1. (20) Suppose $A=\left(\begin{array}{cccc}1 & 2 & 3 & 0 \\ 1 & 0 & 1 & 4 \\ 0 & 1 & 1 & -2\end{array}\right)$.
a) Find the row-reduced echelon form of A.

Answer: $\left.\left(\begin{array}{cccc}1 & 2 & 3 & 0 \\ 1 & 0 & 1 & 4 \\ 0 & 1 & 1 & -2\end{array}\right) \sim\left(\begin{array}{cccc}1 & 2 & 3 & 0 \\ 0 & -2 & -2 & 4 \\ 0 & 1 & 1 & -2\end{array}\right) \sim\left(\begin{array}{cccc}1 & 2 & 3 & 0 \\ 0 & 1 & 1 & -2 \\ 0 & 0 & 0 & 0\end{array}\right) \sim\left(\begin{array}{cccc}1 & 0 & 1 & 4 \\ 0 & 1 & 1 & -2 \\ 0 & 0 & 0 & 0\end{array}\right)\right]$ so the row reduced echelon form is $\left(\begin{array}{cccc}1 & 0 & 1 & 4 \\ 0 & 1 & 1 & -2 \\ 0 & 0 & 0 & 0\end{array}\right)$.
b) What is $\operatorname{rank}(A)$?

Answer: The rank is two since there are two pivots.
c) Find a basis for the null space of A.

Answer: The vectors $(x, y, z, w)^{T}$ in the null space satisfy $x+z+4 w=0$ and $y+z-2 w=0$ so $(x, y, z, w)=z(-1,-1,1,0)+w(-4,2,0,1)$. So the two linearly independent vectors $(-1,-1,1,0)^{T},(-4,2,0,1)^{T}$ form a basis of the null space of A.
d) Find a basis for the column space of A.

Answer: The pivot columns of A form a basis, so $(1,1,0)^{T},(2,0,1)^{T}$ forms a basis of the column space of A.
e) Find all solutions X of $A X=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$.

Answer: By either inspection or Gaussian elimination we see that one solution is $(1,0,0,0)^{T}$ so all solutions are of the form $(1,0,0,0)^{T}+z(-1,-1,1,0)^{T}+w(-4,2,0,1)^{T}$.
2. (10) Suppose A and B are 3×3 matrices and I is the 3×3 identity matrix. Find $\left(\begin{array}{cc}A & I \\ 0 & B\end{array}\right)^{2}$ and $\left(\begin{array}{cc}A & I \\ 0 & B\end{array}\right)^{3}$.
Answer: $\left(\begin{array}{cc}A & I \\ 0 & B\end{array}\right)^{2}=\left(\begin{array}{cc}A^{2} & A+B \\ 0 & B^{2}\end{array}\right)$ and $\left(\begin{array}{cc}A & I \\ 0 & B\end{array}\right)^{3}=\left(\begin{array}{cc}A^{3} & A^{2}+A B+B^{2} \\ 0 & B^{3}\end{array}\right)$.
3. (20) Recall a square matrix A is skew symmetric if $A^{T}=-A$. Show that the skew symmetric matrices are a subspace of $\mathbb{R}_{n \times n}$. Find a basis for the 3×3 skew symmetric matrices.
Answer: $0^{T}=-0$ so 0 is skew symmetric. If A and B are skew symmetric then $(A+B)^{T}=$ $A^{T}+B^{T}=-A+(-B)=-(A+B)$ so $A+B$ is skew symmetric. If c is a scalar and A is skew symmetric, then $(c A)^{T}=c A^{T}=c(-A)=-(c A)$ so $c A$ is skew symmetric. So the
skew symmetric matrices form a subspace of $\mathbb{R}_{n \times n}$. Many of you also correctly showed this by using the formula $e n t_{j i}(A)=-e n t_{i j}(A)$. Although nobody stated it this way, what these formulae give you are $n(n+1) / 2$ homogeneous linear equations in the entries of the matrix, so their solutions form a subspace.
4. (35) Consider the curve C parameterized by $\mathbf{r}(t)=4 t \mathbf{i}+3 \sin t \mathbf{j}+3 \cos t \mathbf{k}, 0 \leq t \leq \pi$.
a) Find the curvature κ of C as a function of t.

Answer: $\quad v(t)=4 \mathbf{i}+3 \cos t \mathbf{j}-3 \sin t \mathbf{k}$ and $a(t)=-3 \sin t \mathbf{j}-3 \cos t \mathbf{k}$. The speed $\|v\|$ is a constant, 5. So $a_{T}=d($ speed $) / d t=0$. Then $a_{N}=\sqrt{\|a\|^{2}-a_{T}^{2}}=\|a\|=3$. $\kappa=a_{N} /\|v\|^{2}=3 / 25$.
b) Find an equation of the line tangent to the curve C at the point $\mathbf{r}(\pi / 2)$.

