Math 405 Exam #1 October 6, 2006

1. (25) Let $W_1 \subset \mathbb{R}^{2 \times 2}$ be the set of matrices with trace 0, that is, matrices of the form $\begin{bmatrix} x & y \\ z & -x \end{bmatrix}$. Let $W_2 \subset \mathbb{R}^{2 \times 2}$ be the set of symmetric matrices, that is, matrices of the form $\begin{bmatrix} x & y \\ y & z \end{bmatrix}$. a) Show that W_1 and W_2 are both subspaces. $c \begin{bmatrix} x & y \\ z & -x \end{bmatrix} + \begin{bmatrix} x' & y' \\ z' & -x' \end{bmatrix} = \begin{bmatrix} cx + x' & cy + y' \\ cz + z' & -cx - x' \end{bmatrix}$. Since -(cx + x') = -cx - x', this linear combination of elements of W_1 is still in W_1 . Since $0 \in W_1$ we then know W_1 is a subspace. $c \begin{bmatrix} x & y \\ y & z \end{bmatrix} + \begin{bmatrix} x' & y' \\ y' & z' \end{bmatrix} = \begin{bmatrix} cx + x' & cy + y' \\ cy + y' & cz + z' \end{bmatrix}$. Since the off diagonal entries are equal, this linear combination of elements of W_2 is still in W_2 , and since W_2 is nonempty we know W_2 is a subspace. b) Find the dimensions of W_1 , W_2 , $W_1 \cap W_2$ and $W_1 + W_2$ (and give

sufficient reasons).

A basis of W_1 is $\left\{ \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \right\}$ since they are linearly independent and span W_1 so dim $W_1 = 3$. A basis of W_2 is $\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$ since they are linearly independent and span W_2 so dim $W_2 = 3$. $W_1 \cap W_2$ is all matrices of the form $\begin{bmatrix} x & y \\ y & -x \end{bmatrix}$ so it has basis $\left\{ \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \right\}$ and hence has dimension 2. dim $(W_1 + W_2) = \dim W_1 + \dim W_2 - \dim(W_1 \cap W_2) = 3 + 3 - 2 = 4$. Alternatively, since W_1 is not contained in W_2 we know dim $(W_1 + W_2) > \dim W_2 = 3$. But dim $(W_1 + W_2) \le \dim \mathbb{R}^{2 \times 2} = 4$ so we must have dim $(W_1 + W_2) = 4$. Then dim $(W_1 \cap W_2) = \dim W_1 + \dim W_2 - \dim(W_1 + \dim W_2 - \dim(W_1 + W_2) = 3 + 3 - 4 = 2$.

c) For 10 points extra credit, you may instead do this problem where W_1 is the trace 0 matrices in $\mathbb{C}^{2\times 2}$, W_2 is the Hermitian matrices in $\mathbb{C}^{2\times 2}$ and the field is \mathbb{R} .

 $\dim W_1 = 6 \text{ with basis} \left\{ \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & i \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ i & 0 \end{bmatrix} \right\},\$

 $\dim W_{2} = 4 \text{ with basis } \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}, \dim(W_{1} \cap W_{2}) = 3 \text{ with basis } \left\{ \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -i & 0 \end{bmatrix}, \dim(W_{1} + W_{2}) = 6 + 4 - 3 = 7. W_{1} + W_{2} \text{ is the set of matrices whose trace is real.}$

2. (25) Let T be the linear operator on \mathbb{C}^2 defined by

$$T(x_1, x_2) = (-x_1 + x_2, x_1 - x_2).$$

a) Show that $\mathcal{B} = \{(1,1), (i,-i)\}$ is a basis for \mathbb{C}^2 .

a(1,1) + b(i,-i) = (0,0) implies a + bi = 0 and a - bi = 0 so 2a = a + bi + a - bi = 0 so a = 0 so 0 + bi = 0 so b = 0. So $\{(1,1), (i,-i)\}$ is linearly independent and hence forms a basis of the 2 dimensional space \mathbb{C}^2 .

b) Find the matrix
$$[T]_{\mathcal{B}}$$
 of T in the ordered basis $\{(1,1), (i,-i)\}$.
 $T(1,1) = (0,0) = 0(1,1) + 0(i,-i)$ so $[T(1,1)]_{\mathcal{B}} = \begin{bmatrix} 0\\0 \end{bmatrix}$. $T(i,-i) = (-2i,2i) = 0(1,1) - 2(i,-i)$ so $[T(i,-i)]_{\mathcal{B}} = \begin{bmatrix} 0\\-2 \end{bmatrix}$. So $[T]_{\mathcal{B}} = \begin{bmatrix} 0\\0\\-2 \end{bmatrix}$.

3. (25) Let V be a finite dimensional vector space and let $W \subset V$ be a subspace. Show that there is a linear transformation $T: V \to V$ so that the range R_T of T is W and so $T^2 = T$. What is the dimension of the null space of T?

Choose a basis $\{\beta_1, \ldots, \beta_k\}$ of W. Extend this to a basis $\{\beta_1, \ldots, \beta_n\}$ of V. There is a unique linear transformation $T: V \to V$ so that $T(\beta_i) = \beta_i$ and $i \leq k$ and $T(\beta_i) = 0$ for i > k. Note that $T^2(\beta_i) = T(\beta_i)$ for all i so by uniqueness we know $T^2 = T$. The range of T is the subspace spanned by all β_i for $i \leq k$, which is W. dim $NS(W) = \dim V - \dim R_T = \dim V - \dim W$.

4. (25) Let $\mathcal{B} = \{\beta_1, \beta_2, \dots, \beta_n\}$ be an ordered basis for V and let $\{\beta_1^*, \beta_2^*, \dots, \beta_n^*\}$ be its dual basis. Show that the \mathcal{B} coordinates of any

$$\alpha \in V \text{ are given by } [\alpha]_{\mathcal{B}} = \begin{bmatrix} \beta_1^*(\alpha) \\ \beta_2^*(\alpha) \\ \vdots \\ \beta_n^*(\alpha) \end{bmatrix}.$$

If $\alpha = \sum_{i=1}^n c_i \beta_i$ then $\beta_j^*(\sum_{i=1}^n c_i \beta_i) = \sum_{i=1}^n c_i \beta_j^*(\beta_i) = c_j$ since $\beta_j^*(\beta_i) = 0$
for $j \neq i$ and $\beta_j^*(\beta_j) = 1$. So $\begin{bmatrix} \beta_1^*(\alpha) \\ \beta_2^*(\alpha) \\ \vdots \\ \beta_n^*(\alpha) \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix} = [\alpha]_{\mathcal{B}}.$