Math 405 Final Exam December 15, 2006

Give sufficient reason for your answers.

1. (50) Suppose $\mathcal{B}=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$ is an orthonormal basis for an inner product space V over \mathbb{C} with inner product (|). Suppose $T: V \rightarrow V$ is the linear operator with $[T]_{\mathcal{B}}=\left[\begin{array}{ccc}1 & i & 0 \\ 2 & 1 & 2 i \\ 0 & 1 & 0\end{array}\right]$.
a) Find $\left(2 \alpha_{1}+i \alpha_{2} \mid i \alpha_{1}+3 \alpha_{2}+\alpha_{3}\right)$.

Answer: $\left(2 \alpha_{1}+i \alpha_{2} \mid i \alpha_{1}+3 \alpha_{2}+\alpha_{3}\right)=2 \bar{i}+i \overline{3}+0 \overline{1}=i$.
b) Find the adjoint T^{*} of T. (i.e., calculate $\left[T^{*}\right]_{\mathcal{B}}$).

Answer: Since \mathcal{B} is orthonormal, this is just the conjugate transpose $\left[\begin{array}{ccc}1 & 2 & 0 \\ -i & 1 & 1 \\ 0 & -2 i & 0\end{array}\right]$
c) For every $\alpha \in V$ there is a functional $\phi_{\alpha}: V \rightarrow \mathbb{C}$ given by $\phi_{\alpha}(\beta)=(\beta \mid \alpha)$. This gives a map $S: V \rightarrow V^{*}$ where $S \alpha=\phi_{\alpha}$. Prove or disprove each of the following:
i) S is a linear transformation.

Answer: False. $\phi_{c \alpha+\beta}(\gamma)=(\gamma \mid c \alpha+\beta)=\bar{c}(\gamma \mid \alpha)+(\gamma \mid \beta)=\left(\bar{c} \phi_{\alpha}+\phi_{\beta}\right)(\gamma)$. Thus $S(c \alpha+\beta)=\bar{c} S(\alpha)+S(\beta)$ so S is not quite linear. For example, $S(i \alpha)=-i S(\alpha)$.
ii) True. $\left\{S \alpha_{1}, S \alpha_{2}, S \alpha_{3}\right\}$ is the dual basis of \mathcal{B}.

Answer: $S \alpha_{i}\left(\alpha_{j}\right)=\left(\alpha_{j} \mid \alpha_{i}\right)=0=\alpha_{i}^{*}\left(\alpha_{j}\right)$ if $i \neq j$ and $=1=\alpha_{i}^{*}\left(\alpha_{j}\right)$ if $i=j$. So $S \alpha_{i}=\alpha_{i}^{*}$ the dual basis vector.
iii) S is one to one.

Answer: If $S \alpha=S \beta$ then $(\gamma \mid \alpha)=(\gamma \mid \beta)$ for all γ so $(\gamma \mid \alpha-\beta)=0$ for all γ. Set $\gamma=\alpha-\beta$ and we get $0=(\alpha-\beta \mid \alpha-\beta)=\|\alpha-\beta\|$ so $\alpha=\beta$.
iv) S is onto.

Answer: Since S is not linear we do not automatically know that one to one implies onto. But $S\left(\bar{c}_{1} \alpha_{1}+\right.$ $\left.\bar{c}_{2} \alpha_{2}+\bar{c}_{3} \alpha_{3}\right)=c_{1} \alpha_{1}^{*}+c_{2} \alpha_{2}^{*}+c_{3} \alpha_{3}^{*}$ so S is onto since $\alpha_{1}^{*}, \alpha_{2}^{*}, \alpha_{3}^{*}$ span V^{*}.
2. (60) Do three of the following, be sure to clearly indicate which three.
a) Let $A=\left[\begin{array}{cc}4 & 4 \\ -1 & 0\end{array}\right]$. Find a real matrix P so that $P^{-1} A P$ is in Jordan form.

