
Math 340 Final Exam December 19, 2002

1. (10) Find a basis for the vector space of lower triangular 2 × 2 matrices. What is the
dimension of this vector space?

A basis is

(

0 0
0 1

)

,

(

1 0
0 0

)

,

(

0 0
1 0

)

since any lower triangular matrix is a linear com-

bination of these three matrices and they are linearly independent. The dimension is 3
since there are 3 basis elements.

2. (20) Suppose a matrix A has row echelon form





1 2 0 1
0 0 1 3
0 0 0 0



.

a) What is rank(A)?

The rank is two since there are two pivots.
b) Find, if possible, a basis for the null space of A.

The vectors (x, y, z, w)T in the null space satisfy x + 2y + w = 0 and z + 3w = 0
so (x, y, z, w) = y(−2, 1, 0, 0) + w(−1, 0,−3, 1). So the two linearly independent vectors
(−2, 1, 0, 0)T , (−1, 0,−3, 1)T form a basis of the null space of A.
c) Find, if possible, a basis for the column space of A.

The column space is unknown since row operations change the column space and we have
no idea which row operations were done to A. Some of you pointed out correctly that the
first and third columns of A form a basis of the column space of A since those are the pivot
columns. In fact, any two columns of A except the first two will be a basis of the column
space of A.

3. (30) Consider the curve C parameterized by x(t) = 4 sin ti+3 sin tj+5 cos tk, 0 ≤ t ≤ π.
a) Find the tangential and normal components of acceleration aT and aN as functions

of time.

v(t) = 4 cos ti+3 cos tj− 5 sin tk and a(t) = −4 sin ti− 3 sin tj− 5 cos tk. The speed ||v|| is
a constant, 5. So aT = d(speed)/dt = 0. Then aN =

√

||a||2 − a2
T = ||a|| = 5. You could

also have calculated aT = v · a/||v|| and aN = ||v × a||/||v||.
b) Find the curvature κ when t = π/3.

κ = aN/||v||2 = 5/25 = 1/5
c) Find the length of C.

Length =
∫ π

0
||v(t)|| dt =

∫ π

0
5 dt = 5π.

d) Find
∫

C
zdx + ydy − dz

∫

C

zdx + ydy − dz =

∫

C

(z, y,−1) · ds =

∫ π

0

(5 cos t, 3 sin t,−1) · (4 cos t, 3 cos t,−5 sin t) dt

=

∫ π

0

20 cos2 t + 9 sin t cos t + 5 sin t dt

=

∫ π

0

10 + 10 cos(2t) + 9 sin t cos t + 5 sin t dt



= 10t + 5 sin(2t) + 9 sin2 t/2 − 5 cos t ]π0 = 10π + 10

4. (20) Find all points on the surface x2+3yz = 5 where the tangent plane is perpendicular
to the line through the points (1, 2, 3) and (2, 1, 0). Find an equation of the tangent plane
at one of those points.

The tangent plane to the level set is perpendicular to ∇(x2 +3yz) so we want (2x, 3z, 3y)
to be parallel to (2, 1, 0) − (1, 2, 3) = (1,−1,−3). Two vectors in R

3 are parallel when
their cross product is 0, so we could take the cross product and set it to 0, or else just
solve (2x, 3z, 3y) = t(1,−1,−3). I will use the latter approach so we see that t = 2x so
3z = −2x and 3y = −6x. So z = −2x/3 and y = −2x. Plugging in to x2 + 3yz = 5
we get x2 + 3(−2x)(−2x/3) = 5 or 5x2 = 5. Thus x = ±1. So the only points are
(1,−2,−2/3) and (−1, 2, 2/3). At the first point the equation of the tangent plane is
(x − 1) − (y + 2) − 3(z + 2/3) = 0.

5. (20) Let S be the portion of the surface z = 3−
√

x2 + y2 in the first octant. Let C be
the boundary of S, oriented counterclockwise when viewed from above. Let F(x.y, z) =
sin xi − xzj + xyk.
a) Describe C, (a clear sketch is sufficient).
b) Find

∫

C
F · ds.

We can use Stokes’ Theorem to evaluate this, with the upward normal. curlF(x, y, z) =
2xi − yj − zk and n dS = (−∂z/∂x,−∂z/∂y, 1) dxdy. Then if D is the projection of S to
the xy plane,

∫

C

F · ds =

∫ ∫

S

curlF · dS

=

∫ ∫

D

(2x,−y,−(3−
√

x2 + y2) · (x/
√

x2 + y2, y/
√

x2 + y2, 1)dxdy

=

∫ ∫

D

2x2/r − y2/r − 3 + rdxdy

=

∫ π/2

0

∫ 3

0

2r2 cos2 θ − r2 sin2 θ − 3r + r2 drdθ

=

∫ π/2

0

∫ 3

0

3r2 cos2 θ − 3r drdθ

=

∫ π/2

0

r3 cos2 θ − 3r2/2]30 dθ

=

∫ π/2

0

27 cos2 θ − 27/2 dθ

=

∫ π/2

0

(27/2) cos(2θ) dθ



= (27/4) sin(2θ)]
π/2

0 = 0

Some people almost suceeded in evaluating the line integral directly. The easiest way is to
note that sin xi is conservative so

