1. (60) Let A be the matrix

$$
A=\left[\begin{array}{llll}
1 & 2 & 1 & 0 \\
1 & 0 & 3 & 2 \\
1 & 2 & 1 & 2 \\
1 & 0 & 3 & 4
\end{array}\right]
$$

a) Find the reduced echelon form of A.
b) Find the rank of A.
c) Find an orthogonal basis for the column space of A.
d) Find an orthonormal basis for the Null space of A.
e) Find all solutions to $A \mathbf{x}=\left[\begin{array}{llll}8 & 0 & 6 & -2\end{array}\right]^{T}$.
f) Find all solutions to $A \mathbf{x}=\left[\begin{array}{llll}2 & 2 & 1 & 0\end{array}\right]^{T}$.
g) Find the projection of $[1,0,0,0]^{T}$ to the column space of A.
2. (15) Find the third order Fourier approximation to the square wave function $f(t)=1$ for $0 \leq t<\pi$ and $f(t)=0$ for $\pi \leq t<2 \pi$. In other words, find the closest function to f in $\operatorname{Span}\{1, \sin t, \sin 2 t, \sin 3 t, \cos t, \cos 2 t, \cos 3 t\}$ using the inner product $\langle f, g\rangle=$ $\int_{0}^{2 \pi} f(t) g(t) d t$.
3. (20) Let $Q(\mathbf{x})=3 x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+4 x_{2} x_{3}$ be a quadratic form. Find an orthogonal matrix P so that the change of variables $\mathbf{x}=P \mathbf{y}$ transforms Q to a quadratic form with no cross-product terms. Determine whether or not Q is positive definite, negative definite,or indefinite.
4. (20) Let $T: P_{3} \rightarrow P_{2}$ be the linear transformation $T(p)=p^{\prime}(t)+p(0)$. Find the matrix for T relative to the basis $\left\{1, t-1, t-t^{2}, t^{3}\right\}$ of P_{3} and the basis $\left\{t^{2}, 1, t\right\}$ of P_{2}.
5. (25) Determine whether each of the following subsets of P_{3} are subspaces and find a basis and its dimension if it is.
a) S_{1} is the set of $p(t)$ in P_{3} so that $p(1)=0$.
b) S_{2} is the set of $p(t)$ in P_{3} so that $p(0)=1$.
c) S_{3} is $\operatorname{Span}\left\{1, t-1, t^{3}-t^{2}, t^{3}-t^{2}-t\right\}$.
d) S_{4} is the set of $p(t)$ in P_{3} so that $p(0)=p(1)=0$.
6. (60) True (always true), False (always false), Maybe (sometimes true and sometimes false, depending on A, S, etc.) or short answer. A and B are real 8×8 matrices, C is a complex 4×8 matrix, and S is a four dimensional subspace of a seven dimensional real vector space V with an inner product.
a) Two eigenvectors of a symmetric matrix are orthogonal if they correspond to different eigenvalues.
b) Using the usual Hermitian inner product in \mathbb{C}^{3} the length of $[1+i, 2-i, 3]^{T}$ is $\sqrt{(1+i)^{2}+(2-i)^{2}+9}$
c) If the characteristic polynomial of A has a repeated root, then A is not diagonalizable.
d) $C C^{*}$ is diagonalizable.
e) There are 6 vectors in P_{4} which span P_{4}.
f) If $\left\{u_{1}, \ldots, u_{7}\right\}$ is an orthonormal basis of V, then

$$
\left\{u_{1}+2 u_{2}-5 u_{3}+u_{4}, 2 u_{1}-u_{2}, u_{1}+2 u_{2}+u_{3}\right\}
$$

is an orthogonal set.
g) If A has no real eigenvalues, then A is nonsingular.
h) V has an orthonormal basis.
i) Any orthogonal set in V is linearly independent.
j) $\operatorname{dim} S^{\perp}=$ \qquad .
k) If C has rank 3 then $\operatorname{dim} \operatorname{Nul}(C)=$ \qquad .
l) If A and B are invertible, then $(A B)^{-1}=$ \qquad .

