Answer any four of the five problems. Clearly indicate which four you want graded. To save writing, you may use $J_{k,c}$ to represent a $k \times k$ Jordan block with c on the diagonal. Give sufficient reasons for your answers.

1. (25) Let
$$A = \begin{bmatrix} 0 & 2 & 3 & 7 \\ 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 4-i \\ 0 & 0 & 0 & 3+i \end{bmatrix}$$
.

a) Find the characteristic polynomial of A. Answer: $x^3(x-3-i)$

b) Find the minimal polynomial of A.

Answer: Since the minimal polynomial divides the characteristic polynomial and has the same factors, it is either x(x-3-i) or $x^2(x-3-i)$ or $x^3(x-3-i)$. Calculate A(A-(3+i)I) and see it is nonzero, then calculate $A^2(A-(3+i)I)$ which is 0. So the minimal polynomial is $x^2(x-3-i)$.

c) Find the Jordan form of A.

Answer: Since the minimal polynomial is $x^2(x-3-i)$ one of the Jordan blocks is $J_{2,0}$ and another is $J_{1,3+i}$. There is only room for one more 1×1 block $J_{1,0}$. So the Jordan form of A has three Jordan blocks, $J_{2,0}$, $J_{1,0}$, and $J_{1,3+i}$. In other words, it is all zeros except for a 1 in row 2 column 1 and a 3+i in the fourth row fourth column. If you wanted to find a basis $\mathcal{B} = \{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$ so that $[A]_{\mathcal{B}}$ is in this Jordan form, you would take α_1 to be any vector in $NS(A^2) - NS(A)$, for example $\alpha_1 = \epsilon_2$. Then let $\alpha_2 = A\alpha_1 = 2\epsilon_1$. Then let α_3 be any vector in NS(A) which is not a multiple of α_2 , for example $\alpha_3 = 3\epsilon_2 - 2\epsilon_3$. Finally α_4 is any nonzero vector in NS(A-(3+i)I) for example $\alpha_4 = \epsilon_4 + \frac{4-i}{3+i}\epsilon_3 + \frac{4}{3+i}\epsilon_2 + \frac{41+4i}{(3+i)^2}\epsilon_1$. Then if P is the matrix $P = [\alpha_1\alpha_2\alpha_3\alpha_4]$ we have $P^{-1}AP$ in Jordan form.

2. (25) Let N be a nilpotent 3×3 real matrix.

a) Show that $(I + N)^{-1} = 1 - N + N^2$.

Answer: $(I+N)(I-N+N^2) = I - N + N^2 + N - N^2 + N^3 = I + N^3$. But $N^3 = 0$ by the Cayley-Hamilton theorem since N is nilpotent. So $(I+N)(I-N+N^2) = I$ which implies $(I+N)^{-1} = 1 - N + N^2$.

b) Suppose $N^3 + 3N^2 + N \neq 0$ and $N^7 - 5N^6 + 4N^3 - N^2 = 0$. What is the minimal polynomial of N?

Answer: Since $N^3 = 0$ we see that $3N^2 + N \neq 0$ and $-N^2 = 0$. So $N^2 = 0$ but $N \neq 0$ which means the minimal polynomial of N is x^2 .

3. (25) Let $V \subset \mathbb{R}[x]$ be the polynomials of degree 2 or less. let $T: V \to V$ be the linear operator T(p(x)) = (x+1)p'(x), so $T(x^2) = 2x(x+1)$, T(x) = x+1, and T(1) = 0.

a) Find the minimal polynomial of T.

Answer: The matrix of T with respect to the standard basis $\{1, x, x^2\}$ is $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{bmatrix}$.

So the characteristic polynomial of T is x(x-1)(x-2). Since the minimal polynomial

always has the same roots and not larger exponents, the minimal polynomial must also be x(x-1)(x-2).

b) Does T have a Jordan form? If so, find it. If not, explain why not.

Answer: Yes, since the minimal polynomial is a product of linear factors. In fact, since all exponents are 1 we know T is diagonalizable so the Jordan form is diagonal with 0, 1, 2 on the diagonal. A basis diagonalizing T is $\{1, x + 1, (x + 1)^2\}$.

4. (25) Answer four of the following six short questions by either finding the requested matrices or subspaces, or showing they do not exist.

a) Find a 4×4 complex matrix which is not diagonalizable, and write down its minimal and characteristic polynomials.

Answer: For example $J_{4,0}$ with characteristic and minimal polynomials both x^4 . What you need is that some linear factor in the minimal polynomial have exponent > 1.

b) Find a 4×4 real matrix which is not triangulable, and write down its minimal and characteristic polynomials.

