1. (15) Find the volume of the parallelepiped determined by the vectors (0, 1, 3), (1, 2, -1), and (2, 5, 7). Or, if you wish, for extra credit you may find the 4 dimensional volume of the 4 dimensional parallelepiped determined by the vectors (0, 1, 3, 7), (1, 2, -1, 0), (0, 0, 2, 6)and (2, 5, 7, 1) in \mathbb{R}^4 .

- 2. (20) Suppose A is a matrix with row echelon form $\begin{pmatrix} 1 & 3 & 4 & 5 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$
 - a) How many solutions **x** are there to $A\mathbf{x} = (1, 2, 3)^T$?
 - b) Does A have an inverse? If so, what is it, if not, why not?
 - c) Find all solutions to $A\mathbf{x} = \mathbf{0}$.
- 3. (20) Let $S \subset \mathbb{R}_{2 \times 2}$ be the set of upper triangular matrices.
 - a) Show that S is a subspace of $\mathbb{R}_{2\times 2}$.
 - b) Find v_1, v_2, v_3 so that $S = \text{Span}\{v_1, v_2, v_3\}$.

4. (20) We'll call a square matrix P a projection matrix if $P^2 = P$. Suppose P is a projection matrix and let Q = I - P.

- a) Show that Q is a projection matrix also.
- b) Let $\mathbf{a} = (3, -4)^T \in \mathbb{R}_{2 \times 1}$. Find $\operatorname{proj}_{\mathbf{a}}(1, 2)$, the projection of (1, 2) to \mathbf{a} .
- c) Find a matrix M so that $M\mathbf{b} = \operatorname{proj}_{\mathbf{a}}\mathbf{b}$ for all vectors $\mathbf{b} \in \mathbb{R}_{2 \times 1}$.
- d) Show that your matrix M is a projection matrix.

5. (25) Short answer. A and B are nonsingular 7×7 matrices. Answer any five of the following six questions. Be sure to clearly indicate which ones you are answering

- a) $(AB)^{-1} =$ _____
- b) $((A^T 2B)(I + B))^T =$ _____. (Multiply out and simplify as much as possible,)
- c) $\det(AB) =$ _____.
- d) $\det(A+B) =$ _____.
- e) The triangular inequality says _____
- f) Adding twice the second row to the third row of a 3×4 matrix is the same as multiplying it on the ______ by the matrix ______.