
Differential Forms

Colley devotes Chapter 8 to differential forms. This note is intended to give you the highlights, and is
complementary to chapter 8 rather a summary of chapter 8. Reading chapter 8 can provide you with more
details. I will also look at forms slightly differently than in chapter 8, in particular evaluating them without
determinents. In fact a very good way to define determinents is to use forms.

The big picture: If X ⊂ R
n is an open set, then for every integer k ≥ 0 there is a vector space Ωk(X) of

k-forms on X . There is an exterior derivative dk : Ωk(X) → Ωk+1(X), usually the subscript k is omitted and
this is just written as d. The map dk is a linear transformation. So if ω is a k-form then dω is a k + 1-form
and d(ω + ν) = dω + dν. There is an operation wedge which takes a k-form ω and an ℓ-form ν and produces
a k + ℓ-form ω ∧ ν. If ω is a k-form and M is a parameterized k dimensional manifold in X (whatever that
is) then an integral

∫
M

ω can be defined, it is a scalar.
In what follows, when we talk about a function f on X we will assume without explicitly saying so that

f : X → R is real valued and is infinitely differentiable, i.e., partial derivatives of f all orders exist. You can
get away with less, but it would only obscure the main ideas.

You can not only multiply a form by a scalar (from the vector space axioms) but you can multiply a
form by a function on X . So if ω is a k-form and f : X → R is a function, then fω is another k-form.

The derivative d and the wedge satisfy some algebraic rules. Some of these rules are, d2 = 0 and there
is a product rule d(fω) = fdω + df ∧ ω. Also ∧ is bilinear which means (ω1 + ω2)∧ ν = ω1 ∧ ν + ω2 ∧ ν and
ω ∧ (ν1 + ν2) = ω ∧ ν1 + ω ∧ ν2. If ω and ν are k and ℓ-forms then ω ∧ ν = (−1)kℓν ∧ ω, in particular if both
k and ℓ are odd, then ω ∧ ν = −ν ∧ ω. We will use this extensively below for k = ℓ = 1.

The nitty gritty: Okay, so what is a form anyway.
0) A 0-form is just a function f : X → R.
1) A 1-form is an expression of the form f1dg1 + f2dg2 + · · ·+ fmdgm where the fi and gi are functions on

X . For example, xy2dx + d(xy) is a 1-form on R
2.

2) A 2-form is an expression of the form f1dg1 ∧ dh1 + f2dg2 ∧ dh2 + · · · + fmdgm ∧ dhm where the fi, gi,
and hi are functions on X . For example x2y d(x + y) ∧ d(xz) + 3dx ∧ dz is a 2-form on R

3.
k) In general a k-form is a finite sum of expressions of the form fdg1 ∧ dg2 ∧ · · · ∧ dgk where f and the gi

are functions on X .

There are some rules for manipulating forms.
a) df = ∂f/∂x1 dx1 + ∂f/∂x2 dx2 + · · · + ∂f/∂xn dxn. So for example d(xz) = zdx + xdz and d(x + y) =

dx + dy.
b) ∧ distributes over addition and commutes with multiplication, so for example

x2y d(x + y) ∧ d(xz) = x2y (dx + dy) ∧ (zdx + xdz) = x2y dx ∧ (zdx + xdz) + x2y dy ∧ (zdx + xdz)

= x2yz dx ∧ dx + x2yx dx ∧ dz + x2yz dy ∧ dx + x2yx dy ∧ dz

c) Switching two 1-forms you are wedging will change the sign, df ∧ dg = −dg ∧ df . So for example

x2yz dx∧dx+x3y dx∧dz+x2yz dy∧dx+x3y dy∧dz = x2yz dx∧dx+x3y dx∧dz−x2yz dx∧dy+x3y dy∧dz

d) Wedging a 1-form with itself is always 0, df ∧df = 0. (This is actually equivalent to c, can you see why?)
So for example x2yz dx∧dx = 0. The equal items need not be adjacent so for example dx∧dy∧dx = 0.
Applying all these rules to our example we get

x2y d(x + y) ∧ d(xz) + 3dx ∧ dz = x2yx dx ∧ dz − x2yz dx ∧ dy + x2yx dy ∧ dz + 3dx ∧ dz