∫

C
sin xdx = 0. Thus

∫

C
F · ds =

∫

C
−xzdy+xydz which

can be readily evaluated by parameterizing each of the three pieces of C, or as follows
without calculation. The integral

∫

C1

−xzdy + xydz is 0 for the quarter circle C1 in the
xy plane since both z and dz are 0. It is zero for the line in the yz plane since x = 0. It
is zero for the line in the xz plane since both y and dy are 0.

6. (20) Let D be the solid region inside the cylinder r = 2, above the surface z = x2 + y2,
and below the surface z = 10+x2−3y2 +y. Let S be the boundary of D oriented pointing
outward from D. Let F(x, y, z) = zi − xj + y2k.
a) Find

∫ ∫

S
F · dS.

divF = 0 so
∫ ∫

S
F · dS =

∫ ∫ ∫

D
divF dV = 0.

b) Let S′ be obtained from S by deleting the surface z = x2+y2, r ≤ 2. Find
∫ ∫

S′
F· dS.

Let S′′ be the surface z = r2, r ≤ 2, oriented downward. Then 0 =
∫ ∫

S
F · dS =

∫ ∫

S′
F · dS +

∫ ∫

S′′
F · dS So

∫ ∫

S′
F · dS = −

∫ ∫

S′′
F · dS. But

∫ ∫

S′′

F · dS =

∫ 2π

0

∫ 2

0

(r2,−x, y2) · (2x, 2y,−1) rdrdθ

=

∫ 2π

0

∫ 2

0

2r4 cos θ − 2r3 cos θ sin θ − r3 sin2 θ drdθ

=

∫ 2π

0

.4r5 cos θ − .5r4 cos θ sin θ − .25r4 sin2 θ]20 dθ

=

∫ 2π

0

12.8 cos θ − 8 cos θ sin θ − 4 sin2 θ dθ = −4π

Thus
∫ ∫

S′
F · dS = 4π. A sneakier way to do this is to let S′′′ be the disc z = 4, r ≤ 2,

oriented downwards. Then S′ ∪ S′′′ is a closed surface so by Gauss’ theorem we know the
flux through it is 0. Consequently

∫ ∫

S′
F · dS = −

∫ ∫

S′′′
F · dS. But

∫ ∫

S′′′

F · dS =

∫ 2π

0

∫ 2

0

(4,−x, y2) · (0, 0,−1) rdrdθ

=

∫ 2π

0

∫ 2

0

−r3 sin2 θ drdθ = −4π

You could also evaluate directly by decomposing S′ into two pieces S1 and S2 where S1 is
the top z = 10 + x2 − 3y2 + y, r ≤ 2 and S2 is the side r = 2, 4 ≤ z ≤ 10 + x2 − 3y2 + y.
Then

∫ ∫

S1

F · dS =

∫ 2π

0

∫ 2

0

(10 + x2 − 3y2 + y,−x, y2) · (−2x, 6y − 1, 1) rdrdθ



=

∫ 2π

0

∫ 2

0

−20x − 2x3 + 6xy2 − 2xy − 6xy + x + y2 rdrdθ

By symmetry the integrals of the first terms are zero (since they are odd functions with

respect to x) and we are left with
∫ 2π

0

∫ 2

0
y2 rdrdθ = 4π. We can parameterize S2 by

X(z, θ) = (2 cos θ, 2 sin θ, z) 0 ≤ θ ≤ 2π and 4 ≤ z ≤ 10+4 cos2 θ−12 sin2 θ+2 sin θ. Then
Xz × Xθ = −2 cos θi − 2 sin θj which is pointed inwards so we negate it for the correct
orientation. Then

∫ ∫

S2

F · dS =

∫ 2π

0

∫ 10+4 cos
2 θ−12 sin

2 θ+2 sin θ

4

(z,−x, y2) · (2 cos θ, 2 sin θ, 0) dzdθ

=

∫ 2π

0

∫ 10+4 cos
2 θ−12 sin

2 θ+2 sin θ

4

2z cos θ − 4 cos θ sin θ dzdθ

=

∫ 2π

0

z2 cos θ − 4z cos θ sin θ]10+4 cos
2 θ−12 sin

2 θ+2 sin θ
4 dθ

This is 0 after laborious computation. Or you can use the change of variables u = sin θ,
du = cos θdθ and this is:

