
Math 341 Exam #1 March 7, 2003

1. (15) Let A =





2 1 −1
0 0 2
0 0 2





a) Find all eigenvalues and eigenvectors of A. Some calculators can do this for you, so

show enough work to let me know you can do it by hand.

Since A is upper triangular, the eigenvalues are 0 and 2. The eigenvectors for 0 are

nonzero elements in the null space of A, which by inspection (or if you want by putting

in echelon form) are all nonzero multiples of (1,−2, 0)T . Eigenvectors for the eigenvalue

2 are are all nonzero vectors in the null space of 2I − A =





0 −1 1
0 2 −2
0 0 0



 which has

echelon form





0 1 −1
0 0 0
0 0 0



. So a basis of the null space is (1, 0, 0)T , (0, 1, 1)T . So the

eigenvectors are of the form (a, b, b)T where either a or b is 0.

b) If possible, find a matrix P so P−1AP is diagonal. If this is not possible, say why not.

There is a basis of eigenvectors, which will make up the columns of P . So we may let

P =





1 0 1
0 1 −2
0 1 0



.

2. (15) Let S be the subspace of R
4 spanned by (1, 1, 1, 1)T , (1, 0, 3, 0)T , and (1,−1, 0, 0)T .

Find an orthogonal basis for S.

Let u1 = (1, 1, 1, 1)T . We may let

u2 = (1, 0, 3, 0)T − ((1, 0, 3, 0)T · u1/u1 · u1)u1 = (1, 0, 3, 0)T − u1 = (0,−1, 2,−1)

Now to get u3 continue with Gram-Schmidt

u3 = (1,−1, 0, 0)T − ((1,−1, 0, 0)T · u1/u1 · u1)u1 − ((1,−1, 0, 0)T · u2/u2 · u2)u2

= (1,−1, 0, 0)T − u2/6 = (1,−5/6,−1/3, 1/6)

If we wanted to pretty it up we could multiply u3 by 6.

3. (20) Find and classify (local mx, local min, saddle, or degenerate) all critical points of

f(x, y, z) = 2x3 − 3x2 + y5 − 20y + y3z2.



To find the critical points we need to solve 6x2 − 6x = 0, 5y4 − 20 + 3y2z2 = 0, and

2y3z = 0. From the first equation we get x = 0, 1. From the third equation we get y = 0

or z = 0. But y = 0 violates the second equation so we must have z = 0. Plugging z = 0

into the second equation gives y = ±
√

2. Note that when z = 0 the Hessian is diagonal

with diagonal entries 12x− 6, 20y3, 2y3. These diagonal entries are the eigenvalues of the

Hessian. So we may summarize the results as follows

critical point eigenvalues type

(0,
√

2, 0) −6, 40
√

2, 4
√

2 saddle

(0,−
√

2, 0) −6,−40
√

2,−4
√

2 local max

(1,
√

2, 0) 6, 40
√

2, 4
√

2 local min

(1,−
√

2, 0) 6,−40
√

2,−4
√

2 saddle

Of course you could also use the derivative test given in Colley.

4. (20) Use Lagrange multipliers to do one of the following:

a) Find the points on the surface xy2 +4z2 = 16 which are closest and furthest from the

origin.

The constraint is g(x, y, z) = xy2+4z2 and we wish to find the max/min of f(x, y, z) =

x2 + y2 + z2. So we need to solve 2x = λy2, 2y = λ2xy, 2z = λ8z, and xy2 + 4z2 = 16.

From the second equation, either y = 0 or λ = 1/x. If y = 0 then the first equation gives

x = 0 and the last equation gives z = ±4. If λ = 1/x, the first equation gives y = ±
√

2x,

and the third equation gives either z = 0 or λ = 1/4. But the λ = 1/4 implies x = 1/λ = 4

and y = ±4
√

2 and plugging into the last equation gives 16 = 4(±4
√

2)2 + 4z2 = 128 + 4z2

which has no (real) solutions. So we must have z = 0. Plugging this into the last equation

we get 16 = xy2 = 2x3 so x = 2 which means y = ±2
√

2. So we summarize our results as

follows:

Possible extreme point f(x, y, z)

(0, 0,±4) 16

(2,±2
√

2, 0) 12

At first glance we might say the minimum distance is at the points (2,±2
√

2, 0) at

distance
√

12 and the maximum is at (0, 0,±4) at distance 4. But what about the point

(16, 1, 0) which is on the level surface g = 16 and is much further away than 4? So in fact,

there is no maximum distance from the origin. The surface g = 16 extends infinitely far

out. (If there were a maximum distance it would have to be at one of the points we found,



but it is not as the point (16, 1, 0) shows.) So the minimum is at the points (2,±2
√

2, 0)

but there is no maximum distance.

b) Let a and b be perpendicular unit vectors in R
n. Let T be the set of points x on the

sphere ||x|| =
√

2 where a ·x = 1. Find the maximum and minimum of b ·x for x ∈ T .