Answer: One point on the curve is $r(\pi / 2)=(2 \pi, 3,0)$ and a vector in the direction of the curve is $r^{\prime}(\pi / 2)=(4,0,-3)$. So an equation is $(x, y, z)=(2 \pi+4 t, 3,-3 t)$.
c) Find $\int_{C} 3 x d s$.

Answer: $\int_{C} 3 x d s=\int_{0}^{\pi} 3(4 t)\|v(t)\| d t=\int_{0}^{\pi} 60 t d t=30 \pi^{2}$.
d) Find $\int_{C} y d x-z d y$

Answer:

$$
\begin{aligned}
\int_{C} y d x- & z d y=\int_{C}(y,-z, 0) \cdot \mathrm{d} s=\int_{0}^{\pi}(3 \sin t,-3 \cos t, 0) \cdot(4,3 \cos t,-3 \sin t) d t \\
& =\int_{0}^{\pi} 12 \sin t-9 \cos ^{2} t d t=\int_{0}^{\pi} 12 \sin t-4.5(1+\cos (2 t)) d t \\
= & -12 \cos t-4.5 t+2.25 \sin (2 t)]_{0}^{\pi}=12-4.5 \pi+12=24-9 \pi / 2
\end{aligned}
$$

5. (25) Let D be the triangular region in the $x y$ plane bounded by the lines $x=0$, $y=0$, and $x+y=1$. Let S be the portion of the surface $z=x^{2}+y^{2}$ lying above D. Let C be the boundary of S, oriented counterclockwise when viewed from above. Let $\mathbf{F}(x . y, z)=3 x y \mathbf{i}-z \mathbf{j}$.
a) Set up completely, but do not evaluate, an integral giving the area of S.

Answer: $d S=\sqrt{f_{x}^{2}+f_{y}^{2}+1} d A=\sqrt{4 x^{2}+4 y^{2}+1} d A$. So the area is

$$
\int_{0}^{1} \int_{0}^{1-x} \sqrt{4 x^{2}+4 y^{2}+1} d y d x
$$

b) Use Stokes' theorem to find $\int_{C} \mathbf{F} \cdot \mathbf{T} d s$.

Answer: curlF $=(1,0,-3 x)$ so by Stokes' theorem,

$$
\begin{gathered}
\int_{C} \mathbf{F} \cdot \mathbf{T} d s=\iint_{S} \operatorname{curl} \mathbf{F} \cdot n d S=\int_{0}^{1} \int_{0}^{1-x}(1,0,-3 x) \cdot(-2 x,-2 y, 1) d y d x \\
\quad=\int_{0}^{1} \int_{0}^{1-x}-5 x d y d x=\int_{0}^{1}-5 x(1-x) d x=-5 / 2+5 / 3=-5 / 6
\end{gathered}
$$

6. (30) Let D be the solid region above the surface $z=x^{2}+y^{2}-1$, and below the surface $z=1-x^{2}-y^{2}$. Let S be the boundary of D oriented pointing outward from D. Let $\mathbf{F}(x, y, z)=x \mathbf{i}-2 y \mathbf{j}+z \mathbf{k}$.
a) Find $\iint_{S} \mathbf{F} \cdot \mathrm{~d} S$.

Answer: $\operatorname{div} \mathbf{F}=0$ so $\iint_{S} \mathbf{F} \cdot \mathrm{~d} S=\iiint_{D} 0 d V=0$ by Gauss' theorem.
b) Set up completely, but do not evaluate, integrals giving the volume of D in cartesian, cylindrical, and spherical coordinates.
Answer: These surfaces intersect where $x^{2}+y^{2}=1$ and the shadow of D in the $x y$ plane is the disc $x^{2}+y^{2} \leq 1$. So in cartesian and cylindrical coordinates:

$$
\begin{aligned}
\text { volume } & =\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \int_{x^{2}+y^{2}-1}^{1-x^{2}-y^{2}} d z d y d x \\
& =\int_{0}^{2 \pi} \int_{0}^{1} \int_{r^{2}-1}^{1-r^{2}} r d z d r d \theta
\end{aligned}
$$

For spherical coordinates there are different limits for ρ above and below the xy plane. Above we have $z=1-x^{2}-y^{2}$ so $\rho \cos \phi=1-\rho^{2} \sin ^{2} \phi$, so $\rho^{2} \sin ^{2} \phi+\rho \cos \phi-1=0$ and by the quadratic formula, $\rho=\frac{-\cos \phi+\sqrt{\cos ^{2} \phi+4 \sin ^{2} \phi}}{2 \sin ^{2} \phi}=\frac{-\cos \phi+\sqrt{1+3 \sin ^{2} \phi}}{2 \sin ^{2} \phi}$. Similarly for $\phi \geq \pi / 2$ we have $\rho^{2} \sin ^{2} \phi-\rho \cos \phi-1=0$ so $\rho=\frac{\cos \phi+\sqrt{1+3 \sin ^{2} \phi}}{2 \sin ^{2} \phi}$. So here are a few ways to compute the volume in spherical coordinates

