
2.1:5 3a is not satisfied because α ⊕ β = α − β 6= β − α = β ⊕ α if α 6= β. 3b is not satisfied because
α ⊕ (β ⊕ γ) = α ⊕ (β − γ) = α − (β − γ) = α − β + γ and (α ⊕ β) ⊕ γ = (α − β) ⊕ γ = α − β − γ and so
these are unequal if γ 6= 0. 3c is satisfied with 0 the usual 0 vector since α ⊕ 0 = α − 0 = α. 3d is satisfied
with −α = α since α ⊕ α = α − α = 0. 4a is not satisfied since 1 · α = −1α = −α 6= α if α 6= 0. 4b is not
satisfied since (c1c2) · α = −c1c2α and c1 · (c2 · α) = c1 · (−c2α) = −c1(−c2α) = c1c2α so these are unequal
if α 6= 0 and ci 6= 0. 4c is satisfied since c · (α ⊕ β) = c · (α − β) = −c(α − β) = −cα + cβ and c · α ⊕ c · β =
(−cα)⊕ (−cβ) = −cα− (−cβ) = −cα+cβ. 4d is not satisfied because (c1 +c2) ·α = −(c1 +c2)α = c1α−c2α
and c1α⊕ c2α = (−c1α)⊕ (−c2α) = −c1α− (−c2α) = −c1α+ c2α so these are unequal if α 6= 0 and c1 6= c2.

2.1:6 I’ll do this a slick way to avoid having to verify all those axioms. By exercise 3 we know the set of
all complex valued function on the real line is a vector space over C with addition and scalar multiplication
(2-5) and (2-6) the same as we want for this problem. Now I claim that if W is any vector space over C

then by restricting the scalars to R we get a vector space over R. In other words if we use the same vector
addition and the same scalar multiplication (except that we only allow multiplication by real numbers) then
all the vector space axioms are satisfied. This is a trivial observation since if the axioms all hold for complex
scalars, in particular they must hold for real scalars. So by these two observations we see that the set U of
complex valued functions on R is a vector space over R. So we must only show that the set of those functions
with f(−t) = f(t) for all t form a subspace of U. If f and g are in V and c is real then (cf + g)(−t) =
(cf)(−t)+g(−t) = cf(−t)+g(−t) = cf(t)+g(t) = cf(t) + g(t) = cf(t) + g(t) = (cf)(t) + g(t) = (cf + g)(t)
so cf + g ∈ V . Since 0 ∈ V this means V is a subspace of U , hence a vector space. An example which is not
real valued is f(t) = it. In fact any function whose real part is even and whose imaginary part is odd and
nonzero will do.

2.1:7 This is not a vector space. For example (0, 1) + (x, y) = (1 + x, 0) 6= (0, 1) for any (x, y) so there is
no zero vector. Also 1(0, 1) = (0, 0) 6= (0, 1) so axiom 4a also fails. I think all the axioms besides 3c and 4a
hold but I haven’t written out details.

2.2:1

a) is not a subspace because for example (−1)(1, 0, . . . , 0) = (−1, 0, . . . , 0) 6∈ the set.

b) This is a subspace by example 7 with A = [1 3 − 1 0 · · · 0].

c) is not a subspace. For example (1, 1, 0, . . .) is in it but 2(1, 1, 0, . . .) is not.

d) is not a subspace because for example (1, 0, 0, . . .) and (0, 1, 0, . . .) are in it but (1, 0, 0, . . .)+(0, 1, 0, . . .) =
(1, 1, 0, . . .) is not.

e) The presumption is that the scalars are R. Assuming the scalars are R this is not a subspace because
for example (0, 1, 0, . . .) is in it but

√
2(0, 1, 0, . . .) is not. But if the scalars were the rationals Q then

this would be a subspace.

2.2:2

a) This is not a subspace. For example, f(x) = x is in it but (2f)(x) = 2x is not.

b) This is a subspace. If f and g are in it and c is real then (cf + g)(0) = cf(0) + g(0) = cf(1) + g(1) =
(cf + g)(1) so cf + g is in it. It contains 0 so it is nonempty.

c) This is not a subspace, for example 0 is not in it.

d) This is a subspace. If f and g are in it and c ∈ R then (cf + g)(−1) = cf(−1) + g(−1) = c0 + 0 = 0 so
cf + g is in it. It contains 0 so it is nonempty.

e) This is a subspace. A theorem of first semester calculus says that the sum of continuous functions is
continuous and a constant times a continuous function is continuous. It contains 0 so it is nonempty.

2.2:5

a) not a subspace because for example 0 is not invertible.

b) It is not hard to find two noninvertible matrices whose sum is invertible so this is not a subspace. For
example let Aij = 0 if i 6= j or i ≤ n/2 and Aii = 1 if i > n/2. Let Bij = 0 if i 6= j or i > n/2 and
Bii = 1 if i ≤ n/2. Then A and B are noninvertible but A + B = I is invertible.

c) This is a subspace. If A and A′ are in it and c ∈ F then (cA + A′)B = cAB + A′B = cBA + BA′ =
B(cA) + BA′ = B(cA + A′) so cA + A′ is in it. It contains 0 so it is nonempty.

d) this is not a subspace because for example the identity I is in it, but 2I is not.
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2.2:7 If neither W1 nor W2 is contained in the other, we may find an α in W1 so α 6∈ W2 and a β ∈ W2 so
β 6∈ W1. Denote α + β = γ. Since W1 ∪ W2 is a subspace, we must have γ ∈ W1 ∪ W2. If γ ∈ W1 then
γ − α ∈ W1 but γ − α = β 6∈ W1 so this is not possible. So we must have γ ∈ W2. But then γ − β ∈ W2

but γ − β = α 6∈ W2 which is not possible. So we have a contradiction, which means that either W1 ⊂ W2

or W2 ⊂ W1.

2.3:2 They are not linearly independent because when we try to solve x1α1 + x2α2 + x3α3 + x4α4 = 0 we
get the Gaussian elimination problem:







1 2 1 2
1 −1 −1 1
2 −5 −4 1
4 2 0 6






∼







1 2 1 2
0 −3 −2 −1
0 −9 −6 −3
0 −6 −4 −2






∼







1 2 1 2
0 −3 −2 −1
0 0 0 0
0 0 0 0







∼







1 2 1 2
0 1 2/3 1/3
0 0 0 0
0 0 0 0






∼







1 0 −1/3 4/3
0 1 2/3 1/3
0 0 0 0
0 0 0 0







which means that many nonzero solutions are possible, for example x4 = 3, x3 = 0, x2 = −1, x1 = −4. So
−4α1 − α2 + 3α4 = 0.

2.3:3 One possible basis is {α1, α2}. By the calculation in problem 2 we see that α4 = (4/3)α1 + (1/3)α2

and α3 = (−1/3)α1 + (2/3)α2. So the subspace spanned by α1 and α2 contains α3 and α4 and hence equals
the subspace spanned by {α1, α2, α3, α4}. On the other hand {α1, α2} is linearly independent since by the
calculation in problem 2, the only solution with x3 = x4 = 0 is x1 = x2 = 0. You also know from class that
they are linearly independent because α1 is not a multiple of α2.

2.3:6 A basis is
{

[

1 0
0 0

]

,

[

0 1
0 0

]

,

[

0 0
1 0

]

,

[

0 0
0 1

]

}

. This spans F 2×2 because for any A ∈ F 2×2,

A = A11

[

1 0
0 0

]

+ A12

[

0 1
0 0

]

+ A21

[

0 0
1 0

]

+ A22

[

0 0
0 1

]

It is linearly independent because if c1

[

1 0
0 0

]

+ c2

[

0 1
0 0

]

+ c3

[

0 0
1 0

]

+ c4

[

0 0
0 1

]

=

[

0 0
0 0

]

then
[

c1 c2

c3 c4

]

=

[

0 0
0 0

]

so all ci = 0.

