1. (15) Find the volume of the parallelepiped determined by the vectors $(0,1,3),(1,2,-1)$, and $(2,5,7)$. Or, if you wish, for extra credit you may find the 4 dimensional volume of the 4 dimensional parallelepiped determined by the vectors $(0,1,3,7),(1,2,-1,0),(0,0,2,6)$ and $(2,5,7,1)$ in \mathbb{R}^{4}.
2. (20) Suppose A is a matrix with row echelon form $\left(\begin{array}{llll}1 & 3 & 4 & 5 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$
a) How many solutions \mathbf{x} are there to $A \mathbf{x}=(1,2,3)^{T}$?
b) Does A have an inverse? If so, what is it, if not, why not?
c) Find all solutions to $A \mathbf{x}=\mathbf{0}$.
3. (20) Let $S \subset \mathbb{R}_{2 \times 2}$ be the set of upper triangular matrices.
a) Show that S is a subspace of $\mathbb{R}_{2 \times 2}$.
b) Find v_{1}, v_{2}, v_{3} so that $S=\operatorname{Span}\left\{v_{1}, v_{2}, v_{3}\right\}$.
4. (20) We'll call a square matrix P a projection matrix if $P^{2}=P$. Suppose P is a projection matrix and let $Q=I-P$.
a) Show that Q is a projection matrix also.
b) Let $\mathbf{a}=(3,-4)^{T} \in \mathbb{R}_{2 \times 1}$. Find $\operatorname{proj}_{\mathbf{a}}(1,2)$, the projection of $(1,2)$ to \mathbf{a}.
c) Find a matrix M so that $M \mathbf{b}=\operatorname{proj}_{\mathbf{a}} \mathbf{b}$ for all vectors $\mathbf{b} \in \mathbb{R}_{2 \times 1}$.
d) Show that your matrix M is a projection matrix.
5. (25) Short answer. A and B are nonsingular 7×7 matrices. Answer any five of the following six questions. Be sure to clearly indicate which ones you are answering
a) $(A B)^{-1}=$ \qquad .
b) $\left(\left(A^{T}-2 B\right)(I+B)\right)^{T}=$ \qquad . (Multiply out and simplify as much as possible,)
c) $\operatorname{det}(A B)=$ \qquad .
d) $\operatorname{det}(A+B)=$ \qquad .
e) The triangular inequality says \qquad .
f) Adding twice the second row to the third row of a 3×4 matrix is the same as multiplying it on the \qquad by the matrix \qquad -
