MATH 241 EXAM \#1 Problem $1 \quad$ Dec. 8, 2004

Name:
TA: Section:

1. [25] Let C be the line segment from $(1,2,3)$ to $(4,0,2)$.
a) Find $\int_{C} x d y$.
b) Find $\int_{C} x d s$.

HONOR PLEDGE: I pledge on my honor that I have not given or received any unauthorized assistance on this examination.

Signature \qquad
2. [25] Let $\mathbf{F}(x, y, z)=\left(3 y+y z e^{x z}\right) \mathbf{i}+\left(3 x+e^{x z}\right) \mathbf{j}+x y e^{x z} \mathbf{k}$.
a) Show that \mathbf{F} is conservative.
b) Calculate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where C is the curve parameterized by $\mathbf{r}(t)=\left(t^{2}-\sqrt{3+t^{2}}\right) \mathbf{i}-$ $t \cos (\pi t) \mathbf{j}+\left(t^{6}-1\right) \mathbf{k}$ for $-1 \leq t \leq 1$.
c) Calculate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where C is the circle in the plane $z=3$ with center $(1,2,3)$ and radius 4 , oriented clockwise when viewed from above.

MATH 241 EXAM \#1 Problem 3 Dec. 8, 2004

Name:
TA:
Section:
3. [25] Let R be the region bounded by the paraboloids $y=2 x^{2}+2 z^{2}$ and $y=12-x^{2}-z^{2}$. Let $\mathbf{F}(x, y, z)=\sin (y z) \mathbf{i}+(z-y) \mathbf{j}+e^{x y} \mathbf{k}$. Let Σ be the boundary of R, oriented outwards. Calculate $\iint_{\Sigma} \mathbf{F} \cdot \mathbf{n} d S$.

MATH 241 EXAM \#1 Problem $4 \quad$ Dec. 8, 2004

Name:
TA:
Section:
4. [25] Let Σ be the portion of the paraboloid $z=x^{2}+y^{2}$ below the plane $z=x$. Let $\mathbf{F}(x, y, z)=x y^{2} \mathbf{i}-z^{2} \mathbf{j}+e^{x} \mathbf{k}$.
a) Without using Stokes' Theorem, set up (but do not evaluate) $\iint_{\Sigma} \operatorname{curlF} \cdot \mathbf{n} d S$.
b) Evaluate $\iint_{\Sigma} \operatorname{curlF} \cdot \mathbf{n} d S$ by any (correct) method you wish.

