Differential Forms

Colley devotes Chapter 8 to differential forms. This note is intended to give you the highlights, and is complementary to chapter 8 rather a summary of chapter 8. Reading chapter 8 can provide you with more details. I will also look at forms slightly differently than in chapter 8, in particular evaluating them without determinents. In fact a very good way to define determinents is to use forms.

The big picture: If $X \subset \mathbb{R}^n$ is an open set, then for every integer $k \geq 0$ there is a vector space $\Omega^k(X)$ of k-forms on X. There is an exterior derivative $d_k : \Omega^k(X) \to \Omega^{k+1}(X)$, usually the subscript k is omitted and this is just written as d. The map d_k is a linear transformation. So if ω is a k-form then $d\omega$ is a k+1-form and $d(\omega+\nu)=d\omega+d\nu$. There is an operation wedge which takes a k-form ω and an ℓ -form ν and produces a $k+\ell$ -form $\omega \wedge \nu$. If ω is a k-form and k is a parameterized k dimensional manifold in k (whatever that is) then an integral k k can be defined, it is a scalar.

In what follows, when we talk about a function f on X we will assume without explicitly saying so that $f: X \to \mathbb{R}$ is real valued and is infinitely differentiable, i.e., partial derivatives of f all orders exist. You can get away with less, but it would only obscure the main ideas.

You can not only multiply a form by a scalar (from the vector space axioms) but you can multiply a form by a function on X. So if ω is a k-form and $f: X \to \mathbb{R}$ is a function, then $f\omega$ is another k-form.

The derivative d and the wedge satisfy some algebraic rules. Some of these rules are, $d^2 = 0$ and there is a product rule $d(f\omega) = fd\omega + df \wedge \omega$. Also \wedge is bilinear which means $(\omega_1 + \omega_2) \wedge \nu = \omega_1 \wedge \nu + \omega_2 \wedge \nu$ and $\omega \wedge (\nu_1 + \nu_2) = \omega \wedge \nu_1 + \omega \wedge \nu_2$. If ω and ν are k and ℓ -forms then $\omega \wedge \nu = (-1)^{k\ell} \nu \wedge \omega$, in particular if both k and ℓ are odd, then $\omega \wedge \nu = -\nu \wedge \omega$. We will use this extensively below for $k = \ell = 1$.

The nitty gritty: Okay, so what is a form anyway.

- 0) A 0-form is just a function $f: X \to \mathbb{R}$.
- 1) A 1-form is an expression of the form $f_1dg_1 + f_2dg_2 + \cdots + f_mdg_m$ where the f_i and g_i are functions on X. For example, $xy^2dx + d(xy)$ is a 1-form on \mathbb{R}^2 .
- 2) A 2-form is an expression of the form $f_1dg_1 \wedge dh_1 + f_2dg_2 \wedge dh_2 + \cdots + f_mdg_m \wedge dh_m$ where the f_i , g_i , and h_i are functions on X. For example $x^2y d(x+y) \wedge d(xz) + 3dx \wedge dz$ is a 2-form on \mathbb{R}^3 .
- k) In general a k-form is a finite sum of expressions of the form $fdg_1 \wedge dg_2 \wedge \cdots \wedge dg_k$ where f and the g_i are functions on X.

There are some rules for manipulating forms.

- a) $df = \partial f/\partial x_1 dx_1 + \partial f/\partial x_2 dx_2 + \cdots + \partial f/\partial x_n dx_n$. So for example d(xz) = zdx + xdz and d(x+y) = dx + dy.
- b) \wedge distributes over addition and commutes with multiplication, so for example

$$x^{2}y d(x + y) \wedge d(xz) = x^{2}y (dx + dy) \wedge (zdx + xdz) = x^{2}y dx \wedge (zdx + xdz) + x^{2}y dy \wedge (zdx + xdz)$$
$$= x^{2}yz dx \wedge dx + x^{2}yx dx \wedge dz + x^{2}yz dy \wedge dx + x^{2}yx dy \wedge dz$$

c) Switching two 1-forms you are wedging will change the sign, $df \wedge dg = -dg \wedge df$. So for example

$$x^2yz\,dx\wedge dx + x^3y\,dx\wedge dz + x^2yz\,dy\wedge dx + x^3y\,dy\wedge dz = x^2yz\,dx\wedge dx + x^3y\,dx\wedge dz - x^2yz\,dx\wedge dy + x^3y\,dy\wedge dz$$

d) Wedging a 1-form with itself is always 0, $df \wedge df = 0$. (This is actually equivalent to c, can you see why?) So for example $x^2yz dx \wedge dx = 0$. The equal items need not be adjacent so for example $dx \wedge dy \wedge dx = 0$. Applying all these rules to our example we get

$$x^{2}y d(x + y) \wedge d(xz) + 3dx \wedge dz = x^{2}yx dx \wedge dz - x^{2}yz dx \wedge dy + x^{2}yx dy \wedge dz + 3dx \wedge dz$$
$$= x^{3}y dy \wedge dz + (x^{3}y + 3) dx \wedge dz - x^{2}yz dx \wedge dy$$

