Math 461 Section 0601 Final Exam May 17, 2004

1. (45) Let A be the matrix

$$A = \begin{bmatrix} 1 & 2 & 2 & 0 & 1 \\ 2 & 4 & 4 & 2 & 4 \\ 2 & 3 & 4 & 0 & 0 \\ 1 & 3 & 2 & 2 & 5 \end{bmatrix}$$

- a) Find the reduced echelon form of A.
- b) Find the rank of A.
- c) Find a basis for the column space of A.
- d) Find a basis for the Null space of A.
- e) Find all solutions to $A\mathbf{x} = \begin{bmatrix} 1 & 0 & 1 & 0 \end{bmatrix}^T$.
- f) Find all solutions to $A\mathbf{x} = \begin{bmatrix} 2 & 2 & 1 & 0 \end{bmatrix}^T$.

2. (30) For each of the following matrices:

- + Find its eigenvalues and an eigenvector for each eigenvalue.
- + If possible, find a (possibly complex) matrix P and a diagonal matrix D so that the given matrix equals PDP^{-1} . If possible, P should be orthogonal.
- + If possible, find a real matrix Q so that the given matrix is QCQ^{-1} where C is of the form $C = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$.
- + Find a formula for $\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}^k$ as a product of at most 3 matrices.

a)
$$\begin{bmatrix} 5 & 8 & 0 \\ 0 & 5 & 1 \\ 0 & 0 & 4 \end{bmatrix}$$
 b) $\begin{bmatrix} -4 & 5 \\ -5 & 4 \end{bmatrix}$ c) $\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$

3. (15) A matrix A has singular value decomposition

$$A = \begin{bmatrix} 1/2 & 1/2 & 1/2 & 1/2 \\ 1/2 & -1/2 & 1/2 & -1/2 \\ 1/2 & -1/2 & -1/2 & 1/2 \\ 1/2 & 1/2 & -1/2 & -1/2 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2/3 & 2/3 & 1/3 \\ 1/3 & -2/3 & 2/3 \\ 2/3 & -1/3 & -2/3 \end{bmatrix}^{T}$$

1

- a) Find an orthonormal basis for the column space of A.
- b) Find an orthonormal basis for the Null space of A.

- 4. (25) Find an orthogonal basis for Span $\{1, t, t^2\}$ in C[0, 2] using the inner product $\langle f, g \rangle = \int_0^2 f(t)g(t) dt$. Suppose f(t) is a function in C[0, 2]. Find the projection of f to Span $\{1, t, t^2\}$ if $\langle 1, f \rangle = 4$, $\langle t, f \rangle = 32/5$, $\langle t^2, f \rangle = 32/3$, and $\langle t^3, f \rangle = 128/7$.
- 5. (25) Determine whether each of the following subsets of \mathbb{R}^5 are subspaces and find a basis and dimension if they are.
 - a) S_1 is the set of $[x_1, x_2, x_3, x_4, x_5]^T$ so that $x_1 + x_2 + x_3 + x_4 + x_5 = 1$.
 - b) S_2 is the set of $[x_1, x_2, x_3, x_4, x_5]^T$ so that $x_1 + x_2 + x_3 + x_4 + x_5 = 0$ and $x_1 + x_2 + x_3 = x_4 + x_5$.
 - c) S_3 is Span $\{[1,2,3,4,5]^T, [1,1,1,1,1]^T, [0,1,2,3,4]^T\}$.
- 6. (60) True (always true), False (always false), Maybe (sometimes true and sometimes false, depending on A, S, etc.) or short answer. A and B are 8×8 matrices, C is a 4×8 matrix, and S is a four dimensional subspace of a seven dimensional real vector space V with an inner product.
 - a) The eigenvalues of a Hermitian matrix are all real.
 - b) Two eigenvectors of a symmetric matrix are orthogonal if they correspond to different eigenvalues.
 - c) Using the usual Hermitian inner product in \mathbb{C}^3 the length of $[1+i,2-i,3]^T$ is $\sqrt{(1+i)^2+(2-i)^2+9}$.
 - d) If the characteristic polynomial of A has a repeated root, then A is not diagonalizable.
 - e) If C has rank 3 then the null space of C has dimension 1.
 - f) There is a set of 6 linearly independent vectors in P_4 .
 - g) If $[u_1, \ldots, u_7]$ is an orthonormal basis for V, then

$$\langle 2u_1 + 3u_2 - u_4 + u_6, \ u_1 - 2u_2 + u_4 + u_7 \rangle = -5$$

- h) V has an orthonormal basis.
- i) Any orthogonal set in V is linearly independent.
- j) $(S^{\perp})^{\perp} =$ _____.
- k) $(NulA)^{\perp} = \underline{\qquad}$.
- 1) $(AB)^T = ____.$