= x3y dy ∧ dz + (x3y + 3) dx ∧ dz − x2yz dx ∧ dy

Using these rules we can reduce any k-form to a sum of terms of the form

f dxi1 ∧ dxi2 ∧ · · · ∧ dxik
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where i1 < i2 < · · · < ik just as we did with our example. So for example any 1-form on R
3 has the

form M dx + N dy + P dz, any 2-form on R
3 has the form M dy ∧ dz + N dx ∧ dz + P dx ∧ dy and any

3-form in R
3 has the form f dx ∧ dy ∧ dz. Thus 1-forms and 2-forms on R

3 can be identified with vector
fields (M, N, P ) and 0-forms and 3-forms on R

3 can be identified with scalar valued functions. In general
in dimension n, the 0-forms and n-forms can be identified with scalar functions and the 1-forms and n − 1
forms can be identified with vector fields. Note that all k-forms with k > n are 0 since we cannot find k
distinct integers from 1 to n. Things work out better if we identify the vector field (M, N, P ) on R

3 with
the 2-form M dy ∧ dz − N dx ∧ dz + P dx ∧ dy.

If f : Y → X , then composition (i.e., substitution) gives a linear transformation f∗: Ωk(X) → Ωk(Y ).
For example, suppose f : R2 → R

3 is given by f(s, t) = (st, s + t, t2). Then

f∗(xdy ∧ dz + yz dx ∧ dy) = st d(s + t) ∧ d(t2) + (s + t)t2d(st) ∧ d(s + t)

= st ds ∧ d(t2) + st dt ∧ d(t2) + (s + t)t2d(st) ∧ ds + (s + t)t2d(st) ∧ dt

= 2tst ds ∧ dt + 2tst dt ∧ dt + (s + t)t2(sdt + tds) ∧ ds + (s + t)t2(sdt + tds) ∧ dt

= 2t2s ds ∧ dt + (s + t)st2 dt ∧ ds + (s + t)t3ds ∧ dt

= (2t2s − (s + t)st2 + (s + t)t3) ds ∧ dt

This gives us a way to evaluate
∫

Z
ω where Z ⊂ X is a k dimensional manifold and ω is a k-form on

X . Suppose we can parameterize Z by a map f : D → R
n where D ⊂ R

k. Then f∗ω is a k-form on D which
can be thought of as a scalar function which we can then integrate on D. For example, let Z be the cylinder
parameterized by r(s, t) = cos ti + sin tj + sk for 0 ≤ t ≤ 2π and 0 ≤ s ≤ 4. Let ω be any 2-form on R

3,
ω = zdy ∧ dz + xdx ∧ dz − dx ∧ dy. Then

r∗ω = sd sin t ∧ ds + cos td cos t ∧ ds − d cos t ∧ d sin t = s cos tdt ∧ ds − cos t sin tdt ∧ ds + sin t cos tdt ∧ dt

= (cos t sin t − s cos t)ds ∧ dt

So
∫

Z
ω =

∫ 2π

0

∫ 4

0
cos t sin t − s cos tdsdt = 0.

Change of variable: Suppose we have a change of variables x = x(u, v), y = y(u, v). Then

dx ∧ dy = (xudu + xvdv) ∧ (yudu + yvdv) = xuyudu ∧ du + xuyvdu ∧ dv + xvyudv ∧ du + xvyvdv ∧ dv

= xuyvdu ∧ dv + xvyudv ∧ du = (xuyv − xvyu)du ∧ dv = ∂(x, y)/∂(u, v)du ∧ dv

Thus we get the change of variables formula for integration (except that we allow signed area, so there is no
absolute value of the Jacobian). This all works in n dimensions too.

Work integrals: Let C be a curve (i.e., a 1 manifold) in R
3 parameterized by r(t) = x(t)i + y(t)j + z(t)k

for a ≤ t ≤ b. Let F = M i + N j + Pk be any vector field on R
3. Then F can be identified with the 1-form

ω = Mdx + Ndy + Pdz. Then r∗ω = Mdx/dtdt + Ndy/dtdt + Pdz/dtdt so
∫

C
ω =

∫ b

a
Mdx/dt + Ndy/dt +

Pdz/dt dt =
∫

C
F ·T ds.