$$
\begin{gathered}
\int_{0}^{2 \pi} \int_{0}^{\pi / 2} \int_{0}^{\frac{-\cos \phi+\sqrt{1+3 \sin ^{2} \phi}}{2 \sin ^{2} \phi}} \rho^{2} \sin \phi d \rho d \phi d \theta+\int_{0}^{2 \pi} \int_{\pi / 2}^{\pi} \int_{0}^{\frac{\cos \phi+\sqrt{1+3 \sin ^{2} \phi}}{2 \sin ^{2} \phi}} \rho^{2} \sin \phi d \rho d \phi d \theta \\
\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{\frac{-|\cos \phi|+\sqrt{1+3 \sin ^{2} \phi}}{2 \sin ^{2} \phi}} \rho^{2} \sin \phi d \rho d \phi d \theta \\
2 \int_{0}^{2 \pi} \int_{0}^{\pi / 2} \int_{0}^{\frac{-\cos \phi+\sqrt{1+3 \sin ^{2} \phi}}{2 \sin ^{2} \phi}} \rho^{2} \sin \phi d \rho d \phi d \theta
\end{gathered}
$$

The last expression comes from the observation that D is symmetric about the xy plane so the volume of D is twice the volume of the part of D above the $x y$ plane.
7. (20) Let D be the region in the first quadrant bounded by $x y=1, x y=2, x=y$, and $x-y=3-x y$. Find $\iint_{D} x+y d A$.
Answer: Let $u=x y$ and $v=x-y$. Then in the $u v$ plane the region is bounded by $u=1$, $u=2, v=0$, and $v=3-u . \partial(u, v) / \partial(x, y)=\operatorname{det}\left(\begin{array}{cc}y & x \\ 1 & -1\end{array}\right)=-x-y$ so the integral is

$$
\begin{aligned}
& \int_{1}^{2} \int_{0}^{3-u}(x+y)\left|\frac{1}{-x-y}\right| d v d u=\int_{1}^{2} \int_{0}^{3-u} d v d u \\
= & \left.\int_{1}^{2} 3-u d u=3 u-u^{2} / 2\right]_{1}^{2}=6-2-3+1 / 2=3 / 2
\end{aligned}
$$

8. (20) Let $\mathbf{F}(x, y, z)=\left(3 x^{2}+y \sin (x y)\right) \mathbf{i}+(z+x \sin (x y)) \mathbf{j}+(y+4 z) \mathbf{k}$. Let C be the curve parameterized by $\mathbf{r}(t)=t^{8} \mathbf{i}+t^{9}(t+1) \mathbf{j}-e^{\sin (\pi t)} \mathbf{k}$ for $0 \leq t \leq 1$. Find $\int_{C} \mathbf{F} \cdot \mathbf{T} d s$ Answer: Note \mathbf{F} is conservative. Trying to solve $\mathbf{F}=$ gradg we get

$$
\begin{gathered}
\partial g / \partial x=3 x^{2}+y \sin (x y)=>g(x, y, z)=x^{3}-\cos (x y)+C(y, z) \\
z+x \sin (x y)=\partial g / \partial y=0+x \sin (x y)+\partial C(y, z) / \partial y=>C(y, z)=y z+D(z) \\
y+4 z=\partial g / \partial z=y+D^{\prime}(z)=>D(z)=2 z^{2}+E
\end{gathered}
$$

so we may let $g(x, y, z)=x^{3}-\cos (x y)+y z+2 z^{2}$. C begins at $(0,0,-1)$ and ends at $(1,2,-1)$ so

$$
\int_{C} \mathbf{F} \cdot \mathbf{T} d s=g(1,2,-1)-g(0,0,-1)=1-\cos 2-2+2-(0-1+0+2)=-\cos 2
$$

9. (20) True or false. (no justification required).
a) If A is a square matrix and $N S(A)=\{0\}$ then A^{-1} exists.

Answer: True, see page 55 or 89-90 of Cullen
b) $(A B)^{T}=A^{T} B^{T}$.

Answer: False, $(A B)^{T}=B^{T} A^{T}$.
c) $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.

Answer: True, see page 105 of Cullen
d) Any 5 vectors in \mathbb{R}^{4} are linearly dependent.

Answer: True, see Thm 2.7 page 84 of Cullen
e) Any 5 vectors in \mathbb{R}^{4} span \mathbb{R}^{4}.

Answer: False, for example $(1,1,1,1),(2,2,2,2),(3,3,3,3),(4,4,4,4),(5,5,5,5)$ span a one dimensional subspace.
f) Any 3 vectors in \mathbb{R}^{4} span a subspace of \mathbb{R}^{4}.

Answer: True, the span of any collection of vectors is a subspace. You even know in this case that they span a proper subspace of \mathbb{R}^{4}, i.e., a subspace which is definitely smaller than \mathbb{R}^{4}, since the dimension of the span is at most 3 .
g) If A is a 5×7 matrix then the dimension of $N S(A)$ plus the rank of A is 5 .
Answer: False, it is 7, see page 89 of Cullen