We have two constraints g1(x) = ||x||2 = 2 and g2(x) = a ·x = 1. Let f(x) = b ·x. We

need to solve the equations ∇f = λ∇g1 + µ∇g2 and ||x||2 = 2 and a · x = 1. Note ∇f = b

and ∇g1 = 2x and ∇g2 = a. So our first equation is b = 2λx+µa. Note λ 6= 0 since b and

a are linearly independent. So x = b/(2λ)− µa/(2λ). Dot this equation with a and we get

1 = x · a = 0− µ/(2λ) so µ = −2λ. So x = b/(2λ) + a. We have 2 = ||x||2 = 1/(2λ)2 + 12

so λ = ±1/2. So x = a ± b. The maximum occurs when x = a + b and b · x = 1. The

minimum occurs when x = a − b and b · x = −1.

There are other ways to solve this problem without lagrange multipliers. For example

since x · a = 1 we know x = a + y where y · a = 0. Then ||x||2 = 1 + ||y||2 so ||y|| = 1.

Then b · x = b · a + b · y = 0 + cos θ where θ is the angle between b and y. So the max is

θ = 0 where y = b and the minimum is where y = −b. You could also solve this by letting

Q be an orthogonal matrix with first two columns a and b. Change variables to z where

z = QT x. Then T is where ||z||2 = 2 and z1 = 1, and we wish to maximize z2 on T . Of

course z2 ranges from −1 to 1.

5. (15) Prove one of the following:

a) Suppose B is orthogonally diagonalizable, that is, there is an orthogonal matrix Q so

that Q−1BQ is diagonal. Show that B is symmetric.

Suppose Q−1BQ = D where D is diagonal. Note Q−1 = QT so B = QDQT . Then

BT = (QDQT )T = QT T DT QT = QDQT = B. So B is symmetric.

b) Recall a square matrix P is a projection matrix if P 2 = P . Show that a projection

matrix Phas at most two different eigenvalues. (Hint, take an eigenvector v and write

Pv in two ways.)

If the eigenvector v has eigenvalue λ, then Pv = λv. On the other hand Pv = P 2v =

P (Pv) = P (λv) = λPv = λ2v. So λ = λ2 since v 6= 0. So the only possible λ are λ = 0

and λ = 1. In fact, unless P is 0 or the identity there will be exactly two eigenvalues, 0 and

1. (To prove this, use Schur’s theorem to reduce to the case where P is upper triangular

then prove it directly for upper triangular projections.)

6. (15) Prove one of the following:



a) If A is any k × n matrix then all eigenvalues of AT A are real and nonnegative. (Hint:

If v is an eigenvector of AT A, consider the dot product of v and AT Av. Write this as

a product of matrices and simplify in two ways.)

Since AT A is symmetric, its eigenvalues are real. Now vT AT Av = vT λv = λvT v =

λ||v||2. But also vT AT Av = (Av)T Av = ||Av||2. So λ = ||Av||2/||v||2 ≥ 0 since it is the

quotient of a nonegative by a positive number.

b) If C is any square matrix show that C and CT have the same eigenvalues. (Hint,

compare their characteristic polynomials). Also, prove or disprove whether or not

they have the same eigenvectors.

The characteristic polynomial of C is c(λ) = det(λI −C). The characteristic polyno-

mial of CT is c′(λ) = det(λI−CT ). But det(λI−C) = det((λI−C)T ) = det((λI)T−CT ) =

det(λI−CT ). So C and CT have the same characteristic polynomial. So they have the same

eigenvalues since the eigenvalues are exactly the roots of the characteristic polynomial. But

any random example will show the eigenvectors differ. For example C =

(

1 1
0 1

)

which

has eigenvectors (a, 0)T but CT has eigenvectors (0, b)T .


