## Math 405 Final Exam May 19, 2005

Work any five problems in the answer book provided. Be sure to clearly indicate which five you want counted, otherwise I will just count the first five I see. Give sufficient reason for your answers. For example, a yes or no answer is insufficient. Instead say "Yes, because ... " and then show why. In a multipart problem you may use results from earlier parts even though you may not have proven them.

1. (20) Let $\langle$,$\rangle be a Hermitian product on \mathbb{C}^{2}$ so that $\left\langle e_{1}, e_{1}\right\rangle=3,\left\langle e_{2}, e_{2}\right\rangle=1$, and $\left\langle e_{1}, e_{2}\right\rangle=2 \mathbf{i}$.
a) Find an orthogonal basis for $\mathbb{C}^{2}$ with this product.
b) Let $W$ be the subspace generated by $\mathbf{i} e_{1}+e_{2}$. Find $W^{\perp}$.
2. (20) Suppose $p(t)$ is a polynomial, $A: V \rightarrow V$ is a linear operator, and $v$ is an eigenvector of $A$ with eigenvalue $\lambda$. Show that $v$ is an eigenvector of $p(A)$ and determine its eigenvalue.
3. (20) Recall that a linear operator $N: V \rightarrow V$ is nilpotent if $N^{k}=0$ for some $k$. Suppose that $N: V \rightarrow V$ is nilpotent, $\operatorname{dim} V=3$, and $N^{2} \neq 0$.
a) What is the characteristic polynomial of $N$ ?
b) Show that $N^{3}=0$.
c) Find all possible Jordan normal forms of $N$.
d) Let $i d: V \rightarrow V$ denote the identity. Show that $(i d+N)^{-1}=i d-N+N^{2}$.
e) Suppose $v \in V$ and $N^{2} v \neq 0$. Show that $\left\{v, N v, N^{2} v\right\}$ forms a basis of $V$. How does this relate to c)?
4. (20) Let $A$ be a Hermitian or unitary matrix with entries in $\mathbb{C}$.
a) Show that $A$ has a square root, a matrix $B$ so that $A=B^{2}$.
b) Determine the condition on the eigenvalues of $A$ which guarantees that the matrix $B$ in part a) can be chosen to be Hermitian.
5. (20) Let $V$ be the vector space generated by the functions $e^{t}$, $t e^{t}$, and $t^{2} e^{t}$, and let $\mathcal{B}=\left\{e^{t}, t e^{t}, t^{2} e^{t}\right\}$ and $\mathcal{C}=\left\{e^{t},(t+1) e^{t},\left(t^{2}+2 t\right) e^{t}\right\}$ be two bases of $V$. Let $T: V \rightarrow V$ be the map $T(f)=d f / d t$.
a) Show that $T$ is a linear transformation.
b) Find the matrix $\mathcal{M}_{\mathcal{C}}^{\mathcal{B}}(T)$ of $T$ relative to $\mathcal{B}, \mathcal{C}$.
c) Find the matrix $\mathcal{M}_{\mathcal{C}}^{\mathcal{B}}$ (id) of the identity relative to $\mathcal{B}, \mathcal{C}$.
6. (20) Let $A=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 3 & 1\end{array}\right)$. Find a matrix $P$ so that $P^{-1} A P$ is in Jordan normal form. You may substitute this problem for any problem above, just tell me which one.
7. (20) Suppose a matrix $A$ has characteristic polynomial $(t-1)^{4}(t-2)^{3}$ and minimal polynomial $(t-$ $1)^{2}(t-2)$.
a) What are the possible dimensions of $\operatorname{Ker}(A-I)$ ?
b) What are the possible dimensions of $\operatorname{Ker}(A-2 I)$ ?
c) What are the possible dimensions of $\operatorname{Ker}(A-3 I)$ ?
d) What are the possible Jordan normal forms of $A$ ? For each such Jordan normal form, determine the dimension of $\operatorname{Ker}(A-2 I)$.
