Do five of the following six problems. Show enough work to justify your answers

1. (20) Let $f(x, y, z)=x^{2}-x e^{z}-y z$.
a) Find the gradient of f at the point $(1,2,0)$.
b) Find the largest value of $D_{\mathbf{u}} f$ at the point $(1,2,0)$.
c) Suppose z is defined implicitly as a function of x and y by the formula $f(x, y, z)=0$.

Find $\partial z / \partial x$ when $x=1, y=2, z=0$.
2. (20) Consider the path parameterized by $\mathbf{x}(t)=4 t i+\sin 3 t j+\cos 3 t k$.
a) Find an equation of the line tangent to the path at the point $2 \pi i-j$.
b) Find the tangential and normal components of acceleration a_{T} and a_{N} as functions of time.
c) Find \mathbf{T}, \mathbf{N} and the curvature κ as functions of time.
d) Find the length of the path from $t=0$ to $t=\pi$.
3. (20) Let $F(x, y, z, w)=\left(4 w-x^{2}+y z^{3}\right) \mathbf{i}+\left(w^{2} z-y^{2}-4 x\right) \mathbf{j}$. Near which of the points $(5,4,1,6)$ or $(1,0,4,1)$ does the implicit function theorem imply that z and w may be written as functions of x and y on the surface $F^{-1}(3,0)$? For extra credit, you may calculate $\partial z / \partial x$ at one of these points.
4. (20) Let A, B, and C be matrices which all have rank 3 . Suppose A is $3 \times 5, B$ is 5×3, and C is 4×4.
a) Which of A, B, or C is one to one?
b) Which of A, B, or C is onto?
c) Which of A, B, or C is invertible?
d) Compute the dimensions of the Null Spaces of A, B, and C.
5. (20) Suppose $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ and $G: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$ and $F \circ G$ is the identity, so $F(G(\mathbf{x}))=\mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^{k}$. If $G\left(\mathbf{x}_{0}\right)=\mathbf{y}_{0}$, show that $\operatorname{DF}\left(\mathbf{y}_{0}\right) D G\left(\mathbf{x}_{0}\right)=I_{k}$. For extra credit, show that if $k=n$ then $G(F(\mathbf{y}))=\mathbf{y}$ for all \mathbf{y} close enough to \mathbf{y}_{0}.
6. (20) Indicate whether each statement is true or false. (no justification required)
a) If $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{p}}$ is a linearly independent set of vectors in \mathbb{R}^{m}, then we always have $p \geq m$.
b) If T is a linear transformation, then $T(2 \mathbf{v}-\mathbf{w})=2 T(\mathbf{v})-\mathbf{w}$.
c) Any four vectors which span a four dimensional vector space V form a basis for V.
d) If v_{1}, v_{2}, v_{3} are linearly independent vectors in a four dimensional vector space V, then there is a vector v_{4} so that $v_{1}, v_{2}, v_{3}, v_{4}$ is a basis for V.
e) Any two bases of a vector space V have the same number of elements.
f) Every vector space has a finite basis.

