1. [30] Let $f(x, y, z)=z^{2}+x^{2}+x y^{2}+e^{y z}$
a) Find the gradient of $f$ at $(1,2,0)$.

Answer: $\quad \nabla f=\left(2 x+y^{2}, 2 x y+z e^{y z}, 2 z+y e^{y z}\right)=(6,4,2)$ at $(1,2,0)$.
b) In which direction is $f$ increasing most rapidly at the point $(1,2,0)$ ? (Your answer should be a unit vector with this direction.)
Answer: $(6,4,2) / \sqrt{36+16+4}=(6,4,2) / \sqrt{56}$.
c) Find $\lim _{(x, y, z) \rightarrow(1,2,0)} f(x, y, z)$.

Answer: Since $f$ is continuous, the limit is $f(1,2,0)=6$.
d) Find an equation for the tangent plane at $(1,2,0)$ of the level surface $f(x, y, z)=6$.

Answer: $6(x-1)+4(y-2)+2 z=0$
e) The level surface $f(x, y, z)=6$ defines $z$ implicitly as a function of $x$ and $y$ near $(1,2,0)$. Find $\partial z / \partial y$ at $x=1, y=2, z=0$.
Answer: $\quad \partial z / \partial y=-\frac{\partial f / \partial y}{\partial f / \partial z}=-4 / 2=-2$
2. [10] Find the boundary of each of the following subsets of the plane. Which of the these subsets are open? Which of these subsets are closed?
a) $A=\left\{(x, y) \mid x^{2}+y^{2} \leq 2\right\}$.

Answer: The boundary is the circle with equation $x^{2}+y^{2}=2$. $A$ is closed since it contains its boundary. It is not open.
b) $B=\left\{(x, y) \mid x^{2}+y^{2}>1\right\}$.

Answer: The boundary is the circle with equation $x^{2}+y^{2}=1 . B$ is open since it is disjoint from its boundary. It is not closed.
c) $C=A \cap B=\left\{(x, y) \mid 1<x^{2}+y^{2} \leq 2\right\}$.

Answer: The boundary is the two circles with equations $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=2 . C$ is neither open nor closed since it does not contain all of its boundary, but does contain some points of its boundary.
3. [30] Let $R$ be the region in the first octant which lies between the cone $z^{2}=x^{2}+y^{2}$ and the paraboloid $z=x^{2}+y^{2}$. Set up, but do not evaluate, $\iiint_{R} x+2 y+3 z d V$
a) in cartesian coordinates.

Answer: The cone and paraboloid intersect where $z^{2}=z$, so $z=0$, 1 . The intersection at $z=0$ is just the origin, but at $z=1$ the intersection is an arc of the circle $1=x^{2}+y^{2}$. The projection of $R$ to the $x y$ plane is then the quarter disc $x^{2}+y^{2} \leq 1, x \geq 0, y \geq 0$ in the first quadrant. The cone lies above the paraboloid as can be seen by testing a point, for example if $x=1 / 4, y=0$, then $z=\sqrt{1 / 4}=1 / 2$ on the cone, but $z=1 / 4$ on the paraboloid. So $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{x^{2}+y^{2}}^{\sqrt{x^{2}+y^{2}}} x+2 y+3 z d z d y d x$. Some of you used a different order of integration,
for example $d x d y d z$. This requires setting up the integral as the sum or difference of two integrals, for example $\int_{0}^{1} \int_{0}^{\sqrt{z}} \int_{0}^{\sqrt{z-y^{2}}} x+2 y+3 z d x d y d z-\int_{0}^{1} \int_{0}^{z} \int_{0}^{\sqrt{z^{2}-y^{2}}} x+2 y+3 z d x d y d z$.
b) in cylindrical coordinates.

Answer: The cone has equation $z=r$ and the paraboloid is $z=r^{2}$. So in the usual order, $\int_{0}^{\pi / 2} \int_{0}^{1} \int_{r^{2}}^{r} r^{2} \cos \theta+2 r^{2} \sin \theta+3 r z d z d r d \theta$. But if you wanted to do another order, here is a possibility, $\int_{0}^{1} \int_{0}^{\pi / 2} \int_{z}^{\sqrt{z}} r^{2} \cos \theta+2 r^{2} \sin \theta+3 r z d r d \theta d z$.
c) in spherical coordinates.

Answer: The equation of the cone $z=r$ is $\rho \cos \phi=\rho \sin \phi$ which reduces to $\phi=\pi / 4$. the equation of the paraboloid $z=r^{2}$ is $\rho \cos \phi=\rho^{2} \sin ^{2} \phi$ which reduces to $\rho=\cos \phi / \sin ^{2} \phi$. So $\int_{0}^{\pi / 2} \int_{\pi / 4}^{\pi / 2} \int_{0}^{\cos \phi / \sin ^{2} \phi}(\rho \sin \phi \cos \theta+2 \rho \sin \phi \sin \theta+3 \rho \cos \phi) \rho^{2} \sin \phi d \rho d \phi d \theta$.
4. [15] Calculate one of the following integrals where $D$ is the region in the first quadrant bounded by the lines $y=x, y=x+1$ and by the ellipses $x^{2}+4 y^{2}=4$ and $x^{2}+4 y^{2}=16$. You must clearly indicate which one of the three integrals you choose to evaluate. Choose wisely.
a) $\iint_{D} e^{y-x} d A$.
b) $\iint_{D}(x+4 y) e^{y-x} d A$.
c) $\iint_{D} e^{y-x} /(x+4 y) d A$.

Answer: A good coordinate change is $u=y-x, v=x^{2}+4 y^{2}$. Then $\partial(u, v) / \partial(x, y)=$ $\operatorname{det}\left[\begin{array}{cc}-1 & 1 \\ 2 x & 8 y\end{array}\right]=-8 y-2 x$. So $\partial(x, y) / \partial(u, v)=-1 /(8 y+2 x)$. So b) is a good choice to evaluate.

$$
\begin{aligned}
& \iint_{D}(x+4 y) e^{y-x} d A=\int_{0}^{1} \int_{4}^{16}(x+4 y) e^{u}\left|\frac{-1}{8 y+2 x}\right| d v d u \\
= & \left.\left.\int_{0}^{1} \int_{4}^{16} e^{u} / 2 d v d u=\int_{0}^{1} v e^{u} / 2\right]_{4}^{16} d u=\int_{0}^{1} 6 e^{u} d u=6 e^{u}\right]_{0}^{1}=6 e-6
\end{aligned}
$$

5. [15] A region $D$ in space has volume 3 and centroid $(\bar{x}, \bar{y}, \bar{z})=(1,2,-1)$. Calculate the following integrals:
a) $\iiint_{D} 4 d V$.

Answer: $\iiint_{D} 4 d V=4 \iiint_{D} 1 d V=4 \cdot 3=12$.
b) $\iiint_{D} x d V$.

Answer: $1=\bar{x}=\iiint_{D} x d V / 3$ so $\iiint_{D} x d V=3$.
c) $\iiint_{D} 3+2 x-4 y d V$.

Answer: $\iiint_{D} y d V=3 \bar{y}=6$ so $\iiint_{D} 3+2 x-4 y d V=3 \cdot 3+2 \cdot 3-4 \cdot 6=-9$.

