For two integrals of your choice you may set them up but not evaluate them. Just set them up and write "= free pass \#1" or "= free pass \#2".

1. [35] The position of a particle at time t is $t^{3} / 3 \mathbf{i}+t^{2} \mathbf{j}+2 t \mathbf{k}$. Let C be the curve which the particle travels for $1 \leq t \leq 3$.
a) Find the velocity, speed and acceleration of the particle.

Answer: The velocity is $v(t)=t^{2} \mathbf{i}+2 t \mathbf{j}+2 \mathbf{k}$ and acceleration is $a(t)=$ $2 t \mathbf{i}+2 \mathbf{j}$. The speed is $\|v(t)\|=\sqrt{t^{4}+4 t^{2}+4}=t^{2}+2$.
b) Find the tangential and normal components of acceleration.

Answer: $a_{\text {tang }}(t)=2 t$, the derivative of the speed. The normal component is $a_{\text {norm }}(t)=\sqrt{\|a(t)\|^{2}-a_{\text {tang }}(t)^{2}}=\sqrt{4 t^{2}+4-4 t^{2}}=2$.
c) Find the curvature of the curve C at time $t=2$.

Answer: The curvature is $\kappa(t)=a_{\text {norm }}(t) /\|v(t)\|^{2}=2 /\left(t^{2}+2\right)^{2}$. At $t=2$ this is $1 / 18$.
d) Find $\int_{C} y z / x d s$.

Answer: $\int_{C} y z / x d s=\int_{1}^{3} t^{2} 2 t /\left(t^{3} / 3\right)\left(t^{2}+2\right) d t=\int_{1}^{3} 6\left(t^{2}+2\right) d t=2 t^{3}+$ $12 t]_{1}^{3}=54+36-2-12=76$.
2. [25] Two vector fields are $\mathbf{F}(x, y, z)=(4 x+y) \mathbf{i}+\left(x+3 y^{2} z^{2}\right) \mathbf{j}+2 y^{3} z \mathbf{k}$ and $\mathbf{G}(x, y, z)=(4 x-y) \mathbf{i}+(x+3 z) \mathbf{j}-3 y \mathbf{k}$.
a) Is \mathbf{F} conservative? If so, find a potential function f for \mathbf{F}.

Answer: Solving for f, we have $f_{x}=4 x+y$ so $f(x, y, z)=2 x^{2}+x y+$ $C(y, z)$. Then $f_{y}=x+3 y^{2} z^{2}$ means $x+C_{y}=x+3 y^{2} z^{2}$ so $C(y, z)=$ $y^{3} z^{2}+D(z)$. Then $f_{z}=2 y^{3} z$ implies $2 y^{3} z+D^{\prime}=2 y^{3} z$ so D is constant. So we may take $f(x, y, z)=2 x^{2}+x y+y^{3} z^{2}$ and \mathbf{F} is conservative.
b) Is \mathbf{G} conservative? If so, find a potential function g for \mathbf{G}.

Answer: Solving for g, we have $g_{x}=4 x-y$ so $g(x, y, z)=2 x^{2}-x y+$ $C(y, z)$. Then $g_{y}=x+3 z$ means $-x+C_{y}=x+3 z$ so $C_{y}(y, z)=2 x+3 z$ which involves x, so no such g exists and \mathbf{G} is not conservative.
c) Let C be the curve which starts at $(1,0,0)$, goes twice around the circle $x^{2}+z^{2}=1$ in the $x z$ plane (clockwise when viewed from $(0,1,0)$), then follows the parabola $y=1-x^{2}$ in the $x y$ plane to $(2,-3,0)$, goes on a line segment to $(1,-3,0)$, and finally returns on a line segment to $(1,0,0)$. Let D be the line segment from $(1,0,-1)$ to $(4,2,0)$. Compute three of the following: $\int_{C} \mathbf{F} \cdot \mathbf{T} d s, \int_{C} \mathbf{G} \cdot \mathbf{T} d s, \int_{D} \mathbf{F} \cdot \mathbf{T} d s, \int_{D} \mathbf{G} \cdot \mathbf{T} d s$.