2.3:7 W1 is a subspace since it is the span of
{

[

1 −1
0 0

]

,

[

0 0
1 0

]

,

[

0 0
0 1

]

}

. This set is linearly independent

so dimW1 = 3. W2 is a subspace since it is the span of
{

[

1 0
−1 0

]

,

[

0 1
0 0

]

,

[

0 0
0 1

]

}

. This set is

linearly independent so dim W2 = 3. W1 ∩ W2 is all matrices of the form

[

x −x
−x z

]

. So a basis for

W1 ∩ W2 is
{

[

1 −1
−1 0

]

,

[

0 0
0 1

]

}

. So dim(W1 ∩ W2) = 2. By theorem 6 we know dim(W1 + W2) =

dim(W1) + dim(W2) − dim(W1 ∩ W2) = 3 + 3 − 2 = 4. We could also see directly that W1 + W2 = V and

hence has dimension 4 by noting that for any A ∈ F 2, A =

[

A11 −A11

A21 A22

]

+

[

0 A11 + A12

0 0

]

, the sum of

vectors in W1 and W2.

2.3:11
a) Notice that by the argument given in problem 6 of 2.1 that C2×2 can be thought of as a vector space

over R. So we only need show V is a subspace of this real vector space. If A, B ∈ V and c ∈ R then
(cA+B)11+(cA+B)22 = cA11+B11+cA22+B22 = cA11+cA22+B11+B22 = c(A11+A22)+B11+B22 =
c0 + 0 = 0. So cA + B ∈ V . Since 0 ∈ V also then V is a subspace.
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b) A possible basis is

{

[

1 0
0 1

]

,

[

i 0
0 i

]

,

[

0 1
0 0

]

,

[

0 i
0 0

]

,

[

0 0
1 0

]

,

[

0 0
i 0

]

}

c) Note 0 ∈ W . If A, B ∈ W and c ∈ R then

(cA + B)21 = cA21 + B21 = −cA12 + B12 = −cA12 + B12 = −cA12 + B12 = (cA + B)12

So cA + B ∈ W , so W is a subspace. A possible basis is

{

[

1 0
0 1

]

,

[

i 0
0 i

]

,

[

0 1
−1 0

]

,

[

0 i
i 0

]

}

3.1:1
a) is not linear because T (0) = (1, 0) 6= 0.

b) is linear, it is right multiplication by

[

0 1
1 0

]

.

c) is not linear, for example T (2(1, 0)) = (4, 0) 6= (2, 0) = 2T (1, 0).
d) is not linear, for example T (2(π/2, 0)) = (0, 0) 6= (2, 0) = 2T (π/2, 0).

e) is linear, it is right multiplication by

[

1 0
−1 0

]

.

3.1:2 The 0 transformation has range {0}, hence has rank 0. The null space is V so its nullity is the
dimension of V . The identity on V has range V , hence its rank is dimV . It has 0 null space, so its nullity
is 0.

3.1:3 I shall interpret V as being the space of polynomials, since things get weird for some fields where some
nonzero polynomials are identically 0. (For example x2 + x is identically 0 for the field with two elements.
Yet its derivative is 2x+1 = 0x+1 = 1 which is not the derivative of 0. So H and K do not really mean the
polynomial functions, but just formal polynomials with coefficients in F .) Since our guiding rule is that all
fields in this course will be either R or C, this makes no difference. Since Df = 0 implies f is a constant,
the Null space of D is the constant polynomials f(x) = c. But the range is all V, since for any α ∈ V

we may write α = Σn
i=0cix

i and then α = D(Σn
i=0ci

xi+1

i+1 ). For the integration T , note first that by the
fundamental theorem of calculus for each continuous f we know T (f) is differentiable and T (f)′ = f . Then
if T (f) = 0 we must have 0 = 0′ = T (f)′ = f so the null space of T is just {0}. Any g in the range must

be differentiable as noted above, but also must satisfy g(0) = 0 since T (f)(0) =
∫ 0

0 f(t) dt = 0. I claim that
the range of T is the set of differentiable functions g: R → R so that g(0) = 0 since for such a g, we have

T (g′) =
∫ x

0
g′(t) dt = g(t)

]x

0
= g(x) − g(0) = g(x).

3.1:4 Yes, by Thm 1 since {(1,−1, 1), (1, 1, 1)} is a linearly independent set. You could also explicitly find

a linear transformation, for example right multiplication by





.5 .5
−.5 .5
0 0



.

3.1:8 For example, right multiplication by





1 0 −1
1 2 2
0 0 0



.

3.1:9 If A and A′ are in Fn×n and c ∈ F then

T (cA + A′) = (cA + A′)B − B(cA + A′) = cAB + A′B − B(cA) − BA′ = cAB + A′B − cBA − BA′

= c(AB − BA) + A′B − BA′ = cT (A) + T (A′)

So T is linear.
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3.1:12 Since RT = NS(T ) we have dimV = dim(RT ) + dim(NS(T )) = 2 dim(RT ) so dimV is even.

3.2:1
a) T reflects about the line x1 = x2 and U projects straight down to the subspace spanned by {e1} (usually

known as the x axis).
b) (U + T )(x1, x2) = (x1 + x2, x1) (I don’t see a good geometric description though). UT (x1, x2) = (x2, 0)

it projects to the y axis and rotates 90◦ clockwise. TU(x1, x2) = (0, x1) it projects to the x axis and
rotates 90◦ counterclockwise. T 2(x1, x2) = (x1, x2) is the identity. U2(x1, x2) = (x1, 0) it is the same as
U . Note, as I read it the geometric descriptions were not asked for in the problem but I included them
anyway.

3.2:6 We know the nullity of T is 3− dim(RT ) ≥ 3− dim(R2) = 1 by theorem 2 and the fact that RT ⊂ R2

so dim(RT ) ≤ 2. Since T has nonzero nullity we know that there is an α ∈ R3 so that Tα = 0 and
α 6= 0. But then UTα = U0 = 0 so UT is not one to one so it is not invertible. To generalize, suppose
T : V → W , U : W → Z are linear transformations, V is finite dimensional and dimW < dimV . Then UT is
not invertible.

3.3:3 Let us give this map a name, T . So T (x, y, z, t) =

[

t + x y + iz
y − iz t − x

]

. We must show T is linear, one

to one, and onto. (If we knew that the 2 × 2 Hermitian matrices had dimension 4 over the reals we could
skip either one to one or onto.) To show linearity,

T (c(x, y, z, t) + (u, v, w, s)) = T (cx + u, cy + v, cz + w, ct + s) =

=

[

ct + s + cx + u cy + v + i(cz + w)
cy + v − i(cz + w) ct + s − (cx + u)

]

=

[

ct + cx cy + i(cz)
cy − i(cz) ct − (cx)

]

+

[

s + u v + i(w)
v − i(w) s − (u)

]

= c

[

t + x y + iz
y − iz t − x

]

+

[

s + u v + i(w)
v − i(w) s − (u)

]

= cT (x.y.z.t) + T (u, v, w, s)

To show one to one, suppose T (x, y, z, t) =

[

0 0
0 0

]

. Then t + x = 0, y + iz = 0, y − iz = 0, and t − x = 0.

Solving we get t = .5(t+x)+.5(t−x) = 0+0 = 0, x = (t+x)−t = 0−0 = 0, y = .5(y+iz)+.5(y−iz) = 0+0 = 0
and z = −i(y + iz) + iy = 0 + 0 = 0. So Tα = 0 implies α = (0, 0, 0, 0) which means T is one to

one. Finally we must show T is onto. Let A =

[

A11 A12

A21 A22

]

be any 2 × 2 Hermitian matrix. Since
[

A11 A12

A21 A22

]

=

[

A11 A12

A21 A22

]∗
=

[

A11 A21

A12 A22

]

we know A11 = A11, A12 = A21, A21 = A12, and A22 = A22. I

will finish this problem two ways. The first way is to solve for (x, y, z, t) in terms of the Aij . Since Aii = Aii

we know the diagonal entries Aii are real. So we may set t = (A11 + A22)/2 and x = (A11 − A22)/2. Then
t + x = A11 and t − x = A22. Set y = the real part of A12 and z = the imaginary part of A12 and we then
have T (x, y, z, t) = A and thus T is onto. The second way is to note that

A = A11

[

1 0
0 0

]

+ A22

[

0 0
0 1

]

+ real(A12)

[

0 1
1 0

]

+ imaginary(A12)

[

0 i
−i 0

]

and thus W is the span of four vectors and hence must have dimension ≤ 4 by Cor 2b, p 45. But the range
RT has dimension 4 by Thm 2 p 71 and is a subspace of W . Consequently W has dimension 4 and hence T
is an isomorphism by Thm 9 p 81.

