INSTRUCTIONS: Work all problems in the answer book provided. Give sufficient reason for your answers. If there is insufficient information given to determine an answer, say why. In all problems, U, V, and W are vector spaces are over a subfield K of the complex numbers. However the U, V, and W in one numbered problem have no relation to the U, V, and W in another numbered problem.

1. [20] Suppose U and W are subspaces of V and every vector in V can be written as a sum $u+w$ with $u \in U$ and $w \in W$. Suppose the dimensions of U, W, and V are 3,4 , and 5 respectively.
a) Find the dimension of $U \cap W$.
b) Find the dimension of $\mathcal{L}(U, W)$.
c) Find the dimension of $U+W$.
d) The dual space V^{*} of V is defined to be $\mathcal{L}(V, K)$, the space of linear transformations from V to K^{1}. Find the dimension of V^{*}.
2. [30] Let $V=\operatorname{Mat}_{2 \times 2}(K)$ be the space of 2×2 matrices with entries in K. Recall that if A is a square matrix, then its trace $\operatorname{tr}(A)$ is the sum of its diagonal entries. Define $T: V \rightarrow V$ by $T(A)=2 A-\operatorname{tr}(A) I$ where I is the identity matrix. So for example $T\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)=$ $\left(\begin{array}{cc}-3 & 4 \\ 6 & 3\end{array}\right)$.
a) Show that T is a linear transformation.
b) Find $\operatorname{Ker}(T)$.
c) Find a basis for $\operatorname{Ker}(T)$.
d) Find the dimension of $\operatorname{Im}(T)$.
3. [50] Let $T: V \rightarrow W$ be a one-to-one, onto, linear transformation. Suppose that $\mathcal{B}=$ $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis of V.
a) Let $w_{i}=T\left(v_{i}\right)$. Prove that $\mathcal{B}^{\prime}=\left\{w_{1}, \ldots, w_{n}\right\}$ is a basis of W.
b) What is the dimension of V ?
c) What is the dimension of W ?
d) Find the matrix $\mathcal{M}_{\mathcal{B}^{\prime}}^{\mathcal{B}}(T)$ associated to T relative to $\mathcal{B}, \mathcal{B}^{\prime}$.
e) If possible, give an example of such a T where T^{-1} is not linear.
4. [20] (optional) If you wish you may do this problem and reduce the number of points in problem 2 to 25 and the points in problem 3 to 35 .
a) For which x are the vectors $\{(x, 1,2,0),(4, x, 4,0),(0,1,2,3)\}$ linearly independent?
b) For which x are the three vectors above a basis of K^{4} ?
c) Let V be the space of polynomials of degree ≤ 4 and let $T: V \rightarrow V$ be differentiation. Show that T is a linear transformation and find its kernel.
