 4) ||

3
=
|| (−4,−4,−2) ||

3
= 2

So in the end κ = 2/32 = 2/9.

d) Find the length of C.

The length is the integral of the speed which from part b) is 1 + 2t2. So the length is

∫ 3

1

1 + 2t2 dt = t +
2
3
t3

]3

1
= 3 + 18− (1 + 2/3) =

58
3

or 19
1
3

3. [25] Answer both parts.
a) Find the equation of the tangent plane to the surface exyz − z2 + 2 = 0 at the point

(0, 0, 2).

The gradient of exyz− z2 + 2 is (yzexy, xzexy, exy − 2z) which is (0, 0,−3) at (0, 0, 2). So
the tangent plane has equation z = 2.

b) The surface exyz− z = 0 does not have a tangent plane at the point (0, 0, 0). Explain
why.

The gradient of f(x, y, z) = exyz − z is (yzexy, xzexy, exy − 1) which is (0, 0, 0) at the
origin. Since the gradient of f is zero at the origin we are not guaranteed to have a tangent
plane to f−1(0) at the origin. But that is not enough to show there is no tangent plane1.
Solving 0 = exyz − z = z(exy − 1) we see that z = 0 or exy = 1 which means xy = 0. So
this surface is the three planes z = 0, x = 0, y = 0. So there could be no tangent plane at
the origin since any tangent plane would have to contain all three planes.

1 For example, the gradient of z2 is 0 at the origin, but nevertheless z2 = 0 has a tangent
plane at the origin.



4. [25] Let D be the solid region in the first octant below the paraboloid z = 4− x2 − y2.
Suppose D has mass density δ(x, y, z) = 1 + z.
a) Write down an integral in rectangular coordinates which calculates the total mass of

D.
The projection of D to the xy plane is the region in the first quadrant inside the circle

x2 + y2 = 4. So the total mass is

∫ 2

0

∫ √
4−x2

0

∫ 4−x2−y2

0

1 + z dzdydx

Of course there are five other possible orders of integration. Here is another one:

∫ 4

0

∫ √
4−z

0

∫ √
4−z−y2

0

1 + z dxdydz

b) Write down an integral in cylindrical coordinates which calculates the total mass of
D.

∫ π/2

0

∫ 2

0

∫ 4−r2

0

(1 + z)r dzdrdθ

c) Write down an integral in spherical coordinates which calculates the total mass of D.
The θ and φ limits are immediate, 0 ≤ θ ≤ π/2 and for any θ, we have 0 ≤ φ ≤ π/2.

To figure out the maximum ρ we must solve for ρ in the equation of the paraboloid,
ρ cos φ = 4− ρ2 sin2 φ. So ρ2 sin2 φ + ρ cos φ− 4 = 0 and by the quadratic formula,

ρ =
− cos φ±

√
cos2 φ + 16 sin2 φ

2 sin2 φ
=
− cos φ±

√
1 + 15 sin2 φ

2 sin2 φ

We do not take the negative square root since that would make ρ < 0. So in the end, the
mass is: ∫ π/2

0

∫ π/2

0

∫ − cos φ+
√

1+15 sin2 φ

2 sin2 φ

0

(1 + ρ cos φ)ρ2 sinφ dρdφdθ

d) Evaluate one of the integrals a,b, or c above.
The integral b) is obviously the easiest.

∫ π/2

0

∫ 2

0

∫ 4−r2

0

(1 + z)r dzdrdθ =
∫ π/2

0

∫ 2

0

rz +
rz2

2

]4−r2

0

drdθ



=
∫ π/2

0

∫ 2

0

r(4− r2) +
r(4− r2)2

2
drdθ

Letting u = 4− r2, du = −2rdr we get:

∫ π/2

0

∫ 2

0

r(4− r2) +
r(4− r2)2

2
drdθ = −1

2

∫ π/2

0

∫ 0

4

u +
u2

2
dudθ

= −1
2

∫ π/2

0

u2

2
+

u3

6

]0

4

dθ =
1
2

∫ π/2

0

16
2

+
64
6

dθ =
1
2

(
8 +

32
3

)(π

2

)
=

14π

3

5. [25] Evaluate ∫
C

y2 dx− xy dy,

where C is the the closed triangle with vertices at (0, 0), (2, 0), and (0, 4), oriented coun-
terclockwise.

