1. [20] Find the area of the region enclosed by the curve $r=\sqrt{\sin \theta}$.

HONOR PLEDGE: I pledge on my honor that I have not given or received any unauthorized assistance on this examination.

Signature \qquad
2. [20] Let D be the region in the $u v$ plane bounded by $u=v^{2}$ and $u=v+2$. Let S be the surface parameterized by $\mathbf{r}(u, v)=(u+v) \mathbf{i}+(u-v) \mathbf{j}+2 v \mathbf{k}$ for (u, v) in D. Find the surface area of S.

TA:
Section:
3. [40] Let D be the region in the first octant inside the sphere $x^{2}+y^{2}+z^{2}=16$ and outside the cylinder $x^{2}+y^{2}=4$. Suppose D has mass density $\delta(x, y, z)=(x+2 y) z$. Write down, but do not evaluate, integrals giving the total mass of D
a) in rectangular coordinates.
b) in cylindrical coordinates.
c) in spherical coordinates.

Nov. 5, 2004

Name:

TA:

Section:
4. [20] Let R be the region bounded by the lines $2 x-y=1,2 x-y=2, x=2 y$, and $\frac{x-2 y}{2 x-y}=\pi / 2$. Find

$$
\iint_{R}(2 x-y) \sin \left(\frac{x-2 y}{2 x-y}\right) d A
$$

