Math 405 Final Exam May 16, 2002

Work all problems in the answer book provided. Give sufficient reason for your answers. For example, a yes or no answer is insufficient. Instead say "Yes, because ... " and then show why.

1. (26) We'll call a linear mapping $P: V \rightarrow V$ a projection if $P^{2}=P$. Suppose P is a projection and let $Q=\mathrm{id}-P$. For parts f and g , suppose V is equipped with a positive definite Hermitian product.
a) Show that Q is a projection.
b) Show that $V=\operatorname{Im}(P) \oplus \operatorname{Im}(Q)$.
c) Show whether or not the set of projections is a subspace of $\mathcal{L}(V, V)$, the vector space of linear mappings from V to itself.
d) If V is finite dimensional, show that $\operatorname{dim} \operatorname{Ker}(P)+\operatorname{dim} \operatorname{Ker}(Q)=\operatorname{dim} V$.
e) If V is finite dimensional, show that any projection which not either the identity or 0 must have exactly two eigenvalues. What are these eigenvalues?
f) If P is Hermitian, show that Q is Hermitian also.
g) If P is Hermitian, show that $\operatorname{Ker}(P)$ and $\operatorname{Ker}(Q)$ are orthogonal subspaces of V.
2. (15) Let $L: V \rightarrow V$ be a a linear operator where V has a positive definite Hermitian product $<,>$. Suppose that $L^{*}=\sqrt{-1} L$.
a) Show that $(1+\sqrt{-1})<L v, v>$ is real for any $v \in V$.
b) Show that if λ is an eigenvalue of L, then $(1+\sqrt{-1}) \lambda$ is real.
c) Give an example of such an L when $V=\mathbb{C}^{2}$ with standard Hermitian product.
3. (10) Suppose that $L: V \rightarrow V$ is a linear operator and 1 is not an eigenvalue of L. Suppose further that $v \in V$ and $L^{4} v=v$. Show that $L^{3} v+L^{2} v+L v+v=0$. Hint: $t^{4}-1=(t-1)\left(t^{3}+t^{2}+t+1\right)$.
4. (16) Suppose A is a square matrix and $A^{4}=8 A^{2}-16 I$ but $A^{2} \neq 4 I$. Suppose A has two different eigenvalues.
a) What are the eigenvalues of A ?
b) Recall that the minimal polynomial of a matrix A is the smallest degree monic polynomial p so that $p(A)=0$. What are the possible minimal polynomials of A ?
c) Give, if possible, an example of such an A. If this is not possible, say why not.
d) Give, if possible, an example of such an A which is diagonalizable. If this is not possible, say why not.
5. (18) Let A be a 7×7 matrix with characteristic polynomial $p_{A}(t)=(t-1)^{3}\left(t^{2}+4\right)^{2}$.
a) What is the smallest possible dimension of $\operatorname{Ker}(A-I)^{3}$?
b) Give an example of such a matrix with $\operatorname{dim} \operatorname{Ker}(A-I)=2$ and $\operatorname{dim} \operatorname{Ker}(A-2 \sqrt{-1} I)=1$. Extra credit for an example with all real entries.
c) Write down the Jordan normal form for A if its minimal polynomial is $(t-1)^{2}\left(t^{2}+4\right)$.
6. (15) True-False, short answer
a) When proving the existence of Jordan normal form we used the fact that if p and q are polynomials without a common root, then there are polynomials p^{\prime} and q^{\prime} so that \qquad -
b) If $L: V \rightarrow V$ has eigenvalue λ and $p(t)$ is a polynomial, then $p(L)$ has eigenvalue \qquad .
c) If $P: V \rightarrow W$ then $\operatorname{dim} \operatorname{Ker}(P)+\operatorname{dim} \operatorname{Im}(P)=$?.
d) True or false: If V and W are isomorphic finite dimensional vector spaces, then $\operatorname{dim} V$ must equal $\operatorname{dim} W$.
e) Suppose V has dimension 3 and W has dimension 4. Suppose $\left\{T_{1}, T_{2}, \ldots, T_{k}\right\}$ are linearly independent linear mappings in $\mathcal{L}(V, W)$. Then $k \leq$ \qquad .
7. (() 10) (Optional) If you wish you may substitute this problem for ten points of any problem above. Just tell me which problem you want it to apply to. Let $A=\left(\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right)$. Find e^{A}.
