
Matlab and ordinary differential equations

Matlab can solve ODEs both symbolically and numerically. To find symbolic solutions, use dsolve as
in the examples below:

>> dsolve(’D2y-3*Dy-4*y=cos(t)’)
ans = -1/34*(5*cos(t)*exp(t)+3*exp(t)*sin(t)-34*C1*exp(4*t)*exp(t)-34*C2)/exp(t)
>> dsolve(’D2y-3*Dy-4*y=cos(t)’,’Dy(0)=1’,’y(0)=2’)
ans = -1/34*(5*cos(t)*exp(t)+3*exp(t)*sin(t)-22*exp(4*t)*exp(t)-51)/exp(t)
>> simplify(ans)
ans = -5/34*cos(t)-3/34*sin(t)+11/17*exp(4*t)+3/2*exp(-t)
>> dsolve(’y+t*Dy=0’)
ans = 1/t*C1
>> [x y] = dsolve(’3*Dx=2*y-x’,’Dy=4*x/3+y/3’,’x(0)=2,y(0)=1’)
x = exp(-t)+exp(t)
y = 2*exp(t)-exp(-t)

The letter upper case D stands for the derivative with respect to t. D2 is the second derivative, D3 is the
third, and so on.

To solve ODEs numerically, you can use ode45. For example let us solve y′ = y6− t2 for 0 ≤ t ≤ 1 with
the initial condition y(0) = .9.

>> syms y t
>> f = inline(vectorize(y^6-t^2),’t’,’y’);
>> ode45(f,[0 1],.9)

In an apparently undocumented feature, this will produce a graph of the solution, with circles around the
points which matlab calculated. To obtain a list of the y and t values, use the command

>> [T Y] = ode45(f,[0 1],.9)

Note in this example, when t ≥ .3023 or so, the value of Y is given as NaN, standing for not a number,
which indicates that the solution has gone off to infinity there.

By default, ode45 attempts for three digit accuracy, (or error less than 10−6 if the answer has absolute
value less than 10−3). This can be changed using odeset, typing help ode45 gives more information.

You can graph several solutions with various initial values by giving a row vector of initial values, for
example ode45(f,[0 1],[.5 1]) graphs two solutions with initial values y(0) = 1 and y(0) = 1/2.

You can solve systems of equations with ode45 also. For example to solve the system y′1 = y1 + t,
y′2 = y1 + y2, 0 ≤ t ≤ 1, y1(0) = 1, y2(0) = 2

>> g = inline(vectorize(’[y(1)+t; y(1)+y(2)]’),’t’,’y’);
>> [T Y] = ode45(g,[0 1],[1;2])

There is something to watch when you do this. The function and initial values should be given as a column
vector, so you separate entries by a semicolon as above. Also the argument to vectorize should be a string
enclosed in single quotes as indicated above. Otherwise matlab gets unhappy.

You can have matlab plot your solutions [T Y] using plot for two dimensional plots or plot3 for three
dimensional plots. For example to plot the five solutions to y′ = 3y + sin t for 0 ≤ t ≤ 2 with initial values
y(0) = 0, 1,−1, 2,−2 type:

>> f = inline(vectorize(3*y+sin(t)),’t’,’y’)
>> [T Y] = ode45(f,[0 2],[0 1 -1 2 -2]);
>> plot(T,Y)

To plot the solutions to y′1 = y1y2 − t, y′2 = y1 − y2, y1(1) = 3, y2(1) = 0 for 0 ≤ t ≤ 1 we can do

>> g = inline(vectorize(’[y(1)*y(2)-t; y(1)-y(2)]’),’t’,’y’)
>> [T Y] = ode45(g,[1 0], [3; 0]);
>> plot3(T,Y(:,1),Y(:,2))
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The second argument of ode45 is [1 0] since our initial t value is 1 and the final t value is 0. The expression
Y(:,1) is the first column of Y which gives the y1 values.

Second and higher order equations can be solved numerically by changing them to first order. For
example y′′−y′+10y = sin t, y(0) = 0, y′(0) = 0 can be changed to y′1 = y2, y′2 = y2−10y1 +sin t, y1(0) = 0,
y2(0) = 0 and solved and graphed by:

>> h = inline(vectorize(’[y(2); y(2)-10*y(1)+sin(t)]’),’t’,’y’)
>> [T Y] = ode45(h,[0 2*pi], [0;0]);
>> plot(T,Y(:,1))

Use matlab to solve the following problems, due Friday, April 4. You may work in pairs if you wish.

Problem 1: p. 66 prob 7.

Problem 2: p. 149 problem 1.

Problem 3: Graph an approximate solution to y′′ + t2y′ − y = sin t, y(0) = 1, y′(0) = 2 for 0 ≤ t ≤ 4π.
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