3.3:6 Suppose V and W are isomorphic. Let T : V → W be and isomorphism. By Thm 2 p 71, dimV =
rank(T ) + nullity(T ). But nullity(T ) = 0 since T is one to one and rank(T ) = dim(RT ) = dim W since T
is onto (so RT = W ). So dim V = dimW + 0 = dimW . Conversely, suppose dimV = dimW . Pick bases
{α1, . . . , αn} for V and {β1, . . . , βn} for W . By Thm 1 p 69, there is a linear transformation T : V → W so
that T (αi) = βi for all i. Note T is onto since for every β ∈ W we may write β =

∑n
i=1 ciβi for some scalars

ci, but then T (
∑n

i=1 ciαi) = β by linearity. Then by Thm 9 p 81 we know T is an isomorphism. So V and
W are isomorphic.
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3.3:7 Let’s give this map a name, φ, so φ: L(V, V ) → L(W, W ) is given by φ(T ) = UTU−1. Since U is
an isomorphism we know that V and W have the same dimension. Hence L(V, V ) and L(W, W ) have
the same dimension, namely dim(V )2. Note φ(cT + T ′) = U(cT + T ′)U−1 = UcTU−1 + UT ′U−1 =
cUTU−1 + UT ′U−1 = cφ(T ) + φ(T ′) so φ is linear. Also if φ(T ) = 0 then 0 = UTU−1 so 0 = U−10U =
U−1UTU−1U = T , so φ is one to one. So φ is an isomorphism by Thm 9, p 81.

3.4:1 The matrix P taking B′ coordinates to B coordinates is

[

1 −i
i 2

]

so the matrix taking B coordinates

to B′ coordinates is its inverse

[

2 i
−i 1

]

.

a) T (ε1) = (1, 0) which has B′ coordinates

[

2 i
−i 1

] [

1
0

]

=

[

2
−i

]

. T (ε2) = (0, 0) which has coordinates
[

0
0

]

. So the matrix of T relative to B,B′ is

[

2 0
−i 0

]

.

b) Tα1 = (1, 0) with B coordinates

[

1
0

]

and Tα2 = (−i, 0) with B coordinates

[

−i
0

]

. So the matrix of T

relative to B′,B is

[

1 −i
0 0

]

.

c) Tα1 = (1, 0) with B′ coordinates

[

2
−i

]

and Tα2 = (−i, 0) with B′ coordinates −i

[

2
−i

]

=

[

−2i
−1

]

. So

the matrix of T relative to B′,B is

[

2 −2i
−i −1

]

.

d) If you see it, the easy way is to take the matrix of part c) and switch the two rows and switch the two
columns, since all you are doing is switching α1 and α2. Or, just say T (α2) = (−i, 0) = −α2 − 2iα1 so

the first column is

[

−1
−2i

]

and Tα1 = (1, 0) = −iα2 + 2α1 so the matrix is

[

−1 −i
−2i 2

]

.

3.4:8 The hint says to solve Tα1 = eiθα1, so

α1 ∈ NS(T − eiθI) = NS

[

cos θ − eiθ − sin θ
sin θ cos θ − eiθ

]

= NS

[

−i sin θ − sin θ
sin θ −i sin θ

]

so α1 =

[

i
1

]

will work. Similarly, α2 =

[

−i
1

]

will work. {α1, α2} is linearly independent because

det

[

i −i
1 1

]

= 2i 6= 0. Then

[

i −i
1 1

]−1 [

cos θ − sin θ
sin θ cos θ

] [

i −i
1 1

]

=
1

2i

[

1 i
−1 i

] [

i cos θ − sin θ −i cos θ − sin θ
i sin θ + cos θ −i sin θ + cos θ

]

=
1

2i

[

2i cos θ − 2 sin θ 0
0 2 sin θ + 2i cos θ

]

=

[

eiθ 0
0 e−iθ

]

3.4:10 If α ∈ RS then Sα = α because α = Sβ for some β and then Sα = S2β = Sβ = α. So if dim RS = 2
then RS = R2 so then S = I. If dimRS = 0 then RS = 0 so S = 0. So we may as well assume from now on
that dimRS = 1. If B = {α1, α2} and [S]B = A then Sα1 = 1α1 + 0α2 = α1 and Sα2 = 0α1 + 0α2 = 0. So
we could pick α1 any nonzero vector in RS . We have dim NS(S) = 2 − dimRS = 2 − 1 = 1 so we may also
pick a nonzero vector α2 in NS(S). Suppose c1α1 + c2α2 = 0. Then 0 = S0 = c1S(α1) + c2S(α2) = c1α1 so
c1 = 0. But then 0 = c1α1 + c2α2 = c2α2 so c2 = 0. So B = {α1, α2} is linearly independent and hence a
basis, and [S]B = A.

3.5:1 The matrix transforming from the standard coordinates to the {α1, α2, α3} coordinates is the inverse

of





1 0 −1
0 1 −1
1 −2 0



 which is





2 −2 −1
1 −1 −1
1 −2 −1



.
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a) f(a, b, c) = f((2a−2b−c)α1+(a−b−c)α2+(a−2b−c)α3) = (2a−2b−c)1+(a−b−c)(−1)+(a−2b−c)3 =
4a − 7b − 3c

b) Similar to a) but with different values, we could take f(a, b, c) = a − 2b − c.

c)





1 0 −1
0 1 −1
1 −2 0









2
3
1



 =





1
2
−4



 so (2, 3, 1) = α1 + 2α2 − 4α3 so f(2, 3, 1) = −4f(α3) 6= 0.

3.5:2 Let α∗
1(a, b, c) = xa + yb + zb and solve for x, y, z. We have x − z = 1, x + y + z = 0 and 2x + 2y = 0

which has solution x = 1, y = −1, z = 0. So α∗
1(a, b, c) = a − b. Similarly α∗

2(a, b, c) = a − b + c and
α∗

3(a, b, c) = −a/2 + b − c/2. You can also get the coefficients from the columns of the inverse of the matrix
whose rows are the αi.

3.5:7 The annihilator of W is the same as the annihilator of {α1, α2} so it is all such linear functionals
where c1 − c3 + 2c4 = 0 and 2c1 + 3c2 + c3 + c4 = 0. If you want you can solve more completely. After row
reduction, we see this is the same as where c1 − c3 + 2c4 = 0 and c2 + c3 − c4 = 0 so they are of the form
(c3 − 2c4)x1 + (c4 − c3)x2 + c3x3 + c4x4. In other words the span of x1 − x2 + x3 and −2x1 + x2 + x4.

4.2:1 A2 =

[

2 1
−1 3

] [

2 1
−1 3

]

=

[

3 5
−5 8

]

. A3 =

[

3 5
−5 8

] [

2 1
−1 3

]

=

[

1 18
−18 19

]

. So:

a) A2 − A + 2I =

[

3 4
−4 7

]

.

b) A3 − I =

[

0 18
−18 18

]

.

c) A2 − 5A + 7I =

[

0 0
0 0

]

.

4.4:1

a) Not an ideal, x2 is in it, but x · x2 = x3 is not.

b) Not an ideal, x5 + 1 and −x5 are in it, but x5 + 1 − x5 = 1 is not. Also 0 is not in it.

c) Is an ideal. If f(0) = 0 and g(0) = 0 then (cf + g)(0) = cf(0) + g(0) = c0 + 0 = 0 so it is a subspace.
But (xf)(0) = 0f(0) = 0 so it is closed under multiplication by x, hence an ideal. We know f(x) = x
is in it because f(0) = 0. But no nonzero polynomial of smaller degree than x is in it because it would
have to be degree 0, hence a nonzero constant. So the monic generator is x.

d) By a similar argument to c) except evaluating at 2 and 4, we see this is an ideal. Note f(x) = (x−2)(x−4)
is in it. Suppose a smaller degree polynomial is in it, it must have the form ax + b with 2a + b = 0
and 4a + b = 0. The only solution is a = b = 0. So the smallest degree monic polynomial in it is
(x − 2)(x − 4) = x2 − 6x + 8 so this is the generator.

e) This is the same as c) so the generator is x. Note that anything in the range of T has no constant term
so it evaluates to 0 at 0. But if f(0) = 0, and f(x) = Σn

i=1dix
i then f(x) = T (Σn

i=1idix
i−1). So it is the

ame as c).

