
A short guide to determinents for Math 340

If A is an n × n matrix with entries in a field F there is a scalar in F called the determinent
of A, and denoted det(A), which has the following properties:

a) det(AB) = det(A) det(B).

b) det(I) = 1.

c) det(A(Ri↔Rj)) = − det(A).

d) det(A(kRi) = k det(A)

e) det(A(kRi+Rj)) = det(A).

f) det(AT ) = det(A).

g) det(A−1) = 1/det(A).

h) A is nonsingular if and only if det(A) 6= 0.

i) If T is triangular, then det(T ) is the product of its diagonal entries.

j) If F = R then |det(A)| computes the volume of the n dimensional parallelepiped formed by
the columns of A, whatever that means.

k) If A =

[

a b
c d

]

then det(A) = ad − bc.

l) If A =





a b c
d e f
g h i



 then det(A) = aei + bfg + cdh − afh − bdi − ceg.

m) det(A) is a polynomial function in the entries of A. In fact it can be computed as an expression
involving just addition, subtraction and multiplication of the entries of A. There will be
n! = 1 · 2 · · · (n − 1) · n terms.

There are ways to calculate determinents of matrices bigger than 3×3, but we will only mention
the most efficient, which is to do row operations to change A into row reduced echelon form and
use properties c), d), and e) above to calculate the determinent. In fact, by property i) above it
is not necessary to go all the way to row reduced echelon form, you only need to make it upper
triangular. If you want you can make a matrix upper triangular by just using type I and III row
operations. Since type III row operations do not change the determinent you will only need to keep
track of the number of row switches you do.

It is messy and not very instructive to show that there is such a function det which has the
above properties. I hope you will excuse me for not proving that such a determinent exists, even
Cullen declines to show you. If anyone wants a reference to a proof, see for example Linear Algebra

by Hoffman and Kunze. But many of the above properties can be derived from the others, some
fairly easily. In fact Cullen starts with just two properties, a) and a very special case of d) and
derives the rest (except for j) which he doesn’t mention).

It is not hard to show that there is at most one function det satisfying the above properties.
If A is nonsingular then we showed that A can be written as a product of elementary matrices
A = E1E2 · · ·Em. But then by property a) we know that det(A) = det(E1) det(E2) · · · det(Em)
and we know by properties b)-e) that det(Ei) = −1 if Ei is type I, det(Ei) = 1 if Ei is type III, and
det(Ei) = k if Ei = I(kRj). So a)-e) completely determine the value of det(A). The only question
is, if you wrote A in a different way as the product of elementary matrices, would you get the same
answer. In fact you do get the same answer but I will not even attempt to justify this.