Answer: The minimal and characteristic polynomials cannot be products of linear factors so they need to be divisible by a polynomial without a real root, for example $x^2 + 1$. So for example if $B = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ is rotation by 90 degrees, then B^2 is rotation by 180 degrees,

so $B^2 + I = 0$. So we could take the block matrix $A = \begin{bmatrix} B & 0 \\ 0 & 0 \end{bmatrix}$. You can calculate the characteristic polynomial as $(x^2 + 1)x^2$. Since $(A^2 + I)A = 0$ the minimal polynomial is $(x^2 + 1)x$.

c) Find a 4×4 complex matrix which is not triangulable, and write down its minimal and characteristic polynomials.

Answer: Impossible, every complex matrix is triangulable since the minimal polynomial can be written as a product of linear factors.

d) Find a 3×3 matrix A and a subspace $W \subset \mathbb{R}^3$ and an $\alpha \in \mathbb{R}^3$ so that $S_A(\alpha; W)$ is not an ideal. (Recall $S_A(\alpha; W) = \{p \in \mathbb{R}[x] \mid p(A)\alpha = 0\}$.)

Answer: We know W cannot be invariant under A. So lets just try a random example and see if it works. Let W be the span of ϵ_1 and take any A so that $A\epsilon_1$ is not a multiple of ϵ_1 , say $A\epsilon_1 = \epsilon_2$, $A\epsilon_2 = A\epsilon_3 = 0$. Note $A^2 = 0$ so computations will be easy. Then if $p(x) = d + ex + \cdots$ is any polynomial, p(A)(a, b, c) = d(a, b, c) + e(0, a, 0) so $p(A)(a, b, c) \in W$ if and only if cd = 0 and bd + ae = 0. So if we let $\alpha = (1, 0, 0)$ for example then $S_A(\alpha; W)$ is the set of all polynomials whose x coefficient is 0. This is not an ideal since for example $1 \in S_A(\alpha; W)$ but $x \cdot 1 \notin S_A(\alpha; W)$.

e) Find an upper triangular real matrix which is not similar to a real matrix in Jordan form.

Answer: Impossible, the characteristic polynomial is a product of linear factors, so the matrix is similar to a matrix in Jordan form.

f) Let $A = J_{3,0}$. Find all subspaces $W \subset \mathbb{R}^3$ invariant under A.

Answer: There are very few invariant subspaces. If $(a, b, c) \in W$ then $A(a, b, c) = (0, a, b) \in W$ and $A^2(a, b, c) = (0, 0, a) \in W$. So if $a \neq 0$ then $W = \mathbb{R}^3$. So suppose $W \neq \mathbb{R}^3$. Then a = 0 so W must be contained in the span of ϵ_2, ϵ_3 . If $b \neq 0$ then $(0, b, c) \in W$ and $(0, 0, b) \in W$ so W is the span of ϵ_2, ϵ_3 . So suppose W is neither \mathbb{R}^3 nor the span of ϵ_2, ϵ_3 .

Then a = b = 0 and if $c \neq 0$ then W is the span of ϵ_1 , otherwise W = 0. So there are only 4 subspaces invariant under A, namely \mathbb{R}^3 , 0, the span of ϵ_2 , ϵ_3 and the span of ϵ_3 .

5. (25) Let $p(x) = x^2(x^2 + 4)(x - 1)(x + 3)^3$, $q(x) = (x + 5)^3(x + 1)^4(x + 3)^4$, and $r(x) = x^2(x + 1)(x + 3)^2$. Suppose A is a 5 × 5 complex matrix and p and q are both in the annihilating ideal of A, so p(A) = 0 and q(A) = 0. Suppose also that $r(A) \neq 0$.

a) What are all possible characteristic polynomials of A?

Answer: The minimal polynomial of A must divide both p and q so it must be some $(x+3)^k$ with $k \leq 3$. Since the characteristic polynomial has the same roots and has degree 5 it must be $(x+3)^5$.

b) What are all possible minimal polynomials of A?

Answer: The minimal polynomial $(x+3)^k$ does not divide r so k = 3. So the minimal polynomial is $(x+3)^3$.

c) What are all possible Jordan forms of A?

Answer: There must be a 3×3 block $J_{3,-3}$ so the only possibilities are:

- · One $J_{3,-3}$ and one $J_{2,-3}$
- One $J_{3,-3}$ and two $J_{1,-3}$