4.4:4 A2 =

[

1 −2
0 3

] [

1 −2
0 3

]

=

[

1 −8
0 9

]

. But note A2 =

[

1 −8
0 9

]

= 4A − 3I so A2 − 4A + 3I = 0. No

degree one polynomial is in the annihilating ideal since A is not a multiple of the identity. So x2 − 4x + 3
generates the annihilating ideal.

6.2:1 For A =

[

1 0
0 0

]

, det(xI − A) = x(x − 1) so the characteristic values of T and U are both 0 and 1.

For c = 0 the characteristic vectors are NS(T ) = Span(ǫ2) and the same for U . So a basis is {ǫ2} in each
case. For c = 1 the characteristic vectors are NS(T − I) = Span(ǫ1) and the same for U . So a basis is {ǫ1}
in each case.

For A =

[

2 3
−1 1

]

, det(xI − A) = x2 − 3x + 5. Since this has no real roots there are no characteristic

values for T . The characteristic values for U are c = 3±
√
−11

2 . For c = 3+
√
−11

2 then NS(cI − A) =
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NS(

[

−1+
√
−11

2 −3

1 1+
√
−11

2

]

) which is spanned by

[

1+
√
−11

2
−1

]

. Similarly, for c = 3−
√
−11

2 then NS(cI −A) =

NS(

[

−1−
√
−11

2 −3

1 1−
√
−11

2

]

) which is spanned by

[

1−
√
−11

2
−1

]

.

For A =

[

1 1
1 1

]

, det(xI − A) = x2 − 2x = x(x − 2). So the characteristic values of T and U are both

0 and 2. For c = 0 the characteristic vectors are NS(T ) = Span(

[

1
−1

]

) and the same for U . So a basis is

{
[

1
−1

]

} in each case. For c = 2 the characteristic vectors are NS(2T − I) = Span(

[

1
1

]

) and the same for

U . So a basis is {
[

1
1

]

} in each case.

6.2:5 det(xI − A) = det





x − 6 3 2
−4 x + 1 2
−10 5 x + 3



 = (x− 6)((x + 1)(x + 3)− 10) + 4(3(x + 3)− 10)− 10(6−

2(x + 1)) = x3 − 2x2 + x − 2. But by trying small integers we see that 2 is a root of this polynomial so
x3−2x2+x−2 = (x−2)(x2+1) and x2+1 has roots ±

√
−1 so we cannot factor the characteristic polynomial

over R into linear factors, so A is not similar over R to a diagonal matrix. But A is similar over C to a
diagonal matrix by Theorem 2 since there are three different characteristic values c1 = 2, c2 = i, c3 = −i and
if Wj = NS(A−cjI) then dim Wj ≥ 1 so 3 ≥ dim(W1+W2+W3) = dim W1+dimW2+dimW3 ≥ 3 = dim C3

(so in fact dimWj = 1). You can use Matlab to do such calculations using the following commands:
A=[6 -3 -2;4 -1 -2;10 -5 -3]
poly(A)
[V D] = eig(A)

6.2:11 Note 0 = det(0) = det(N2) = det(N)2 so det(N) = 0 so N has rank 0 or 1. If N has rank 0 then
N = 0. If N has rank 1 then the null space NS(N) has dimension 1 so we may pick some vector β1 ∈ C2 which
is not in NS(N). Let β2 = N(β1). Note that β2 6= 0 since β1 is not in the null space of N . But β2 is in the null
space since N(β2) = N2(β1) = 0. Since β1 is not a multiple of β2 we know {β1, β2} is a linearly independent
set. You can also show this by setting 0 = c1β1 + c2β2, then 0 = N(0) = c1N(β1) + c2N(β2) = c1β2 so
c1 = 0. But then 0 = c2β2 so c2 = 0. Since Nβ1 = 0β1 + 1β2 and Nβ2 = 0β1 + 0β2 we know the matrix of

N in the basis {β1, β2} is

[

0 0
1 0

]

.

6.2:15 So we have T (B) = AB. If c is a characteristic value of T then we have a nonzero matrix B so that
T (B) = AB = cB. If βi is the i-th column of B then [Aβ1 · · ·Aβn] = A[β1 · · ·βn] = c[β1 · · ·βn] = [cβ1 · · · cβn]
so we have Aβi = cβi for all i. Since B 6= 0 we know some βi 6= 0 which means that c is a characteristic
value of A. On the other hand, if c is a characteristic value of A, take a nonzero characteristic vector β so
Aβ = cβ. Let B = [ββ · · ·β] then T (B) = AB = cB so c is also a characteristic vector of T . Consequently,
A and T have the same characteristic values.

6.3:2

det(xI − A) = det





x 0 −c
−1 x −b
0 −1 x − a



 = xdet

[

x −b
−1 x − a

]

− c det

[

−1 x
0 −1

]

= x(x(x − a) − b) − c = x3 − ax2 − bx − c

So the characteristic polynomial is x3 − ax2 − bx− c. A2 =





0 0 c
1 0 b
0 1 a









0 0 c
1 0 b
0 1 a



 =





0 c ac
0 b c + ab
1 a b + a2



. So

the first column of c2A
2 + c1A + c0I is





c0

c1

c2



. Consequently if c2A
2 + c1A + c0I = 0 then this first column
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must be 0 so all ci = 0. So the minimal polynomial of A must have degree > 2. But it must also divide the
characteristic polynomial which has degree 3, so it must equal the characteristic polynomial.

6.3:4 Similar matrices have the same minimal polynomial and the same characteristic polynomial. The
minimal polynomial of a diagonal matrix is a product of distinct linear factors, which A does not have, but
we don’t know this officially until later so I will ignore that general fact. If A is similar to a diagonal matrix,
that diagonal matrix must have the same characteristic polynomial as A, namely x2(x− 1)2, so the diagonal

entries must be 0, 0, 1, 1 or some permutation. So A would be similar to B =







0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1






which has

minimal polynomial x2 − x since B2 −B = 0. So A and B would have different minimal polynomials which
contradicts their being similar. So A is not similar to a diagonal matrix.

6.3:6 We need a 3 × 3 matrix A so that A2 = 0 but A 6= 0. So there is an α1 6= 0 so that Aα1 6= 0 but
A2α1 = 0. To make computations easiest, we may as well take α1 = ǫ1 and Aα1 = ǫ2 and Aǫ2 = 0. We
have some freedom in choosing Aǫ3, (it could be any multiple of ǫ2) but we’ll let it be 0. So the matrix is

A =





0 0 0
1 0 0
0 0 0



. In fact as we will see when we study the Jordan canonical form, any 3 × 3 matrix with

minimal polynomial x2 will be similar to





0 0 0
1 0 0
0 0 0



.

6.4:1 a) The only subspaces of R2 which are not R2 or 0 must have dimension 1. So if A has an invariant
subspace W with W 6= R2 and W 6= 0, we must have W = Span{α} for some α 6= 0. Invariance of W implies
Tα = cα for some c, i.e., c is a characteristic value of T and hence of A. But the characteristic polynomial

of A is x2 − 3x + 4 whose roots are x = 3±
√
−7

2 which are not real so T has no characteristic values, and
hence no nontrivial invariant subspaces. Warning– in higher dimensions it is quite possible that an operator
have no characteristic values and yet still have nontrivial invariant subspaces.

b) The calculation above shows that U has two characteristic values. Thus it has two invariant subspaces,

namely the two spaces of charateristic vectors NS(A− 3+
√
−7

2 I) and NS(A− 3−
√
−7

2 I). The first is the span

of

[

1
−1−

√
−7

2

]

and the second is the span of

[

1
−1+

√
−7

2

]

.