Answer: The easiest to compute is $\int_{C} \mathbf{F} \cdot \mathbf{T} d s=0$ since C is closed and \mathbf{F} is conservative. Next easiest is $\int_{D} \mathbf{F} \cdot \mathbf{T} d s=f(4,2,0)-f(1,0,-1)=$ $32+8+0-(2+0+0)=38$. Next parameterize D by $r(t)=(1+3 t, 2 t, t-1)$ for $0 \leq t \leq 1$ and then $\int_{D} \mathbf{G} \cdot \mathbf{T} d s=\int_{0}^{1}(4+12 t-2 t, 1+3 t+3 t-3,-6 t)$. $\left.(3,2,1) d t=\int_{0}^{1} 12+30 t-4+12 t-6 t d t=\int_{0}^{1} 8+36 t d t=8 t+18 t^{2}\right]_{0}^{1}=26$. Hardest to do is $\int_{D} \mathbf{G} \cdot \mathbf{T} d s$. It would be very time consuming to do it by parameterizing the four segments, but we can use Green's theorem to help out. Let C_{1} be the circle $x^{2}+z^{2}=1$ which bounds a disc D_{1} in the $x z$ plane. We want to find $2 \int_{C_{1}} \mathbf{G} \cdot T d s$ but T is in the $x z$ plane so we can ignore the \mathbf{j} component of \mathbf{G} and set $y=0$ so $2 \int_{C_{1}} \mathbf{G} \cdot T d s=2 \int_{C_{1}} 4 x d x=2 \int_{D_{1}} 0 d A$ by Green's theorem. Let C_{2} be the rest of C which is the boundary of the region D_{2} given by $1 \leq x \leq 2,-3 \leq y \leq 1-x^{2}, z=0$ and is oriented clockwise. Then $\int_{C_{2}} \mathbf{G} \cdot T d s=\int_{C_{2}}(4 x-y) d x+x d y=-\int_{1}^{2} \int_{-3}^{1-x^{2}} 2 d y d x=$ $\left.-2 \int_{1}^{2} 4-x^{2} d x=-8 x+2 x^{3} / 3\right]_{1}^{2}=-16+16 / 3+8-2 / 3=-10 / 3$.
3. [25] Compute the flux integral $\iint_{\Sigma} \mathbf{F} \cdot \mathbf{n} d S$ where Σ is the portion of the surface $z=x^{2}-y^{2}$ inside the cylinder $x^{2}+y^{2}=4$, oriented downwards, and where $\mathbf{F}(x, y, z)=y \mathbf{i}+x \mathbf{j}+(1+x y) \mathbf{k}$.

Answer: $\quad \iint_{\Sigma} \mathbf{F} \cdot \mathbf{n} d S=\iint_{R}(y \mathbf{i}+x \mathbf{j}+(1+x y) \mathbf{k}) \cdot(2 x,-2 y,-1) d A=$ $\iint_{R}-1-x y d A$ where R is the disc of radius 2 centered at the origin. By symmetry, $\iint_{R}-x y d A=0$ so $\iint_{R}-1-x y d A=-\iint_{R} 1 d A=-4 \pi$. You
could also use polar coordinates

$$
\iint_{R}-1-x y d A=\int_{0}^{2 \pi} \int_{0}^{2}-r-r^{3} \sin \theta \cos \theta d r d \theta=-4 \pi
$$

5. [15] Let R be the annular region $1 \leq r \leq 2$ in the plane.
a) Describe the boundary C of R.

Answer: The boundary is the two circles $r=1$ and $r=2$.
b) Describe the orientation you would use for C when applying Green's theorem.

Answer: Orient $r=1$ clockwise and $r=2$ counterclockwise.
c) What does Green's theorem say about $\int_{C} x^{2} y d x+e^{x} d y$? (You need not set up or evaluate any integrals).
Answer: $\int_{C} x^{2} y d x+e^{x} d y=\iint_{R} e^{x}-x^{2} d A$ where we orient C as in b) above.

