Do five of the following six problems. Show enough work to justify your answers

- 1. (20) Let $f(x, y, z) = x^2 xe^z yz$.
 - a) Find the gradient of f at the point (1, 2, 0).
- b) Find the largest value of $D_{\mathbf{u}}f$ at the point (1, 2, 0).
- c) Suppose z is defined implicitly as a function of x and y by the formula f(x, y, z) = 0. Find $\partial z / \partial x$ when x = 1, y = 2, z = 0.
- 2. (20) Consider the path parameterized by $\mathbf{x}(t) = 4t \, i + \sin 3t \, j + \cos 3t \, k$.
 - a) Find an equation of the line tangent to the path at the point $2\pi i j$.
- b) Find the tangential and normal components of acceleration a_T and a_N as functions of time.
- c) Find **T**, **N** and the curvature κ as functions of time.
- d) Find the length of the path from t = 0 to $t = \pi$.

3. (20) Let $F(x, y, z, w) = (4w - x^2 + yz^3)\mathbf{i} + (w^2z - y^2 - 4x)\mathbf{j}$. Near which of the points (5, 4, 1, 6) or (1, 0, 4, 1) does the implicit function theorem imply that z and w may be written as functions of x and y on the surface $F^{-1}(3, 0)$? For extra credit, you may calculate $\partial z/\partial x$ at one of these points.

4. (20) Let A, B, and C be matrices which all have rank 3. Suppose A is 3×5 , B is 5×3 , and C is 4×4 .

- a) Which of A, B, or C is one to one?
- b) Which of A, B, or C is onto?
- c) Which of A, B, or C is invertible?
- d) Compute the dimensions of the Null Spaces of A, B, and C.

5. (20) Suppose $F: \mathbb{R}^n \to \mathbb{R}^k$ and $G: \mathbb{R}^k \to \mathbb{R}^n$ and $F \circ G$ is the identity, so $F(G(\mathbf{x})) = \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^k$. If $G(\mathbf{x}_0) = \mathbf{y}_0$, show that $DF(\mathbf{y}_0)DG(\mathbf{x}_0) = I_k$. For extra credit, show that if k = n then $G(F(\mathbf{y})) = \mathbf{y}$ for all \mathbf{y} close enough to \mathbf{y}_0 .

6. (20) Indicate whether each statement is true or false. (no justification required)

- a) If $\mathbf{v_1}, \ldots, \mathbf{v_p}$ is a linearly independent set of vectors in \mathbb{R}^m , then we always have $p \ge m$.
- b) If T is a linear transformation, then $T(2\mathbf{v} \mathbf{w}) = 2T(\mathbf{v}) \mathbf{w}$.
- c) Any four vectors which span a four dimensional vector space V form a basis for V.
- d) If v_1, v_2, v_3 are linearly independent vectors in a four dimensional vector space V, then there is a vector v_4 so that v_1, v_2, v_3, v_4 is a basis for V.
- e) Any two bases of a vector space V have the same number of elements.
- f) Every vector space has a finite basis.