6.4:3 TW is multiplication by the scalar c, also could be denoted cI.

6.4:5 If A2 = A then x2 − x = x(x − 1) is in the annihilating ideal of A, so the minimal polynomial of A
divides x(x − 1), so the minimal polynomial of A is either x, x − 1, or x(x − 1). In each case the minimal
polynomial is a product of distinct linear factors, so by theorem 6 we know A is similar to a diagonal matrix.

6.4:9 If f(x) is a polynomial function f(x) = Σn
i=0cnxn then (Tf)(x) = Σn

i=0
cn

n+1xn+1 is also a polynomial
so the subspace of polynomial functions is invariant under T . By the fundamental theorem of calculus, the
indefinite integral of a continuous function is differentiable, so the differentiable functions are invariant under
T . The space of functions with f(1/2) = 0 is not invariant however. For example, 2x− 1 is in this subspace,
but T (2x − 1) = x2 − x is not in the subspace because (1/2)2 − 1/2 = −1/4 6= 0.

6.5:1a Following the proof of Thm 8, we let W1 and W2 be the characteristic vectors for the two characteristic
values of one of the operators, say A. Then each Wi is also invariant under B. In this case, since each Wi

must be one dimensional that means that vectors in Wi are also characteristic vectors for B (but with
probably different characteristic values). To be more specific, the characteristic values of A are 1 and 2, so

W1 = NS(A − I) = Span(ǫ1) and W2 = NS(A − 2I) = Span(

[

2
1

]

). Then ǫ1 and

[

2
1

]

will be the columns

of P . Checking, we get

P−1AP =

[

1 −2
0 1

] [

1 2
0 2

] [

1 2
0 1

]

=

[

1 −2
0 1

] [

1 4
0 2

]

=

[

1 0
0 2

]
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P−1BP =

[

1 −2
0 1

] [

3 −8
0 −1

] [

1 2
0 1

]

=

[

1 −2
0 1

] [

3 −2
0 −1

]

=

[

3 0
0 −1

]

6.5:2 This was harder than I intended. Details later.

6.6:1 Choose a basis {β1, . . . , βk} for W1. Extend this basis to a basis {β1, . . . , βn} for V . Let W2 be the
subspace spanned by {bk+1, . . . , βn}. Then V = W1 + W2 and W1 ∩ W2 = {0} so V = W1 ⊕ W2.

6.6:4 False. Take for example E1 =

[

1 0
0 0

]

which projects to the x axis, and E2 = E1. Then (E1 + E2)
2 =

4E1 6= E2 +E2 so E1 +E2 is not a projection. In order to be a projection, you need E1 +E2 = (E1 +E2)
2 =

E2
1 + E1E2 + E2E1 + E2

2 = E1 + E1E2 + E2E1 + E2 so you need E1E2 + E2E1 = 0.

6.6:5 Let f(x) = a0 + a1x + · · · + akxk. Then f(E) = a0I + a1E + · · · + akEk. But E2 = E, E3 = E2E =
EE = E, and in general Ek = E for all k ≥ 1. So f(E) = a0I + (a1 + a2 + · · · + ak)E. So a is the constant
coefficient and b is the sum of the remaining coefficients.

6.7:2
a) If α ∈ W1 then α = cε1 for some c, so Tα = T (cε1) = 2cε1 ∈ W1. So W1 is invariant under T .
b) Suppose W2 is complimentary and invariant. Since dimW1 + dimW2 = dimR2 = 2 we must have

dimW2 = 1 so W2 is the span of some nonzero vector β. Since W2 is invariant under T we must
have Tβ ∈ W2, so Tβ = cβ for some scalar c. So c is a characteristic value of T , hence a root of
the characteristic polynomial which is (x − 2)2. So c = 2. So β ∈ NS(T − 2I) = W1 which means
W1 ∩ W2 6= 0 which contradicts the independence of W1 and W2. So no such invariant complementary
W2 exists.

6.7:6 The ci are the characteristic values of A so we may take c1 = 0, c2 = 2, c3 = −2. The Ei are projections
to the subspaces of characteristic vectors of A. The null space of A is spanned by α1 = [1 0 − 1 0]T , α2 =
[0 1 0 − 1]T . The null space of A − 2I is spanned by α3 = [1 1 1 1]T . The null space of A + 2I is

spanned by α4 = [1 − 1 1 − 1]T , Then E1 = P







1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0






P−1, E2 = P







0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0






P−1, E3 =

P







0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1






P−1, where P =







1 0 1 1
0 1 1 −1
−1 0 1 1
0 −1 1 −1






. This works because P−1 finds the {α1, α2, α3, α4}

coordinates of a vector, the middle matrix projects to the appropriate subspace, and P changes back to
standard coordinates.

6.8:1 T 2 =





6 −3 −2
4 −1 −2
10 −5 −3









6 −3 −2
4 −1 −2
10 −5 −3



 =





4 −5 0
0 −1 0
10 −10 −1



. Using Matlab I found the characteristic

polynomial of T is x3−2x2+x−2 = (x−2)(x2+1). This must also be the minimal polynomial of T since the
minimal polynomial divides the characteristic polynomial and has the same complex roots 2, ±i. Another
reason is that T 2, T, I are linearly independent since their first rows are linearly independent. So we may let

p1(x) = x − 2 and p2(x) = x2 + 1. We calculate NS(T − 2I) = Span[1 0 2]T . T 2 + I =





5 −5 0
0 0 0
10 −10 0



 so

by inspection its null space has basis {[1 1 0]T , [0 0 1]T}. The matrix of T1 is [2] since T [1 0 2]T = 2[1 0 2]T .

The matrix of T2 is

[

3 −2
5 −3

]

since T [1 1 0]T = 3[1 1 0]T +5[0 0 1]T and T [0 0 1]T = −2[1 1 0]T − 3[0 0 1]T .

Different matrices for T2 are possible of course if a different basis was chosen.

7.1:1 Suppose α is a nonzero vector in F2 which is not a characteristic vector for T . Then Tα is not a
multiple of α which means that {α, Tα} is a linearly independent set, and hence a basis of F2. So F2 is
the span of {α, Tα}. So F2 = Span{α, Tα} ⊂ Span{α, Tα, T 2α, . . .} = Z(α; T ) ⊂ F2 so we must have
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F2 = Z(α; T ). Alternatively, you could note that if the characteristic polynomial of T is x2 − ax − b then
T 2 = aT + bI so T 2α = aTα + bα which implies Z(α; T ) = Span{α, Tα}.

Given the above, if T does not have a cyclic vector, then every nonzero vector is a characteristic vector.
If α and β are nonzero characteristic vectors with different characteristic values a 6= b then α + β is not
characteristic because T (α + β) = aα + bβ 6= c(α + β) for any c. So if T does not have a cyclic vector, then
every nonzero vector is a characteristic vector and there is just one characteristic value c. So Tα = cα for
all α and T = cI.

7.1:5 In my posted notes on the Cyclic Decomposition theorem, I proved that {α, Nα, . . . , Nn−1α} is a
linearly independent set. Its Span is n dimensional and hence must be all of V . So α is a cyclic vector for
N . The matrix of N in this basis is just the n× n Jordan block with 0 everywhere except for 1s just below
the diagonal.

7.2:1 In mathematics, two sets are disjoint if their intersection is empty. So actually, no two subspaces of
a vector space are disjoint since they have zero in common. But he must mean something else here. The
index says “Disjoint subspaces (see Independent: subspaces)” which seems to imply the book wants disjoint
subspaces to be the same as independent subspaces. I apologize for not catching this beforehand. So let us
prove that Z(α2; T ) and Z(α1; T ) are never independent. We will in fact show that Z(α2; T ) always contains
Z(α1; T ) if α2 6= 0.

Tα1 = 0 so Z(α1; T ) is the span of α1 which is not F2. Pick any α2 = (a, b) 6= (0, 0). Then Tα2 =
(0, a) = aα1. So if a 6= 0 Z(α2; T ) ⊃ SpanTα2 = Spanα1 = Z(α1; T ). But if a = 0 then α2 = bα1 with
b 6= 0 so Z(α2; T ) = Z(α1; T ).

