1. (10) Find a basis for the vector space of lower triangular 2×2 matrices. What is the dimension of this vector space?
2. (20) Suppose a matrix A has row echelon form $\left(\begin{array}{llll}1 & 2 & 0 & 1 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0\end{array}\right)$.
a) What is $\operatorname{rank}(A)$?
b) Find, if possible, a basis for the null space of A.
c) Find, if possible, a basis for the column space of A.
3. (30) Consider the curve C parameterized by $\mathbf{x}(t)=4 \sin t \mathbf{i}+3 \sin t \mathbf{j}+5 \cos t \mathbf{k}, 0 \leq t \leq \pi$.
a) Find the tangential and normal components of acceleration a_{T} and a_{N} as functions of time.
b) Find the curvature κ when $t=\pi / 3$.
c) Find the length of C.
d) Find $\int_{C} z d x+y d y-d z$
4. (20) Find all points on the surface $x^{2}+3 y z=5$ where the tangent plane is perpendicular to the line through the points $(1,2,3)$ and $(2,1,0)$. Find an equation of the tangent plane at one of those points.
5. (20) Let S be the portion of the surface $z=3-\sqrt{x^{2}+y^{2}}$ in the first octant. Let C be the boundary of S, oriented counterclockwise when viewed from above. Let $\mathbf{F}(x . y, z)=$ $\sin x \mathbf{i}-x z \mathbf{j}+x y \mathbf{k}$.
a) Describe C, (a clear sketch is sufficient).
b) Find $\int_{C} \mathbf{F} \cdot \mathrm{~d} s$.
6. (20) Let D be the solid region inside the cylinder $r=2$, above the surface $z=x^{2}+y^{2}$, and below the surface $z=10+x^{2}-3 y^{2}+y$. Let S be the boundary of D oriented pointing outward from D. Let $\mathbf{F}(x, y, z)=z \mathbf{i}-x \mathbf{j}+y^{2} \mathbf{k}$.
a) Find $\iint_{S} \mathbf{F} \cdot \mathrm{~d} S$.
b) Let S^{\prime} be obtained from S by deleting the surface $z=x^{2}+y^{2}, r \leq 2$. Find $\iint_{S^{\prime}} \mathbf{F} \cdot \mathrm{d} S$.
7. (20) Let D be the portion of the ellipse $(2 x+y)^{2}+(x-y)^{2} \leq 4$ above the line $y=x$. Find $\iint_{D} x-y d A$. (Hint: use a change of variables $u=2 x+y, v=x-y$.)
8. (30) Let A and B be matrices so that $A B=0$. For each of the following statements, either show the statement is true or give a counterexample to show it is false.
a) Either A or B is zero.
b) The column space of B is a subspace of the null space of A.
c) $\operatorname{rank} A+\operatorname{rank} B \leq 7$ if A is a 6×7 matrix.
d) Suppose $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ is differentiable and C is a curve in the level set $g^{-1}(0)$. Let T be a tangent vector to C at a point p of C. Then T is in the null space of $D g(p)$.

TURN OVER

9. (30) Short answer, true or false. (no justification required). A and B are nonsingular 7×7 matrices.
a) $(A B)^{-1}=$
b) $\left(\left(A^{T}-2 B\right) \overline{(I+B))^{T}}=\right.$ possible,
c) $\operatorname{det}(A B)=$ \qquad .
d) Adding twice the second row to the third row of a 3×4 matrix is the same as multiplying it on the \qquad by the matrix \qquad .
e) If $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{p}}$ is a linearly independent set of vectors in \mathbb{R}^{m}, then we always have $p \leq m$.
f) If T is a linear transformation, then $T(2 \mathbf{v}-\mathbf{w})=2 T(\mathbf{v})-T(\mathbf{w})$.
g) Any four vectors which span a four dimensional vector space V form a basis for V.
h) If v_{1}, v_{2}, v_{3} are linearly independent vectors in a four dimensional vector space V, then there is a vector v_{4} so that $v_{1}, v_{2}, v_{3}, v_{4}$ is a basis for V.
i) Any two bases of a vector space V have the same number of elements.
j) Every vector space has a finite basis.
