1. (20) Let D be the region in the first quadrant of \mathbb{R}^{2} between the hyperbolae $x y=1$ and $x y=3$ and the lines $x=y$ and $x=2 y$. Let C be the boundary of the region D, oriented counterclockwise. Let $\mathbf{F}(x, y)=\sin \left(x^{3}\right) \mathbf{i}-x^{2} y \mathbf{j}$. Find $\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{s}$.
2. (20) Let D be the region in the first octant of \mathbb{R}^{3} below the paraboloid $z=4-x^{2}-y^{2}$ and outside the cylinder $x^{2}+y^{2}=1$. Let S be the boundary of D, oriented outwards.
a) Describe S.
b) Find the flux integral $\iint_{S} \mathbf{F} \cdot \mathbf{n} \mathrm{~d} S$ where $\mathbf{F}(x, y, z)=x^{2} \mathbf{i}-(x+y) \mathbf{j}+z \mathbf{k}$.
3. (20) Use Stokes' theorem to find $\int_{C} \mathbf{F} \cdot \mathrm{ds}$ where C is the intersection of the elliptic paraboloids $z=x^{2}+3 y^{2}$ and $z=4-3 x^{2}-y^{2}$ and $\mathbf{F}(x, y, z)=(x+y) \mathbf{i}-z \mathbf{j}+y \mathbf{k}$, and C is oriented clockwise when viewed from above.
4. (20) Find the area of the surface parameterized by $X(s, t)=\left(s^{2}, \sqrt{2} s t, t^{2}\right), 1 \leq s \leq 2$, $0 \leq t \leq 1$. Or instead, for an extra 10 points, find the volume of the three dimensional manifold in \mathbb{R}^{4} parameterized by $X(s, t, u)=\left(s, t+u, t^{2}, s\right), 1 \leq t \leq 2,0 \leq s \leq 2$, $-1 \leq u \leq 1$.
5. (20) Consider the two vector fields $\mathbf{F}(x, y, z)=e^{x} \mathbf{i}+2 z^{2} y \mathbf{j}+\left(2 y^{2} z-z\right) \mathbf{k}$ and $\mathbf{G}(x, y, z)=$ $x z \mathbf{i}+x^{2} y \mathbf{j}+(y-x) \mathbf{k}$.
a) Find, if possible, functions f and g so $\mathbf{F}=\nabla f$ and $\mathbf{G}=\nabla g$.
b) Is \mathbf{F} conservative?
c) Is \mathbf{G} conservative?
d) Compute $\int_{C} \mathbf{F} \cdot \mathrm{~d}$ s where C is the line segment running from $(0,0,1)$ to $(1,2,3)$.
e) Compute $\int_{C} \mathbf{G} \cdot \mathrm{~d} \mathbf{s}$ where C is the line segment running from $(0,0,1)$ to $(1,2,3)$.