7.3:1 Similar matrices have the same characteristic polynomial so one direction is immediate. So suppose
that N1 and N2 have the same minimal polynomial. The characteristic polynomial of each Ni is x3 so the
minimal polynomial divides this and thus must be x, x2, or x3. If the minimal polynomials of Ni are both
x then Ni = 0 so N1 and N2 are similar, and in fact equal. If the minimal polynomials are both x2 then the
Jordan form of each Ni must have a 2×2 Jordan block, so the Jordan forms of N1 and N2 are the same, one
2 × 2 block and one 1 × 1 block. Since Ni are similar to the same Jordan form matrix they are themselves
similar. If the minimal polynomials are both x3 then the Jordan form of each Ni must have a 3 × 3 Jordan
block, so the Jordan forms of N1 and N2 are the same, one 3 × 3 block. Since Ni are similar to the same
Jordan form matrix they are themselves similar.

Beware that the corresponding result for larger matrices does not hold. The nilpotent Jordan form
matrix with two 2 × 2 blocks is not similar to the matrix with one 2 × 2 block and two 1 × 1 bocks, even
though each has minimal polynomial x2.

7.3:3 We know from the (x − 2)3 in the characteristic polynomial that there are three dimensions worth
of Jordan blocks with diagonal entry 2, and we know from the (x − 2)2 in the minimal polynomial that
the largest of these blocks is 2 × 2 so there must be one 2 × 2 block and one 1 × 1 block with diagonal
entry 2. Likewise, there will be two 1 × 1 blocks with diagonal entry −7. So the Jordan form of A is










2 0 0 0 0
1 2 0 0 0
0 0 2 0 0
0 0 0 −7 0
0 0 0 0 −7











.

7.3:4 As I have done in my notes I will let Jk,c represent a k×k Jordan block with c on the diagonal. There
are 5 possibilities for the upper left 4 × 4 part with -2 on the diagonal:
1) J4,−2.
2) J3,−2 and J1,−2.
3) J2,−2 and J2,−2.
4) J2,−2, J1,−2 and J1,−2.
5) J1,−2, J1,−2, J1,−2 and J1,−2.

There are 2 possibilities for the lower right 2 × 2 part with 1 on the diagonal:
a) J2,1.
b) J1,1 and J1,1.
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So all in all there are 5 · 2 = 10 possible Jordan forms.

7.3:5 If D is differentiation then x3 is a cyclic vector for D since the vector space is spanned by {x3, Dx3, D2x3, D3x3} =
{x3, 3x2, 6x, 6}. So the Jordan form is one 4 × 4 block with 0 on the diagonal, J4,0.

7.3:8 We did this in class. We may as well suppose that A is in Jordan form since if B is similar to
A then B3 = I also (since similar operators have the same annihilating polynomials). The Jordan form

of a 3 × 3 matrix would be either A1 =





a 0 0
0 b 0
0 0 c



 or A2 =





a 0 0
1 a 0
0 0 c



 or A3 =





a 0 0
1 a 0
0 1 a



. But

A3
3 =





a3 0 0
3a2 a3 0
3a 3a2 a3



 6= I and A3
2 =





a3 0 0
3a2 a3 0
0 0 c3



 6= I. So the only possibility is the diagonalizable A1

with a3 = b3 = c3 = 1. Let ω = e2πi/3 =
√

3+i
2 . Then a, b, c must be ωk for some k = 0, 1, 2. There are 10

distinct nonsimilar possibilities:
1) a, b, c = 1, 1, 1.
2) a, b, c = 1, 1, ω.
3) a, b, c = 1, 1, ω2.
4) a, b, c = 1, ω, ω.
5) a, b, c = 1, ω, ω2.
6) a, b, c = 1, ω2, ω2.
7) a, b, c = ω, ω, ω.
8) a, b, c = ω, ω, ω2.
9) a, b, c = ω, ω2, ω2.

10) a, b, c = ω2, ω2, ω2.

7.3:10 This was also done in class. You could use the Jordan form as we did at first in class, but it seems
easier without. I posted notes which determine exactly when a complex matrix has a square root if you
are interested. If N = A2 then 0 6= Nn−1 = A2n−2. In particular, A is also nilpotent so we know its
characteristic polynomial is xn, so An = 0. But since A2n−2 6= 0 we must have 2n− 2 < n, so n < 2, but we
were told n ≥ 2, so no such A exists.

7.3:14 What is wrong is the assertion that At = −A implies that J t = −J . There is no reason to conclude

this. Indeed it is false. Consider for example A =

[

0 1
−1 0

]

. Then A has characteristic values ±i and thus

its Jordan form is J =

[

i 0
0 −i

]

. But J t = J 6= −J .

8.1:1
a) (0|β) = (0β|β) = 0(β|β) = 0.
b) Let β = α. If α 6= 0 then 0 = (α|β) = (α|α) > 0, a contradiction. So α = 0.

8.1:2 Let ( | ) and < | > be two inner products on V . Define a third inner product by [α|β] = (α|β)+ <
α|β >. Then [α + β|γ] = (α + β|γ)+ < α + β|γ >= (α|γ) + (β|γ)+ < α|γ > + < β|γ >= [α|γ] + [β|γ] so
property (a) on page 271 is true. [cα|β] = (cα|β)+ < cα|β >= c(α|β) + c < α|β >= c[α|β] so (b) is true.
[β|α] = (β|α)+ < β|α >= (α|β) + < α|β > = (α|β)+ < α|β > = [α|β] so (c) is true. Finally, if α 6= 0 then
[α|α] = (α|α)+ < α|α > > 0 so (d) holds. So [ | ] is an inner product. If we took the difference instead of
the sum, then (a), (b), and (c) would still be true, but (d) might not be. For example the difference of an
inner product with itself is 0 which would not satisfy (d). Now let’s show a positive multiple of an inner
product is an inner product. Take any real d > 0 and redefine [α|β] = d(α|β). Then [α+β|γ] = d(α+β|γ) =
d(α|γ) + d(β|γ) = [α|γ] + [β|γ] so property (a) is true. [cα|β] = d(cα|β) = dc(α|β) = c[α|β] so (b) is true.
[β|α] = d(β|α) = d(α|β) = d(α|β) = [α|β] so (c) is true. Finally, if α 6= 0 then [α|α] = d(α|α) > 0 so (d)
holds. So [ | ] is an inner product.

8.1:6 Note Tε1 = ε2 so [ε1|ε2] = 0. Also T (ε1 + ε2) = −ε1 + ε2 so 0 = [ε1 + ε2|− ε1 + ε2] = −[ε1|ε1]+ [ε2|ε2]
so [ε1|ε1] = [ε2|ε2]. Let d = [ε1|ε1] = [ε2|ε2]. Note d > 0 by property (d). Then [(a1, a2)|(b1, b2)] =
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a1b1[ε1|ε1] + a2b2[ε2|ε2] + a1b2[ε1|ε2] + a2b1[ε2|ε1] = d(a1b1 + a2b2). So [ | ] is just a positive multiple of the
standard inner product.

8.1:9 ||α+β||2 + ||α−β||2 = (α+β|α+β)+ (α−β|α−β) = (α|α)+ (β|α)+ (α|β)+ (β|β)+ (α|α)− (β|α)−
(α|β) + (β|β) = 2(α|α) + 2(β|β) = 2||α||2 + 2||β||2.

8.1:12 This would be easier to do if we had the Gram-Schmidt process at this point, but that does not
come until the next section, so I’ll not use it. We need to find di, i = 1, . . . , n so that if α =

∑n
i=1 diαi then

(α|αj) = cj for all j. Moreover we must show that these di are unique. This is just a system linear equations
which can be written in matrix form as Ad = c where d and c are column vectors with i-th entry di and ci

and the row j column i entry of A is (αi|αj). We need to show A is nonsingular, and then the solution d
will exist and be unique. If Ax = 0 then x∗Ax = 0, but 0 = x∗Ax = (

∑n
i=1 xiαi|

∑n
i=1 xiαi) which means

∑n
i=1 xiαi = 0 by property (d). So x = 0 by linear independence of the αi and thus A is nonsingular. So

the coefficients di exist and are unique. Hence α =
∑n

i=1 diαi exists and is unique.

