November 3, 2006

- 1. [30] Let $f(x, y, z) = z^2 + x^2 + xy^2 + e^{yz}$
 - a) Find the gradient of f at (1, 2, 0).

Answer: $\nabla f = (2x + y^2, 2xy + ze^{yz}, 2z + ye^{yz}) = (6, 4, 2)$ at (1, 2, 0).

b) In which direction is f increasing most rapidly at the point (1, 2, 0)? (Your answer should be a unit vector with this direction.)

Answer: $(6,4,2)/\sqrt{36+16+4} = (6,4,2)/\sqrt{56}$.

c) Find $\lim_{(x,y,z)\to(1,2,0)} f(x,y,z)$.

- **Answer:** Since f is continuous, the limit is f(1, 2, 0) = 6.
- d) Find an equation for the tangent plane at (1, 2, 0) of the level surface f(x, y, z) = 6.

Answer: 6(x-1) + 4(y-2) + 2z = 0

e) The level surface f(x, y, z) = 6 defines z implicitly as a function of x and y near (1, 2, 0). Find $\partial z/\partial y$ at x = 1, y = 2, z = 0.

Answer: $\partial z/\partial y = -\frac{\partial f/\partial y}{\partial f/\partial z} = -4/2 = -2$

2. [10] Find the boundary of each of the following subsets of the plane. Which of the these subsets are open? Which of these subsets are closed?

a) $A = \{(x, y) \mid x^2 + y^2 \le 2\}.$

Answer: The boundary is the circle with equation $x^2 + y^2 = 2$. A is closed since it contains its boundary. It is not open.

b) $B = \{(x, y) \mid x^2 + y^2 > 1\}.$

Answer: The boundary is the circle with equation $x^2 + y^2 = 1$. B is open since it is disjoint from its boundary. It is not closed.

c) $C = A \cap B = \{(x, y) \mid 1 < x^2 + y^2 \le 2\}.$

Answer: The boundary is the two circles with equations $x^2 + y^2 = 1$ and $x^2 + y^2 = 2$. C is neither open nor closed since it does not contain all of its boundary, but does contain some points of its boundary.

3. [30] Let R be the region in the first octant which lies between the cone $z^2 = x^2 + y^2$ and the paraboloid $z = x^2 + y^2$. Set up, but do not evaluate, $\int \int \int_R x + 2y + 3z \, dV$ a) in cartesian coordinates.

Answer: The cone and paraboloid intersect where $z^2 = z$, so z = 0, 1. The intersection at z = 0 is just the origin, but at z = 1 the intersection is an arc of the circle $1 = x^2 + y^2$. The projection of R to the xy plane is then the quarter disc $x^2 + y^2 \le 1$, $x \ge 0$, $y \ge 0$ in the first quadrant. The cone lies above the paraboloid as can be seen by testing a point, for example if x = 1/4, y = 0, then $z = \sqrt{1/4} = 1/2$ on the cone, but z = 1/4 on the paraboloid. So $\int_0^1 \int_0^{\sqrt{1-x^2}} \int_{x^2+y^2}^{\sqrt{x^2+y^2}} x + 2y + 3z \, dz \, dy \, dx$. Some of you used a different order of integration,

for example dxdydz. This requires setting up the integral as the sum or difference of two integrals, for example $\int_0^1 \int_0^{\sqrt{z}} \int_0^{\sqrt{z-y^2}} x + 2y + 3z \, dx \, dy \, dz - \int_0^1 \int_0^z \int_0^{\sqrt{z^2-y^2}} x + 2y + 3z \, dx \, dy \, dz$. b) in cylindrical coordinates.

Answer: The cone has equation z = r and the paraboloid is $z = r^2$. So in the usual order, $\int_0^{\pi/2} \int_0^1 \int_{r^2}^r r^2 \cos \theta + 2r^2 \sin \theta + 3rz \, dz dr d\theta$. But if you wanted to do another order, here is a possibility, $\int_0^1 \int_0^{\pi/2} \int_z^{\sqrt{z}} r^2 \cos \theta + 2r^2 \sin \theta + 3rz \, dr d\theta dz$.

c) in spherical coordinates.

Answer: The equation of the cone z = r is $\rho \cos \phi = \rho \sin \phi$ which reduces to $\phi = \pi/4$. the equation of the paraboloid $z = r^2$ is $\rho \cos \phi = \rho^2 \sin^2 \phi$ which reduces to $\rho = \cos \phi / \sin^2 \phi$. So $\int_0^{\pi/2} \int_{\pi/4}^{\pi/2} \int_0^{\cos\phi/\sin^2\phi} (\rho\sin\phi\cos\theta + 2\rho\sin\phi\sin\theta + 3\rho\cos\phi)\rho^2\sin\phi\,d\rho d\phi d\theta$.

4. [15] Calculate **one** of the following integrals where D is the region in the first quadrant bounded by the lines y = x, y = x + 1 and by the ellipses $x^2 + 4y^2 = 4$ and $x^2 + 4y^2 = 16$. You must clearly indicate which one of the three integrals you choose to evaluate. Choose wisely.

- a) $\int \int_D e^{y-x} dA.$
- b) $\int \int_D (x+4y)e^{y-x} dA.$ c) $\int \int_D e^{y-x}/(x+4y) dA.$

Answer: A good coordinate change is u = y - x, $v = x^2 + 4y^2$. Then $\partial(u, v) / \partial(x, y) =$ det $\begin{bmatrix} -1 & 1\\ 2x & 8y \end{bmatrix} = -8y - 2x$. So $\partial(x, y) / \partial(u, v) = -1/(8y + 2x)$. So b) is a good choice to evaluate.

$$\int \int_{D} (x+4y)e^{y-x} dA = \int_{0}^{1} \int_{4}^{16} (x+4y)e^{u} \Big| \frac{-1}{8y+2x} \Big| dv du$$
$$= \int_{0}^{1} \int_{4}^{16} e^{u}/2 \, dv du = \int_{0}^{1} ve^{u}/2 \Big]_{4}^{16} \, du = \int_{0}^{1} 6e^{u} \, du = 6e^{u} \Big]_{0}^{1} = 6e - 6$$

5. [15] A region D in space has volume 3 and centroid $(\bar{x}, \bar{y}, \bar{z}) = (1, 2, -1)$. Calculate the following integrals:

a) $\int \int \int_D 4 \, dV$. Answer: $\int \int \int_D 4 \, dV = 4 \int \int \int_D 1 \, dV = 4 \cdot 3 = 12.$ b) $\int \int \int_{D} x \, dV$. Answer: $1 = \bar{x} = \int \int \int_D x \, dV/3$ so $\int \int \int_D x \, dV = 3$. c) $\int \int \int_D 3 + 2x - 4y \, dV$. **Answer:** $\int \int \int_D y \, dV = 3\bar{y} = 6$ so $\int \int \int_D 3 + 2x - 4y \, dV = 3 \cdot 3 + 2 \cdot 3 - 4 \cdot 6 = -9.$