Answer: The characteristic value of A is 2 . The columns of P are then α and $(A-2 I) \alpha$ for any vector α which is not a characteristic vector. For example if $\alpha=(1,0)^{T}$ then $P=\left[\begin{array}{cc}1 & 2 \\ 0 & -1\end{array}\right]$.
b) Find an orthonormal basis for the space of complex polynomials p of degree 3 or less with $p(0)=0$. Use the inner product $(p \mid q)=\int_{-1}^{1} p(x) \overline{q(x)} d x$.
Answer: A basis is $\left\{x, x^{2}, x^{3}\right\}$. Do G-S to get an orthogonal basis. Since $\left(x \mid x^{2}\right)=0$ and $\left(x^{3} \mid x^{2}\right)=0$ we get $\left\{x, x^{2}, x^{3}-\frac{\left(x^{3} \mid x\right)}{\|\left. x\right|^{2}} x\right\}=\left\{x, x^{2}, x^{3}-3 x / 5\right\}$. Divide by the lengths to make these orthonormal and get $\left\{\sqrt{1.5} x, \sqrt{2.5} x^{2}, \sqrt{.875}\left(5 x^{3}-3 x\right)\right\}$. (actual numbers not guaranteed)
c) Let T be the operator on \mathbb{C}^{2} with standard inner product which is represented in the standard ordered basis by the matrix $A=\left[\begin{array}{cc}0 & 2 \\ -2 & 0\end{array}\right]$. Show that T is normal, and find a unitary matrix P so that $P^{*} A P$ is diagonal.
Answer: \quad Since $T^{*}=-T$ we know $T T^{*}=-T^{2}=T^{*} T$ so T is normal, as is any skew hermitian matrix. The characteristic polynomial is $x^{2}+4$ so the char values are $\pm 2 i$. For $2 i$ a char vector is in $N S(A-2 i I)=$ $\operatorname{span}(i 1)$. So a unit length char vector is $(i / \sqrt{2}, 1 / \sqrt{2})$. Similarly a char vector for $-2 i$ is $(-i / \sqrt{2}, 1 / \sqrt{2})$. Make these the columns of P, so $P=\left[\begin{array}{cc}i / \sqrt{2} & -i / \sqrt{2} \\ 1 / \sqrt{2} & 1 / \sqrt{2}\end{array}\right]$. Other answers are possible but all are obtained by possibly switching the columns of P and multiplying each column by some some $e^{i \theta}$, for example by $\pm i$ or -1 .
d) Suppose $(1, i),(0,1)$ is an orthonormal basis for some inner product (\mid) on \mathbb{C}^{2}. Find the orthogonal compliment of the subspace spanned by $(1,0)$.

Answer: Let $\alpha_{1}=(1, i)$ and $\alpha_{2}=(0,1)$. Then $(1,0)=\alpha_{1}-i \alpha_{2}$ so the orth complement is the set of all $c \alpha_{1}+d \alpha_{2}$ with $0=c(\overline{1})+d(\overline{-i})=c+i d$. So $d=c i$ and this is the span of $\alpha_{1}+i \alpha_{2}=(1,2 i)$.
e) Suppose $(1, i),(0,1)$ is an orthonormal basis for some inner product (\mid) on \mathbb{C}^{2}. Find the adjoint of the linear operator T which is represented in the standard ordered basis by the matrix $A=\left[\begin{array}{cc}0 & 2 \\ -2 & 0\end{array}\right]$.
Answer: Note $T \alpha_{1}=(2 i,-2)=2 i \alpha_{1}$ and $T \alpha_{2}=(2,0)=2 \alpha_{1}-2 i \alpha_{2}$. So if $\mathcal{B}=\left\{\alpha_{1}, \alpha_{2}\right\}$ then $[T]_{\mathcal{B}}=$ $\left[\begin{array}{cc}2 i & 2 \\ 0 & -2 i\end{array}\right]$. So $\left[T^{*}\right]_{\mathcal{B}}=\left[\begin{array}{cc}-2 i & 0 \\ 2 & 2 i\end{array}\right]$. If you wanted the matrix of T^{*} in the standard basis it would be $\left[\begin{array}{ll}1 & 0 \\ i & 1\end{array}\right]\left[\begin{array}{cc}-2 i & 0 \\ 2 & 2 i\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ i & 1\end{array}\right]^{-1}=\left[\begin{array}{cc}1 & 0 \\ i & 1\end{array}\right]\left[\begin{array}{cc}-2 i & 0 \\ 2 & 2 i\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ -i & 1\end{array}\right]$
3. (50) Let $T: V \rightarrow V$ be a linear operator on a finite dimensional vector space V over \mathbb{C}. Suppose the characteristic polynomial of T is $(x-1)^{2} x^{3}(x+1)$ and the minimal polynomial of T is $(x-1) x^{2}(x+1)$. There is also a vector β in V so that $T^{5} \beta=\beta$.
a) What is the dimension of V ?