By Green’s theorem, this is ∫ ∫
R

−y − 2y dA

where R is the region enclosed by C. The region R is the region in the first quadrant below
the line y = 4− 2x. So∫

C

y2 dx− xy dy =
∫ 2

0

∫ 4−2x

0

−3y dydx =
∫ 2

0

−3y2/2
]4−2x

0
dx

= −3
2

∫ 2

0

16− 16x + 4x2 dx = −3
2

(
16x− 8x2 +

4x3

3

) ]2

0
= −3

2

(
32− 32 +

32
3

)
= −16

You could also calculate this directly. Notice that if C1 is the line segment from (0, 0) to
(2, 0) then

∫
C1

y2 dx − xy dy = 0 since y = 0 on C1. Also if C2 is the line segment from

(0, 4) to (0, 0) then
∫

C2
y2 dx − xy dy =

∫
C2

y2 dx = 0 since x and dx are 0 on C1. So

we only need calculate the integral on the line segment C3 from (2, 0) to (0, 4). This is
parameterized by r(t) = (2, 0) + t(−2, 4), 0 ≤ t ≤ 1.

∫
C

y2 dx− xy dy =
∫

C3

y2 dx− xy dy =
∫ 1

0

((4t)2,−(2− 2t)(4t)) · (−2, 4) dt

=
∫ 1

0

−2(16t2)− 4(2− 2t)(4t) dt =
∫ 1

0

−32t dt = −16t2
]1

0
= −16



6. [25] Let Σ be the portion of the cylinder x2 + y2 = 1 between the planes z = 0 and
z = 2, and let F = xy2i + x2j. Evaluate the flux of F through Σ, i.e.,

∫∫
Σ

F · n dS, where
n is the unit outward normal vector to Σ. Explain your method of calculation.
The straightforward way to solve this is to break Σ up into two pieces Σ1 with y ≥ 0 and
Σ2 with y ≤ 0. The calculation isn’t pretty and we’ll look at alternatives later, but here it
is. Note Σ1 is the graph y =

√
1− x2 for 0 ≤ z ≤ 2 and −1 ≤ x ≤ 1. Then switching the

roles of z and y we have

n dS = (−∂
√

1− x2

∂x
, 1, −∂

√
1− x2

∂z
) dzdx = (

x√
1− x2

, 1, 0) dzdx

and so ∫ ∫
Σ1

F · n dS =
∫ 1

−1

∫ 2

0

(x(1− x2), x2, 0) · ( x√
1− x2

, 1, 0) dzdx

=
∫ 1

−1

∫ 2

0

x2
√

1− x2 + x2 dzdx =
∫ 1

−1

2x2
√

1− x2 + 2x2 dx

The
∫ 1

−1
2x2 dx = 4/3 is easy, but we’ll need trig substitutions to integrate the other term.

Let x = sin t, for −π/2 ≤ t ≤ π/2, then dx = cos t dt and∫ 1

−1

2x2
√

1− x2 dx =
∫ π/2

−π/2

2 sin2 t cos2 t dt =
∫ π/2

−π/2

sin2(2t)
2

dt

=
∫ π/2

−π/2

1− cos(4t)
4

dt =
t

4
− sin(4t)

16

]π/2

−π/2
=

π

4

So the flux through Σ1 is π
4 + 4

3 . Similarly we calculate the flux through Σ2 where y =
−
√

1− x2. Since the normal points in the direction making y decrease we have

n dS = (
∂(−

√
1− x2)
∂x

, −1,
∂(−

√
1− x2)
∂z

) dzdx = (
x√

1− x2
, −1, 0) dzdx

So ∫ ∫
Σ2

F · n dS =
∫ 1

−1

∫ 2

0

(x(1− x2), x2, 0) · ( x√
1− x2

, −1, 0) dzdx

=
∫ 1

−1

∫ 2

0

x2
√

1− x2 − x2 dzdx =
∫ 1

−1

2x2
√

1− x2 − 2x2 dx =
π

4
− 4

3

Adding these together we get∫ ∫
Σ

F · n dS =
π

4
+

4
3

+
π

4
− 4

3
=

π

2

There is another way to solve this using the divergence theorem. The surface Σ is not
closed, so we can not use the divergence theorem directly, but we can close up Σ by adding



the two discs Σ3 and Σ4 where Σ3 is the portion of the plane z = 0 inside x2 + y2 = 1 and
Σ4 is the portion of the plane z = 2 inside x2 + y2 = 1. Note that the fluxes through Σ3

and Σ4 are both zero since their normals are ±k which is perpendicular to F = xy2i+ x2j
so F · n = 0 on Σ3 and Σ4. By the divergence theorem∫ ∫

