Math 405 Final Exam May 16, 2002

Work all problems in the answer book provided. Give sufficient reason for your answers. For example, a yes or no answer is insufficient. Instead say "Yes, because ... " and then show why.

1. (26) We'll call a linear mapping $P: V \to V$ a projection if $P^2 = P$. Suppose P is a projection and let Q = id - P. For parts f and g, suppose V is equipped with a positive definite Hermitian product.

- a) Show that Q is a projection.
- b) Show that $V = \text{Im}(P) \oplus \text{Im}(Q)$.
- c) Show whether or not the set of projections is a subspace of $\mathcal{L}(V, V)$, the vector space of linear mappings from V to itself.
- d) If V is finite dimensional, show that $\dim \operatorname{Ker}(P) + \dim \operatorname{Ker}(Q) = \dim V$.
- e) If V is finite dimensional, show that any projection which not either the identity or 0 must have exactly two eigenvalues. What are these eigenvalues?
- f) If P is Hermitian, show that Q is Hermitian also.
- g) If P is Hermitian, show that Ker(P) and Ker(Q) are orthogonal subspaces of V.

2. (15) Let $L: V \to V$ be a a linear operator where V has a positive definite Hermitian product \langle , \rangle . Suppose that $L^* = \sqrt{-1}L$.

- a) Show that $(1 + \sqrt{-1}) < Lv, v >$ is real for any $v \in V$.
- b) Show that if λ is an eigenvalue of L, then $(1 + \sqrt{-1})\lambda$ is real.
- c) Give an example of such an L when $V = \mathbb{C}^2$ with standard Hermitian product.

3. (10) Suppose that $L: V \to V$ is a linear operator and 1 is not an eigenvalue of L. Suppose further that $v \in V$ and $L^4v = v$. Show that $L^3v + L^2v + Lv + v = 0$. Hint: $t^4 - 1 = (t - 1)(t^3 + t^2 + t + 1)$.

4. (16) Suppose A is a square matrix and $A^4 = 8A^2 - 16I$ but $A^2 \neq 4I$. Suppose A has two different eigenvalues.

- a) What are the eigenvalues of A?
- b) Recall that the minimal polynomial of a matrix A is the smallest degree monic polynomial p so that p(A) = 0. What are the possible minimal polynomials of A?
- c) Give, if possible, an example of such an A. If this is not possible, say why not.
- d) Give, if possible, an example of such an A which is diagonalizable. If this is not possible, say why not.

5. (18) Let A be a 7 × 7 matrix with characteristic polynomial $p_A(t) = (t-1)^3(t^2+4)^2$.

- a) What is the smallest possible dimension of $\text{Ker}(A I)^3$?
- b) Give an example of such a matrix with dim Ker(A I) = 2 and dim $\text{Ker}(A 2\sqrt{-1}I) = 1$. Extra credit for an example with all real entries.
- c) Write down the Jordan normal form for A if its minimal polynomial is $(t-1)^2(t^2+4)$.
- 6. (15) True-False, short answer
- a) When proving the existence of Jordan normal form we used the fact that if p and q are polynomials without a common root, then there are polynomials p' and q' so that _____.
- b) If $L: V \to V$ has eigenvalue λ and p(t) is a polynomial, then p(L) has eigenvalue
- c) If $P: V \to W$ then dim Ker(P) + dim Im(P) = ?.
- d) True or false: If V and W are isomorphic finite dimensional vector spaces, then dim V must equal dim W.
- e) Suppose V has dimension 3 and W has dimension 4. Suppose $\{T_1, T_2, \ldots, T_k\}$ are linearly independent linear mappings in $\mathcal{L}(V, W)$. Then $k \leq \underline{\qquad}$.

7. (() 10) (Optional) If you wish you may substitute this problem for ten points of any problem above. Just tell me which problem you want it to apply to. Let $A = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$. Find e^A .