Answer any four of the five problems. Clearly indicate which four you want graded. To save writing, you may use $J_{k, c}$ to represent a $k \times k$ Jordan block with c on the diagonal. Give sufficient reasons for your answers.

1. (25) Let $A=\left[\begin{array}{cccc}0 & 2 & 3 & 7 \\ 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 4-i \\ 0 & 0 & 0 & 3+i\end{array}\right]$.
a) Find the characteristic polynomial of A.

Answer: $x^{3}(x-3-i)$
b) Find the minimal polynomial of A.

Answer: Since the minimal polynomial divides the characteristic polynomial and has the same factors, it is either $x(x-3-i)$ or $x^{2}(x-3-i)$ or $x^{3}(x-3-i)$. Calculate $A(A-(3+i) I)$ and see it is nonzero, then calculate $A^{2}(A-(3+i) I)$ which is 0 . So the minimal polynomial is $x^{2}(x-3-i)$.
c) Find the Jordan form of A.

Answer: Since the minimal polynomial is $x^{2}(x-3-i)$ one of the Jordan blocks is $J_{2,0}$ and another is $J_{1,3+i}$. There is only room for one more 1×1 block $J_{1,0}$. So the Jordan form of A has three Jordan blocks, $J_{2,0}, J_{1,0}$, and $J_{1,3+i}$. In other words, it is all zeros except for a 1 in row 2 column 1 and a $3+i$ in the fourth row fourth column. If you wanted to find a basis $\mathcal{B}=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right\}$ so that $[A]_{\mathcal{B}}$ is in this Jordan form, you would take α_{1} to be any vector in $N S\left(A^{2}\right)-N S(A)$, for example $\alpha_{1}=\epsilon_{2}$. Then let $\alpha_{2}=A \alpha_{1}=2 \epsilon_{1}$. Then let α_{3} be any vector in $N S(A)$ which is not a multiple of α_{2}, for example $\alpha_{3}=3 \epsilon_{2}-2 \epsilon_{3}$. Finally α_{4} is any nonzero vector in $N S(A-(3+i) I)$ for example $\alpha_{4}=\epsilon_{4}+\frac{4-i}{3+i} \epsilon_{3}+\frac{4}{3+i} \epsilon_{2}+\frac{41+4 i}{(3+i)^{2}} \epsilon_{1}$. Then if P is the matrix $P=\left[\alpha_{1} \alpha_{2} \alpha_{3} \alpha_{4}\right]$ we have $P^{-1} A P$ in Jordan form.
2. (25) Let N be a nilpotent 3×3 real matrix.
a) Show that $(I+N)^{-1}=1-N+N^{2}$.

Answer: $\quad(I+N)\left(I-N+N^{2}\right)=I-N+N^{2}+N-N^{2}+N^{3}=I+N^{3}$. But $N^{3}=0$ by the Cayley-Hamilton theorem since N is nilpotent. So $(I+N)\left(I-N+N^{2}\right)=I$ which implies $(I+N)^{-1}=1-N+N^{2}$.
b) Suppose $N^{3}+3 N^{2}+N \neq 0$ and $N^{7}-5 N^{6}+4 N^{3}-N^{2}=0$. What is the minimal polynomial of N ?
Answer: Since $N^{3}=0$ we see that $3 N^{2}+N \neq 0$ and $-N^{2}=0$. So $N^{2}=0$ but $N \neq 0$ which means the minimal polynomial of N is x^{2}.
3. (25) Let $V \subset \mathbb{R}[x]$ be the polynomials of degree 2 or less. let $T: V \rightarrow V$ be the linear operator $T(p(x))=(x+1) p^{\prime}(x)$, so $T\left(x^{2}\right)=2 x(x+1), T(x)=x+1$, and $T(1)=0$.
a) Find the minimal polynomial of T.

Answer: The matrix of T with respect to the standard basis $\left\{1, x, x^{2}\right\}$ is $\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 2\end{array}\right]$. So the characteristic polynomial of T is $x(x-1)(x-2)$. Since the minimal polynomial
always has the same roots and not larger exponents, the minimal polynomial must also be $x(x-1)(x-2)$.
b) Does T have a Jordan form? If so, find it. If not, explain why not.