Σ∪Σ3∪Σ4

F · n dS =
∫ ∫ ∫

D

y2 dV

where D is the solid region between z = 0 and z = 2 and inside x2 + y2 = 1. So

∫ ∫
Σ

F · n dS =
∫ ∫

Σ∪Σ3∪Σ4

F · n dS =
∫ 2π

0

∫ 1

0

∫ 2

0

r2 sin2 θ r dzdrdθ

=
∫ 2π

0

∫ 1

0

r3z sin2 θ
]2

0
drdθ =

∫ 2π

0

∫ 1

0

2r3 sin2 θ drdθ =
∫ 2π

0

r4 sin2 θ

2

]1

0

dθ

=
∫ 2π

0

sin2 θ

2
dθ =

∫ 2π

0

1− cos(2θ)
4

dθ =
θ

4
− sin(2θ)

8

]2π

0

=
π

2

A third alternative is to view Σ as a parameterized surface, with parameterization h(θ, z) =
(cos θ, sin θ, z), 0 ≤ z ≤ 2, 0 ≤ θ ≤ 2π. Then by the newest edition of Ellis&Gulick if you
have that, or by notes handed out in Dr. King’s section and perhaps in Dr. Rosenberg’s
section as well,

n dS = ±∂h/∂θ × ∂h/∂z dzdθ

= ±(− sin θ, cos θ, 0)× (0, 0, 1) dzdθ = ±(cos θ, sin θ, 0) dzdθ

We take the plus sign since we want n to point outward. So

∫ ∫
Σ

F · n dS =
∫ 2π

0

∫ 2

0

(cos θ sin2 θ, cos2 θ, 0) · (cos θ, sin θ, 0) dzdθ

=
∫ 2π

0

∫ 2

0

cos2 θ sin2 θ + sin θ cos2 θ dzdθ =
∫ 2π

0

∫ 2

0

sin2(2θ)
4

+ sin θ cos2 θ dzdθ

=
∫ 2π

0

∫ 2

0

1− cos(4θ)
8

+ sin θ cos2 θ dzdθ =
∫ 2π

0

1− cos(4θ)
4

+ 2 sin θ cos2 θ dθ

=
θ

4
− sin(4θ)

16
− 2 cos3 θ

3

]2π

0
=

π

2



7. [25] Find the surface area of the portion of the plane 2x+3y + z = 25 which lies above
the elliptical region (x + y)2 + (x + 3y)2 ≤ 4.

This plane is the graph z = 25− 2x− 3y so the surface area is∫ ∫
R

√
(−2)2 + (−3)2 + 1 dA =

∫ ∫
R

√
14 dA

where R is the region (x+y)2+(x+3y)2 ≤ 4. We can integrate over R using the coordinate

change u = x + y, v = x + 3y. Then ∂(u,v)
∂(x,y) = (1)(3)− (1)(1) = 2. So ∂(x,y)

∂(u,v) = 1/2. So

∫ ∫
R

√
14 dA =

∫ 2

−2

∫ √
4−v2

−
√

4−v2

√
14
2

dudv =
∫ 2π

0

∫ 2

0

√
14r

2
drdθ

=
∫ 2π

0

√
14r2

4

]2

0
dθ =

∫ 2π

0

√
14 dθ = 2

√
14π

You could also calculate
∫ 2

−2

∫√4−v2

−
√

4−v2

√
14
2 dudv immediately by noticing that it is

√
14
2 times

the area of the disc of radius 2, or
√

14
2 π22 = 2

√
14π.

8. [25] Let f(x, y) = x3y − 3xy2 + 2x. Suppose you want to find the maximum and
minimum values of f on the circle x2 + y2 = 1.
a) Write down explicit equations that x and y must satisfy at the point(s) where f

achieves its maximum and minimum values on the circle.