∫ 2π

0

∫ 10+4 cos
2 θ−12 sin

2 θ+2 sin θ

4

2z cos θ − 4 cos θ sin θ dzdθ

=

∫ 0

0

∫ 10+4−4u2−12u2
+2u

4

2z − 4u dzdu = 0

since u goes from sin 0 to sin 2π in other words 0 to 0. A sneaky other way to do it is to find
a vector field G so F = curlG, we have some hope for this since divF = 0. When doing this
you can simplify your search for G by assuming it is parallel to the xy plane, in other words
G(x, y, z) = M i+N j. Then curlG = −Nzi+Mzj+(Nx−My)k So we need to solve −Nz = z,
Mz = −x, Nx−My = y2. From the first two equations we get N(x, y, z) = −z2/2+C(x, y)
and M(x, y, z) = −xz + D(x, y). Then the third equation becomes Cx − Dy = y2 which
we can solve by C = xy2, D = 0. So we can let G = (xy2 − z2/2)i − xzj. Now by Stokes’
theorem

∫ ∫

S′
F · dS =

∫

C
G · ds =

∫

C
(xy2 − z2/2)dy − xzdx where C is the boundary of

S′ which is just the circle z = 4, r = 2. Parameterize C by x(t) = 2 cos ti + 2 sin tj + 4k
and we get

∫

C

(xy2 − z2/2)dy − xzdx =

∫ 2π

0

(8 cos t sin2 t − 8)(2 cos t) − 8 cos t(−2 sin t) dt

=

∫ 2π

0

16 cos2 t sin2 t− 16 cos t + 16 cos t sin t dt =

∫ 2π

0

4 sin2(2t)− 16 cos t + 16 cos t sin t dt

=

∫ 2π

0

2(1 − cos(4t)) − 16 cos t + 16 cos t sin t dt = 4π



7. (20) Let D be the portion of the ellipse (2x + y)2 + (x − y)2 ≤ 4 above the line y = x.
Find

∫ ∫

D
x − y dA. (Hint: use a change of variables u = 2x + y, v = x − y.)

∂(u, v)/∂(x, y) = det

(

2 1
1 −1

)

= −3 also y ≥ x if and only if v ≥ 0 so the integral is

∫ 2

−2

∫

√
4−u2

0

v|
1

−3
| dvdu =

∫ 2

−2

∫

√
4−u2

0

v/3 dvdu

=

∫ 2

−2

v2/6]
√

4−u2

0 du

=

∫ 2

−2

(4 − u2)/6 du = 16/9

You could also evaluate readily by switching to polar coordinates or using dudv order.

8. (30) Let A and B be matrices so that AB = 0. For each of the following statements,
either show the statement is true or give a counterexample to show it is false.
a) Either A or B is zero.

False, for example A =

(

1 1
3 3

)

and B =

(

1 2
−1 −2

)

.

b) The column space of B is a subspace of the null space of A.

True. First of all we know that the column space is a vector space, the only issue is
whether the column space of B is contained in the null space of A. But any vector in the
column space of B is of the form Bx for some vector x. Then Bx is in the null space of A
since A(Bx) = (AB)x = 0x = 0.
c) rankA + rankB ≤ 7 if A is a 6 × 7 matrix.

We know rankA + dim(null space of A) = 7. But rankB = dim(column space of B) ≤
dim(null space of A) by part b). So the result is true.
d) Suppose g : R

n → R
k is differentiable and C is a curve in the level set g−1(0). Let T

be a tangent vector to C at a point p of C. Then T is in the null space of Dg(p).

This is true. Let x(t) parameterize C and suppose x(a) = p. Then x′(a) is tangent to
C at p. We have g(x(t)) = 0 so 0 = d/dt(g(x(t))) = Dg x′(t). Letting A = Dg(p) and
B = x′(a) we see by part b) that x′(a) is in the null space of Dg(p). But T must be some
multiple of x′(a) so the result follows.

TURN OVER



9. (30) Short answer, true or false. (no justification required). A and B are nonsingular
7 × 7 matrices.
a) (AB)−1 = .

B−1A−1

b) ((AT − 2B)(I + B))T = . (Multiply out and simplify as much as
possible,)

((AT − 2B)(I + B))T = (AT − 2B + AT B − 2B2)T = A − 2BT + BT A − 2(BT )2

c) det(AB) = .

det(AB) = det(A) det(B)
d) Adding twice the second row to the third row of a 3 × 4 matrix is the same as

multiplying it on the by the matrix .

multiply on the left by





1 0 0
0 1 0
0 2 1





e) If v1, . . . ,vp is a linearly independent set of vectors in R
m, then we always have

p ≤ m.

true
f) If T is a linear transformation, then T (2v − w) = 2T (v) − T (w).

true
g) Any four vectors which span a four dimensional vector space V form a basis for V .

true
h) If v1, v2, v3 are linearly independent vectors in a four dimensional vector space V , then

there is a vector v4 so that v1, v2, v3, v4 is a basis for V .

true
i) Any two bases of a vector space V have the same number of elements.

true
j) Every vector space has a finite basis.

false, for example the polynomials


