1. (60) Let A be the matrix

$$A = \begin{bmatrix} 1 & 2 & 1 & 0 \\ 1 & 0 & 3 & 2 \\ 1 & 2 & 1 & 2 \\ 1 & 0 & 3 & 4 \end{bmatrix}$$

- a) Find the reduced echelon form of A.
- b) Find the rank of A.
- c) Find an orthogonal basis for the column space of A.
- d) Find an orthonormal basis for the Null space of A.
- e) Find all solutions to $A\mathbf{x} = \begin{bmatrix} 8 & 0 & 6 & -2 \end{bmatrix}^T$.
- f) Find all solutions to $A\mathbf{x} = \begin{bmatrix} 2 & 2 & 1 & 0 \end{bmatrix}^T$.
- g) Find the projection of $[1, 0, 0, 0]^T$ to the column space of A.

2. (15) Find the third order Fourier approximation to the square wave function f(t) = 1for $0 \le t < \pi$ and f(t) = 0 for $\pi \le t < 2\pi$. In other words, find the closest function to f in Span{1, sin t, sin 2t, sin 3t, cos t, cos 2t, cos 3t} using the inner product $\langle f, g \rangle = \int_{0}^{2\pi} f(t)g(t) dt$.

3. (20) Let $Q(\mathbf{x}) = 3x_1^2 + x_2^2 + x_3^2 + 4x_2x_3$ be a quadratic form. Find an orthogonal matrix P so that the change of variables $\mathbf{x} = P\mathbf{y}$ transforms Q to a quadratic form with no cross-product terms. Determine whether or not Q is positive definite, negative definite, or indefinite.

4. (20) Let $T: P_3 \to P_2$ be the linear transformation T(p) = p'(t) + p(0). Find the matrix for T relative to the basis $\{1, t-1, t-t^2, t^3\}$ of P_3 and the basis $\{t^2, 1, t\}$ of P_2 .

5. (25) Determine whether each of the following subsets of P_3 are subspaces and find a basis and its dimension if it is.

- a) S_1 is the set of p(t) in P_3 so that p(1) = 0.
- b) S_2 is the set of p(t) in P_3 so that p(0) = 1.
- c) S_3 is Span $\{1, t-1, t^3 t^2, t^3 t^2 t\}$.
- d) S_4 is the set of p(t) in P_3 so that p(0) = p(1) = 0.

6. (60) True (always true), False (always false), Maybe (sometimes true and sometimes false, depending on A, S, etc.) or short answer. A and B are real 8×8 matrices, C is a complex 4×8 matrix, and S is a four dimensional subspace of a seven dimensional real vector space V with an inner product.

- a) Two eigenvectors of a symmetric matrix are orthogonal if they correspond to different eigenvalues.
- b) Using the usual Hermitian inner product in \mathbb{C}^3 the length of $[1 + i, 2 i, 3]^T$ is $\sqrt{(1+i)^2 + (2-i)^2 + 9}$.
- c) If the characteristic polynomial of A has a repeated root, then A is not diagonalizable.
- d) CC^* is diagonalizable.
- e) There are 6 vectors in P_4 which span P_4 .
- f) If $\{u_1, \ldots, u_7\}$ is an orthonormal basis of V, then

$$\{u_1 + 2u_2 - 5u_3 + u_4, 2u_1 - u_2, u_1 + 2u_2 + u_3\}$$

is an orthogonal set.

- g) If A has no real eigenvalues, then A is nonsingular.
- h) V has an orthonormal basis.
- i) Any orthogonal set in V is linearly independent.
- j) dim $S^{\perp} =$ _____.
- k) If C has rank 3 then $\dim Nul(C) =$ _____.
- 1) If A and B are invertible, then $(AB)^{-1} =$ _____