MATH 340 EXAM # 3 December 1, 2006

For two integrals of your choice you may set them up but not evaluate them. Just set them up and write "= free pass #1" or "= free pass #2".

1. [35] The position of a particle at time t is $t^3/3\mathbf{i} + t^2\mathbf{j} + 2t\mathbf{k}$. Let C be the curve which the particle travels for $1 \le t \le 3$.

a) Find the velocity, speed and acceleration of the particle.

Answer: The velocity is $v(t) = t^2 \mathbf{i} + 2t \mathbf{j} + 2\mathbf{k}$ and acceleration is $a(t) = 2t\mathbf{i} + 2\mathbf{j}$. The speed is $||v(t)|| = \sqrt{t^4 + 4t^2 + 4} = t^2 + 2$.

b) Find the tangential and normal components of acceleration.

Answer: $a_{tang}(t) = 2t$, the derivative of the speed. The normal component is $a_{norm}(t) = \sqrt{||a(t)||^2 - a_{tang}(t)^2} = \sqrt{4t^2 + 4 - 4t^2} = 2.$

c) Find the curvature of the curve C at time t = 2.

Answer: The curvature is $\kappa(t) = a_{norm}(t)/||v(t)||^2 = 2/(t^2+2)^2$. At t = 2 this is 1/18.

d) Find $\int_C yz/x \, ds$.

Answer: $\int_C yz/x \, ds = \int_1^3 t^2 2t/(t^3/3) \, (t^2+2) \, dt = \int_1^3 6(t^2+2) \, dt = 2t^3 + 12t \Big]_1^3 = 54 + 36 - 2 - 12 = 76.$

2. [25] Two vector fields are $\mathbf{F}(x, y, z) = (4x + y)\mathbf{i} + (x + 3y^2z^2)\mathbf{j} + 2y^3z\mathbf{k}$ and $\mathbf{G}(x, y, z) = (4x - y)\mathbf{i} + (x + 3z)\mathbf{j} - 3y\mathbf{k}$.

a) Is \mathbf{F} conservative? If so, find a potential function f for \mathbf{F} .

Answer: Solving for f, we have $f_x = 4x + y$ so $f(x, y, z) = 2x^2 + xy + C(y, z)$. Then $f_y = x + 3y^2z^2$ means $x + C_y = x + 3y^2z^2$ so $C(y, z) = y^3z^2 + D(z)$. Then $f_z = 2y^3z$ implies $2y^3z + D' = 2y^3z$ so D is constant. So we may take $f(x, y, z) = 2x^2 + xy + y^3z^2$ and \mathbf{F} is conservative.

b) Is **G** conservative? If so, find a potential function g for **G**.

Answer: Solving for g, we have $g_x = 4x - y$ so $g(x, y, z) = 2x^2 - xy + C(y, z)$. Then $g_y = x + 3z$ means $-x + C_y = x + 3z$ so $C_y(y, z) = 2x + 3z$ which involves x, so no such g exists and **G** is not conservative.

c) Let C be the curve which starts at (1,0,0), goes twice around the circle $x^2 + z^2 = 1$ in the xz plane (clockwise when viewed from (0,1,0)), then follows the parabola $y = 1 - x^2$ in the xy plane to (2, -3, 0), goes on a line segment to (1, -3, 0), and finally returns on a line segment to (1,0,0). Let D be the line segment from (1,0,-1) to (4,2,0). Compute three of the following: $\int_C \mathbf{F} \cdot \mathbf{T} \, ds$, $\int_C \mathbf{G} \cdot \mathbf{T} \, ds$, $\int_D \mathbf{F} \cdot \mathbf{T} \, ds$, $\int_D \mathbf{G} \cdot \mathbf{T} \, ds$.

Answer: The easiest to compute is $\int_C \mathbf{F} \cdot \mathbf{T} \, ds = 0$ since C is closed and \mathbf{F} is conservative. Next easiest is $\int_D \mathbf{F} \cdot \mathbf{T} \, ds = f(4,2,0) - f(1,0,-1) = 32+8+0-(2+0+0) = 38$. Next parameterize D by r(t) = (1+3t,2t,t-1) for $0 \le t \le 1$ and then $\int_D \mathbf{G} \cdot \mathbf{T} \, ds = \int_0^1 (4+12t-2t,1+3t+3t-3,-6t) \cdot (3,2,1) \, dt = \int_0^1 12+30t-4+12t-6t \, dt = \int_0^1 8+36t \, dt = 8t+18t^2 \Big]_0^1 = 26$. Hardest to do is $\int_D \mathbf{G} \cdot \mathbf{T} \, ds$. It would be very time consuming to do it by parameterizing the four segments, but we can use Green's theorem to help out. Let C_1 be the circle $x^2+z^2=1$ which bounds a disc D_1 in the xz plane. We want to find $2 \int_{C_1} \mathbf{G} \cdot \mathbf{T} \, ds$ but T is in the xz plane so we can ignore the \mathbf{j} component of \mathbf{G} and set y = 0 so $2 \int_{C_1} \mathbf{G} \cdot T \, ds = 2 \int_{C_1} 4x \, dx = 2 \int_{D_1} 0 \, dA$ by Green's theorem. Let C_2 be the rest of C which is the boundary of the region D_2 given by $1 \le x \le 2, -3 \le y \le 1-x^2, z=0$ and is oriented clockwise. Then $\int_{C_2} \mathbf{G} \cdot T \, ds = \int_{C_2} (4x-y) \, dx + x \, dy = -\int_1^2 \int_{-3}^{1-x^2} 2 \, dy \, dx = -2 \int_1^2 4 - x^2 \, dx = -8x + 2x^3/3 \Big]_1^2 = -16 + 16/3 + 8 - 2/3 = -10/3$.

3. [25] Compute the flux integral $\int \int_{\Sigma} \mathbf{F} \cdot \mathbf{n} \, dS$ where Σ is the portion of the surface $z = x^2 - y^2$ inside the cylinder $x^2 + y^2 = 4$, oriented downwards, and where $\mathbf{F}(x, y, z) = y\mathbf{i} + x\mathbf{j} + (1 + xy)\mathbf{k}$.

Answer: $\int \int_{\Sigma} \mathbf{F} \cdot \mathbf{n} \, dS = \int \int_{R} (y\mathbf{i} + x\mathbf{j} + (1 + xy)\mathbf{k}) \cdot (2x, -2y, -1) \, dA = \int \int_{R} -1 - xy \, dA$ where *R* is the disc of radius 2 centered at the origin. By symmetry, $\int \int_{R} -xy \, dA = 0$ so $\int \int_{R} -1 - xy \, dA = -\int \int_{R} 1 \, dA = -4\pi$. You

could also use polar coordinates

$$\int \int_R -1 - xy \, dA = \int_0^{2\pi} \int_0^2 -r - r^3 \sin\theta \cos\theta \, dr d\theta = -4\pi$$

- 5. [15] Let R be the annular region $1 \le r \le 2$ in the plane.
 - a) Describe the boundary C of R.

Answer: The boundary is the two circles r = 1 and r = 2.

b) Describe the orientation you would use for C when applying Green's theorem.

Answer: Orient r = 1 clockwise and r = 2 counterclockwise.

c) What does Green's theorem say about $\int_C x^2 y dx + e^x dy$? (You need not set up or evaluate any integrals).

Answer: $\int_C x^2 y dx + e^x dy = \int \int_R e^x - x^2 dA$ where we orient *C* as in b) above.