Answer: Yes, since the minimal polynomial is a product of linear factors. In fact, since all exponents are 1 we know T is diagonalizable so the Jordan form is diagonal with $0,1,2$ on the diagonal. A basis diagonalizing T is $\left\{1, x+1,(x+1)^{2}\right\}$.
4. (25) Answer four of the following six short questions by either finding the requested matrices or subspaces, or showing they do not exist.
a) Find a 4×4 complex matrix which is not diagonalizable, and write down its minimal and characteristic polynomials.
Answer: For example $J_{4,0}$ with characteristic and minimal polynomials both x^{4}. What you need is that some linear factor in the minimal polynomial have exponent >1.
b) Find a 4×4 real matrix which is not triangulable, and write down its minimal and characteristic polynomials.
Answer: The minimal and characteristic polynomials cannot be products of linear factors so they need to be divisible by a polynomial without a real root, for example $x^{2}+1$. So for example if $B=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$ is rotation by 90 degrees, then B^{2} is rotation by 180 degrees, so $B^{2}+I=0$. So we could take the block matrix $A=\left[\begin{array}{cc}B & 0 \\ 0 & 0\end{array}\right]$. You can calculate the characteristic polynomial as $\left(x^{2}+1\right) x^{2}$. Since $\left(A^{2}+I\right) A=0$ the minimal polynomial is $\left(x^{2}+1\right) x$.
c) Find a 4×4 complex matrix which is not triangulable, and write down its minimal and characteristic polynomials.
Answer: Impossible, every complex matrix is triangulable since the minimal polynomial can be written as a product of linear factors.
d) Find a 3×3 matrix A and a subspace $W \subset \mathbb{R}^{3}$ and an $\alpha \in \mathbb{R}^{3}$ so that $S_{A}(\alpha ; W)$ is not an ideal. (Recall $S_{A}(\alpha ; W)=\{p \in \mathbb{R}[x] \mid p(A) \alpha=0\}$.)
Answer: We know W cannot be invariant under A. So lets just try a random example and see if it works. Let W be the span of ϵ_{1} and take any A so that $A \epsilon_{1}$ is not a multiple of ϵ_{1}, say $A \epsilon_{1}=\epsilon_{2}, A \epsilon_{2}=A \epsilon_{3}=0$. Note $A^{2}=0$ so computations will be easy. Then if $p(x)=d+e x+\cdots$ is any polynomial, $p(A)(a, b, c)=d(a, b, c)+e(0, a, 0)$ so $p(A)(a, b, c) \in W$ if and only if $c d=0$ and $b d+a e=0$. So if we let $\alpha=(1,0,0)$ for example then $S_{A}(\alpha ; W)$ is the set of all polynomials whose x coefficient is 0 . This is not an ideal since for example $1 \in S_{A}(\alpha ; W)$ but $x \cdot 1 \notin S_{A}(\alpha ; W)$.
e) Find an upper triangular real matrix which is not similar to a real matrix in Jordan form.
Answer: Impossible, the characteristic polynomial is a product of linear factors, so the matrix is similar to a matrix in Jordan form.
f) Let $A=J_{3,0}$. Find all subspaces $W \subset \mathbb{R}^{3}$ invariant under A.

Answer: There are very few invariant subspaces. If $(a, b, c) \in W$ then $A(a, b, c)=(0, a, b) \in$ W and $A^{2}(a, b, c)=(0,0, a) \in W$. So if $a \neq 0$ then $W=\mathbb{R}^{3}$. So suppose $W \neq \mathbb{R}^{3}$. Then $a=0$ so W must be contained in the span of $\epsilon_{2}, \epsilon_{3}$. If $b \neq 0$ then $(0, b, c) \in W$ and $(0,0, b) \in W$ so W is the span of $\epsilon_{2}, \epsilon_{3}$. So suppose W is neither \mathbb{R}^{3} nor the span of $\epsilon_{2}, \epsilon_{3}$.

Then $a=b=0$ and if $c \neq 0$ then W is the span of ϵ_{1}, otherwise $W=0$. So there are only 4 subspaces invariant under A, namely $\mathbb{R}^{3}, 0$, the span of $\epsilon_{2}, \epsilon_{3}$ and the span of ϵ_{3}.
5. (25) Let $p(x)=x^{2}\left(x^{2}+4\right)(x-1)(x+3)^{3}, q(x)=(x+5)^{3}(x+1)^{4}(x+3)^{4}$, and $r(x)=x^{2}(x+1)(x+3)^{2}$. Suppose A is a 5×5 complex matrix and p and q are both in the annihilating ideal of A, so $p(A)=0$ and $q(A)=0$. Suppose also that $r(A) \neq 0$.
a) What are all possible characteristic polynomials of A ?

Answer: The minimal polynomial of A must divide both p and q so it must be some $(x+3)^{k}$ with $k \leq 3$. Since the characteristic polynomial has the same roots and has degree 5 it must be $(x+3)^{5}$.
b) What are all possible minimal polynomials of A ?

Answer: The minimal polynomial $(x+3)^{k}$ does not divide r so $k=3$. So the minimal polynomial is $(x+3)^{3}$.
c) What are all possible Jordan forms of A ?

Answer: There must be a 3×3 block $J_{3,-3}$ so the only possibilities are:

- One $J_{3,-3}$ and one $J_{2,-3}$
- One $J_{3,-3}$ and two $J_{1,-3}$