Answer: 6, the degree of the characteristic polynomial.
b) Is T singular or nonsingular?

Answer: T is singular since one of its characteristic values is 0 .
c) What are the possible Jordan forms of T ?

Answer: From the minimal polynomial, the largest Jordan blocks for the char values ± 1 is 1×1 and for 0 it is 2×2. The sum of the block sizes for a char value is the exponent in the char polynomial, so the only possible Jordan form has blocks $J_{1,1}, J_{1,1}, J_{2,0}, J_{1,0}, J_{1,-1}$.
d) What is the dimension of the range of T ?

Answer: From the above Jordan form the null space has dimension 2, so the range has dimension $6-2$ or 4.
e) What is the dimension of the range of $T+2 I$?

Answer: Since -2 is not a characteristic value, $T+2 I$ is nonsingular so its range is all of V and thus has dimension 6.
f) Find a generator of the ideal of polynomials p so that $p(T) \beta=0$.

Answer: We know the minimal polynomial $(x-1) x^{2}(x+1)=x^{4}-x^{2}$ is in this ideal, and $T^{5} \beta=\beta$ tells us $x^{5}-1$ is in the ideal also. The generator must divide both these polynomials. Since 0 and -1 are not roots of $x^{5}-1$ this generator must be $x-1$. You could also fool around a bit by noting that $x^{5}-1-x\left(x^{4}-x^{2}\right)=x^{3}-1$ is in the ideal. Hence $x^{5}-1-x^{2}\left(x^{3}-1\right)=x^{2}-1$ is in the ideal. Hence $x^{3}-1-x\left(x^{2}-1\right)=x-1$ is in the ideal. Since I stated during the exam that $\beta \neq 0$, the generator has at least degree 1 , so it must be $x-1$.
g) Show that β is a characteristic vector of T.

Answer: Since $x-1$ is in the ideal in part f, we know $(T-I) \beta=0$ so $T \beta=\beta$ so β is a characteristic vector with characteristic value 1 .
4. (40) Suppose $S: V \rightarrow V$ and $T: V \rightarrow V$ are linear operators on a finite dimensional vector space V over \mathbb{R} and $S T=T S$. Suppose the minimal polynomial of S is $x^{2}-1$ and the minimal polynomial of T is x^{3}.
a) What are the characteristic values of S ?

Answer: ± 1, the roots of the minimal polynomial.
b) What are the characteristic values of T ?