8.2:3 Use the Gram-Schmidt process. First I’ll find an orthogonal basis {α1, α2}. Let α1 = (1, 0, i) and
α2 = (2, 1, 1 + i) −

(

(2, 1, 1 + i) | (1, 0, i)
)

(1, 0, i)/||(1, 0, i)||2 = (2, 1, 1 + i) − (3 − i)(1, 0, i)/2 = (1 +

i, 2, 1 − i)/2. We have ||α1|| =
√

2 and ||α2|| =
√

1 + 1 + 4 + 1 + 1/2 =
√

2 so an orthonormal basis is
( 1√

2
, 0, i√

2
), ( 1+i

2
√

2
, 1√

2
, 1−i

2
√

2
).

8.2:6
a) By theorem 4(iii), E(x1, x2) = 3x1+4x2

25 (3, 4).

b) The columns are E(1, 0) and E(0, 1) so the matrix is

[

.36 .48

.48 .64

]

.

c) W⊥ = NS(E) = the span of (4,−3).
d) If the orthonormal basis is {β1, β2} then Eβ1 = β1 and Eβ2 = 0, so β1 ∈ W and β2 ∈ W⊥. So we may

take the basis {(.6, .8), (.8,−.6)}.

8.2:7 We have by page 274 (8-3),
(

(a, b)|(c, d)
)

= ||(a + c, b + d)||2/4 − ||(a − c, b − d)||2/4 = ((a + c − b −
d)2 + 3(b + d)2 − (a − c − b + d)2 − 3(b − d)2)/4 = (a − b)(c − d) + 3bd.
a) ||(3, 4)||2 = 1+3 ·16 = 49 and ((x1, x2)|(3, 4)) = x2−x1 +12x2 = 13x2−x1 so E(x1, x2) = 13x2−x1

49 (3, 4).

b)

[

−3/49 39/49
−4/49 52/49

]

c) The span of (13,1).
d) We have ||(13, 1)|| =

√
122 + 3 · 12 =

√
147 so an orthonormal basis is {3/7, 4/7), (13/

√
147, 1/

√
147)}.

8.2:10 By the formula on page 272 the orthogonal complement of the diagonal matrices is the subspace of
matrices whose diagonal entries are all 0. To fill in the details, let Di be the matrix which is all 0 except for
a 1 in the i-th row, i-th column. Then (A|Di) is the i-th diagonal entry of A. So if 0 = (A|Di) for all i, then
all diagonal entries of A are 0. Conversely, if all diagonal entries of A are 0 then (A|D) = 0 for any diagonal
matrix.

8.2:17 Recall that an even function f satisfies f(x) = f(−x) for all x. First note that
∫ 0

−1 f(t) dt =
∫ 0

1
−f(−u) du substituting u = −t. But if f is odd, then

∫ 0

1
−f(−u) du =

∫ 0

1
f(u) du = −

∫ 1

0
f(u) du. So

∫ 1

−1 f(t) dt =
∫ 0

−1 f(t) dt +
∫ 1

0 f(t) dt = −
∫ 1

0 f(u) du +
∫ 1

0 f(t) dt = 0. Since the product of an odd and an
even function is odd, this means that (f |g) = 0 if f is even and g is odd. So the orthogonal complement
of the odd functions contains the even functions. Now take any g in the orthogonal complement of the odd
functions. Let go(t) = (g(t) − g(−t))/2 and ge(t) = (g(t) + g(−t))/2. Note that g = go + ge and go is odd
and ge is even. We have 0 = (g|go) = (ge + go|go) = (ge|go) + (go|go) = 0 + (go|go). So (go|go) = 0 which
means go = 0. Consequently g = ge and g is even. So the orthogonal complement of the odd functions is
the even functions.

8.3:1 By the corollary on page 294 the matrix of T ∗ is the conjugate transpose of the matrix of T , so
T ∗(x1, x2) = x1(1,−i) + x2(−2,−1). Just to check, we should have (T (a, b)|(c, d)) = ((a, b)|T ∗(c, d)). Then

((a, b)|T ∗(c, d)) = ((a, b)|c(1,−i) + d(−2,−1)) = c̄(a + bi) + d̄(−2a − b)
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(T (a, b)|(c, d)) = (a(1,−2) + b(i,−1)|(c, d)) = a(c̄ − 2d̄) + b(ic̄ − d̄) = c̄(a + bi) + d̄(−2a − b)

8.3:4 We discussed several strategies in class. Here’s another. If α ∈ RT∗ and γ ∈ NS(T ) then α = T ∗β
for some β and (α|γ) = (T ∗β|γ) = (β|Tγ) = (β|0) = 0, so RT∗ ⊂ NS(T )⊥. Now suppose α′ ∈ R⊥

T∗ . Then
(α′|T ∗β) = 0 for all β ∈ V . But then 0 = (α′|T ∗β) = (Tα′|β) for all β ∈ V (for example β = Tα′) which
means Tα′ = 0. So R⊥

T∗ ⊂ NS(T ). But A ⊂ B implies B⊥ ⊂ A⊥ which means NS(T )⊥ ⊂ R⊥⊥
T∗ . Since we

are in finite dimensions, R⊥⊥
T∗ = RT∗ , so we have RT∗ ⊂ NS(T )⊥ ⊂ R⊥⊥

T∗ = RT∗ . So RT∗ = NS(T )⊥. There
are couple claims above you must verify though.

8.3:6 T (cα1 + α2) = (cα1 + α2|β)γ = (c(α1|β) + (α2|β))γ = cTα1 + Tα2 so T is linear. We need (α|T ∗δ) =
(Tα|δ) = (α|β)(γ|δ) for all α and δ, so we may let T ∗δ = (γ|δ)β = (δ|γ)β, in other words just switch β and
γ. The j, k-th entry is (Tεk|εj) = ((εk|β)γ|εj) = ȳkxj . The range of T is the span of γ and the rank is the
dimension of the range. So if γ 6= 0 then the rank is 1,and if γ = 0 the rank is 0.

8.3:9 Let A be the matrix of D∗ with respect to the usual basis {1, x, x2, x3}. Note (xi|xj) = 1
i+j+1 . Suppose

the first column of A has entries a, b, c, d. this means D∗1 = a + bx + cx2 + dx3 so a
i + b

i+1 + c
i+2 + d

i+3 =

(xi|a + bx + cx2 + dx3) = (xi|D∗1) = (Dxi|1) = 1 if i > 0 and = 0 if i = 0. Let X be the matrix

X =







1 1
2

1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

1
4

1
5

1
6

1
7






. Then we need to solve the equation X







a
b
c
d






=







0
1
1
1






so







a
b
c
d






= X−1







0
1
1
1






. Likewise

the coefficients of D∗xj are the j + 1-th column of A and are given by X−1







(D1|xj)
(Dx|xj)
(Dx2|xj)
(Dx3|xj)






= X−1









0
1

j+1
2

j+2
3

j+3









.

So A = X−1







0 0 0 0
1 1

2
1
3

1
4

1 2
3

2
4

2
5

1 3
4

3
5

3
6






. Using Matlab to calculate this, I get D∗(1) = −120 + 180x − 420x2 + 280x3,

D∗(x) = −5+60x−180x2+140x3, D∗(x2) = −4+58x−180x2+140x3, and D∗(x3) = −4+60x−183x2+140x3.
Another way to do this is probably the way H&K were thinking of, because it uses problem 8. By the

calculations in example 21 we know (f |D∗g +Dg) = f(1)g(1)− f(0)g(0) for all f and g. So if we had h0 and
h1 so that (f |h0) = f(0) and (f |h1) = f(1) for all f then f(1)g(1)−f(0)g(0) = (f |g(1)h1−g(0)h0) so we must
have D∗g+Dg = g(1)h1−g(0)h0. Thus D∗g = −Dg+g(1)h1−g(0)h0. To calculate h0(x) = a+bx+cx2+dx3

we must have (xi|h0) = 0 for i > 0 and (1|h0) = 1. So







a
b
c
d






= X−1







1
0
0
0






. Likewise the coefficients of h1 are

X−1







1
1
1
1






. I presume H&K had some trick in mind for calculating this which I don’t see at the moment.