Using these rules we can reduce any k-form to a sum of terms of the form

$$f dx_{i_1} \wedge dx_{i_2} \wedge \cdots \wedge dx_{i_k}$$

where $i_1 < i_2 < \cdots < i_k$ just as we did with our example. So for example any 1-form on \mathbb{R}^3 has the form $M\,dx + N\,dy + P\,dz$, any 2-form on \mathbb{R}^3 has the form $M\,dy \wedge dz + N\,dx \wedge dz + P\,dx \wedge dy$ and any 3-form in \mathbb{R}^3 has the form $f\,dx \wedge dy \wedge dz$. Thus 1-forms and 2-forms on \mathbb{R}^3 can be identified with vector fields (M,N,P) and 0-forms and 3-forms on \mathbb{R}^3 can be identified with scalar valued functions. In general in dimension n, the 0-forms and n-forms can be identified with scalar functions and the 1-forms and n-1 forms can be identified with vector fields. Note that all k-forms with k>n are 0 since we cannot find k distinct integers from 1 to n. Things work out better if we identify the vector field (M,N,P) on \mathbb{R}^3 with the 2-form $M\,dy \wedge dz - N\,dx \wedge dz + P\,dx \wedge dy$.

If $f: Y \to X$, then composition (i.e., substitution) gives a linear transformation $f^*: \Omega^k(X) \to \Omega^k(Y)$. For example, suppose $f: \mathbb{R}^2 \to \mathbb{R}^3$ is given by $f(s,t) = (st, s+t, t^2)$. Then

$$f^*(x\,dy\wedge dz + yz\,dx\wedge dy) = st\,d(s+t)\wedge d(t^2) + (s+t)t^2d(st)\wedge d(s+t)$$

$$= st\,ds\wedge d(t^2) + st\,dt\wedge d(t^2) + (s+t)t^2d(st)\wedge ds + (s+t)t^2d(st)\wedge dt$$

$$= 2tst\,ds\wedge dt + 2tst\,dt\wedge dt + (s+t)t^2(sdt+tds)\wedge ds + (s+t)t^2(sdt+tds)\wedge dt$$

$$= 2t^2s\,ds\wedge dt + (s+t)st^2\,dt\wedge ds + (s+t)t^3ds\wedge dt$$

$$= (2t^2s - (s+t)st^2 + (s+t)t^3)\,ds\wedge dt$$

This gives us a way to evaluate $\int_Z \omega$ where $Z \subset X$ is a k-dimensional manifold and ω is a k-form on X. Suppose we can parameterize Z by a map $f\colon D\to\mathbb{R}^n$ where $D\subset\mathbb{R}^k$. Then $f^*\omega$ is a k-form on D which can be thought of as a scalar function which we can then integrate on D. For example, let Z be the cylinder parameterized by $r(s,t)=\cos t\mathbf{i}+\sin t\mathbf{j}+s\mathbf{k}$ for $0\leq t\leq 2\pi$ and $0\leq s\leq 4$. Let ω be any 2-form on \mathbb{R}^3 , $\omega=zdy\wedge dz+xdx\wedge dz-dx\wedge dy$. Then

 $r^*\omega = sd\sin t \wedge ds + \cos td\cos t \wedge ds - d\cos t \wedge d\sin t = s\cos tdt \wedge ds - \cos t\sin tdt \wedge ds + \sin t\cos tdt \wedge dt$

$$=(\cos t \sin t - s \cos t)ds \wedge dt$$

So $\int_Z \omega = \int_0^{2\pi} \int_0^4 \cos t \sin t - s \cos t ds dt = 0$.

Change of variable: Suppose we have a change of variables x = x(u, v), y = y(u, v). Then

$$dx \wedge dy = (x_u du + x_v dv) \wedge (y_u du + y_v dv) = x_u y_u du \wedge du + x_u y_v du \wedge dv + x_v y_u dv \wedge du + x_v y_v dv \wedge dv$$
$$= x_u y_v du \wedge dv + x_v y_u dv \wedge du = (x_u y_v - x_v y_u) du \wedge dv = \partial(x, y) / \partial(u, v) du \wedge dv$$

Thus we get the change of variables formula for integration (except that we allow signed area, so there is no absolute value of the Jacobian). This all works in n dimensions too.

Work integrals: Let C be a curve (i.e., a 1 manifold) in \mathbb{R}^3 parameterized by $r(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$ for $a \leq t \leq b$. Let $F = M\mathbf{i} + N\mathbf{j} + P\mathbf{k}$ be any vector field on \mathbb{R}^3 . Then F can be identified with the 1-form $\omega = Mdx + Ndy + Pdz$. Then $r^*\omega = Mdx/dtdt + Ndy/dtdt + Pdz/dtdt$ so $\int_C \omega = \int_a^b Mdx/dt + Ndy/dt + Pdz/dt dt = \int_C F \cdot \mathbf{T} ds$.