Answer: 0, the root of the minimal polynomial.
c) Show that $V=W_{1} \oplus W_{2}$ where each subspace W_{i} is invariant under T and consists entirely of characteristic vectors for S.
Answer: The primary decomposition theorem says $V=W_{1} \oplus W_{2}$ where $W_{1}=N S(S-I)=$ the char vectors for 1 and $W_{2}=N S(S+I)=$ the char vectors for -1 . So we must only show W_{1} and W_{2} are invariant under T. Suppose $\alpha \in W_{1}$, then $S \alpha=\alpha$. We have $(S-I) T \alpha=S T \alpha-T \alpha=T S \alpha-T \alpha=T \alpha-T \alpha=0$ so $T \alpha \in W_{1}$ and W_{1} is invariant under T. Likewise if $\beta \in W_{2}$, then $(S+I) T \beta=T S \beta+T \beta=T(-\beta)+T \beta=0$ so W_{2} is invariant under T. See section 6.5.
d) Show that there is a basis \mathcal{B} of V so that $[S]_{\mathcal{B}}$ is diagonal and $[T]_{\mathcal{B}}$ is upper triangular. For five points extra credit, you may instead show that there is a basis \mathcal{B} of V so that $[S]_{\mathcal{B}}$ is diagonal and $[T]_{\mathcal{B}}$ is in Jordan form.

Answer: Let $T_{1}: W_{1} \rightarrow W_{1}$ and $T_{2}: W_{2} \rightarrow W_{2}$ be the restrictions of T. Since T_{1} has minimal polynomial x^{k} it is triangulable so there is a basis \mathcal{A}_{1} of W_{1} so that $\left[T_{1}\right]_{\mathcal{A}_{1}}$ is an upper triangular matrix A_{1}. Likewise, there is a basis \mathcal{A}_{2} of W_{2} so that $\left[T_{2}\right]_{\mathcal{A}_{2}}$ is an upper triangular matrix A_{2}. Since $V=W_{1} \oplus W_{2}$ we know the union $\mathcal{B}=\mathcal{A}_{1} \cup \mathcal{A}_{2}$ is a basis of V. But $[T]_{\mathcal{B}}=\left[\begin{array}{cc}A_{1} & 0 \\ 0 & A_{2}\end{array}\right]$ is upper triangular. Jordan is done similarly (pun intended), since T_{i} is nilpotent we may instead choose our bases to make A_{i} be in Jordan form.
5. (20) (Extra credit) Let $T: V \rightarrow V$ be a normal operator on a finite dimensional inner product space V over \mathbb{R}. Suppose T has no (real) characteristic values. Show that for any integer $k>0$ there is an operator S so that $S^{k}=T$.
Answer: We showed there is a basis \mathcal{B} of V so that $[T]_{\mathcal{B}}$ is in block diagonal form with only 2×2 and 1×1 blocks on the diagonal. There are no 1×1 blocks since they correspond to real characteristic values. The 2×2 blocks are all of the form $B_{a, b}=\left[\begin{array}{cc}a & b \\ -b & a\end{array}\right]$ where $a+b i$ is a char value of the complexification of T. Note that $B_{a, b} B_{c, d}=B_{e, f}$ where $e+f i=(a+b i)(c+d i)$ so we have $B_{a, b}=B_{c, d}^{k}$ where $c+d i=(a+b i)^{1 / k}$. Alternatively, note that $B_{a, b}$ is the composition of a scalar multiplication by $\sqrt{a^{2}+b^{2}}$ and rotation by some angle θ, and these operators commute. (In fact, $a+b i=r e^{i \theta}$ where $r=\sqrt{a^{2}+b^{2}}$.) Then $B_{a, b}=B_{c, d}^{k}$ where $c+d i=(a+b i)^{1 / k}=r^{1 / k} e^{i \theta / k}$. That is, $B_{c, d}$ rotates by θ / k and scalar multiplies by $\left(a^{2}+b^{2}\right)^{1 / 2 k}$. So if $[T]_{\mathcal{B}}$ has blocks $B_{a_{1}, b_{1}}, B_{a_{2}, b_{2}}, \ldots, B_{a_{n}, b_{n}}$ we pick S so $[S]_{\mathcal{B}}$ has blocks $B_{c_{1}, d_{1}}, B_{c_{2}, d_{2}}, \ldots, B_{c_{n}, d_{n}}$ where $\left(c_{j}+i d_{j}\right)^{k}=a+b i$ for all j. Then $S^{k}=T$.