Let g(x, y) = x2 + y2. By the method of Lagrange multipliers, since f and g are differen-
tiable everywhere and ∇g is never zero on the circle g = 1, explicit equations are:

3x2y − 3y2 + 2 = λ(2x)

x3 − 6xy = λ(2y)

x2 + y2 = 1

for some λ. Optionally, since the first two equations say ∇f is a multiple of ∇g, we
can replace them by the equation ∇f × ∇g = 0. This reduces to the single equation
fxgy − fygx = 0. So you could equally well write down explicit equations:

(3x2y − 3y2 + 2)2y − (x3 − 6xy)2x = 0

x2 + y2 = 1



b) Find the maximum and minimum values of f on the circle x2 + y2 = 1 and the points
where they are achieved. You may use results from the following MATLAB sessions.
(Note that because of round-off error, numbers which really should be real sometimes
show up in MATLAB as complex numbers with a miniscule imaginary part.)

By part a) and the MATLAB output below, we see that possible max/min are given
by the points (xc,yc). Thus possibilities are about (±.2913, .9566), (±.993, .1182) and
(±.3949,−.9187). The last column of the table gives the values of f at these points, so
we see that the maximum is at about (.993, .1182) where f(.993, .1182) ≈ 2.0601 and
the minimum is at about (−.993, .1182) where f(−.993, .1182) ≈ −2.0601. Note that the
computation of (xa,ya) is unnecessary for this problem. These are the critical points of
f which we would only need if we wanted the max/min of f on the disc x2 + y2 ≤ 1.

c) Jenny from Prof. Rosenberg’s class and Jack from Prof. King’s class tried to solve this
with the MATLAB sessions below, which only differ in the one line indicated. Explain
why their different methods gave the same values for xc and yc.

>> syms x y lam
>> f = x^3*y-3*x*y^2+2*x; g = x^2+y^2;
>> fx=diff(f,x); fy=diff(f,y); gx = diff(g,x); gy=diff(g,y);
>> ff = inline(vectorize(f));
>> [xa, ya] = solve(fx,fy);
>> xa=double(xa); ya=double(ya);
>> [xa, ya, ff(xa,ya)]
ans =

0 -0.8165 0
0 0.8165 0

1.0466 + 1.0466i 0 + 0.3651i 1.6746 + 1.6746i
-1.0466 + 1.0466i 0 - 0.3651i -1.6746 + 1.6746i
1.0466 - 1.0466i 0 - 0.3651i 1.6746 - 1.6746i

-1.0466 - 1.0466i 0 + 0.3651i -1.6746 - 1.6746i

At this point Jenny gives the command >> [xc, yc] = solve(fx*gy-fy*gx, g-1); and
Jack gives the command >> [lamc, xc, yc] = solve(fx-lam*gx, fy-lam*gy, g-1);.
After that, their MATLAB sessions are identical:

>> xc = double(xc); yc = double(yc);
>> [xc, yc, ff(xc,yc)]
0.2913 - 0.0000i 0.9566 + 0.0000i -0.1935 - 0.0000i

-0.2913 + 0.0000i 0.9566 + 0.0000i 0.1935 + 0.0000i
0.9930 + 0.0000i 0.1182 - 0.0000i 2.0601 + 0.0000i

-0.9930 - 0.0000i 0.1182 - 0.0000i -2.0601 - 0.0000i
0.3949 + 0.0000i -0.9187 - 0.0000i -0.2667 - 0.0000i

-0.3949 - 0.0000i -0.9187 - 0.0000i 0.2667 + 0.0000i
0.0000 - 2.1885i -2.4061 - 0.0000i 0.0000 + 8.4132i

-0.0000 + 2.1885i -2.4061 - 0.0000i -0.0000 - 8.4132i



Jack’s code solved the first set of equations we gave in part a). Jenny solved the second
set. In our answer to part a) we showed that these two sets of equations were equivalent.
(Jack finds points on the circle g = 1 where ∇f is a multiple of ∇g. Jenny finds points on
the circle g = 1 where ∇f and ∇g are parallel. Since ∇g is never 0 on the circle, this is
the same thing2.)

2 If the problem were different and ∇g were 0 on the level set then Jenny would have
found those points where ∇g = 0 but Jack would not. Jack would have had to find those
points in a separate computation.