Flux integrals: Let Z be the graph z = g(x, y) for (x, y) ∈ D. Let F = M i+N j+Pk be any vector field on
R

3. Then F can be identified with the 2-form ω = Mdy∧dz−Ndx∧dz+Pdx∧dy. Let r(x, y) = (x, y, g(x, y))
parameterize Z. Then dz = gxdx + gydy so

r∗ω = Mdy ∧ (gxdx + gydy) − Ndx ∧ (gxdx + gydy) + Pdx ∧ dy

= Mgxdy ∧ dx − Ngydx ∧ dy + Pdx ∧ dy

= (M, N, P ) · (−gx,−gy, 1)dx ∧ dy

Thus
∫

Z
ω =

∫ ∫
Z

F · n dS. As an excercise you can prove this formula for a general parameterized surface.
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Relation of d with grad, curl and div: Recall that the exterior derivative can be calculated by
d(fdg1 ∧ dg2 ∧ · · · ∧ dgk) = df ∧ dg1 ∧ dg2 ∧ · · · ∧ dgk.

If f is a function on R
3, then df = fxdx + fydy + fzdz is the 1-form identified with the vector field

(fx, fy, fz) = grad(f).
If F = (M, N, P ) is a vector field on R

3 we may identify it with the 1-form ω = Mdx + Ndy + Pdz.
Then

dω = (Mxdx + Mydy + Mzdz) ∧ dx + (Nxdx + Nydy + Nzdz) ∧ dy + (Pxdx + Pydy + Pzdz) ∧ dz

= Mydy ∧ dx + Mzdz ∧ dx + Nxdx ∧ dy + Nzdz ∧ dy + Pxdx ∧ dz + Pydy ∧ dz

= (Py − Nz)dy ∧ dz − (Mz − Px)dx ∧ dz + (Nx − My)dx ∧ dy

Thus dω is identified with the vector field (Py − Nz, Mz − Px, Nx − My) = curlF .
If F = (M, N, P ) is a vector field on R

3 we may identify it with the 2-form ν = M dy ∧ dz − N dx ∧
dz + P dx ∧ dy. Then

dν = (Mxdx+ Mydy + Mzdz)∧ dy∧ dz − (Nxdx+ Nydy + Nzdz)∧ dx∧ dz + (Pxdx+ Pydy + Pzdz)∧ dx∧ dy

= Mxdx ∧ dy ∧ dz − Nydy ∧ dx ∧ dz + Pzdz ∧ dx ∧ dy = divFdx ∧ dy ∧ dz

Generalized Stokes’ theorem: Suppose r: D → X where D is a region in R
k. Let U = r(D) be the

image of r. Then we say r parametrizes U . We say ∂U is the image of the boundary of D. For example let
D = {(x, y) ∈ R

2 | x2 + y2 = 1} and define r: D → R
3 by r(x, y) = (x, y, x2 + y2). Then r parameterizes U

where U is the portion of the paraboloid z = x2 + y2 which lies below the plane z = 1. We have ∂U is the
circle x2 + y2 = 1, z = 1.

Suppose ω is a k − 1-form. The generalized Stokes’ theorem says that

∫
∂U

ω =

∫
U

dω

This gives us Stokes’ theorem, Gauss’ theorem, Greens theorem, and many others.
For example, if ω is a 1-form in R

3 corresponding to the vector field F then we saw above that
∫

∂U
ω =∫

∂U
F ·T ds. Also dω corresponds to the vector field curlF so

∫
U

dω =
∫ ∫

U
curlF ·n dS so we get the classic

Stokes’ theorem.
For another example, if ν is a 2-form in R

3 corresponding to the vector field F , then we saw above that dν
corresponds to divF . So if U is a solid region in R

3 we have
∫ ∫ ∫

U
divF dV =

∫
U

dν =
∫

∂U
ν =

∫ ∫
∂U

F ·n dS.
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