1. (25) Let $W_{1} \subset \mathbb{R}^{2 \times 2}$ be the set of matrices with trace 0 , that is, matrices of the form $\left[\begin{array}{cc}x & y \\ z & -x\end{array}\right]$. Let $W_{2} \subset \mathbb{R}^{2 \times 2}$ be the set of symmetric matrices, that is, matrices of the form $\left[\begin{array}{ll}x & y \\ y & z\end{array}\right]$.
a) Show that W_{1} and W_{2} are both subspaces.
$c\left[\begin{array}{cc}x & y \\ z & -x\end{array}\right]+\left[\begin{array}{cc}x^{\prime} & y^{\prime} \\ z^{\prime} & -x^{\prime}\end{array}\right]=\left[\begin{array}{cc}c x+x^{\prime} & c y+y^{\prime} \\ c z+z^{\prime} & -c x-x^{\prime}\end{array}\right]$. Since $-\left(c x+x^{\prime}\right)=-c x-$ x^{\prime}, this linear combination of elements of W_{1} is still in W_{1}. Since $0 \in W_{1}$ we then know W_{1} is a subspace. $c\left[\begin{array}{ll}x & y \\ y & z\end{array}\right]+\left[\begin{array}{ll}x^{\prime} & y^{\prime} \\ y^{\prime} & z^{\prime}\end{array}\right]=\left[\begin{array}{ll}c x+x^{\prime} & c y+y^{\prime} \\ c y+y^{\prime} & c z+z^{\prime}\end{array}\right]$. Since the off diagonal entries are equal, this linear combination of elements of W_{2} is still in W_{2}, and since W_{2} is nonempty we know W_{2} is a subspace.
b) Find the dimensions of $W_{1}, W_{2}, W_{1} \cap W_{2}$ and $W_{1}+W_{2}$ (and give sufficient reasons).
A basis of W_{1} is $\left\{\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]\right\}$ since they are linearly independent and span W_{1} so $\operatorname{dim} W_{1}=3$. A basis of W_{2} is $\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\}$ since they are linearly independent and span W_{2} so $\operatorname{dim} W_{2}=3$. $W_{1} \cap W_{2}$ is all matrices of the form $\left[\begin{array}{cc}x & y \\ y & -x\end{array}\right]$ so it has basis $\left\{\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right],\left[\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right]\right\}$ and hence has dimension 2. $\operatorname{dim}\left(W_{1}+W_{2}\right)=\operatorname{dim} W_{1}+\operatorname{dim} W_{2}-\operatorname{dim}\left(W_{1} \cap W_{2}\right)=$ $3+3-2=4$. Alternatively, since W_{1} is not contained in W_{2} we know $\operatorname{dim}\left(W_{1}+W_{2}\right)>\operatorname{dim} W_{2}=3$. But $\operatorname{dim}\left(W_{1}+W_{2}\right) \leq \operatorname{dim} \mathbb{R}^{2 \times 2}=4$ so we must have $\operatorname{dim}\left(W_{1}+W_{2}\right)=4$. Then $\operatorname{dim}\left(W_{1} \cap W_{2}\right)=\operatorname{dim} W_{1}+\operatorname{dim} W_{2}-$ $\operatorname{dim}\left(W_{1}+W_{2}\right)=3+3-4=2$.
c) For 10 points extra credit, you may instead do this problem where W_{1} is the trace 0 matrices in $\mathbb{C}^{2 \times 2}, W_{2}$ is the Hermitian matrices in $\mathbb{C}^{2 \times 2}$ and the field is \mathbb{R}.
$\operatorname{dim} W_{1}=6$ with basis $\left\{\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right],\left[\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & i \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ i & 0\end{array}\right]\right\}$,
$\operatorname{dim} W_{2}=4$ with basis $\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right],\left[\begin{array}{cc}0 & i \\ -i & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\}, \operatorname{dim}\left(W_{1} \cap\right.$ $\left.W_{2}\right)=3$ with basis $\left\{\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right],\left[\begin{array}{cc}0 & i \\ -i & 0\end{array}\right]\right\}, \operatorname{dim}\left(W_{1}+W_{2}\right)=$ $6+4-3=7 . W_{1}+W_{2}$ is the set of matrices whose trace is real.
2. (25) Let T be the linear operator on \mathbb{C}^{2} defined by

