Differential Forms

Colley devotes Chapter 8 to differential forms. This note is intended to give you the highlights, and is
complementary to chapter 8 rather a summary of chapter 8. Reading chapter 8 can provide you with more
details. I will also look at forms slightly differently than in chapter 8, in particular evaluating them without
determinents. In fact a very good way to define determinents is to use forms.

The big picture: If X C R” is an open set, then for every integer k > 0 there is a vector space QF(X) of
k-forms on X . There is an exterior derivative dj, : Q¥(X) — QFF1(X), usually the subscript k is omitted and
this is just written as d. The map dj, is a linear transformation. So if w is a k-form then dw is a k + 1-form
and d(w 4+ v) = dw + dv. There is an operation wedge which takes a k-form w and an ¢-form v and produces
a k+ ¢-form w Av. If wis a k-form and M is a parameterized k dimensional manifold in X (whatever that
is) then an integral fM w can be defined, it is a scalar.

In what follows, when we talk about a function f on X we will assume without explicitly saying so that
f: X — R is real valued and is infinitely differentiable, i.e., partial derivatives of f all orders exist. You can
get away with less, but it would only obscure the main ideas.

You can not only multiply a form by a scalar (from the vector space axioms) but you can multiply a
form by a function on X. So if w is a k-form and f: X — R is a function, then fw is another k-form.

The derivative d and the wedge satisfy some algebraic rules. Some of these rules are, d> = 0 and there
is a product rule d(fw) = fdw + df Aw. Also A is bilinear which means (w; +w2) Av = w; Av+ws Av and
WA (1 + 1) =wAvs +wAve. If wand v are k and ¢-forms then w A v = (—1)¥v A w, in particular if both
k and ¢ are odd, then w A v = —v A w. We will use this extensively below for k = ¢ = 1.

The nitty gritty: Okay, so what is a form anyway.

0) A O-form is just a function f: X — R.

1) A 1-form is an expression of the form f1dgi + fadge + - - - + fmdgm where the f; and g; are functions on
X. For example, zy?dx + d(zy) is a 1-form on R

2) A 2-form is an expression of the form fidgi A dhy + fadga A dho + -+ - + findgm A dh.,, where the f;, g;,
and h; are functions on X. For example 22y d(z + y) A d(xz) + 3dx A dz is a 2-form on R3.

k) In general a k-form is a finite sum of expressions of the form fdg; Adga A -+ A dgi, where f and the g;
are functions on X.

There are some rules for manipulating forms.

a) df = 9f/0x1dxy + 0f/0xadas + -+ Of /02y, dxy. So for example d(xz) = zdx + xdz and d(x + y) =
dz + dy.

b) A distributes over addition and commutes with multiplication, so for example

22y d(z +y) Ad(zz) = 22y (dz + dy) A (zde + 2dz) = 22y de A (zdx + zdz) + 22y dy A (2dz + vd2)

= 22yzdx A dx + 2?yx dx A dz + 2*yz dy A dx + 2?yz dy A dz

¢) Switching two 1-forms you are wedging will change the sign, df A dg = —dg A df. So for example

2?yz deNdz+23y deAdz+2yz dyAde+23y dyndz = 2?yz deAde+a3y dendz— 22y z deAdy+ 23y dyndz
d) Wedging a 1-form with itself is always 0, df Adf = 0. (This is actually equivalent to ¢, can you see why?)

So for example x%yz dz Adxr = 0. The equal items need not be adjacent so for example dz A dy A dx = 0.

Applying all these rules to our example we get

22yd(z +y) Ad(zz) + 3dz A dz = 2yz dx A dz — 2yzde A dy + 2*yz dy A dz + 3dz A dz
= 23ydy Ndz + (2Py + 3)dx A dz — 2?yzdx A dy
Using these rules we can reduce any k-form to a sum of terms of the form

fd{Eil A dIQ VARERIVAN dIik
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where i; < ip < --- < i} just as we did with our example. So for example any 1-form on R? has the
form Mdx + N dy + Pdz, any 2-form on R3 has the form M dy A dz + Ndx A dz + Pdx A dy and any
3-form in R3 has the form fdx A dy A dz. Thus 1-forms and 2-forms on R?® can be identified with vector
fields (M, N, P) and 0-forms and 3-forms on R? can be identified with scalar valued functions. In general
in dimension n, the 0-forms and n-forms can be identified with scalar functions and the 1-forms and n — 1
forms can be identified with vector fields. Note that all k-forms with & > n are 0 since we cannot find k
distinct integers from 1 to n. Things work out better if we identify the vector field (M, N, P) on R? with
the 2-form M dy Adz — Ndx Adz + Pdz A dy.