8.4:1 Note an n× n matrix is orthogonal if and only if the sum of the squares of the entries in each column
is 0 and the dot product (without conjugating) of any two different columns is 0. So [i] is unitary but not

orthogonal for example since [i]t[i] = [−1] but [i]∗[i] = [1].

[√
2 i

i −
√

2

]

is orthogonal but not unitary since

[√
2 i

i −
√

2

]t [√
2 i

i −
√

2

]

=

[

1 0
0 1

]

but

[√
2 i

i −
√

2

]∗ [√
2 i

i −
√

2

]

=

[

3 2
√

2i
−2

√
2i 3

]

.

8.4:2 Recall that tr(AB) = tr(BA) by exercise 3, page 105. Suppose first that M is unitary. Then for any
matrices A and B in V , (TMA|TMB) = (MA|MB) = tr(MA(MB)∗) = tr(MAB∗M∗) = tr(M∗MAB∗) =
tr(AB∗) = (A|B). Thus TM is unitary and one direction is proven.

Now suppose that TM is unitary. We have (TMA|TMB) = (A|B) for all A and B, so by the above
formulae we have tr(M∗MAB∗) = tr(AB∗) for all A and B. Letting C = AB∗ and N = M∗M we then
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have tr(NC) = tr(C) for all C. Let Cij be the matrix which has all 0 entries except for a 1 in the ij place.
Let Nij denote the ij-th entry of N . The j-th column of NCij is the i-th column of N and all other columns
are 0. So tr(NCij) = Nji. Also tr(Cij) = δij = 0 for i 6= j and = 1 for i = j. So Nji = δij and thus N is
the identity. But then I = N = M∗M so M is unitary.

8.4:6 a) Let α1 and α2 be two vectors in V and suppose αi = βi + γi with βi ∈ W and γi ∈ W⊥. Note that
(βi|γj) = 0. Then (Uα1|α2) = (β1 − γ1|β2 + γ2) = (β1|β2) − (γ1|γ2) = (β1 + γ1|β2 − γ2) = (α1|Uα2) so U is
self adjoint. Then U∗U(α1) = U∗(β1 − γ1) = U(β1 − γ1) = β1 + γ1 = α1 so U∗U is the identity and thus U
is unitary.

b) We have (1, 0, 0) = .5(1, 0, 1) + .5(1, 0,−1) so U(1, 0, 0) = .5(1, 0, 1) − .5(1, 0,−1) = (0, 0, 1). Note
U2 = U∗U = I, so U(0, 0, 1) = U2(1, 0, 0) = (1, 0, 0). Also (0, 1, 0) ∈ W⊥ so U(0, 1, 0) = −(0, 1, 0). So the

matrix of U in the standard basis is





0 0 1
0 −1 0
1 0 0



.

8.4:10 a) (Tα,βγ|δ) = ((γ|β)α|δ) = (γ|β)(α|δ) = (γ|(α|δ)β) = (γ|(δ|α)β) = (γ|Tβ,αδ) for all γ and δ so
T ∗

α,β = Tβ,α.

b) To find the trace of an operator, we take some basis A of V and take the trace of the matrix of
the operator with respect to that basis. We may as well take an orthonormal basis A = {α1, . . . , αn} of V .
The i-th coordinate of Tα,βαj is then (Tα,βαj |αi) = (αj |β)(α|αi) = (α|(β|αj)αi). This is the ij-th entry of
[Tα,β]A. So the trace is

∑n
i=1(α|(β|αi)αi) = (α|∑n

i=1(β|αi)αi) = (α|β).

c) Tα,βTγ,δφ = Tα,β((φ|δ)γ) = (φ|δ)Tα,βγ = (φ|δ)(γ|β)α = (φ|(γ|β)δ)α = (φ|(β|γ)δ)α = Tα,(β|γ)δφ for
all φ so Tα,βTγ,δ = Tα,(β|γ)δ.

d) If Tα,β is self adjoint then Tα,β = T ∗
α,β = Tβ,α. So for all γ we have (γ|β)α = (γ|α)β. So α and β

must be linearly dependent. If α = 0 then T0,β = 0 is self adjoint. If α 6= 0 then β = cα for some c and
(γ|β)α = c̄(γ|α)α and (γ|α)β = c(γ|α)α. So Tα,β is self adjoint if and only if either α = 0 or β is a real
multiple of α.

8.5:1 We just need to find characteristic vectors. For

[

1 1
1 1

]

the characteristic values are 0 and 2 with

char vectors [1 − 1]t and [1 1]t. Do Grahm-Schmidt on these vectors (i.e., normalize them) and they are the

columns of P = 1√
2

[

1 1
1 −1

]

.

For

[

1 2
2 1

]

the characteristic values are −1 and 3 with char vectors [1 − 1]t and [1 1]t. Do Grahm-

Schmidt on these vectors (i.e., normalize them) and they are the columns of P = 1√
2

[

1 1
1 −1

]

.

For

[

cos θ sin θ
sin θ − cos θ

]

the characteristic values are 1 and −1 with char vectors [sin θ 1 − cos θ]t and

[− sin θ 1 + cos θ]t. Do Grahm-Schmidt on these vectors (i.e., normalize them) and they are the columns of

P =

[ sin θ√
2−2 cos θ

− sin θ√
2+2 cos θ

√

1−cos θ
2

√

1+cos θ
2

]

=

[

cos θ
2 − sin θ

2

sin θ
2 cos θ

2

]

, (the second equality technically requires 0 ≤ θ ≤ π but

P will still work for any θ).

8.5:4 A∗A =

[

1 −i
−i 1

] [

1 i
i 1

]

=

[

2 0
0 2

]

and AA∗ =

[

1 i
i 1

] [

1 −i
−i 1

]

=

[

2 0
0 2

]

so T ∗T = TT ∗

and thus T is normal. The characteristic polynomial of T is x2 − 2x + 2 with roots 1 ± i. For 1 + i the

characteristic vectors are NS(A− (1+ i)I) = NS

[

−i i
i −i

]

= span

[

1
1

]

. For 1− i the characteristic vectors

are NS(A − (1 − i)I) = NS

[

i i
i i

]

= span

[

1
−1

]

. So an orthonormal basis of characteristic vectors is

{ 1√
2

[

1
1

]

, 1√
2

[

1
−1

]

}.
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8.5:8 This problem should also specify that T is an operator on a vector space V which is defined over C.
First of all, if such a T has an adjoint, then I claim there are unique self adjoint operators T1 and T2 on V
so that T = T1 + iT2. If such Tj exist then by Theorem 9, page 297 we have T ∗ = T ∗

1 − iT ∗
2 = T1 − iT2. So

we may solve for Tj and get T1 = T+T∗

2 and T2 = T−T∗

2i . But by Theorem 9, T ∗
1 = (T+T∗

2 )∗ = T∗+T
2 = T1

and T ∗
2 = (T−T∗

2i )∗ = T∗−T
−2i = T−T∗

2i = T2.

So for any T with an adjoint, T1 = T+T∗

2 and T2 = T−T∗

2i are the unique self adjoint operators on V so
that T = T1 + iT2.

Now
T ∗T − TT ∗ = (T1 − iT2)(T1 + iT2) − (T1 + iT2)(T1 − iT2)

= T 2
1 − iT2T1 + iT1T2 + T 2

2 − T 2
1 − iT2T1 + iT1T2 − T 2

2

= 2i(T1T2 − T2T1)

So T ∗T − TT ∗ = 0 if and only if T1T2 − T2T1 = 0, i.e., T is normal if and only if T1 and T2 commute.

8.5:9 By the corollary on page 314, there is an invertible matrix P so that P−1AP is diagonal. Let D be
the diagonal matrix whose diagonal entries are the cube roots of the entries of P−1AP . Then D3 = P−1AP .
let B = PDP−1. Then

B3 = PDP−1PDP−1PDP−1 = PD3P−1 = PP−1APP−1 = A
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