$$
T\left(x_{1}, x_{2}\right)=\left(-x_{1}+x_{2}, x_{1}-x_{2}\right)
$$

a) Show that $\mathcal{B}=\{(1,1),(i,-i)\}$ is a basis for \mathbb{C}^{2}.
$a(1,1)+b(i,-i)=(0,0)$ implies $a+b i=0$ and $a-b i=0$ so $2 a=$ $a+b i+a-b i=0$ so $a=0$ so $0+b i=0$ so $b=0$. So $\{(1,1),(i,-i)\}$ is linearly independent and hence forms a basis of the 2 dimensional space \mathbb{C}^{2} 。
b) Find the matrix $[T]_{\mathcal{B}}$ of T in the ordered basis $\{(1,1),(i,-i)\}$.
$T(1,1)=(0,0)=0(1,1)+0(i,-i)$ so $[T(1,1)]_{\mathcal{B}}=\left[\begin{array}{l}0 \\ 0\end{array}\right] . \quad T(i,-i)=$
$(-2 i, 2 i)=0(1,1)-2(i,-i)$ so $[T(i,-i)]_{\mathcal{B}}=\left[\begin{array}{c}0 \\ -2\end{array}\right]$. So $[T]_{\mathcal{B}}=\left[\begin{array}{cc}0 & 0 \\ 0 & -2\end{array}\right]$.
3. (25) Let V be a finite dimensional vector space and let $W \subset V$ be a subspace. Show that there is a linear transformation $T: V \rightarrow V$ so that the range R_{T} of T is W and so $T^{2}=T$. What is the dimension of the null space of T ?
Choose a basis $\left\{\beta_{1}, \ldots, \beta_{k}\right\}$ of W. Extend this to a basis $\left\{\beta_{1}, \ldots, \beta_{n}\right\}$ of V. There is a unique linear transformation $T: V \rightarrow V$ so that $T\left(\beta_{i}\right)=\beta_{i}$ and $i \leq k$ and $T\left(\beta_{i}\right)=0$ for $i>k$. Note that $T^{2}\left(\beta_{i}\right)=T\left(\beta_{i}\right)$ for all i so by uniqueness we know $T^{2}=T$. The range of T is the subspace spanned by all β_{i} for $i \leq k$, which is $W . \operatorname{dim} N S(W)=\operatorname{dim} V-\operatorname{dim} R_{T}=\operatorname{dim} V-\operatorname{dim} W$.
4. (25) Let $\mathcal{B}=\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right\}$ be an ordered basis for V and let $\left\{\beta_{1}^{*}, \beta_{2}^{*}, \ldots, \beta_{n}^{*}\right\}$ be its dual basis. Show that the \mathcal{B} coordinates of any

$$
\begin{aligned}
& \alpha \in V \text { are given by }[\alpha]_{\mathcal{B}}=\left[\begin{array}{c}
\beta_{1}^{*}(\alpha) \\
\beta_{2}^{*}(\alpha) \\
\cdots \\
\beta_{n}^{*}(\alpha)
\end{array}\right] . \\
& \text { If } \alpha=\sum_{i=1}^{n} c_{i} \beta_{i} \text { then } \beta_{j}^{*}\left(\sum_{i=1}^{n} c_{i} \beta_{i}\right)=\sum_{i=1}^{n} c_{i} \beta_{j}^{*}\left(\beta_{i}\right)=c_{j} \text { since } \beta_{j}^{*}\left(\beta_{i}\right)=0 \\
& \text { for } j \neq i \text { and } \beta_{j}^{*}\left(\beta_{j}\right)=1 \text {. So }\left[\begin{array}{c}
\beta_{1}^{*}(\alpha) \\
\beta_{2}^{*}(\alpha) \\
\cdots \\
\beta_{n}^{*}(\alpha)
\end{array}\right]=\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\cdots \\
c_{n}
\end{array}\right]=[\alpha]_{\mathcal{B}} .
\end{aligned}
$$