If f:Y — X, then composition (i.e., substitution) gives a linear transformation f*: Q¥(X) — QF(Y).
For example, suppose f:R? — R? is given by f(s,t) = (st,s +t,t2). Then

fH(xdy Adz +yzde Ady) = std(s+t) Ad(t?) + (s + t)t2d(st) Ad(s +t)

= stds A d(t?) + stdt Ad(t?) + (s + t)t%d(st) A ds + (s + t)t?d(st) A dt
= 2tstds A\ dt + 2tstdt A\ dt + (s + t)t2(sdt + tds) A ds + (s + t)t*(sdt + tds) A dt
=2t*sds Ndt + (s +t)st® dt Ads + (s + t)t>ds A dt
= (2t*s — (s + t)st? + (s + 1)t*) ds A dt

This gives us a way to evaluate |, ,w where Z C X is a k dimensional manifold and w is a k-form on
X. Suppose we can parameterize Z by a map f: D — R™ where D C R*. Then f*w is a k-form on D which
can be thought of as a scalar function which we can then integrate on D. For example, let Z be the cylinder
parameterized by 7(s,t) = costi + sintj + sk for 0 < ¢ < 27 and 0 < s < 4. Let w be any 2-form on R3,
w = zdy Ndz + xdx AN dz — dz A dy. Then

r*w = sdsint A ds + costdcost A ds — dcost ANdsint = scostdt A ds — costsintdt A ds + sint costdt A dt

= (costsint — scost)ds A dt

So [,w= 027T f04 costsint — scostdsdt = 0.

Change of variable: Suppose we have a change of variables © = z(u,v), y = y(u,v). Then
dx N dy = (zydu + 2,dv) A (Yudu + y,dv) = Ty yudu A du + Ty ypdu A dv + Yy do A du + 2, y,dv A dv

= Ty Ypdu A dv + Ty dv A du = (Ty Yy — Ty )du A dv = 0(x,y)/0(u, v)du A dv

Thus we get the change of variables formula for integration (except that we allow signed area, so there is no
absolute value of the Jacobian). This all works in n dimensions too.

Work integrals: Let C be a curve (i.e., a 1 manifold) in R?® parameterized by r(t) = z(t)i + y(t)j + z(t)k
for a <t <b. Let F = Mi+ Nj+ Pk be any vector field on R3. Then F can be identified with the 1-form
w = Mdz + Ndy + Pdz. Then r*w = Mdx/dtdt + Ndy/dtdt + Pdz/dtdt so [, w = f; Mdx/dt + Ndy/dt +
Pdz/dtdt = [, F-Tds.

Flux integrals: Let Z be the graph z = g(z,y) for (z,y) € D. Let F = Mi+ Nj+ Pk be any vector field on
R3. Then F can be identified with the 2-form w = MdyAdz— NdxAdz+ PdxAdy. Let r(x,y) = (z,y, 9(z,y))
parameterize Z. Then dz = g,dx + gydy so

r*w = Mdy A (gzdz + gydy) — Ndz A (gzdz + gydy) + Pdx A dy

= Mg,dy N dx — Ngydx A\ dy + Pdx A dy

Thus [,w = [ [, F-ndS. As an excercise you can prove this formula for a general parameterized surface.
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Relation of d with grad, curl and div: Recall that the exterior derivative can be calculated by
d(fdgy Ndga A -+~ Ndgy) = df Ndgi Adgz A - A dgy.

If f is a function on R?, then df = f,dx + f,dy + f.dz is the 1-form identified with the vector field
(fas fy, f2) = grad(f).

If F = (M, N,P) is a vector field on R?® we may identify it with the 1-form w = Mdx + Ndy + Pdz.
Then

dw = (Mydz + Mydy + M.dz) A dx + (Nydx + Nydy + N.dz) A dy + (Ppdx + Pydy + P.dz) Ndz

= Mydy Ndx + M,dz A dx + Nydx Ndy + N.dz A dy + Pydx A dz + Pydy N dz
= (P, — N,)dy ANdz — (M, — P,)dz ANdz+ (N, — My)dz A dy

Thus dw is identified with the vector field (P, — N,, M, — P, N, — M) = curlF.
If F = (M, N,P) is a vector field on R?® we may identify it with the 2-form v = M dy A dz — N dx A
dz + Pdx A dy. Then

dv = (Mydzx + Mydy + M.dz) ANdy A dz — (Nydx + Nydy + N.dz) A dzx Adz + (Pydx + Pydy + P.dz) Adx Ady

= Mydx Ndy Ndz — Nydy Ndx ANdz + P,dz Ndx ANdy = divEde Ady N dz

Generalized Stokes’ theorem: Suppose 7: D — X where D is a region in R*. Let U = r(D) be the
image of r. Then we say r parametrizes U. We say OU is the image of the boundary of D. For example let
D = {(z,y) € R? | 22 + 32 = 1} and define r: D — R3 by r(z,y) = (z,y, 2% + y?). Then r parameterizes U
where U is the portion of the paraboloid z = x? + 32 which lies below the plane z = 1. We have OU is the
circle 22 +y2 =1, z = 1.

Suppose w is a k — 1-form. The generalized Stokes’ theorem says that

/w:/dw
ouU U

This gives us Stokes’ theorem, Gauss’ theorem, Greens theorem, and many others.

For example, if w is a 1-form in R? corresponding to the vector field F then we saw above that /. oUW =
Jou F-T'ds. Also dw corresponds to the vector field curlF so [;; dw = [ [;; curlF-n.dS so we get the classic
Stokes’ theorem.

For another example, if v is a 2-form in R? corresponding to the vector field F', then we saw above that dv
corresponds to divF. Soif U is a solid region in R? we have [ [ [, divFdV = [, dv = [, v = [ [,, F-ndS.