Flux integrals: Let Z be the graph z = g(x,y) for $(x,y) \in D$. Let $F = M\mathbf{i} + N\mathbf{j} + P\mathbf{k}$ be any vector field on \mathbb{R}^3 . Then F can be identified with the 2-form $\omega = Mdy \wedge dz - Ndx \wedge dz + Pdx \wedge dy$. Let r(x,y) = (x,y,g(x,y)) parameterize Z. Then $dz = g_x dx + g_y dy$ so

$$\begin{split} r^*\omega &= M dy \wedge (g_x dx + g_y dy) - N dx \wedge (g_x dx + g_y dy) + P dx \wedge dy \\ &= M g_x dy \wedge dx - N g_y dx \wedge dy + P dx \wedge dy \\ &= (M, N, P) \cdot (-g_x, -g_y, 1) dx \wedge dy \end{split}$$

Thus $\int_Z \omega = \int \int_Z F \cdot n \, dS$. As an excercise you can prove this formula for a general parameterized surface.

Relation of d with grad, curl and div: Recall that the exterior derivative can be calculated by $d(fdg_1 \wedge dg_2 \wedge \cdots \wedge dg_k) = df \wedge dg_1 \wedge dg_2 \wedge \cdots \wedge dg_k$.

If f is a function on \mathbb{R}^3 , then $df = f_x dx + f_y dy + f_z dz$ is the 1-form identified with the vector field $(f_x, f_y, f_z) = grad(f)$.

If F = (M, N, P) is a vector field on \mathbb{R}^3 we may identify it with the 1-form $\omega = Mdx + Ndy + Pdz$. Then

$$d\omega = (M_x dx + M_y dy + M_z dz) \wedge dx + (N_x dx + N_y dy + N_z dz) \wedge dy + (P_x dx + P_y dy + P_z dz) \wedge dz$$
$$= M_y dy \wedge dx + M_z dz \wedge dx + N_x dx \wedge dy + N_z dz \wedge dy + P_x dx \wedge dz + P_y dy \wedge dz$$
$$= (P_y - N_z) dy \wedge dz - (M_z - P_x) dx \wedge dz + (N_x - M_y) dx \wedge dy$$

Thus $d\omega$ is identified with the vector field $(P_y - N_z, M_z - P_x, N_x - M_y) = \text{curl} F$.

If F = (M, N, P) is a vector field on \mathbb{R}^3 we may identify it with the 2-form $\nu = M \, dy \wedge dz - N \, dx \wedge dz + P \, dx \wedge dy$. Then

$$d\nu = (M_x dx + M_y dy + M_z dz) \wedge dy \wedge dz - (N_x dx + N_y dy + N_z dz) \wedge dx \wedge dz + (P_x dx + P_y dy + P_z dz) \wedge dx \wedge dy$$
$$= M_x dx \wedge dy \wedge dz - N_y dy \wedge dx \wedge dz + P_z dz \wedge dx \wedge dy = \text{div} F dx \wedge dy \wedge dz$$

Generalized Stokes' theorem: Suppose $r: D \to X$ where D is a region in \mathbb{R}^k . Let U = r(D) be the image of r. Then we say r parametrizes U. We say ∂U is the image of the boundary of D. For example let $D = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$ and define $r: D \to \mathbb{R}^3$ by $r(x,y) = (x,y,x^2 + y^2)$. Then r parameterizes U where U is the portion of the paraboloid $z = x^2 + y^2$ which lies below the plane z = 1. We have ∂U is the circle $x^2 + y^2 = 1$, z = 1.

Suppose ω is a k-1-form. The generalized Stokes' theorem says that

$$\int_{\partial U} \omega = \int_{U} d\omega$$

This gives us Stokes' theorem, Gauss' theorem, Greens theorem, and many others.

For example, if ω is a 1-form in \mathbb{R}^3 corresponding to the vector field F then we saw above that $\int_{\partial U} \omega = \int_{\partial U} F \cdot T \, ds$. Also $d\omega$ corresponds to the vector field $\operatorname{curl} F$ so $\int_U d\omega = \int \int_U \operatorname{curl} F \cdot n \, dS$ so we get the classic Stokes' theorem.

For another example, if ν is a 2-form in \mathbb{R}^3 corresponding to the vector field F, then we saw above that $d\nu$ corresponds to div F. So if U is a solid region in \mathbb{R}^3 we have $\int \int \int_U \operatorname{div} F \, dV = \int_U d\nu = \int_{\partial U} \nu = \int \int_{\partial U} F \cdot n \, dS$.